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Abstract 

Flor yeasts of Saccharomyces cerevisiae are the main actors in the biological ageing of 

Sherry wines by developing an air-liquid biofilm, called velum at the surface of wine 

at the end of fermentation. The air-liquid biofilm occurs due to a complex mechanism 

which is similar to many microbial biofilms. The velum phenotype is mainly 

regulated by the expression of a highly O-glycosylated cell wall protein Flo11 which 

by turn contributes to the hydrophobicity and electrostatic charge of the cell wall 

which are crucial for unspecific interactions and adhesion capacity of yeasts. In this 

study we characterized the interactions of flor yeasts with a series of nitrogen 

compounds known for their hydrophobicity and/or charge. We find that, different 

flor yeast strains characterized by different degree of functional FLO11 are diversely 

affected in terms of biofilm formation and adhesion capacity when interact with 

different nitrogen sources. The positive role of the synthetic hexapeptide PAF26 in 

enhancing the biofilm formation was first discovered. On the contrary, cationic 

amino acids were able to inhibit biofilm formation and adhesion ability. Results 

together highlight on the involvement of the Flo11p in hydrophobic and electrostatic 

interactions and open to new investigations, addressed to the control of microbial 

adhesion and biofilm formation.  
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Yeast have been used spontaneously by human from approximately 10.000 B.C in 

wine and bread production (Piskur et al., 2006), and recently also as producers of bio-

ethanol, vitamins and pharmaceutical products like hormones and protein drugs. 

Despite these “good” purposes, several yeast species are pathogenic to animals and 

plants. The most studied yeast is Saccharomyces cerevisiae, a unicellular eukaryotic, 

very well known for its ability to ferment, under fully aerobic conditions, glucose to 

ethanol and carbon dioxide, thus been classified as a Crabtree positive yeast (Gelinas, 

2009). Besides its common usage in wine production, brewing and baking products, 

S. cerevisiae is intensively used as a model system to study numerous cellular 

processes such as eukaryotic gene regulation and evolution, cell cycle, metabolic 

pathways, apoptosis and ageing (Giaever et al., 2002; Petranovic and Nielsen, 2008). 

Yeasts also organize into multicellular communities which is critical for their 

surviving in harmful environments. Natural Saccharomyces cerevisiae strains form 

complex structured colonies, which share many typical properties with biofilms 

infections of Candida albicans and Candida glabrata strains in the human body 

(Lionakis and Netea, 2013). Microbial biofilms are widespread in nature and can 

develop on biotic or abiotic surfaces and are enclosed in an extracellular matrix, the 

whole forming a complex three-dimensional architecture. The formation of biofilms, 

whether bacterial or fungal, consists of cell-cell aggregation, adhesion of cells to a 

surface, initial formation of colonies and secretion of extracellular polymeric matrices 

(Stoodley et al., 2002; Mowat et al., 2009). Adhesion and biofilm formation 

mechanisms are considered as an adaptive response to adverse environmental 

conditions (Hall-Stoodley and Stoodley, 2009; Ning et al., 2013).  

At the biotechnological level, the multicellular behavior of S. cerevisiae is applied in 

the sedimentation and the removal of the biomass at the end of fermentations 

processes (Verstrepen and Klis, 2006; Bauer et al., 2010). Flor yeasts are natural S. 

cerevisiae strains, and are the main actors in the biological ageing of Sherry and  
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Sherry-like wines. In Sardinia, sherry-like wine is produced traditionally, and flor 

yeasts found are endogenous (ex: Vernaccia di Oristano) (Budroni et al., 2000; 

Budroni et al., 2005; Zara et al., 2008).  

 

1. Peculiarities of flor yeasts 

Flor yeasts belong to S.cerevisiae species and have the ability of cell-cell and cell-

surfaces aggregation, invasive and pseudohyphal growth and in particular, they can 

form biofilm at air-liquid interfaces (Fig.1). The dimorphic unicellular to 

multicellular growth swift occurs when flor yeasts are exposed to critical 

environmental conditions, such as depletion of favorable carbon and/or nitrogen 

sources. Indeed, in wine making, at the end of alcoholic fermentation, when 

nutritional resources are depleted, the further growth becomes dependent on the 

access to oxygen (Freiberg and Cruess, 1955; Zara et al., 2005; Fidalgo et al., 2006). The 

formation of the air–liquid biofilm allows the yeast cells to grow aerobically thru the 

uptake of preferably glycerol, acetic acid and ethanol respectively, as non 

fermentable carbon sources (Zara et al., 2010). 

 

FIG 1 A) Air-liquid biofilm formation by S. cerevisiae flor strain on Vernaccia sherry-like wine (Zara et al., 2005). B) 

Microscopic view on the multicellular tendency of flor yeasts. C) Microscopic view on the unicellular tendency of 

laboratory yeast S288c. 
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The formation of the air–liquid biofilm allows the yeast cells to grow aerobically thru 

the uptake of preferably glycerol, acetic acid and ethanol respectively, as non 

fermentable carbon sources (Zara et al., 2010). This aerobic growth induces the 

substantial production of acetaldehyde, and activates complex metabolisms of amino 

acids, such as Proline, which are used directly as nitrogen sources or electron 

acceptors (Mauricio et al., 2001). Moreover, studies evidenced a high accumulation of 

unsaturated long-chain fatty acids in flor yeast cells in fermentation phase, which 

subsequently increases in biofilm formation phase. The oleic acid was shown to be 

the most copious in flor yeasts (Mannazzu et al., 2008; Marques et al., 2008).  It was 

suggested that the excessive presence of these unsaturated fatty acids is related to the 

enhanced ethanol tolerance and hydrophobicity of flor yeasts, and to the biofilm 

formation process in general, by increasing the flor yeast cell density, which enable 

them to grow on air-liquid surfaces (Zara et al., 2012). 

The emergence of molecular techniques has greatly improved the genetic 

characterization of flor yeasts. Restriction analysis of the intergenic region of 5.8S 

rDNA has identified a 24 base pair deletion in all analyzed flor strains (Esteve-

Zarzoso et al., 2001). In the last decade, a series of studies uncovered the key factor in 

biofilm formation. These studies revealed that the FLO11 gene, which encodes for a 

cell wall mannoprotein, Flo11p is the main factor in biofilm formation and 

multicellular growth. Besides to FLO11 gene, it was shown that the whole cell wall is 

involved in the multicellular response to threatening environments (Cid et al., 1995; 

Galitski et al., 1999; Reynolds, 2001; Zara et al., 2005; Dranginis et al., 2007).  
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2. Cell wall role and molecular structure 

The cell wall is a principal compartment in yeast and is largely involved in the 

dimorphic shift of the cell (Verstrepen et al., 2004). It has main functions toward 

mechanical and osmotic stresses. i) It provides protection from osmotic shock by 

limiting the influx of water to avoid bursting and to maintain cell the intracellular 

water activity (Hohmann, 2002); ii) it is essential for the strength and elasticity 

required to maintain the shape of the cell, as well as it provide an effective barrier 

against sheer and compression forces (Klis et al., 2006); iii)it regulates the 

permeability of solutes (Lipke and Ovalle, 1998). 

Apart of the protective role of the cell wall, it also serves as a tool for cell-cell and 

cell-environment interactions. In fact, one of the most important functions of the cell 

wall is the ability to adhere to other cells, biotic and abiotic surfaces (Zara et al., 2005). 

This includes adhesion of sexual partner cells as well as vegetative adhesion. Sexual 

adhesion of budding yeast is well understood and is mediated by cell-type-specific 

adhesins called agglutinins, which are produced by mating partners after exchange 

of pheromones and confer cell–cell adherence by high-affinity heterotypic protein–

protein interactions (Lipke and Kurjan, 1992; Chen and Thorner, 2007; Dranginis et 

al., 2007). On the other hand, the vegetative adhesion includes cell-cell and cell-

surfaces bindings, flocculation, biofilm formation and multicellular growth, which 

leads to an increased resistance to unfavorable chemical and physical conditions 

(Guo et al., 2000; Kojic and Darouiche, 2004; Stovicek et al., 2012).  

All these crucial functions attributed to the cell wall reflect its complexity and high 

specificity. Therefore, yeast cells use considerable energy in the construction of the 

cell wall, which comprises some 10–25% of the cell mass depending on growth 

conditions (Smits et al., 1999; Aguilar-Uscanga and Francois, 2003; Levin, 2011). It is 

mainly composed of chitin, β-glucans and mannoproteins arranged into two layers.  
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The inner layer is a load-bearing polysaccharides, acting as a scaffold for a protective 

outer layer of mannoproteins that extend into the medium. The mechanical strength 

of the wall is mainly due to the inner layer, which consists of β-1,3-glucan and chitin, 

and represents about 40-50% of the wall dry weight. The outer layer, which consists 

of heavily glycosylated mannoproteins emanating from the cell surface, is involved 

among others in cell-cell recognition events (Cappellaro et al., 1994; Teunissen and 

Steensma, 1995; Reynolds, 2001). It also limits the accessibility of the inner part of the 

wall and the plasma membrane to foreign enzymes such as cell wall-degrading 

enzymes in plants tissues (Fig.2) (de Nobel et al., 1990; Lipke and Ovalle, 1998; Klis et 

al., 2002; Yin et al., 2005). This macromolecular confirmation confers an electron-

transparent internal layer and an electron-dense outer layer (Osumi, 1998).  

 

2.1. Chitin. Chitin is a linear, insoluble homopolymer composed of β-1,4-linked 

subunits of the acetylated amino sugar N-acetylglucosamine. After cellulose, chitin is 

the second most abundant polymer found in the biosphere. It is the main compound 

of invertebrate exoskeletons and an essential structural component of the cell walls of 

yeast and filamentous fungi (Rabea et al., 2003; Tharanathan and Kittur, 2003). 

Even though it is considered as minor component of the yeast cell wall, it is 

structurally important for cell surviving. Chitin forms in normal growth conditions 

1–2% of the yeast cell wall by dry weight (Klis, 1994; Klis et al., 2002) whereas the cell 

walls of filamentous fungi, such as Neurospora and Aspergillus, are reported to contain 

10–20% chitin (de Nobel et al., 2000). 

In Saccharomyces cerevisiae, the synthesis of chitin is mediated by expression of chitin 

synthases CHS1, 2 and 3 genes, which encode for an integral membrane enzymes 

that catalyze the transfer of N-acetylglucosamine from uridine diphosphate (UDP)-

N-acetylglucosamine to a growing chitin chain (Roncero, 2002).  
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Chs1p functions in regenerating chitin polymers lost during cytokinesis and Chs2p is 

required for the formation of the primary septum within the dividing yeast cell 

(Shaw et al., 1991; Latge, 2007). Chs3p generates approximately 80–90% of the total 

cellular chitin and its activity includes the i) synthesis of the bulk chitin of the cell 

wall, ii) increase of chitin synthesis as a response to cell wall stress, iii) chitin ring 

formation during bud emergence as well as iiii) the chitin linked covalently to the β-

1,3-glucan fraction of the cell wall, and particularly, to β-1,6- glucan, as a response to 

certain cell wall stress (Bulawa, 1992; Kollar et al., 1995; Latge, 2007).  

Mutants affected in the Chs3p chitin synthase have vastly reduced chitin levels and 

rates of growth, accompanied by defects in cell wall integrity. The deletion of all 

three genes results a lethal phenotype, due to a high disorder in cell wall, cell 

malformation and osmotic instability, demonstrating that chitin is an indispensable 

component of the cell wall of S. cerevisiae (Bulawa, 1993). This is appropriated to the 

inter-chain hydrogen bonding between chitin microfibrils which forms polymers 

with high tensile strength and contribute to the overall integrity of the cell wall. Such 

hydrogen bondings occur mainly between the newly formed polymers of chitin, 

leading to the formation of microfibrils and subsequent crystallization of chitin in the 

extracellular space immediately adjacent to the plasma membrane. In yeast and 

filamentous fungi, this occurs mostly in sites of active growth and cell wall 

remodeling such as the bud tip during polarized growth and the bud neck during 

cytokinesis, cell wall synthesis and hyphal apex areas (Bowman and Free, 2006; 

Latge, 2007). 

 

2.2. β-glucans. β-glucans are naturally occurring polysaccharides and are prevalent 

among the Saccharomyces cerevisiae cell wall by β-1,3 or β-1,6-links. β-1,3-glucans 

consist of chains with a degree of polymerization of almost 1,500 glucose units/chain, 

found integrally in a variety of bacteria, plants and fungi. β-1,3-glucans share a coiled  
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spring-like structure that confers elasticity and tensile strength to the cell wall. They 

constitute the 30-45% of the dry weight of the cell wall and 80-90% of the inner part 

of the cell wall. β-1,3-glucans network are characterized by their non-reducing ends, 

which are cross-linked to the reducing ends of chitin and  β-1,6-glucans respectively 

at the lower and outer sides of the network (Kollar et al., 1997; Lesage and Bussey, 

2006). β-1,6-glucans represent the 10–15% of the total yeast cell wall polysaccharides, 

with an average size of 350 glucose units/chain. β-1,6-glucan polymers are 

amorphous in structure, and acts as a flexible join by forming covalent cross-links to 

β-1,3-glucan, to chitin and most importantly to cell wall mannoproteins (Kollar et al., 

1997; Shahinian and Bussey, 2000; Lesage and Bussey, 2006). 

The synthesis of β-1,3-glucans occurs in the plasma membrane through the  1,3-β-D-

glucan synthase (GS) enzymatic complex. The GS complex consists of a catalytic 

subunit and a regulatory subunit, both of which are essential for the complex 

activity. The regulatory subunit is a GTP-binding protein encoded by RHO1, which 

also regulates protein kinase C and acts as an activator responsive to cell 

morphogenesis signals (Mazur and Baginsky, 1996; Qadota et al., 

1996). FKS1 and GSC2 encode the catalytic subunit with the activity of UDP-

glucose:1,3-β-D-glucan 3-β-glucose transferase, which catalyzes the transfer of a 

glucose moiety from UDP-glucose to the glucan chain. FKS1 is mainly expressed 

during vegetative growth, whereas GSC2 is induced under starvation, 

during sporulation, and in response to mating pheromones. Single mutation of each 

of these genes is not lethal, but the double null mutant fks1 gsc2 is not viable, 

indicating that the GS function is essential.(Douglas et al., 1994; Mazur et al., 1995; 

Qadota et al., 1996; Lesage et al., 2004; Levin, 2011). Regarding the β-1,6-glucans, the 

mechanism and the genes involved in their synthesis seem to be more complex 

respect to other polysaccharides and still not well understood (Cabib and Arroyo, 

2013).  

http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=148
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=148
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003264
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=3843
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=3843
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003264
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=9267
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=30437
http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=7329
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003264
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Many genes throughout the secretory pathway to the cell wall were found to be 

involved indirectly in β-1,6-glucan synthesis, which has prevented identification of 

the gene(s) encoding the β-1,6-glucan synthase (Page et al., 2003). Interestingly, the β-

1,6-glucan formed in Knh1 and/or kre9 mutants is significantly smaller than its wild 

type equivalent and have an abnormal structure (Brown and Bussey, 1993; Klis et al., 

2006).

 

FIG 2 General structure and cell wall assembly in Saccharomyces cerevisiae. After synthesis in the ER and 

Golgi, mannoproteins are packed in vesicles and transported to the plasma membrane, whereas polysaccharides, 

such as chitin, β-1,3-glucan, and hypothetically β-1,6-glucan, emerge from the plasma membrane into the 

periplasmic space. Chitin is attached to β-1,6-glucan through a β-1,3-linked glucose branch and to the non-

reducing terminal glucose of β-1,3-glucan (in the box, lighter-coloured circles represents non-reducing ends and 

reducing ends are shown as triangles). Mannoproteins are linked to β-1,6-glucan by the 

glycosylphosphatidylinositol remnant. The Pir proteins which are attached in the inner part of the wall to 

β-1,3-glucan through an alkali-labile linkage are not shown. Et, ethanolamine; Glc, Glucose; GlcNAc, 

N-acetylglucosamine; P, phosphate (Cabib and Arroyo, 2013). 
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3. Cell wall mannoproteins. 

To the cell wall β-glucans are linked a varied set of highly glycosylated 

mannoproteins which represent the electron-dense and fibrillar outer layer of the 

wall (Lesage and Bussey, 2006). Cell wall mannoproteins form the 30-50% of the cell 

wall dry weight. In fact, the actual protein content is about 4–5%; the remaining mass 

is from protein-linked, mannose-containing side-chains. These carbohydrate side 

chains are added to cell wall proteins by N-glycosylation or O-mannosylation which 

are the two types of oligosaccharidic post-transcriptional protein modifications that 

have been described in S.cerevisiae so far. Both N- and O-linked carbohydrate side 

chains of yeast mannoproteins contain phosphodiester groups (Jigami and Odani, 

1999). The outer surface of yeast contains abundant negatively charged groups at a 

pH ≥3.0 (Klis et al., 2007).  

N-glycosylated cell wall proteins receive an oligosaccharide through an N-glycosidic 

bond between a GlcNAc and an asparagine residue in the ER, than extensively 

mannosylated in the Golgi, with a final structure of α-1,6-linked mannose chain of up 

to 50 mannose residues extending from the N-glycan core and to which are attached 

shorter chains of α-1,2 residues terminating in α-1,3-linked mannose residues, 

forming a highly branched structure containing as many as 200 mannose residues 

(Dean, 1999; Dempski and Imperiali, 2002). 

O-mannoslyation consists of attaching by glycosidic bonds, short oligomannose 

chains of up to five mannose units, to the hydroxyl group of serine and Threonine 

residues of cell wall proteins. The first two mannose residues being α-1,2 linked and 

subsequent ones α-1,3 linked. Mannosyltransfer takes place in the ER and is 

catalyzed by a conserved family of protein O-mannosyltransferases, encoded by 

PMT genes family (Loibl and Strahl, 2013). Despite the small size of the O-linked 

chains, the abundance of cell wall proteins with rich tandem repeats of serine and 

Threonine residues leads to heavy O-mannosylation, and so the number of O-linked 
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chains per protein can be high and the amount of O-linked mannose in the cell wall 

significant (Strahl-Bolsinger et al., 1999).  

The wall of S. cerevisiae contains nearly 20 different covalently linked mannoproteins 

(Yin et al., 2005). The majority of cell wall proteins responsible for vegetative 

adhesions are GPI-anchored and are thus indirectly linked to the β-1,3-glucans 

network thru a glycosidic linkage with branched β-1,6 glucans (Kollar et al., 1997; 

Cabib and Arroyo, 2013). In addition, a minor group of cell mannoproteins is directly 

linked to the β-1,3-glucan fibril chain  through an unidentified linkage which is 

sensitive to mild alkali. These proteins are called ASL (alkali-sensitive linkage) and 

include the PIR genes family of cell wall mannoproteins (Pir, proteins with internal 

repeats) (De Groot et al., 2005). ASL and GPI mannoproteins are distributed 

throughout the inner and the outer cell wall skeletal layer respectively, which is 

consistent with their being directly connected to β-1,3-glucan and β-1,6-glucan 

macromolecules (Kapteyn et al., 1999b). Last, some cell wall proteins, such as Aga2p, 

are not directly linked to cell wall polysaccharides but are linked to other cell wall 

proteins through disulphide bridges (Cappellaro et al., 1994; Moukadiri et al., 1999).  

 

3.1. GPI anchored cell wall mannoproteins. GPI-anchored proteins are conserved 

among yeast, protozans, plants and animals (Ferguson, 1999). They are proteins post 

transcriptionally modified with glycosyl-phosphatidyl-inositol. In S.cerevisiae, around 

50 genes encode for GPI-anchored proteins, found attached to the plasma membrane 

or as an intrinsic part of the cell wall. Also, they are functionally diverse and 

important for signal transduction, cell-cell interaction, cell adhesion and host defense 

(Kapteyn et al., 1999a; Ikezawa, 2002). FLO genes family involved in cell-cell and cell-

surface adhesions are GPI-anchored proteins (Cid et al., 1995; Teunissen and 

Steensma, 1995). The structure of a GPI anchor consists of an ethanolaminephosphate 

(EthN-P) linked to the Manα1-2Manα1-6Manα1-4GlcN tetrasaccharide, which in  
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turn is linked to myo14 inositol in α1-6 linkage. On the ER membrane, the protein C-

terminal is covalently linked to EthN-P, by the putative GPI-protein transamidase 

complex (Caro et al., 1997). Than GPI mannoproteins are directed to cell surface by 

their N-terminal through the secretory pathway. This modification enables GPI 

contained proteins either the anchor the membrane by incorporation of the GPI 

moiety into the lipid bilayer, or by conferring covalent attachment to the β-1,6-glucan 

of the cell wall, which is in turn, linked glycosidically to β-1,3-glucan or to chitin 

(Frieman and Cormack, 2004; Verstrepen and Klis, 2006; Brückner and Mösch, 2012). 

 

3.2. Cell wall Adhesins. Multicellular growth of S. cerevisiae has been observed since 

the 19th century, but the molecular basis for adhesion remained unclear until the 

isolation of the involved genes and proteins. To date, molecular techniques helped to 

isolate and identify at least eight different adhesins that confer adhesions, from 

different industrial and laboratory strains. These adhesins are all GPI-anchored cell 

wall mannoproteins, sharing similar molecular core structure with some differences 

between adhesins. Mainly, the core structure consists of a C-terminal GPI-anchor, a 

large and highly O-mannosylated central domain rich in serine and threonine, and 

an N-terminal secretion signal domain (Teunissen and Steensma, 1995). These 

adhesins are composed mainly of i) sexual adhesins families AGA1, AGA2 and FIG2 

responsible of adhesions during mating (Lipke and Kurjan, 1992; Cappellaro et al., 

1994; Zhang et al., 2002; Chen and Thorner, 2007; Dranginis et al., 2007) ii) and 

vegetative adhesions family, divided into sugar sensitive adhesins FLO1, FLO5, FLO9 

and FLO10 responsible of flocculation and cell-cell interactions (Goossens et al., 2010) 

and sugar-insensitive adhesin FLO11 also involved in adhesion to biotic and abiotic 

surfaces, biofilm formation and interaction with hosts (Dranginis et al., 2007; Van 

Mulders et al., 2009). While mating adhesions arise as a pheromone sensing response, 

vegetative adhesions are reactions to affront environmental stresses.  
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Moreover, the genetic diversity and background between distinct S. cerevisiae strains 

and the different environmental conditions, highly influence the expression rate of 

FLO genes and on the potential adhesion of flocculins, which create very different 

phenotypes (Zara et al., 2009a). Microbial cell development and survive along with 

their metabolic activity are strongly affected by cell adhesion, which represents the 

initial step in biofilm formation (Baror, 1990; Dague et al., 2012). 

 

3.3. Sugar-sensitive flocculins and flocculation. Genes which encode these 

flocculins are FLO1 FLO5, FLO9 and FLO10 and are carried in subtelomeric loci at 

chromosomes I, VIII, I and XI respectively (Teunissen and Steensma, 1995). 

Generally, in a sugar-depleted medium, S. cerevisiae encodes for adhesins Flo1p, 

Flo5p, Flo9p and Flo10p, which contain a lectin-like domain on their N-terminal, and 

can bind to mannose-containing carbohydrate structures present at the cell surface of 

neighboring cells, causing flocculation (Guo et al., 2000; Govender et al., 2008; Van 

Mulders et al., 2009). This phenomenon was extensively studied in industrial S. 

cerevisiae strains because its importance as an environmental friendly way to 

sediment and remove yeast cells at the end of fermentation processes in the 

production of beer, wine, ethanol and biodiesel (Verstrepen and Klis, 2006; Bauer et 

al., 2010). The classic definition of flocculation is the asexual, reversible and Ca2+ -

dependent aggregation of thousands of vegetative cells into flocs (Lindquist, 1952; 

Bony et al., 1997). Recent molecular and bioinformatic studies suggest that the N-

terminus of sugar-sensitive flocculins contain approximately 250 amino acids, with 

highly similar sequence identities and conserved domains, such as Ca2+ and 

carbohydrates binding motifs, and a conserved PA14-like domain (Fig 3) (Veelders et 

al., 2010). 
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PA14 domain is shared by a wide variety of bacterial and eukaryotic proteins, which 

include many glycosidases, proteases, amidases and bacterial toxins such as anthrax 

protective antigen (PA), and are involved in carbohydrate binding (Rigden et al., 

2004). Moreover, the study suggested that the particular conformation of the N-

termimus implicates a lectin mode of carbohydrate binding via Ca2+ mediated 

recognition of the 2′- and 3′-hydroxyl groups, where the calcium ion is bound 

between sugar and protein in a distorted pentagonal bi-pyramidal coordination. 

 

FIG 3 The novel flocculation molecular basis. These designs represent the novel molecular mode of action of 

flocculation, based on studying the N-terminus of Flo5p. A) Protein topology diagram showing the PA14-like 

domain (green) and the five-stranded Flo5 subdomain (light green). B) The Flo5-mannose complex and the 

conserved domains involved in the interaction (Veelders et al., 2010). 

In details, two calcium binding sites were noted in the PA14-like domain, and 

identified as Carbohydrate Binding Loops, CBL1 and CBL2 which consist of a 

conserved Asp160-Asp161 motif and the two carbonyl groups the side chain of 

Asp24 respectively. In parallel, the conserved motif Val226-Ser227-Try228-Gly229-

Thr230, and precisely the residue Try228, recognizes the 2-hydroxyl group of 
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mannose and not of glucose or other sugars (Fig.3) (Kobayashi et al., 1998; Goossens 

et al., 2010; Veelders et al., 2010). 

Similar conserved motifs in the human pathogenic Candida glabrata, on the N-

terminus domain of the epithelial adhesin Epa1, were found to be functionally 

homologous to these motifs found in S.cerevisiae flocculins (Zupancic et al., 2008; 

Ielasi et al., 2012). 

 

FIG 4 Domain organization of Saccharomyces cerevisiae adhesins. Proteins were analyzed using the Pfam 

protein families’ database at http://pfam.sanger.ac.uk/ (Finn et al., 2010). Known domains are shown in different 

colors. The broad partition into N-terminal (A), middle (B) and C-terminal (C) domains is indicated (Brückner 

and Mösch, 2012). 

 

3.4. Sugar-insensitive flocculins. Unlike other flocculins, Flo11p is a mannose 

insensitive and its N-terminal domain was shown to handle homotypic interactions, 

with affinity to peptides instead of sugar, and exerts hydrophobic interactions 

between cells and abiotic surfaces, leading to biofilm formation (Reynolds, 2001; 

Goossens and Willaert, 2012b). At the molecular level, FLO11 gene is located far 

away from telomere region on the chromosome IX and the N-terminus of Flo11p is 

less similar to the rest of flocculins. It doesn’t possess a PA14 ligand-binding domain, 

http://pfam.sanger.ac.uk/


 

16 
Marc Bou Zeidan, Phenomic analysis and cell wall remodulation of Saccharomyces cerevisiae flor strains in 
the presence of different nitrogen sources, Tesi di dottorato in Biotecnologie Microbiche Agroalimentari, 
Università degli studi di Sassari. 

but contains a unique domain called Flo11 domain, covering residues 42-195 (160 

amino acids) and responsible of homotypic interactions. 

 

Finally, Flo11p N-terminal showed a high self-binding capacity, high O-glyosylation 

and its secondary structure contains almost 40% of β-sheets and 3% α-helices 

(Goossens and Willaert, 2012a). Despite its essential role in the multicellular growth 

phenotypes of S. cerevisiae, the real mode of action of this flocculin remains unclear 

and less studied, respect to other flocculins. In parallel, FLO11 gene is being 

extensively studied at the genetic level, because it possesses the longest promoter in 

the S. cerevisiae spp. genome. 

Therefore, many scientists study FLO11 at different levels, from cell sensing of 

external environment to the signaling pathways, transcription regulation, epigenetic 

and post transcription, to arrive to the final product Flo11p and all the phenotypes 

related. 

 

4. Genetic characteristics and regulation of FLO11 

FLO11 gene has the largest promoter described in S.cerevisiae (≈ 3kb) (Steffen Rupp et 

al., 1999). In general, this large promoter is shown to be a target for many regulatory 

pathways and transcription factors, which influence directly or indirectly the final 

phenotype. For now, it was uncovered the involvement of the cAMP-protein kinase 

A (PKA), Snf1-Nrg1/Nrg2, the mitogen-activated protein (MAP) kinase cascade as 

well as the Target of Rapamycin (TOR) signaling pathways as a response to glucose 

and/or nitrogen sources depletion (Kuchin et al., 2002; Vinod et al., 2008). FLO11 gene 

expression was shown to be influenced by various transcription factors. At the level 

of flor yeasts of S. cerevisiae, the FLO11 promoter carries several mutation points and 

a deletion of 111 bp, respect to laboratory strains, which was related to their high 
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level of expression of FLO11, leading to the formation of air-liquid biofilm (Fidalgo et 

al., 2006; Zara et al., 2009b). 

 

4.1. FLO11 signaling pathways and transcription factors. MAPK signaling pathway 

is conserved among all eukaryotes. In S. cerevisae, it is crucial for the response to 

environmental stresses. It regulates mating, filamentous and invasive growth and 

cell wall integrity, in response to pheromone, nutrient limitation and osmotic stress 

respectively (Elion, 2000; Granek and Magwene, 2010). When it comes to nutrients 

depletion, the MAPK pathway is known to activate the transcription factor Ste12-

Tec1 complex that binds on the FLO11 promoter. The GTP-binding protein Ras2 

activates the Rho-type GTPase Cdc42, which along with Ste20 activate MAPK  

cascade comprising of Ste11, Ste7 and Kss1. The MAPK Kss1 activates Ste12-Tec1 to  

bind to the promoter of FLO11 (Mosch et al., 1996) (Fig.5). In parallel, the MAPK 

Fus3, which is involved in mating, phosphorylates Tec1 and triggers rapid ubiquitin-

mediated degradation of the transcription factor and inhibits the transcription of 

FLO11 (Bao et al., 2004; Chou et al., 2004).  

In addition to the MAPK cascade, the activation of FLO11 gene as a response to 

nutrient depletion also requires a functional Ras-cAMP-PKA pathway. cAMP-PKA 

activates the transcription factor Flo8 which binds to a specific region on the FLO11 

promoter. In details, Ras2 and Gpa2 (nucleotide binding alpha subunit of Ras2 and 

other GTP-binding proteins) activate adenylate cyclase Cyr1 to synthesize cAMP, 

which in turn relieves the catalytic subunits Tpk1, Tpk2 or Tpk3 from the regulatory 

subunit Bcy1 (Tamaki, 2007). Tpk2 was shown to stimulate FLO11 expression by 

activating Flo8 and inhibiting Sfl1, whereas Tpk1 and Tpk3 were shown to inhibit the 

synthesis of cAMP, by activating the repressing transcription factor Sfl1and as a 

result, the inhibition of FLO11 expression (Gancedo, 2001; Sengupta et al., 2007) 
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(Fig.5). Tpk1 phosphorylates Yak1 at high glucose levels (Zhu et al., 2000; Malcher et 

al., 2011), which targets Sok2 for binding and repression of the FLO11 promoter 

(Borneman et al., 2006). At low glucose levels, this Tpk1 repression is relieved and 

FLO11 activated.  

Moreover, some studies demonstrated that both MAPK and cAMP-PKC pathways 

could be also triggered by Mep2, a high affinity ammonium permease, when low 

concentration of ammonium sulphate is available as nitrogen source (Lorenz and 

Heitman, 1998a). Genetic evidences also indicated the involvement of the Snf1 in 

connecting nitrogen starvation to FLO11 expression by targeting the transcription 

factors Flo8, Sfl1, Nrg1 and Nrg2 (Lorenz and Heitman, 1998b, a; Van Nuland et al., 

2006). Studies also confirmed the contribution of the target of rapamycin complex 

(TORC1), which generally controls the nitrogen discrimination pathway (NDP) and 

senses theintracellular nutrients to regulate growth, in the signaling of FLO11 

(Schmelzle and Hall, 2000; Cutler et al., 2001; Vinod et al., 2008).  

However, the connection between TOR and the FLO11 promoter still not clear, but 

recent studies evidenced the involvement of the transcription factor Gln3 and its 

regulator Ure2, controlled by TOR pathway, in regulating positively the expression 

of FLO11 and the filamentation, under nitrogen starvation (Lorenz and Heitman, 

1998a, b; Cooper, 2002).Promoter analysis identified one upstream activation 

sequence and one repression site that confer regulation by amino acid starvation, 

which are mainly regulated by the Ssy1-Ptr3-Ssy5 (SPS) and General Amino Acid 

Control (GAAC) pathways (Braus, 2003; Brückner and Mösch, 2012). Further 

transcription factors with unknown mode of action as Mss11, Mga1, Phd1 and Haa1 

were noted to control the expression of FLO11. Studies showed that Mss11 is 

required for the activation of FLO11 by many other regulators including Tec1, Flo8, 

Phd1, Nrg1, Nrg2, Sok2 and Sfl1 (van Dyk et al., 2005). In parallel, Haa1 transcription 

factor is required for adaptation of yeast to acidic stress (Aranda and del Olmo, 2004; 

Fernandes et al., 2005). Even more, Mga1 and Phd1 were find to bind in vivo to 
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FLO11 promoter and to have a key role in the complex regulatory network for 

adhesion and filamentation (Borneman et al., 2006). 

 

 

FIG 5 Regulation of FLO11 expression. Wiring diagram showing the complex regulation of the FLO11 promoter 

by conventional and epigenetic mechanisms. Arrows indicate positive regulation and inhibition is shown by bars. 

Different environmental stimuli and corresponding signaling pathways targeting FLO11 are indicated at the top 

(Iaa= indole acetic acid; ?= unknown pathway). Downstream acting protein kinases are shown in gray. Chromatin 

remodelers found in the FLO11 region are shown in magenta. Transcription factors targeting the FLO11 promoter 

(red line) are shown in light blue (? = unknown transcription factor). The input of the different transcription 

factors is only shown schematically and does not correspond to the positions of known binding sites. (Bruckner 

and Mosch, 2012). 

 

4.2. Elongation and tandem repeats. Besides the effects of expression signaling 

and/or silencing of FLO11 gene on the biofilm formation process, it was also shown 

that the tandem repeats and the core length of its central domain, are also involved in 

affecting this phenotype. Indeed, the intragenic repeats are residues of Serine and 

Threonine, which in turn, are sites for O-mannosylation and N-glycosylation.  

The central domain of FLO11 gene varies between strains and results in a variation of 

the final product, in terms of gene length, glycosylation sites and high phenotype 
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variability (Verstrepen et al., 2005) (Douglas et al., 2007). Therefore, length variations 

in this single gene provide a combinatorial diversity, which may contribute to a very 

rapid adaptation to fluctuating environments (Fidalgo et al., 2008).  

 

Indeed, the cloning of two FLO11 alleles from two different flor strains, of 3.1 and 5.0 

kb length, into their appropriate locus in a lab strain BY4742 resulted in a significant 

correlation between biofilm-forming ability and FLO11 length both in different and 

in the same genetic backgrounds (Zara et al., 2009). 

 

5. Adhesion, biofilm formation and phenotypic variation 

- All these described peculiarities related to FLO11 gene, along with the whole cell 

wall complex, generate a high variability in the multicellular process of S. cerevisiae 

yeasts.  In S. cerevisiae flor yeasts, the innate diversity of FLO11 and cell wall related 

genes background, generate variable adhesion ability between strains. These 

diversities comprise the FLO11 gene length, expression level and the frequency of 

tandem repeats of serine and threonine residues resulting as O-mannosyled sites on 

the cell wall (De Groot et al., 2005; Klis et al., 2006). All these parameters influence 

crucially the physiochemical characteristics and the adhesion forces of yeasts cell 

wall, which affect directly the cell-cell and cell-surface adhesion and biofilm 

formation. These adhesion forces involve specific and non-specific interactions; 

flocculation phenotype is considered as a specific interaction due to lectin-

carbohydrate binding motifs, meanwhile biofilm formation and adhesion to 

substrates are known to be non-specific interactions. Non-specific interactions 

include mainly electrostatic and hydrophobic interactions (van Oss, 1990; Bos et al., 

1999).  
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In aqueous solutions, the cell wall chemical groups are ionized and confer an electric 

charge to the cell surface which enables electrostatic interactions between the cell and 

the charged ions or molecules present in the external medium (Vu et al., 2011). 

Electrostatic interactions are short-ranged repulsive or attractive interactions that 

occur between ions and charged surfaces and are subdivided into van der Waals 

interactions, permanent diapoles, and hydrogen bonding. 

 

These individual subdivisions are relatively weak and transitory forces, but when 

aligned with each other and depending on the size of the molecule; the larger the 

molecule the stronger the force; electrostatic interactions could modulate 

significantly the total adhesion ability (Leckband and Israelachvili, 2001). 

Hydrophobic interactions are considered as the predominant interactions mediating 

microbial binding to biotic and abiotic surfaces, of molecules dissolved in polar 

liquids. They are strong and long-ranged interactions, with a factor of 5-10 times 

efficiency respect to the rest of adhesion interaction forces (Vu et al., 2011). 

Mechanisms behind hydrophobic interactions are still not well understood, even 

though, the classical description regarding the hydrophobicity is the rapid 

aggregation of non-polar liquid i.e. oil, when dissolved in polar liquid i.e. water, as 

the exclusion of hydrophobic molecules from water results in a squeezing effect of 

theses surfaces (Van Oss, 1995). 

The mechanism leading to microbial aggregation is triggered by these adhesion 

forces when two cells start attracting and interacting thru the hydrophobic long-

range forces, than reinforced by the electrostatic short-range forces, polar 

interactions, hydrogen bonds, and specific interactions (Van Oss, 1995; Holder et al., 

2007). In S. cerevisiae, accordingly with these interacting forces, flo11 mutant strains 

present a fall in cell wall hydrophobicity and electrostatic charge, which lead to a loss 

of their adhesion capacity and their ability to form biofilm (Reynolds, 2001; Zara et 
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al., 2005; Fidalgo et al., 2006; Barrales et al., 2008). This includes also flocculation 

mechanism in brewing, where strains with low cell wall hydrophobicity are less 

flocculants (Azeredo et al., 1997; Holle et al., 2012). Even more, at the biomedical 

level, the hydrophobicity of invasive Candida species is much higher than non 

invasive spp (Borghi et al., 2011).  

 

These physiochemical characteristics generate a high variability in adhesion and 

biofilm formation and structure. This is the reason why many recent studies are 

focusing on finding molecules which affect directly or indirectly the cell 

hydrophobicity, thru the interaction with cell wall components, mainly cell wall 

mannoproteins. The aim of such interactions studies is to intercept the hydrophobic 

ligands, which can lead to the collapse of adhesion and invasion capacity of yeast 

strains. Antimicrobial peptides (AMPs) are leader components in this approach. 

Many AMPs were found to modulate the adhesion and biofilm formation of some 

yeasts and fungi, thru hydrophobic and electrostatic interactions. For example, 

Histidine rich glycoproteins greatly inhibits Candida albicans biofilm formation thru 

binding and rupturing cell wall components (Rydengard et al., 2008). In contrast, 

histatin-5 and LL-37 AMPs were shown to be sheded by the cell wall mucin Msb2 of 

Candida albicans, enhancing the cell resistance toward such AMPs (Szafranski-

Schneider et al., 2012).  
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The multicellular growth and the dimorphic shift of the unicellular S. cerevisiae are 

phenotypes of biotechnological interests. FLO11 gene is directly involved in these 

phenotypes, by contributing fundamentally in the high hydrophobicity and 

electrostatic charge of the cell wall. These features particularly influence the adhesion 

ability and the air-liquid biofilm formation in S. cerevisiae flor strains. 

In the frame of a project that aims to better elucidate the peculiar air-liquid  biofilm 

and adhesion phenotypes of flor yeasts of S. cerevisiae, all the experimentations of this 

thesis were handled on a series of natural flor strains, previously isolated from 

different “Sherry-like” wineries in Sardinia, and characterized at FLO11 genetic and 

phenotypic level.  We focused in particular on the effect of nitrogen based molecules 

like peptides and amino acids, known for their hydrophobicity and/or charge, on the 

biofilm formation process of flor yeast strains. The aim of these studies is to 

characterize and better understand the cellular interactions of flor strains with these 

compounds, and to find molecules able to positively or negatively modulate the 

biofilm formation. This research has been divided into three parts: 

i) Study of the effect of 3 antimicrobial peptides with different mode of action, on 

different flor strains, each with a previously characterized FLO11 gene background. 

Antimicrobial peptides (AMP) are in general, high cationic and hydrophobic 

molecules; they can be natural, isolated from a vast number of organisms, from 

bacteria to humans or synthetic. These characteristics confer them the capability to 

bind to cell wall, permeate biological membranes and/or lyse living cells (Marcos and 

Gandia, 2009). Results showed the potential affinity between Flo11p and the 

synthetic hexapeptide PAF26 (Bou Zeidan et al., 2013). 

ii) High throughput analysis of nitrogen uptake and metabolism by flor strains with 

different backgrounds using the phenotype microarray © techniques. Results 

uncovered an interesting effect of Histidine contained dipeptides. Despite their high 

capacity to metabolize different nitrogen sources, flor strains were unable to grow on  
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dipeptides containing Histidine. To better understand this phenotype, we handled a 

series of subsequent analysis including an haploid flor strain and its flo11 isogenic 

mutant. Results highlighted on the effect of L-histidine in inhibiting the adhesion and 

biofilm formation ability of flor strains. Results showed also a potential role of FLO11 

in regulating the cell surface net charge, which is in turn involved in cell-

environment interactions. 

iii) Study of the effect of different amino acids, on the cellular growth, biofilm 

formation and adhesion capacity of flor strains. Cellular growth screenings were 

handled in nutrient-rich or nutrient-poor media, in the presence of serial dilutions of 

amino acids with different physiochemical properties. Results showed that the 

presence of amino acids affect the biofilm formation and the adhesion capacity of flor 

yeasts. 
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Saccharomyces cerevisiae flor yeasts are able to adapt to different environmental 

stresses. The adaptation mechanism is complex and includes the consumption of 

non-fermentable carbon sources and nitrogen sources and consequently, cell-cell 

adhesion and biofilm formation. Flo11p, which is a high hydrophobic and anionic 

cell wall glycoprotein, plays an essential role in biofilm formation. Within the frame 

of a project that aims elucidating the role of Flo11p in biofilm formation and cell wall 

remodulation, we analyzed by Phenotype Microarray technology the nitrogen 

metabolism ability of three natural S. cerevisiae flor strains that differ for genetic 

backgrounds, and harbor FLO11 alleles that show different length and expression 

levels. S288c was utilized as reference strain due to its constitutive repression of 

FLO11 gene. Flor strains were able to metabolize more amino acids and dipeptides as 

a sole nitrogen source. The only exception was for dipeptides containing L-histidine 

that inhibited flor strains but not S288c growth. To better understand the phenotypic 

effect of L-histidine, the three flor yeasts and S288c were subjected to further analyses 

together with a two isogenic haploids, one harboring a functional FLO11 gene and 

one carrying a FLO11 mutation. Air-liquid biofilm formation and the adhesion to 

polystyrene phenotypes of flor strains were dramatically decreased in the presence of 

L-histidine in flor medium. Moreover, in the presence of L-histidine, viability was  
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inversely related to FLO11 expression. Accordingly, L-histidine did not affect 

viability of flo11 mutant and S288c. Finally, strains showing higher FLO11 expression 

increased chitin production in the presence of L-histidine thus suggesting that Flo11p 

plays a pivotal role in L-histidine cell response.    

Keywords: Mannoproteins; velum formation; adhesins. 

Introduction 

Saccharomyces cerevisiae is a unicellular eukaryotic microorganism and it has been 

used as study model for higher eukaryotic cells. S. cerevisiae yeast is able to shift from 

anaerobic (fermentation) to aerobic (respiration) metabolism, depending on the 

surrounded environment. In general, the presence of an appropriate sugar (glucose) 

and nitrogen (ammonium) sources in a medium is followed by rapid fermentative 

growth, ethanol production and synthesis of all amino acids needed in protein 

folding (Ljungdahl and Daignan-Fornier, 2012). When such favorite nutrient sources 

are depleted from the medium, S. cerevisiae can shift their metabolism to aerobic 

respiration by the diauxic shift phenomenon (DeRisi et al., 1997). Aerobic respiration 

growth consists of the catabolism of non fermentable carbon sources, such as ethanol, 

via the tricarboxylic acid cycle and oxidative phosphorylation in the mitochondria, to 

generate energy under form of Nicotinamide Adenine Dinucleotide (NADH) (Muller 

et al., 2012). Nitrogen starvation was shown to trigger cells adhesion and 

multicellular growth in different yeast spp (Verstrepen and Klis, 2006; Granek and 

Magwene, 2010). In S. cerevisiae flor strains, nitrogen limitation induces the activation 

of FLO11 gene and the formation of air-liquid biofilm or flor velum (Zara et al., 2011). 

Molecular analysis showed that the General Amino Acids Control GAAC pathway 

and/or the plasma membrane localized Ssy1-Ptr3-Ssy5 (SPS) sensor, responsible for 

the nitrogen sensing and regulation, are also involved in the regulation of FLO11 

gene expression (Braus, 2003; Ljungdahl, 2009; Brückner and Mösch, 2012; Torbensen 

et al., 2012).  
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The expression of FLO11 gene encodes for an extensively O-mannosylated cell wall 

protein, which triggers the cell-cell and cell-surface adhesion and the air-liquid 

biofilm formation in flor yeast strains (Fidalgo et al., 2006; Alexandre, 2013). The 

phosphorylation of the mannosyl side chains on the outer surface of yeast creates 

abundant negatively charged groups gives yeast its anionic surface charge at a pH ≥3 

(Ovalle, 1998; Klis et al., 2007). Therefore, forces that influence cellular adhesion and 

binding may also include non specific interactions such hydrophobic and 

electrostatic interactions (Caridi, 2006; Holle et al., 2011; Kregiel et al., 2012). Indeed, 

flo11 mutants show a drastic decrease in cell wall O-mannosylation sites,  loss of 

adhesion and biofilm formation capacity and loss of affinity to hydrophobic solvents 

(Reynolds, 2001; Zara et al., 2005; Fidalgo et al., 2006; Dranginis et al., 2007; Barrales et 

al., 2008; Fidalgo et al., 2008; Goossens and Willaert, 2012a). These phenotypes seem 

also to be largely influenced by the gene length, tandem repeats and the expression 

level of FLO11 gene (Zara et al., 2009). Along with FLO11 gene response to adverse 

environment, cell wall components such as chitin, β-glucan and mannosyl residues, 

are also involved in the adaptation process to environmental stresses, orchestrated 

mainly by the cell wall integrity pathway (Cid et al., 1995; Levin, 2005).  

In this work, we mainly explored the phenotypic response and metabolism rate of 

different flor yeast strains, each with a specific FLO11 gene length and biofilm 

forming ability, respect to a laboratory strain, with a non-functional FLO11 gene. For 

this, we used the Phenotype Microarray © (PM) techniques, to characterize the 

effects of various nitrogen sources on cellular growth of tested S. cerevisiae strains. 

Phenotype Microarray is a high-throughput technology used for phenotypic testing 

of microorganisms, in multi-well plates with different test components in each well, 

enabling to screen phenotypic characteristics and metabolism rate of tested culture, 

in up to 2000 different condition (Borglin et al., 2012). Results showed a high 

variability in nitrogen metabolism among tested strains. Flor strains were able to 

metabolize a wide range of nitrogen sources, respect to the laboratory strain, but  
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were remarkably unable to metabolize dipeptides containing L-histidine. L-histidine 

is a cationic amino acid and the only to have an imidazole ring as a chain group 

(Shimba et al., 2003). Subsequently, a series of analyses in the presence of L-histidine 

such as dose response, biofilm formation, adhesion to polystirene and microscopic 

observations, showed a novel role of L-histidine in biofilm and adhesion ability.  

Materials and methods 

Strains and media. Strains with different genetic backgrounds were used in this 

study (table 1). A9, M23 and V80 are natural flor strains, previously isolated from 

different wineries in Sardinia and genetically characterized. These natural strains 

posses a   heterogeneous background at FLO11 gene length and expression level 

(Zara et al., 2009b). Strain 3238-32 is an haploid flor strain and 3238∆flo11 is its  

mutant; both are derivatives of A9 (Zara et al., 2005). S288c lab strain is knockout flo8 

gene mutant which disables FLO11 expression (Mortimer and Johnston, 1986). 

Strains were cultured on YPD medium (1% yeast extract, 2% peptone, 2% glucose), 

20% YPD medium (0.2% yeast extract, 0.4% peptone, 0.4% glucose), Biolog specific 

PM medium (20 mM of glucose, 5m M potassium phosphate and 2 mM sodium 

sulfate to buffer the medium at pH 5.6, 1x of a tetrazolium dye mix and 1x of IFY-0 

medium, IFY-0 is a basal medium, lacking nitrogen, carbon, phosphate, and sulfur 

sources), and in Flor medium (0.17% of YNB without ammonium sulphate and 

amino acids, 0.5% ammonium sulphate, 4% of EtOH) supplemented when necessary 

with bases and amino acids at standard concentrations. Cell cultures were incubated 

at 30°C. 

TABLE 1 Saccharomyces cerevisiae strains used in this study. 

Strains Genetic background Reference 

A9 Wild flor strains of S. cerevisiae isolated from Arvisonadu wine Zara et al., 2009 

M23 Wild flor strains of S. cerevisiae isolated from Malvasia wine Zara et al., 2009 

V80 Wild flor strains of S. cerevisiae isolated from Vernaccia wine Zara et al., 2009 

3238-32 MATα leu2-∆1 lys2-801 ura3-52 Zara et al., 2005 

3238-32∆flo11 MATα leu2-∆1 lys2-801 flo11∆::URA3 ura3-52 Zara et al., 2005 

S288c MATα SUC2 gal2 mal mel flo1 flo8-1 hap1 ho bio1 bio6 
Mortimer and 

Johnston, 1986 
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Phenotype Microarray techniques. In order to screen the general metabolism of 

strains A9, M23, V80 and S288c upon different nitrogen sources, the Phenotype 

Microarray techniques were used. Specific micro-plates (PM3B, PM5, PM6, PM7 and 

PM8) were purchased from Biolog, Omnilog (Hayward CA, USA), enabling us to 

screen the metabolism of tested strains upon 380 different nitrogen sources, such as 

single amino acids, di/tripeptides, purines, pyrimidines and monoamines (Bochner, 

2009). Strains were grown on YPD agar plates overnight, at 30°C , than suspended 

with sterile cotton swab in 15 ml of sterile water and cell density was adjusted to 62% 

transmittance (T) on a Biolog turbidimeter, equivalent to 0,22 of OD600 optical density 

(≈ 2-3x106 cells/mL). Cells suspensions were than inoculated into the Biolog specific 

PM medium to a final concentration ≈2-3x105 cells/mL, pipetted into adequate PM 

plates, than incubated statically at 30°C in an Omnilog Reader. Experiment was 

performed in duplicate. Quantitative color changes were recorded automatically 

every 15 min by a CCD camera for 96 h. The kinetic responses of the strains were 

analyzed by the Omnilog-PM software (Biolog, inc. hayward CA, USA). The data 

were filtered using average height as a parameter. Metabolism of control wells were 

considered as the zero point for other wells. Data was presented using a software by 

Bionumerics (http://www.applied-maths.com/bionumerics) and only wells with color 

change of at least one strain were presented. 

Antimicrobial activity of L-histidine and L-histidine contained dipeptides. Dose 

response assays were carried out in 96-wells microplates. S. cerevisiae strains A9, 

M23, V80, 3238-32, 3238-32∆flo11 and S288c were cultured overnight in 5 mL YPD at 

30 °C with shaking. The following day, cultures were refreshed for 4 h before use to 

reach the exponential phase. A volume of 135 µL of 104 cells/mL in 20 % YPD was 

mixed in each microplate well with 15 µL of 10x concentrated L-histidine from serial 

two-fold dilutions. Fifteen µL of distilled water instead of L-histidine was added to 

control wells. All samples were prepared in triplicate.  
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Same test was repeated using the synthesized dipeptides Histidine-Methionine HM, 

Histidine-Valine HV and Histidine-Serine HS (GenScript, NJ, USA). Microplates 

were statically incubated at 30 °C for 48 h. Growth was automatically measured 

every 30 minutes at OD600 using a SPECTROstar nano microplate spectrophotometer 

(BMG Labtech). Growth rate and lag time of obtained curves were analyzed using 

DMFit software (Baranyi and Roberts, 1994). 

Biofilm formation, adhesion capacity and cell viability in the presence of L-

histidine and L-histidine contained dipeptides. Biofilm formation ability of strains 

A9, M23, V80, 3238-32, 3238-32∆flo11 and S288c was tested in the presence of HM, 

HV, HS and L-histidine. Strains were cultured overnight in 5 mL YPD at 30 °C with 

shaking. The following day, cultures were refreshed in the same medium for 4 h 

before use to reach the exponential phase, washed twice, than 5x106 cells/mL were 

prepared in flor medium. Aliquots of 1350 µL were mixed in 24-wells micro plates 

with 150 µL of 10x concentrated dipeptides or L-histidine stock to a final 

concentrationof 10 mM; distilled water was added to control wells. Plates were 

prepared in duplicate and were incubated statically at 30 °C for 5 days. Biofilm 

weight was measured and calculated as described by Zara et al., 2010 and the cell 

viability was tested by serial dilution spot test on YPD agar plates. 

Yeast adherence to polystyrene was evaluated essentially as described by Reynolds 

& Fink (2001) with some modifications. Cells cultures were prepared as for the 

biofilm formation test, than 90 µL of 5x106 cell/mL in flor medium were added  in 

polystyrene microplate wells with 10 µL of 10x concentrated HM, HV, HS and L-

histidine solutions, to a final concentrationof 10 mM. Cell suspensions were statically 

incubated at 30 °C for 48 h. An equal volume of 1% (w/v) crystal violet was then 

added to each well. After 30 min, the wells were washed with sterile water, and the 

adherence of the cells was quantified by solubilizing the retained crystal violet in 100 

ml 10% (w/v) SDS and an equal volume of sterile water. After 30 min, 50 µL of these 
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solutions was transferred to fresh polystyrene 96-well plates, and A570 and A590 were 

measured spectrophotometrically. 

Flow cytometry analysis of the mannose residues in the presence of L-histidine. 

Concanavalin A is a lectin with a specific binding activity to mannose residues 

(Touhami et al., 2003). In order to estimate the abundance of mannose residues on the 

cell wall of strains treated with L-histidine, cells were grown overnight at 30°C in 

YPD medium with shaking. Next, cells were refreshed in YPD medium for 4 h, in 

order to reach the exponential phase, than 5x106 cells/mL were incubated for 3 h in 

flor medium with or without 10 mM L-histidine. Subsequently, cells were washed 

and resuspended with PBS buffer, pH 7.2 (1.18 g/l of Na2HPO4-2H2O, 0.22 g/l 

NaH2PO4, 8.5 g/l NaCl). A volume of 37.5 µL of Concanavalin A lectin labeled with 

Fluorescein isothiocyanate (ConA-FITC; FITC contents 3.6 mol/mol of lectin; Sigma-

Aldrich Co., St. Luis; USA; stock solution 1 mg conjugate/ml) was added and cells 

were incubated for 20 min at room temperature, in dark. After incubation, samples 

were immediately analyzed by flow cytometer, by using a BD FACSCalibur™ (BD 

Biosciences, San Jose, USA). An acquisition protocol of 10.000 cells/sample was 

defined after measuring the background fluorescence and the maximum fluorescence 

of each strain, to standardize the fluorescence activity between them. Data were 

analyzed with the Expo32 software included in the cytometer. 

Chitin staining for the detection of cell wall status after L-histidine treatment. 

Calcofluor white (CFW) is a dye with high affinity to chitin. In this part, CFW 

staining was used to detect the changing in chitin levels on the cell wall of L-histidine 

treated cells.  Yeast strains were grown overnight in YPD and the following day 

refreshed  in the same medium for 4 h at 30 C, in order to reach the exponential 

phase (OD600 0.4-0.5). One mL of flor medium containing 5x106 cells/mL was 

incubated with or without 10 mM L-histidine for 3 h at 30°C. Twentyfive μM of 

calcofluor white (CFW) were further added for 5 min. 
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Cells were washed and examined using a Monochrome Fluorescence CCD camera 

YM10 (BX61 motorized system microscope, Olympus, Tokyo, Japan) with 

excitation/emission wavelengths of 395/440 nm for CFW detection. Differential 

interference contrast (DIC) and fluorescence images were captured with 100x 

objectives using the imaging software Cell* for life science microscopy (Olympus, 

Tokyo, Japan).  

 

Results 

Monitoring of cellular metabolism upon the use of single nitrogen source through 

the Phenotype Microarray © techniques. Phenotype microarray techniques provide a 

metabolic high throughput analysis of tested strains. In normal growth conditions, 

cells must sense nutrients, transport, catabolize and reform them to produce essential 

small molecule components, polymerize these into macromolecules and create 

subcellular structures. If all of these processes are working normally, the cell can 

grow and there will be an actual physical flow of electrons from the carbon source to 

NADH, down the electron transport chain of the cell, and, ultimately, onto the 

tetrazolium dye to produce the purple color. If one of these processes is working at a 

subnormal rate it will become a pinch point, restricting this flow and resulting in an 

decrease in purple color (Bochner, 2001). Plates were photographed every 15 min, 

generating a growth curve for each well that primarily reflected dye reduction 

(Bochner, 2009). In this contest, PM techniques were initially used to make a wide-

range screening on the metabolism activity upon 380 nitrogen sources, of flor strains 

A9, M23 and V80, each with a different FLO11 genetic background, along with the 

laboratory strain S288c. The capacity of these strains to metabolize and grow in a 

minimal medium with different nitrogen substrates was tested in definite 96-wells 

microplates. 
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After 96 hr of static incubation, phenotype microarray analysis showed that flor 

strains A9 and M23 were able to grow, thought to metabolize more nitrogen sources 

respect to V80 and S288c. These strains metabolized 116, 139, 13 and 39 nitrogen 

source respectively (Fig. 1). The metabolism rate varied among different compounds 

and also among strains. Principal component analysis and clustering using the 

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) of the metabolic 

capacity divided strains into two groups, A9 and M23 from a part and V80 and S288c 

from another part (Fig. 1). A9 and M23 but not V80 and S288c, grew slightly on 

different nucleotides such as Cytosine, Adenine and Allantoin. They also 

metabolized single L-amino acids such as L-arginine, L-glutamine, L-phenylalanine, 

L-serine and L-tryptophan. A high metabolism of A9 and M23 was also noted in 

wells containing dipeptides with mostly Alanine, Valine, Serine and Threonine on 

their N-terminus. In parallel, all tested strains showed a clear incapacity to 

metabolize dipeptides with Proline, Asparagine, Cysteine and Lysine at their N-

terminus. Interestingly, A9 and M23 were clearly unable to grow in wells with L-

histidine contained dipeptides at their C- and/or N- terminus, respect to strains V80 

and S288c, which they showed a high and specific growth capacity toward these 

molecules. 
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FIG 1 Hightroughput analysis of the nitrogen metabolism of different S. cerevisiae. The nitrogen uptake of 

strains A9, M23, V80 and S288c was measured using the Phenotype Microarray techniques. Each square 

represents the growth of one strain in the PM wells supplied with the indicated nitrogen source. The extent of 

growth was generated from the tetrazolium dye reduction during 96 h and represented by the intensity of 

coloration; white squares mean no growth and dark black squares mean abundant growth. Dipeptides are 

grouped respect to the N-terminus amino acid. Dashed rectangle and arrows indicate the most evidenced results.  
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Activity of L-histidine on S. cerevisiae yeast strains. Previous PM analysis showed 

that in the presence of nitrogen compounds, the growth and metabolism rate of 

strains A9, M23, V80 and S288c varied significantly, mainly in wells containing 

dipeptides with L-histidine located at both N- or C-terminals. In this part, we applied 

dye-independent measurements of growth of these strains in nutrient complete 

medium 20% YPD, with 2-fold serial dilutions of L-histidine or L-histidine contained 

dipeptides Histidine-Methionine, Histidine-Valine and Histidine-Serine which were 

synthesized by GenScrpit (NJ, USA) at ≥95 % purity. To better understand the 

phenotypic effect of L-histidine and the role of FLO11 gene in response to such 

growth conditions, the three flor yeasts and S288c were subjected to further analyses 

together with 3238-32 and 3238-32∆flo11. 

Growth curves showed that all strains were sensitive to L-histidine. The minimal 

inhibition concentration MIC of L-histidine was 20-25 mM and the half inhibitory 

concentration IC50 was 10-15 mM toward all strains. Natural flor strains A9, M23 and 

V80 were slightly more resistant to higher L-histidine concentrations respect to 

haploid strains 3238-32, 3238-32∆flo11 and S288c.  Notably, concentrations below the 

MIC value showed that strains V80, S288c and 3238-32∆flo11 occurred a higher 

tolerance to L-histidine. At lower concentrations (2.5-10 mM), growth analysis using 

the DMFit software showed a notable effect of L-histidine on the specific growth rate 

(µ) and the lag time of treated cells respect to controls. Specific growth rate decreased 

notably and lag phase increased from 0 to 10 mM of L-Histidine in flor strains A9 

(26.54%; 2.41 h), M23 (30.92%; 5.58 h), V80 (15.86%; 2.84 h). Specific growth rate also 

diminished in haploids strains from 0 to 10 mM; 3238-32 (73.87%; 18.29 h), 3238-

32∆flo11 (65.52%; 15.94 h) and S288c (-3.79%; 9.47 h). At concentrations below 10 mM 

of L-histidine, the growth rate of strains V80, 3238-32∆flo11 and S288c was higher 

than in control wells (Fig.2). L-histidine contained dipeptides compounds had an 

inhibition effect on all tested strains, at higher concentrations (data not shown). 
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FIG 2 L-histidine affects the growth of different S.cerevisiae strains in YPD rich medium. Yeast (104 cells/mL) 

in 20% YPD were exposed to different concentrations of L-histidine and incubated statically for 48 h at 30°C. A) 

Each growth curve represents the mean and the ±SD of a triplicate on a specific concentration of L-histidine; 40 

mM (black circles), 20 mM (gray circles), 10 mM (black down-pointing triangle), 5 mM (white triangles), 2.5 mM 

(black square) and 0 mM (gray square). x-axis presents the time in hours and the y-axis presents the cell growth in 

OD600. B) Table generated from growth curves analysis using the DMFit software, and shows the growth 

inhibition rate (%) and the lag phase retard (Hrs), in the presence of 2.5, 5, 10 and 20 mM of L-histidine. Results 

with no growth rate inhibition are shown as negative values inside parenthesis.  

 

Changes in air-liquid biofilm formation of flor strains in the presence of L-

histidine. After the detection of the inhibition activity and the MIC value of L-

histidine, we next tested its effect on the biofilm forming capability of all strains, 

under biofilm-promoting experimental conditions (i.e., ethanol-rich medium, flor 

medium). Biofilm formation in S. cerevisiae flor strains depends on the presence and 

expression of FLO11 gene (Nakagawa et al., 2011). After depletion of sugars and 

nitrogen sources, further growth slows down and becomes dependent on access to 

oxygen and other non-fermentable carbon sources (Swinnen et al., 2006; Zara et al., 

2010). 

Preliminary experiment evidenced an inhibition effect of L-histidine on the formation 

of biofilm by strains A9, M23 and V80 in flor medium. We therefore set up a 

quantitative assays in 24-well microplates to exactly understand this effect, and to 
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measure the biofilm formation following previously described protocols (Zara et al., 

2010) (Fig. 3). We also tested the effect of the three dipeptides. Concentrations used of 

L-histidine and the dipeptides were chosen because were considered as the more 

informative based on the dose response assays (Fig. 2). Differences were observed in 

air-liquid biofilm formation after 5 days of incubation of strains A9, M23, V80, 3238-

32 treated with 10 mM of L-histidine, when compared to controls wells without 

amino acid. The biofilm weights of these strains in control wells were respectively 

0.78 ±0.043 mg, 0.642 ±0.051 mg, 0.416 ±0.02 mg, 0.562 ±0.073 mg, respect to 0.125 

±0.053 mg, 0.133 ±0.024, 0.112 ±0.047, 0.104 ±0.083 in L-histidine contained wells. Spot 

test showed a small reduction in colony forming unit (CFU). As expected, S288c and 

the flo11 mutant were unable to form air-liquid biofilm in all wells and the CFU 

concentration was the same in both control and treated strains. Wells with 10 mM of 

dipeptides showed as well variations in biofilm formation after 5 days. Strains A9, 

M23 and 3238-32 couldn’t form biofilm in the presence of all the three dipeptides, 

accompanied with a small reduction in the CFU (Fig. 3), similar to the reduction 

noticed in cells treated with L-histidine. Surprisingly, strain V80 showed, in contrast 

to other strains, an enhancement of biofilm weight in wells containing His-Met (0.525 

±0.03 mg), His-Val (0.611 ±0.045 mg) and His-Ser (0.64 ±0.037 mg) respect to the 

control wells (0.416 ±0.02 mg), and spot test showed a slightly enhancement in CFU 

in dipeptides treated cells respect to the control. S288c and the flo11 mutant didn’t 

form air-liquid biofilm in all wells and the CFU remained the same between both 

control and treated strains, with a slightly enhancement in CFU of the 3238-32∆flo11 

strain treated with 10 mM of His-Met. 
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FIG 3 Biofilm formation of flor strains is inhibited in the presence of L-histidine. (A) Biofilm formation at the 

air-liquid interface in 24-well plates by strains A9, M23, V80, 3238-32, 3238-32∆flo11 and S288c after 5 days of 

static incubation in 1.5 mL flor medium at 30°C in the presence of 10 mM of L-histidine and L-histidine contained 

dipeptides. The biofilm is visualized as opaque floating material at the top of each well. (B) Dry weight 

determination (y-axis) of the biofilm formed by strains in Fig 3 (A) (x-axis) after treatment with 10 mM of L-

histidine and L-histidine contained dipeptides (see legend). Mean and SD of two replicate treatments are shown. 

(C) CFU recovery after plating on YPD agar using serial dilutions of a duplicate of all the strains/Histidine and 

(D) all strains/Dipeptides combinations. 
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Reduction in adhesion ability in flor medium in the presence of L-histidine and L-

histidine contained dipeptides. Adhesion ability to polystyrene is an important 

behavior of yeast, when exposed to stress factors, and it is associated to a functional 

FLO11 gene (Zara et al., 2009). Here, the adhesion ability on polystyrene of tested 

strains was evaluated after 48 h incubation in flor medium with or without L-

histidine or dipeptides, in 96 wells polystyrene microplates. Results show a 

significant difference in adhesion capability between control and treated cells. In 

general, the adhesion ability of all treated cells was significantly reduced respect to 

control cells. Indeed, control wells of A9, M23, V80 and 3238-32 strains showed 0.895 

±0.1, 0.407 ±0.07, 0.3 ±0.03 and 1.01 ±0.02 adhesion values (A570 nm) respectively; the 

presence of 5 or 10 mM of L-histidne and L-histidine contained dipeptides induced a 

loss of adhesion ability (Fig. 4). Beside, both the flo11 mutant and the S288c 

laboratory strains showed very low adhesion ability after 48 h in flor medium.  

 

 

FIG 4 Lost of adhesion ability of tested strains in the presence of L-histidine and other dipeptides. Adhesion 

values (y-axis) are measured using the crystal violet dye after 48 h of incubation of 5x106 cell/mL of S. cerevisiae 

strains in flor medium with or without 10 mM of L-histidine or L-histidine contained peptides (x-axis)  
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Remodulation of cell wall in the presence of L-histidine. Cell wall is essential in the 

adaptation process of yeast cells toward unfavorable environments, by activating the 

cell wall integrity pathway (Levin, 2005). Cell wall glycans consist of carbohydrate 

chains of mannose, attached mainly by O-mannosylation to serine and threonine 

residues of cell wall mannoproteins and known to regulate cell wall rigidity, 

permeability and biogenesis (Lipke and Ovalle, 1998; Loibl and Strahl, 2013). Here, 

flow cytometry techniques and the mannose-specific labeled lectin ConA-FITCwere 

used to estimate the mannosylation level of cell wall mannoproteins, of cells 

incubated in flor medium and treated with 10 mM of L-histidine, respect to their 

control without amino acids. Fluorescence measurements of 10,000 events showed an 

enhancement in concanavalin A binding to cells treated with 10 mM of L-histidine 

respect to their control without amino acids. Fluorescence intensity, measured by 

arbitrary units (a.u), of strains A9, M23, V80, 3238-32, 3238-32∆flo11 and S288c 

changed between control cells versus L-histidine treated cells as followed: 4,6.102 ± 

8,5 a.u versus 6,2.102 ± 7,2 a.u, 4,1.102 ± 36,5 a.u versus 4,7.102 ± 68,2 a.u, 2,7.102 ± 56 a.u 

versus 4,1.102 ±7,1 a.u, 6,7.102 ±126,5 a.u versus 7,2.102 ±34,8 a.u, 3,9.102 ±18 a.u versus 

3,7.102 ±12,8 a.u and 1,5.101 ± 46,5 a.u versus 3,5.102 ± 39 a.u respectively (Fig. 5). The 

variation of fluorescence intensity reflects directly the variation in cell wall glycans, 

mainly mannose residues, thought, the enhancement of fluorescence of L-histidine 

treated cells could be directly proportional to the mannosylation strength of the cell 

wall compartment.  
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FIG 5 Modulation of cell wall glycans of S. cerevisiae strains in the presence of L-histidine. Bar diagrams 

showing the mean of positive (fluorescently labeled) cell counts of L-histidine treated and control strains A9, 

M23, V80, 3238-32, 3238-32∆flo11 and S288c, after exposure to ConA-FITC conjugate solution as indicated 

previously. Results show the means and SD of the results from three replicate samples.  

 

Also chitin formation is modulated by the cell wall integrity pathway, as an 

adaptation response to environmental stresses (Valdivia and Schekman, 2003; Levin, 

2011). The variation in chitin level between treated and control cells was 

microscopically observed using the calcofluor white which is a chitin-specific dye 

(Watanabe et al., 2005). Under identical exposure and capture parameters, 

fluorescence microscopy observations showed remarkable differences in staining 

intensity among strains and between control and L-histidine treated samples. 

Control cells of strains A9, M23, V80, 3238-32 and S288c showed a low staining. In 

contrast, strains A9, M23 and 3238-32 showed a substantially increased staining 

when treated with L-histidine. This enhancement of staining upon L-histidine 

treatment was absent in strains V80, 3238-32∆flo11 and S288c. Beside, CFW staining 

of both treated and control cells of 3238-32∆flo11strain was very similar, which could 

be due to the over production of chitin in mutants affected in CW integrity (Popolo et 

al., 1997; García-Rodriguez et al., 2000).  
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These variations in fluorescence levels of both CFW and ConA reveal (i) the chitin 

and glycans production specificity of each strain and (ii) the enhancement of their 

production rate in the presence of 10 mM of L-histidine in flor medium (Figs. 5, 6). 

 

 

FIG 6 Fluorescence microscopy after CFW staining of different S. cerevisiae strains exposed to L-histidine. 

Cells (107 cells/mL) of A9, M23, V80, 3238-32, 3238-32∆flo11 and S288c strains were incubated for 2 h in flor 

medium with or without 10mM L-histidine. After incubation, samples were stained with 25 μM CFW for 5 

minutes. DIC bright-field (left) and CFW (right) images of the same field are shown. All the images were captured 

under the same acquisition parameters and therefore reflect actual differences in CFW staining.  
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Discussion 

S. cerevisiae can use either anaerobic or aerobic mode of metabolism of substrates to 

generate ATP and grow. Indeed, these metabolisms are shown to confer specific 

changes to the cell, at the level of cell wall organization, nutrients consumption and 

cellular interaction with the surrounded environment (Aguilar-Uscanga and 

Francois, 2003; Cartwright et al., 2012). Flor strains of Saccharomyces cerevisiae species 

have a unique ability to form biofilm at the air-liquid interface of wine, at the end of 

fermentation, when the medium is depleted of nutrients and the further growth 

becomes dependent on oxygen. This multicellular growth is directly correlated with 

a series of rearrangement of the cell wall, hydrophobicity and adhesion (Zara et al., 

2009).  

In this study, we initially used phenotype microarray analyses in order to observe 

the general behavior of S. cerevisiae strains with different genetic background, upon 

different nitrogen sources. These analyses, conducted in a minimal medium, 

highlighted on the high capacity of flor strains A9 and M23 to use different nitrogen 

compounds as sole nitrogen sources. Clustering of the phenotype microarrays data 

regrouped A9 with M23 and V80 with S288c. This observation was interestingly 

reversed in wells containing dipeptides with L-histidine at their N- or C-terminus, 

where A9 and M23 showed a clear inability to metabolize such molecules, respect to 

V80 and S288c strains. This particular behavior led to a series of subsequent analysis, 

concerning the effect of L-histidine on different phenotypic traits of a series of S. 

cerevisiae strains. Results observed reveal a novel role of this amino acid, which is its 

involvement in the inhibition of the air-liquid biofilm formation by flor yeasts. 

Nitrogen is a vital metabolite in living cells and its metabolism is involved in major 

developmental decisions in Saccharomyces cerevisiae. Nitrogen sources are 

fundamental for vital purposes such as nucleotides and amino acids formation, thus, 
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S. cerevisiae is able to metabolize different nitrogen sources (Forsberg and Ljungdahl, 

2001). 

The capacity of flor strains A9 and M23 to metabolize a wide range of nitrogen 

sources, respect to the lab strain S288c, reflects the wild-type origins of these two 

strains and their adaptation capacity. Similar observations were reported in a 

previous study where wild-type isolates (clinical and vineyard) were able to grow on 

a wide range of nitrogen sources respect to laboratory strains (Homann et al., 2005). 

This was not the case of V80 strain, which is also a wild-type flor strain. In a previous 

study Zara et al., 2009 observed that in nitrogen depleted medium, A9 and M23 

strains expressed a high transcription level of FLO11 gene, respect to V80 strain. This 

observation can potentially correlate with the two groups provided by the statistical 

analyses of the PM metabolism data, where V80 metabolism was similar to the S288c, 

which carries a flo8 mutation, leading to the inactivation of its FLO11 gene (Liu et al., 

1996).  Beside, in nitrogen starvation environment, signaling pathways TORC1, SPS-

sensor and GAAC, which are largely related to nitrogen and amino acids sensing and 

regulation in different S. cerevisiae spp, were also shown to be involved in FLO11 

gene expression and multicellular growth (Ljungdahl and Daignan-Fornier, 2012).  

Despite they capacity to metabolize different nitrogen sources in minimal medium, 

flor strains A9 and M23 were clearly unable to metabolize dipeptides with L-

histidine at their N- or C-terminus, respect to V80 and S288c, and all tested strains 

didn’t grow even on L-histidine. This behavior was also previously observed in 

another PM study  (Homann et al., 2005). Subsequently, in order to better understand 

the effect of L-hisitidine, we handled a series of phenotypic analyses also using the 

isogenic strains 3238-32 and its flo11 mutant, both haploids and derivatives of A9, as 

a direct control for functional FLO11 gene involvement. Dose response analysis in 

nutrient rich medium, showed that, L-histidine  not only doesn’t support the cellular 

growth as a nitrogen source, but its presence at high concentrations (≥10 mM) 
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reduces the growth rate, delays the lag-phase and finally inhibits the growth of 

tested strains.  

These effects were absent in strains treated with same concentrations of L-histidine 

containing dipeptides. Recent study reported the effect of the L-carnosine (L-

histidine containing dipeptide) in slowing the growth rates and increasing cell death 

of yeast cells in fermentative, but not oxidative metabolism (Cartwright et al., 2012).  

The most evidenced results of this study are related to the biofilm formation and 

adhesion capacity. In nutrient depleted media, S. cerevisiae can trigger a series of 

stress signaling pathways and responses, including the modulation of cell wall, 

expression of FLO11 gene and to the formation of biofilm (Reynolds, 2001; Barrales et 

al., 2008; Zara et al., 2010). This phenomenon was observed in control wells of biofilm 

forming strains A9, M23, V80 and 3238-32 in flor medium, but not in wells containing 

L-histidine. The presence of 10 mM of L-histidine was sufficient to completely inhibit 

the biofilm formation and the adhesion capacity to polystyrene of all tested strains 

(Fig. 3A, 4). These major inhibition effects were accompanied by a minor reduction of 

cell viability (Fig. 3C, D). As mentioned before, cellular adhesion and binding are 

likely influenced by unspecific interactions such hydrophobic and electrostatic 

interactions (Caridi, 2006; Holle et al., 2011; Kregiel et al., 2012). Among the 20 amino 

acids, the particular physiochemical characteristics of L-histidine, being as a cationic 

charged amino acid with an imidazole motif at the side chain, make it a good 

candidate for unspecific interactions, mainly stacking and hydrogen bonds 

interactions, providing it a high affinity to cationic metals, aromatic amino acids and 

many other compounds  (Shimba et al., 2003; Liao et al., 2013).  

The inability of cell to grow on L-histidine as a nitrogen source (LaRue and Spencer, 

1967; Homann et al., 2005), the particular physiochemical features of L-histidine (Liao 

et al., 2013), along with the loss of cells adhesion and biofilm formation capacity by 

flor strains in the presence of L-histidine (Fig. 3 and 4), may be explained by a 
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possible unspecific physical interactions between the single amino acid L-histidine 

and the high folded cell wall in general, and the highly O-mannosylated cell wall  

mannoprotein Flo11p in particular, which leads to the air-liquid biofilm formation 

failure. Indeed, the elevated fluorescence of cell wall glycans and chitin in cells 

treated with 10 mM of L-histidine, reflect the stress response of these cells upon its 

presence. Cell wall glycans and chitin are mainly responsible of the permeability of 

the cell and are related to the cell wall integrity pathway, as a response to adverse 

conditions (Lipke and Ovalle, 1998; Latge, 2007). The enhancement of these two cell 

wall compounds in L-histidine treated cells reveals its antimicrobial effect and 

reduces the permeability of the cell. The low permeability of the cell wall is in favor 

of the hypothesized unspecific interactions of L-histidine with the cell wall 

mannoproteins. 

Of course, the molecular mechanism of this novel role of L-histidine is still unknown. 

Many studies showed a similar mode of action of several small cationic peptides 

sequences, with antimicrobial effect toward different fungi species such as Human 

Histatins and Histidine rich glycoproteins which are directly involved in the host 

response to Candida albicans invasive growth, by binding to the cell wall glycoprotein 

Msb2p (Szafranski-Schneider et al., 2012). A similar anti-adhesive behavior was 

reported of the filastatin compound against some Candida species (Fazly et al., 2013). 

In contrast, hydrophobic interactions with the synthetic hexapeptide PAF26 served 

as a bridge between some S. cerevisiae flor strains, enhancing the biofilm formation 

(Bou Zeidan et al., 2013). To our knowledge, no previous studies have reported this 

mode of action of L-histidine or any other amino acid. Interestingly, a recent study 

described a novel role of some D-amino acids in triggering different bacterial biofilm 

disassembly. These D-amino acids didn’t affect the growth rate of bacterial cultures, 

and their mode of action was associated to their incorporation into the peptide side 

chains of the cell wall peptidoglycan (Kolodkin-Gal et al., 2010). This highlights the 

important role of unspecific interactions in adhesion and biofilm formation process.   
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These findings reveal the importance of unspecific interactions of yeasts cell wall in 

cells interactions with their microenvironments, even with simple molecules like 

amino acids, which could be direct factors or cofactors in changing crucially 

considerable phenotypes, such as biofilm formation and adhesion.  
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ANNEX 

Considering the important physiochemical characteristics of Flo11p and L-histidine, 

and based on the results and discussions reported in the study above, we thought 

that it would be worth-full to observe the cellular behavior of the 3238-32 strain and 

its flo11 isogenic mutant, grown in minimal medium, at pH 3, 4, 5 and 6, in the 

presence of 5 mM of L-histidine. The same experiment was replicated with the same 

growth conditions, and the cell surface net charge (Z-potential) was measured using 

a Zetasizer Ver. 6.20 “Malvern Instruments Ltd”. A the same time, we used  an 

Histidine-Histidine dipeptide labeled with Tetramethylrhodamine (TMR-HH) 

(GenScript, NJ, USA), and we observed its interaction with 3238-32 and 3238-32∆flo11 

using the fluorescence microscopy techniques. Taken together, results obtained 

highlight on FLO11 in modulating the cell growth, surface charge and physical 

interactions with the embedded environment in response to pH variation. 

In details, growth assays showed that, using L-histidine as a sole nitrogen source, cell 

growth and cell surface net charge of 3238-32 and its flo11 isogenic mutant changed 

depending on the pH. At low pH, 3238-32 showed a low growth ability, which was 

gradually improved in correlation with the enhanced pH, to reach the maximum 

growth at pH 6. This was not the case of the flo11 mutant, which showed stable and 

high growth ability along all tested pHs. We also noted that at pH 6, both strains 

showed similar growth (Fig. 1). The cell surface net charge of 3238-32 also varied; at 

pH 3, it was slightly positive (+0.1 ± 0.062 mV) respect to 3238-32∆flo11 (-3.04 ± 0.142 

mV). The cell surface net charge of 3238-32 got more anionic progressively with the 

pH increase, to reach a potential of -8.5 ±0.087 mV at pH 6, respect to a stable charge 

of 3238-32Δflo11 cell surface (-4.22 ±0.081). So, the enhancement of the anionic charge 

occurs with an enhancement of the growth ability of 3238-32 strain along with the 

pH.  
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This could be explained by potential repulsive interactions between the cell surface 

of 3238-32 and L-histidine, which demolishes at higher pHs and leads to the 

attraction and assimilation of L-histidine. In the case of flo11 mutant, the unvaried 

anionic charge of the cell surface was accompanied with unvaried growth ability 

among the pH variation, which could be related to the stable attractive interaction 

and assimilation of L-histidine. The charge of L-histidine also varies among different 

pH. According to the Henderson-Hasselbalch equation, the net charge of L-histidine is 

+1.06 at pH 3 and decreases among pH to +0.51 at pH 6. 

Here, we used the TMR-HH labeled dipeptide to observe by fluorescent microscopy 

its interactions with 3238-32 and 3238-32Δflo11 cells, in minimal medium, at pH 3 

and pH 6. These pHs were considered as the most representatives. The idea was to 

label a single L-histidine, but we found to be very difficult to obtain a stable labeling 

of single amino acids, therefore, we proceeded with the TMR-HH. Fluorescence 

microscopy observations after 2 hours of incubation of strains with 1 mM of TMR-

HH, and subsequent incubation with 25 µM CFW, showed that the staining emitted 

was low and constant between both strains at pH 3. This fluorescence intensity was 

notably enhanced in wild type strain, but not in the flo11 mutant at pH 6. The CFW 

staining was used as a cell surface marker, to control the internalization or not of the 

TMR-HH.Taking in consideration I) the growth and cell surface charge of the 3238-32 

strain with functional FLO11 at low pH, II) the gradually enhancement of 3238-32 

growth and anionic charge of the cell surface with the enhancement of the pH, III) 

the growth and cell surface charge stability of the flo11 mutant along all tested pH, 

IV) the physiochemical of L-histidine and V) the enhanced/stable interactions of 3238-

32/3238-32∆flo11 with TMR-HH respectively, we speculate that FLO11 gene is 

directly involved in the modulation of the cell surface net charge, depending on the 

pH variation, which leads to a modulation of cell adhesion and interaction abilities 

with the surrounded environments.  
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FIG 1 Cell growth, cell surface charge and cellular interactions of 3238-32 and flo11 mutant in minimal 

medium on different pH. A) Growth and cell surface net charge measurements of S. cerevisiae strains 3238-32 and 

3238∆flo11 in minimal medium plus 5 mM of L-histidne, at different pH. Black/gray bars and black/gray dashed 

lines represent the growth and the cell surface net charge of 3238-32 and 3238∆flo11 respectively, at pH 3, 4, 5 and 

6. Cells (104 cells/mL) were incubated in minimal medium (0,17% Yeast Nitrogen Base w/o amino acids and 

ammonium sulfate; 0.5% ammonium sulfate and 20 mM of glucose; auxotrophic amino acids (Zara et al., 2005)) 

plus 5 mM of L-histidine. Media were buffered at pH 3, 4, 5 and 6 using aliquots of 0.1 M citric acid monohydrate 

(C6H8O7.H2O) and 0.2M sodium phosphate (Na2HPO4) stock solutions http://www.sigmaaldrich.com/life-

science/core-bioreagents/biological-buffers/learning-center/buffer-reference-center.html. Cells were grown in 96 

wells microplates, statically at 30°C for 48 h. Growth was monitored measuring the OD600 in a SPECTROstar nano 

microplate spectrophotometer (BMG Labtech, Germany). Cell surface net charge (Z-potential) was measured with 

same conditions using the “Zetasizer Ver. 6.20 Malvern Instruments Ltd” after 48 hr of treatment. All 

measurements represent the mean value and the SD of three replicates. B) Fluorescence microscopy of S. cerevisiae 

strains 3238-32 and 3238-32∆flo11 exposed to TMR-labeled His-His. Cells (107 cells/ml) were incubated in minimal 

medium with 1 mM of TMR-His-His at 30°C for 2 h and subsequently with 25 µMCFW at 20°C for 5 min. 

Representative DIC bright-field as well as CFW, TMR, and CFW/TMR-overlay fluorescence micrographs of the 

same field are shown, for the different strains, as indicated. 

http://www.sigmaaldrich.com/life-science/core-bioreagents/biological-buffers/learning-center/buffer-reference-center.html
http://www.sigmaaldrich.com/life-science/core-bioreagents/biological-buffers/learning-center/buffer-reference-center.html
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The biofilm formation and adhesion ability of Saccharomyces 

cerevisiae flor yeasts are affected by the presence of amino acids 

Marc Bou Zeidan and Severino Zara.  

Dipartimento di Agraria – Università degli Studi di Sassari – Italy 

 

Saccharomyces cerevisiae flor yeasts are able to form a particular air-liquid biofilm, 

called flor or velum, as a response to environmental stresses, mainly to nutrients 

depletion. Flor yeast strains offer an innate diversity of CW-related phenotypes like 

hydrophobicity, cell-cell and cell-surface adhesion, associated with a functional Flo11 

protein. In this study, we tested the effect of 12 amino acids with different 

physiochemical characteristics, on cellular growth of flor yeast strains, characterized 

by different FLO11 gene length and expression. Growth analysis showed variability 

in the effect of amino acids toward strains. Phenotypes related to biofilm formation 

and adhesion to polystyrene were the most influenced by the presence of amino 

acids. Cationic and sulphuric amino acids showed the highest inhibition activity. On 

the contrary, the presence of hydroxylic amino acids slightly enhanced the biofilm 

formation.  

Keywords: Biofilm formation; amino acids metabolism;  

Introduction 

Saccharomyces cerevisiae yeast can shift from anaerobic to aerobic metabolism, 

depending on the surrounded environment. In general, sugar presence in a medium 

is followed by rapid fermentative growth of S. cerevisiae, with the production of 

ethanol. Yeast cells provided with an appropriate source of carbon and nitrogen can 

synthesize all L-amino acids used in protein synthesis (Ljungdahl and Daignan-

Fornier, 2012). When the fermentable sugar is exhausted, yeast cells swift to ethanol 

as a carbon source for fully respiratory metabolism (Murray et al., 2011). 
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This swift is known as diauxic shift, and is correlated with widespread changes in 

genes expression involved in fundamental cellular processes such as carbon 

metabolism, protein synthesis, and carbohydrate storage (Galdieri et al., 2010). In 

some yeasts this shift is followed by a cell wall remodulation and the expression of 

FLO11 gene, which encodes for a high hydrophobic and cell wall mannoprotein, 

leading to cell-cell and cell-surface adhesions and biofilm formation and higher 

resistance to physical and chemical stress agents (Verstrepen and Klis, 2006; Št’ovíček 

et al., 2010). In such conditions, flor yeast strains of S. cerevisiae have a particular 

ability to form an air-liquid biofilm and start using alternative nutrient sources for 

further growth (Ishigami et al., 2006; Zara et al., 2010). Therefore, the ability of yeast 

cells to grow and interact with different sources changes crucially, depending on 

their mode of metabolism (Barnett, 2003; Wu et al., 2004). In general, the ability of 

cells to benefit of the biological role of amino acids requires the sensing and 

internalization of these compounds. In S. cerevisiae, it has been noted that 

extracellular amino acids are sensed by the plasma membrane localized Ssy1-Ptr3-

Ssy5 (SPS) sensor, which was recently shown to be involved also in FLO11 

transcription, in amino acid starvation medium (Ljungdahl, 2009; Bruckner and 

Mosch, 2012). This sensor activates the transcription of general and/or specific 

permeases, which in turn facilitate the transport of amino acids across the plasma 

membrane. All the 20 amino acids could be internalized into S. cerevisiae cells and are 

qualified as preferred or good (Glutamate, Aspartate, Serine, Alanine, Arginine…), 

non-preferred or bad (Threonine, Leucine, Proline, Methionine…), or not nitrogen 

sources (Histidine, Lysine and Cysteine) (Homann et al., 2005; Godard et al., 2007). S. 

cerevisiae exhibits nitrogen catabolite repression (NCR) in which preferred nitrogen 

sources repress specific expression of genes required for uptake and catabolism, 

respect to less preferred nitrogen sources which are uptake by the general amino acid 

control GAAC (Magasanik and Kaiser, 2002; Hinnebusch, 2005).  
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Once internalized, the nitrogen of preferred amino acid is incorporated into 

glutamate, and the resulting carbon skeletons can yield pyruvate (Alanine and 

Serine), tricarboxylic acid cycle intermediates oxaloacetate (Asparagine and 

Aspartate) or α-ketoglutarate (Glutamate and Glutamine). In parallel, nitrogen from 

non-preferred, branched-chain, aromatic and/or sulphuric amino acids, is transferred 

to α-ketoglutarate by transaminases forming glutamate. The resulting deaminated 

carbon skeletons are converted to non-catabolic and growth-inhibitory fusel oils 

(Hazelwood et al., 2008). Glutamate and Glutamine are very important compounds in 

amino acids biosynthesis, because ≈85% of the total cellular nitrogen is incorporated 

via the amino nitrogen of glutamate, and the remaining 15% is derived from the 

amide nitrogen of glutamine (Hans et al., 2003; Ljungdahl and Daignan-Fornier, 

2012). 

In this work, we tested the effect of amino acids with different physiochemical 

properties, on the cellular growth of a series of S. cerevisiae strains upon glucose or 

ethanol and on biofilm formation and adhesion capacity of different flor strains. We 

found that the presence of different amino acids in flor forming medium may 

enhance or reduce the biofilm formation and adhesion ability of tested yeasts. 

Materials and methods 

Strains and media. Strains with different genetic backgrounds were used in this 

study (table 1). A9, M23 and V80 are natural flor strains, previously isolated from 

different wineries in Sardinia and genetically characterized. These tested natural 

strains have different FLO11 gene length and expression level (Zara et al., 2009b). A 

series of haploid strains derivatives of A9 were also included in this work; 3238-32 is 

an haploid wild-type flor strain and 3238-32∆flo11 is its FLO11 mutant (Zara et al., 

2005) . Other strains are 3238-32∆ras2 that carries a mutation on the RAS2 gene which 

encodes for a GTP-binding protein involved in the nitrogen starvation response  
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(Zara et al., 2011), 3238-32∆snf1 carries a mutation on the SNF1 gene which encodes 

for an AMP-activated serine/threonine protein kinase, required for transcription of 

glucose-repressed genes (Sanz, 2003), S288c lab  a strain that has a knockout flo8 gene 

mutant which disables FLO11 expression (Mortimer and Johnston, 1986). Strains 

were cultured at 30°C in YPD medium (1% yeast extract, 2% peptone, 2% glucose), 

20% YPD medium (0.2% yeast extract, 0.4% peptone, 0.4% glucose) and in flor 

medium (0.17% of YNB without ammonium sulphate and amino acids, 0.5% 

ammonium sulphate, 4% of EtOH) which was supplemented when necessary with 

bases and amino acids at standard concentrations. 

TABLE 1 Saccharomyces cerevisiae strains used in this study.  

Strains Genetic background Reference 

A9 
Wild flor strains of S. cerevisiae isolated from Arvisonadu 

wine 
Zara et al., 2009 

M23 Wild flor strains of S. cerevisiae isolated from Malvasia wine Zara et al., 2009 

V80 Wild flor strains of S. cerevisiae isolated from Vernaccia wine Zara et al., 2009 

3238-32 MATα leu2-∆1 lys2-801 ura3-52 Zara et al., 2005 

3238-32∆flo11 MATα leu2-∆1 lys2-801 flo11∆::URA3 ura3-52 Zara et al., 2005 

3238-32∆ras2 MATa leu2-Δ1 lys2-801 ura3-52 ras2::kanMx4 Zara et al., 2011 

3238-32∆snf1 MATa leu2-Δ1 lys2-801 ura3-52 snf1::kanMx4 Dept. collection 

S288c MATα SUC2 gal2 mal mel flo1 flo8-1 hap1 ho bio1 bio6 
Mortimer and Johnston, 

1986 

 

Dose response test of the effect of amino acids on cellular growth in glucose rich 

medium. As a preliminary test, the growth ability of tested strains was measured in 

glucose rich medium YPD20%, in the presence of serial dilutions of 12 amino acids. 

Amino acids used in this work have different physiochemical features. Lysine, 

Arginine and Histidine represent basic and positively charged amino acids. Serine 

and Threonine are hydroxylic amino acids. Methionine and Cysteine contain sulphur 

residue on their side chain. Proline, Tryptophan and Phenylalanine contain aromatic 

side chains and Leucine and Valine contain aliphatic side chains. Amino acids stocks 

were prepared at 10x (400 mM each) and diluted with H2O before use. High 

temperatures were used for dissolving solutions if necessary. 
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Cellular growth assays were handled in 96-well micro-titer plates. S. cerevisiae strains 

were cultured for overnight in 5 ml YPD medium at 30°C with shaking. The 

following day, cultures were refreshed in YPD medium for 4 h at 30°C in order to 

reach the exponential phase (OD600 ≈ 0.4 to 0.5). A volume of 180 μL of 104 cells/ml in 

20% YPD medium was added to each micro-plate well with previously 

supplemented 20 µL of 10x-concentrated amino acids solution from serial 2-fold 

dilutions; 20 µL of H2O instead of amino acids was added to control wells. All 

samples were prepared in triplicate. Micro-plates were statically incubated at 30°C 

for 48 h. Growth was measured every 2 h at OD600 using a SPECTROstar nano micro-

plate spectrophotometer (BMG Labtech; Germany). Dose-response curves were 

generated from measurements after 48 h (Fig. 1). 

Biofilm formation, adhesion capacity and cell viability in the presence of amino 

acids. For the air-liquid biofilm formation test, strains were grown overnight in YPD 

medium at 30°C with shaking. Next day, cultures were refreshed for 4 h before use to 

reach the exponential phase, washed twice with sterile water, and suspensions of 

5x106 cells/ml were prepared in flor medium. Nine hundreds µL aliquots were mixed 

in wells of 24-well micro-plates with 100 µL of 10x-concentrated amino acids to reach 

a final concentration of 5, 10 and 20 mM; 100 µL of sterile H2O was added to control 

wells. Plates were incubated statically at 30°C for 5 days. All plates and conditions 

were prepared in triplicate. Biofilm dry weight measurement was carried out 

essentially as described previously (Zara et al., 2010). Replicates of this experimental 

design were used to measure the cell viability of samples treated with 10 mM of 

different amino acids, after 5 days of incubation in flor medium. Samples were 

spotted on YPD agar plates to recover the colony forming units CFU. Yeast 

adherence to polystyrene was evaluated essentially using the method of Reynolds & 

Fink., (2001) with some modifications.  
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Cells cultures were prepared as for biofilm formation test. A volume of 90 µL of 

5x106 cell/mL in flor medium was added in polystyrene micro-plate wells with 10 µL 

of 10x concentrated amino acids, to have a  

final concentrations of 5, 10 and 20 mM. Cell suspensions were statically incubated at 

30 °C for 48 h. An equal volume of 1% (w/v) crystal violet was then added to each 

well. After 30 min, wells were washed with sterile water, and cells adherence was 

quantified by solubilizing the retained crystal violet in 100 µL of 10% (w/v) SDS and 

an equal volume of sterile water. After 30 min, 50 µL of these solutions was 

transferred to new polystyrene 96-well plates, and A570 and A590 were measured using 

a SPECTROstar nano micro-plate spectrophotometer (BMG Labtech; Germany). 

Results 

Activity of tested amino acids on S. cerevisiae growth in Glucose rich medium. In 

20 % YPD medium with available carbon and nitrogen sources, such as glucose and 

ammonia, S. cerevisiae yeasts is able to growth and synthesize all the needed amino 

acids for protein folding (Ljungdahl and Daignan-Fornier, 2012). Many studies 

reported the effect of the supplementation of several amino acids on the final quality 

of fermented products, such as beer and wine (Krogerus and Gibson, 2013; Lei et al., 

2013). In this work, the growth ability of a series of S. cerevisiae strains was tested in a 

nutrient-rich medium, in the presence of amino acids at different concentrations. Cell 

growth showed a notable variability between strains and amino acids at different 

concentrations. Dose response analyses after 48 h of static incubation at 30°C, 

showed that the presence of amino acids whether inhibited, or not the cellular 

growth of treated strains. In details, dose response graphs (Fig. 1) showed that 

cationic amino acids L-arginine, L-lysine and L-histidine exerted a growth inhibition 

effect on all tested strains, with L-arginine showing the highest effect, at 2.5 mM for 

strains 3238-32 and isogenic mutans 3238-32∆flo11, 3238-32∆ras2, 3238-32∆snf1 and 5 

mM for A9, M23, V80 and S288c.  
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L-lysine also showed an inhibitory effect of 5 mM on 3238-32 and isogenic mutants 

and 10 mM on A9, M23, V80 and S288c. L-histidine also inhibited the growth of 

tested strains but at higher concentrations, with a MIC of 10 mM on 3238-32 and 

isogenic mutants and 25 mM on A9, M23, V80 and S288c strains. Growth inhibition 

was also observed in wells including the sulphuric amino acid L-cysteine, at 10 mM 

for all strains, except A9, which growth was inhibited at 20 mM. L-methionine, which 

is also a sulphuric amino acid, inhibited the growth of 3238-32 and isogenics at 20 

mM.  

 

FIG 1 Dose response of S.cerevisiae strains upon different amino acids. Yeast cells (104 cells/ml) in 20% YPD 

were exposed to different concentrations of amino acids and incubated at 30°C. Dose-response curves show 

means and the standard deviations of three replicates of OD600 measurements after 48 h of inoculation. The S. 

cerevisiae strains represented are A9 (black circles), M23 (Gray circles), V80 (reversed triangle), 3238-38 (light gray 

triangle), 3238-32∆flo11 (dark gray square), 3238-32∆ras2 (light gray square), 3238-32∆snf1 (black rhombus) and 

S288c (gray rhombus)   

 

From another part, strains growth was stable among all concentrations tested of 

hydroxylic amino acids L-serine and L-threonine. Also aromatic amino acids such L-

tryptophan and L-proline didn’t affect the cellular growth respect to control cells. In 

particular, the presence of L-phenylalanine inhibited the growth of 3238-32 and 

isogenics at 5 mM, but not other strains.  
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Values in the table 2 reports the growth in OD600 of all tested strains in YPD20% with 

10 mM of amino acids combinations. Effects of the amino acids on cell growth was 

divided into “growth inhibition effect” or “no effect”. 

Table 2: Growth mean values in OD600 ±SD of S. cerevisiae strains incubated in glucose-rich medium plus 10 

mM of a series of amino acids 

 

Biofilm formation and biofilm weight in the presence of amino acids. Recent 

studies demonstrated that nitrogen and amino acids sensing pathways are also 

involved in the regulation of FLO11 expression, thus, in biofilm formation process 

(Brückner and Mösch, 2012). Since flor yeast strains offer an innate diversity of CW-

related phenotypes associated with the abundant Flo11 protein, the effect of 12 

amino acids was tested on a series of S. cerevisiae flor strains with distinct genetic 

backgrounds, lengths, and structure of FLO11 gene and capabilities to form biofilm 

under biofilm-promoting experimental conditions (i.e., ethanol-rich medium)(Zara et 

al., 2009). 
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Results obtained from dose response tests (Fig. 1) provided a range of representative 

concentrations, of the effect of tested amino acids on cell growth. For biofilm 

formation tests, we initially screened the effect of a series of amino acids at 5, 10 and 

20 mM on the biofilm formation ability of the flor forming strains, in flor medium 

(Fig. 2A). Wells with 10 mM were considered as the most representatives, so biofilm 

weights, cell viability and adhesion capacity were studied at this amino acids 

concentration. Results showed a variation in the biofilm formation phenotype 

between amino acids and control wells, after 5 days on static incubation (Fig.2A). 

Amino acids presence either reduced or enhanced or did not affect biofilm formation 

and weight. Biofilm weight graph represents the variation in the biofilm weight in 

percentage (%), respect to the control biofilm weight without amino acids, of each 

tested strain (Fig. 2B). Arginine, Lysine and Histidine inhibited the biofilm formation 

of all tested strains, respect to their controls without amino acids. The biofilm weight 

in wells containing these amino acids was reduced of 81%, 56% and 70% 

respectively, respect to the control. In addition, sulphuric amino acids L-cysteine and 

L-methionine reduced 83% and 40% respectively the biofilm weight of treated cells. 

Aromatic amino acids such L-tryptophan and L-phenylalanine, reduced the biofilm 

weight of all strains of 31% and 23% respectively, except in A9 strain where the L-

phenylalanine presence slightly enhanced the biofilm weight of 12%. L-proline 

presence showed a notable and variable enhancement in biofilm weight of all treated 

cells, respect to their control without amino acids. This enhancement was less evident 

in wells with A9 and 3238-32 and 3238-32∆ras2 (20%, 15% and 18% respectively), 

respect to an average enhancement of 70% in other strains. This enhancement in 

biofilm weight was also observed in wells containing the hydroxylic amino acids L-

serine and L-threonine, 36% and 13% respectively. At the end, the aliphatic amino 

acid L-leucine enhanced slightly the biofilm weight of all treated cells, about ≈15% 

respect to control wells, except for 3238-32∆snf1 which enhanced of 70% its biofilm 

weight. Valine presence didn’t influence significantly the biofilm weight. Strain  
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3238-32∆snf1 enhanced remarkably (70%) the biofilm formation (weight) in the 

presence of L-serine, L-threonine, L-proline and L-leucine.  

 

FIG 2 Variation in the air-liquid biofilm formation of S. cerevisiae flor strains in the presence of amino acids. 

(A) Biofilm formation in 24-well plates by strains A9,  M23, V80, 3238-32, 3238-32∆snf1 and 3238-32∆ras2 after 5 

days of static incubation in 1 ml flor medium at 30°C in the presence of Histidine, Lysine, Arginine, Serine, 

Threonine, Proline, Cysteine, Methionine, Phenylalanine, Tryptophan, Leucine and Valine at different 

concentrations as indicated. The biofilm is visualized as opaque floating material at the top of each well. (B) 

Biofilm dry weight variation in percentage (Horizontal axis), of strains A9,  M23, V80, 3238-32, 3238-32∆snf1 and 

3238-32∆ras2  in wells with 10 mM L-amino acids of tested strains (Vertical axis), each respect to the proper 

control well without amino acids; Means and SD of the results from three replicate treatments are shown.  
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FIG 3. Viability of S. cerevisiae strains treated with a series of amino acids. CFU recovery by spot test on YPD 

agar plates, of serial dilutions of cells exposed to 10 mM of different amino acids. Samples used belong to 

replicates of plates from Fig. 2 

To further characterize the obtained results, aliquots of each sample were plated on 

YPD agar plates to monitor CFU recovery. The variation in biofilm formation in the 

presence of 10 mM of different amino acids was also accompanied with variations in 

the viability of treated cells respect to their control without amino acids. 

In general, the colony forming units was equal between treated and control samples. 

CFU recovery of all strains treated with L-arginine showed a remarkable decrease in 

cell count respect to control cells without amino acids. L-lysine and L-histidine 

decreased lightly the number of CFU respect to control cells. Flor strains A9, M23 

and V80 showed no differences in colony forming units CFU between spots of cells 

treated with L-serine, L-threonine, L-proline, L-cysteine, L-methionine, L-

phenylalanine, L-tryptophan and spots of control cells. Tested amino acids had likely 

the same effect on the vitality of haploids strains derivates of A9 strain (3238-32, 

3238-32∆ras2 and 3238-32∆snf1), similar to diploid strains but with lower CFU 

concentration. In particular, the CFU recovered from wells with 3238-32 cells in the 

presence of Proline, Methionine, Phenylalanine and Tryptophan, was slightly 

reduced respect to control (Fig. 3). 
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Cell adhesion to polystyrene in the presence of amino acids. Yeast adhesion is a 

crucial factor in biofilm formation and invasive growth. In S. cerevisiae, flocculins in 

general and Flo11p in particular are known to be the main responsible for cell-cell 

and cell-surface adhesions (Karunanithi et al., 2010; Goossens and Willaert, 2012a). 

The screening for molecules which can modulate positively or negatively yeast 

adhesion is of a great biotechnological relevance. Here, the adhesion to polystyrene 

of some S.cerevisiae flor strains was studied in the presence of a series of amino acids. 

Cells in flor medium were inoculated in 96 wells micro-plates, in the presence of 10 

mM of each amino acid. Crystal violet method was used, in order to detect cell 

adhesion after 48 hr of static incubation. Results showed noteworthy differences in 

adhesion to polystyrene between control and treated cells. Enhancement or reduction 

of the adhesion ability of each treated strain were randomized, respect to control 

wells of each strain and represented in percentage (%) (Fig.4). The presence of tested 

amino acids mainly reduced the cell adhesion to polystyrene. The reduction effect 

varied among amino acids. For example, cationic amino acids reduced between 40-

80% the adhesion capacity of all strains. In details, L-arginine showed the highest 

reduction effect, respect to ≈30-60% of adhesion reduction by L-lysine and L-

histidine. Also hydrophobic amino acids applied a reduction in adhesion capacity of 

cells. Indeed, sulphuric amino acids, L-cysteine and L-methionine reduced about ≈40-

80% and ≈20-40% respectively, the cellular adhesion to polystyrene, depending on 

strains. In particular, L-cysteine presence enhanced slightly the adhesion value of 

3238-32∆ras2 of 10%. Equally, aromatic amino acids such as L-phenylalanine and L-

tryptophan showed a reduction in cellular adhesion, with a punctuated activity of L-

tryptophan (≈80-95%) respect to L-phenylalanine (≈10-30%). At the end, aliphatic 

amino acids, mainly L-valine and L-leucine showed the highest inhibition effect on 

the adhesion of tested cells, with an average of ≈85-95% reduction, respect to control 

wells without amino acids. From another part, L-serine and L-threonine, hydroxylic 

amino acids, showed a variable effect on yeast adhesion. 



 

90 
Marc Bou Zeidan, Phenomic analysis and cell wall remodulation of Saccharomyces cerevisiae flor strains in 
the presence of different nitrogen sources, Tesi di dottorato in Biotecnologie Microbiche Agroalimentari, 
Università degli studi di Sassari. 

A9 adhesion capacity was enhanced of 40% in the presence of Serine. The other 

strains showed no significant reduction or enhancement of adhesion in the presence 

of Serine. In contrast, Threonine presence generally reduced the amount of adhered 

cells to polystyrene of 20-50% respect to adhesion in control wells. At the end, 

Proline presence enhanced the adhesion values of V80, 3238-32 of 58% and 45% 

respectively.  

 

FIG 4 Variation of the adhesion ability of S. cerevisiae flor strains in the presence of amino acids. Flor strains 

A9, M23, V80, 3238-32, 3238-32∆ras2 and 3238-32∆snf1 were incubated in flor medium for 48 h at 30°C in the 

presence of amino acids at 10 mM. (x-axis). The variation of cell adhesions of the strain/amino acid combination 

was represented in percentage %, respect to the proper control cells without amino acids (y-axis). Means and SD 

of the results from three replicate treatments are shown.  

 

Discussion 

Amino acids are natural compounds which share the same general structure They 

consist of a carbon atom, bonded to one hydrogen atom, one amine and one carboxyl 

groups. The lateral chain R is the only variable which differs among amino acids. 

More than 300 amino acids were isolated from nature, but only 20 amino acids are 

reported to be as building blocks of proteins (Wu, 2009). A part of the well known 

roles of amino acids in nitrogen biosynthesis and being protein building blocks, they 

are also involved in a wide range of biological processes. In this work, we wanted to 

observe the effects of different amino acids, beyond their crucial role as fundamental 

components in biological processes. For that, we applied cellular growth tests, using  
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different S. cerevisiae flor strains in different growth media with the presence of high 

ranges of amino acids. These tests uncovered some observations which are 

previously un-described. Our results highlight the variation of biofilm formation and 

weight along with the adhesion capacity of flor yeasts of S. cerevisiae in the presence 

of different amino acids. This study reported that the presence of some amino acids, 

mainly L-arginine, L-lysine, L-histidine, L-cysteine and L-methionine at 10 mM, 

inhibited the biofilm formation and the adhesion to polystyrene of flor strains. In 

these conditions viability was not affected. In fact, except L-arginine, CFU recovery 

showed slight reduction viability of the tested strains respect to control. However, 

the growth inhibition effect of amino acids is barely studied, but we found some 

studies that undergo with our result, as the toxic effect of moderated concentrations 

of L-cysteine on S. cerevisiae strains, grown in both fermentative and oxidative 

conditions (Damberg and Blumberg Ia, 1983).  

From data observations, we hypothesize two possible modes of actions of these 

amino acids on the biofilm formation and adhesion capacity of tested strains. The 

first speculation is that, after deamination of the internalized amino acids, the 

resulted carbon skeletons are used either as carbon sources to maintain a stable 

growth, or discarded out of the cells as higher alcohols and esters, also known as 

fusel oils (Hazelwood et al., 2008). In our case, all diploid strains grew regularly in 

glucose and remained a steady viability in ethanol contained media at all tested 

concentrations of L-serine, L-threonine, L-methionine, L-proline, L-tryptophan and 

L-phenylalanine. In contrast, these amino acids affected biofilm formation and 

adhesion to plastic. L-serine, L-threonine and L-proline slightly enhanced biofilm 

formation and adhesion. Carbon skeletons of these amino acids could be possibly 

used as carbon sources to maintain the cellular growth of S. cerevisiae strains (Lee et 

al., 2013; Pallotta, 2013). This enhancement was notable and interesting in the strain 

3238-32∆snf1. SNF1 gene is required for the transcription of glucose-repressed genes 

and for cellular growth on carbon sources alternatives to glucose, thus its deletion  
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occurs a reduction in the biofilm formation capacity (Kuchin et al., 2002). It is also 

directly involved in the negative regulation of fatty acids synthesis thru the 

repression of ACC1 (Acetyl-CoA carboxylase) (Sanz, 2003). Since the presence of fatty 

acids is positively correlated to biofilm formation (Zara et al., 2012), we suggest that 

in the presence of L-serine, L-threonine, L-proline and L-leucine, 3238-32∆snf1 could 

trigger the synthesis of fatty acids synthesis, thru the formation of Acetyl-CoA from 

the carbon skeleton of these amino acids, leading to an enhancement in biofilm 

formation. 

Aromatic and sulphuric amino acids showed a reduction in biofilm formation and 

adhesion of tested strains. This could be related to the secretion of non-catabolic 

carbon skeletons, transformed to higher alcohols. Recently, some studies 

demonstrated that Geotrichum candidum, a fungus used in cheese fermentation, 

treated with aromatic amino acids, especially with L-phenylalanine, enhanced 

notably the production of phenyl-lactic acid, known for its antimicrobial effect on a 

range of fungi and bacteria species (Naz et al., 2013). Besides, the filamentous growth 

of Candida albicans was inhibited in the presence of phenylethanol and tryptophol but 

not tyrosol, which are aromatic acids derivatives of L-phenylalanine and L-

tryptophan ant L-tyrosine respectively (Chen, 2006). An opposite  effect was 

observed by treating Pichia fermentans strain with high concentrations of L-

phenylalanine (Sanna et al., 2012). All the results show that the phenotypic behavior 

of cells toward such compounds may be species and sub-species specific. 

As a second speculation, these effects could be even related to physical interactions 

between flor yeasts cell wall and amino acids, in particular electrostatic interactions 

with yeasts cell wall, inhibiting cell-cell and cell-surface adhesions. This hypothesis 

could be true for cationic amino acids. Indeed, cells treated with these amino acids in 

flor medium showed a reduction in CFU recovery, which indicates that these amino 

acids were not used as nitrogen sources. Indeed, previous studies confirm that  
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L-lysine and L-histidine, but not L-arginine, cannot be used as sole nitrogen sources 

by S. cerevisiae species (Homann et al., 2005). The fact that cells treated with L-

arginine grew less respect to their controls, reinforces the hypothesis that cationic 

amino acids could be sequestrated on yeasts cell wall. Recent studies showed a clear 

capacity of cationic amino acids in conferring electrostatic interactions with inorganic 

surfaces. The cationic side chain of Lysine was very crucial in maintaining high 

electrostatic interactions with defined surfaces (Razvag et al., 2013). Moreover, a 

recent study noted that Histidine confers potent “coordinate bonds” with metals, 

cation-π, hydrogen-π and hydrogen-bond interactions and was highly attracted to 

cationic residues at neutral pH (Liao et al., 2013). This intuits that at basic pH, L-

histidine attraction to anionic residues should be stronger. From the part of yeast cell, 

many studies confirmed that the cell wall charge is highly anionic due to the 

presence of mannoproteins (Horisberger and Clerc, 1988; De Groot et al., 2005). We 

suggest that these peculiarities of cationic amino acids could involve them in 

physical interactions with yeasts cell wall, especially in biofilm formation process, 

where the cell wall is heavily charged by anionic and hydrophobic mannoproteins, 

and as a result, these interactions reduce the cell hydrophobicity and charge, 

reducing biofilm formation and adhesion capacity. To our knowledge, the real 

interaction forces between simple molecules such as amino acids and fungal cell wall 

still not well characterized. This approach is very interesting, especially because of 

the dimorphic change capacity of fungi, between commensalism and invasion 

growth (Granek and Magwene, 2010; Brückner and Mösch, 2012). Indeed, in the last 

decade, many studies reported the high influence of the hydrophobic and 

electrostatic interactions between fungal cell wall and small peptides on general cell 

behavior (Marcos and Gandia, 2009; Bou Zeidan et al., 2013; Fazly et al., 2013).  

Summarizing, this report identifies another biological activity of some amino acids 

which could be the positive or negative control of biofilm formation and adhesion of 

flor yeasts.  
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Even if no correlations were found between the tested strains each with a specific 

background of FLO11 gene, a functional FLO11 gene seems to be fundamental. The 

variation of phenotype in the presence of amino acids opens domain of new 

experiments, in order to better understand the molecular motifs behind this 

phenomenon, even considering its interest at the biotechnological level.  

 

References 

Barnett, J.A., 2003. A history of research on yeasts 6: the main respiratory pathway. Yeast 20, 1015-1044. 

Bou Zeidan, M., Carmona, L., Zara, S., Marcos, J.F., 2013. FLO11 Gene Is Involved in the Interaction of Flor Strains of 

Saccharomyces cerevisiae with a Biofilm-Promoting Synthetic Hexapeptide. Appl Environ Microbiol 79, 6023-6032. 

Brückner, S., Mösch, H.-U., 2012. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. 

FEMS Microbiology Reviews 36, 25-58. 

Bruckner, S., Mosch, H.U., 2012. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. 

FEMS Microbiol Rev 36, 25-58. 

Chen, H., 2006. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes & Development 20, 1150-

1161. 

Damberg, B.E., Blumberg Ia, E., 1983. Toxic effect of cysteine on cells of Saccharomyces cerevisiae growing on media of 

various compositions. Mikrobiologiia 52, 68-72. 

De Groot, P.W., Ram, A.F., Klis, F.M., 2005. Features and functions of covalently linked proteins in fungal cell walls. 

Fungal Genet Biol 42, 657-675. 

Fazly, A., Jain, C., Dehner, A.C., Issi, L., Lilly, E.A., Ali, A., Cao, H., Fidel, P.L., Jr., R, P.R., Kaufman, P.D., 2013. Chemical 

screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and 

pathogenesis. Proc Natl Acad Sci U S A 110, 13594-13599. 

Godard, P., Urrestarazu, A., Vissers, S., Kontos, K., Bontempi, G., van Helden, J., Andre, B., 2007. Effect of 21 Different 

Nitrogen Sources on Global Gene Expression in the Yeast Saccharomyces cerevisiae. Molecular and Cellular Biology 

27, 3065-3086. 

Goossens, K.V., Willaert, R.G., 2012. The N-terminal domain of the Flo11 protein from Saccharomyces cerevisiae is an 

adhesin without mannose-binding activity. FEMS Yeast Res 12, 78-87. 

Granek, J.A., Magwene, P.M., 2010. Environmental and genetic determinants of colony morphology in yeast. PLoS 

Genet 6, e1000823. 

Hans, M.A., Heinzle, E., Wittmann, C., 2003. Free intracellular amino acid pools during autonomous oscillations in 

Saccharomyces cerevisiae. Biotechnol Bioeng 82, 143-151. 

Hazelwood, L.A., Daran, J.M., van Maris, A.J.A., Pronk, J.T., Dickinson, J.R., 2008. The Ehrlich Pathway for Fusel Alcohol 

Production: a Century of Research on Saccharomyces cerevisiae Metabolism. Applied and Environmental 

Microbiology 74, 2259-2266. 



 

95 
Marc Bou Zeidan, Phenomic analysis and cell wall remodulation of Saccharomyces cerevisiae flor strains in 
the presence of different nitrogen sources, Tesi di dottorato in Biotecnologie Microbiche Agroalimentari, 
Università degli studi di Sassari. 

Hinnebusch, A.G., 2005. Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev 

Microbiol 59, 407-450. 

Homann, O.R., Cai, H., Becker, J.M., Lindquist, S.L., 2005. Harnessing natural diversity to probe metabolic pathways. 

PLoS Genet 1, e80. 

Horisberger, M., Clerc, M.F., 1988. Ultrastructural localization of anionic sites on the surface of yeast, hyphal and germ-

tube forming cells of Candida albicans. Eur J Cell Biol 46, 444-452. 

Ishigami, M., Nakagawa, Y., Hayakawa, M., Iimura, Y., 2006. FLO11 is the primary factor in flor formation caused by cell 

surface hydrophobicity in wild-type flor yeast. Biosci Biotechnol Biochem 70, 660-666. 

Karunanithi, S., Vadaie, N., Chavel, C.A., Birkaya, B., Joshi, J., Grell, L., Cullen, P.J., 2010. Shedding of the Mucin-Like 

Flocculin Flo11p Reveals a New Aspect of Fungal Adhesion Regulation. Current Biology 20, 1389-1395. 

Krogerus, K., Gibson, B.R., 2013. Influence of valine and other amino acids on total diacetyl and 2,3-pentanedione 

levels during fermentation of brewer’s wort. Applied Microbiology and Biotechnology 97, 6919-6930. 

Kuchin, S., Vyas, V.K., Carlson, M., 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid 

invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22, 3994-4000. 

Lee, J.C.Y., Tsoi, A., Kornfeld, G.D., Dawes, I.W., 2013. Cellular responses toL-serine inSaccharomyces cerevisiae: roles 

of general amino acid control, compartmentalization, and aspartate synthesis. FEMS Yeast Research 13, 618-634. 

Lei, H., Zheng, L., Wang, C., Zhao, H., Zhao, M., 2013. Effects of worts treated with proteases on the assimilation of free 

amino acids and fermentation performance of lager yeast. Int J Food Microbiol 161, 76-83. 

Liao, S.-M., Du, Q.-S., Meng, J.-Z., Pang, Z.-W., Huang, R.-B., 2013. The multiple roles of histidine in protein interactions. 

Chemistry Central Journal 7, 44. 

Ljungdahl, P.O., 2009. Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans 37, 

242-247. 

Ljungdahl, P.O., Daignan-Fornier, B., 2012. Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in 

Saccharomyces cerevisiae. Genetics 190, 885-929. 

Magasanik, B., Kaiser, C.A., 2002. Nitrogen regulation in Saccharomyces cerevisiae. Gene 290, 1-18. 

Marcos, J.F., Gandia, M., 2009. Antimicrobial peptides: to membranes and beyond. Expert Opin Drug Discov 4, 659-671. 

Mortimer, R.K., Johnston, J.R., 1986. Genealogy of principal strains of the yeast genetic stock center. Genetics 113, 35-

43. 

Murray, D.B., Haynes, K., Tomita, M., 2011. Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys 

Acta 1810, 945-958. 

Naz, S., Gueguen-Minerbe, M., Cretenet, M., Vernoux, J.P., 2013. Aromatic amino acids as precursors of antimicrobial 

metabolites in Geotrichum candidum. FEMS Microbiol Lett 344, 39-47. 

Pallotta, M.L., 2013. L-Proline uptake in Saccharomyces cerevisiae mitochondria can contribute to bioenergetics 

during nutrient stress as alternative mitochondrial fuel. World J Microbiol Biotechnol. 

Razvag, Y., Gutkin, V., Reches, M., 2013. Probing the Interaction of Individual Amino Acids with Inorganic Surfaces 

Using Atomic Force Spectroscopy. Langmuir 29, 10102-10109. 

Sanna, M.L., Zara, S., Zara, G., Migheli, Q., Budroni, M., Mannazzu, I., 2012. Pichia fermentans dimorphic changes depend 

on the nitrogen source. Fungal Biology 116, 769-777. 

Sanz, P., 2003. Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem Soc Trans 31, 178-

181. 



 

96 
Marc Bou Zeidan, Phenomic analysis and cell wall remodulation of Saccharomyces cerevisiae flor strains in 
the presence of different nitrogen sources, Tesi di dottorato in Biotecnologie Microbiche Agroalimentari, 
Università degli studi di Sassari. 

Št’ovíček, V., Váchová, L., Kuthan, M., Palková, Z., 2010. General factors important for the formation of structured 

biofilm-like yeast colonies. Fungal Genetics and Biology 47, 1012-1022. 

Verstrepen, K.J., Klis, F.M., 2006. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60, 5-15. 

Wu, G., 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 1-17. 

Wu, J., Zhang, N., Hayes, A., Panoutsopoulou, K., Oliver, S.G., 2004. Global analysis of nutrient control of gene 

expression in Saccharomyces cerevisiae during growth and starvation. Proc Natl Acad Sci U S A 101, 3148-3153. 

Zara, G., Budroni, M., Mannazzu, I., Zara, S., 2011. Air-liquid biofilm formation is dependent on ammonium depletion in 

a Saccharomyces cerevisiae flor strain. Yeast 28, 809-814. 

Zara, G., Goffrini, P., Lodi, T., Zara, S., Mannazzu, I., Budroni, M., 2012. FLO11 expression and lipid biosynthesis are 

required for air-liquid biofilm formation in a Saccharomyces cerevisiae flor strain. FEMS Yeast Res 12, 864-866. 

Zara, G., Zara, S., Pinna, C., Marceddu, S., Budroni, M., 2009. FLO11 gene length and transcriptional level affect biofilm-

forming ability of wild flor strains of Saccharomyces cerevisiae. Microbiology 155, 3838-3846. 

Zara, S., Bakalinsky, A.T., Zara, G., Pirino, G., Demontis, M.A., Budroni, M., 2005. FLO11-Based Model for Air-Liquid 

Interfacial Biofilm Formation by Saccharomyces cerevisiae. Applied and Environmental Microbiology 71, 2934-2939. 

Zara, S., Gross, M.K., Zara, G., Budroni, M., Bakalinsky, A.T., 2010. Ethanol-Independent Biofilm Formation by a Flor 

Wine Yeast Strain of Saccharomyces cerevisiae. Applied and Environmental Microbiology 76, 4089-4091. 

  



 

97 
Marc Bou Zeidan, Phenomic analysis and cell wall remodulation of Saccharomyces cerevisiae flor strains in 
the presence of different nitrogen sources, Tesi di dottorato in Biotecnologie Microbiche Agroalimentari, 
Università degli studi di Sassari. 

 

 

 

 

 

 

 

 

 

 

 

GENERAL CONCLUSIONS 

 

  



 

98 
Marc Bou Zeidan, Phenomic analysis and cell wall remodulation of Saccharomyces cerevisiae flor strains in 
the presence of different nitrogen sources, Tesi di dottorato in Biotecnologie Microbiche Agroalimentari, 
Università degli studi di Sassari. 

Research handled during this PhD thesis focused on the phenotypic characterization 

of natural flor strains with different genetic backgrounds, mainly at the level of 

FLO11 gene length and expression. We studied the interactions between flor yeasts 

and nitrogen compounds, such as single amino acids, dipeptides and small peptides 

with particular physiochemical properties. 

FLO11 gene is directly involved in multicellular phenotypic traits, like biofilm 

formation and adhesion, by conferring to yeasts cell wall high hydrophobic and 

electrostatic interactions. These characteristics influence directly the adhesion 

capacity and the air-liquid biofilm formation in S. cerevisiae flor strains. 

In this thesis, we studied the effect of natural components such peptides and amino 

acids, known for their hydrophobicity and/or charge, on the biofilm formation 

process of some flor yeasts. In particular, the aim was to characterize and better 

understand the cellular interactions of flor strains with these nitrogen compounds, 

and among them to find some able to modulate positively or negatively the biofilm 

formation of flor yeasts.  

Accordingly with this aim, results obtained in the three parts of this PhD revealed 

different interactions between S. cerevisiae flor and nitrogen compounds, which could 

be resumed as next: 

 A novel role of the synthetic hexapeptide PAF26 in enhancing the biofilm 

formation of flor strains, in positive correlation with the specific FLO11 gene 

expression of each strain. 

 High interactions affinity between PAF26, and not other peptides, with flor 

strains having a functional FLO11 gene. 

 The ability of flor strains with high FLO11 expression background to 

metabolize a wide range of nitrogen sources, except L-histidine and L-

histidine contained dipeptides. 
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 A potential role of cationic amino acids, mainly L-histidine, and sulphuric 

amino acids in inhibiting the air-liquid biofilm formation and cell adhesion 

capacity of flor yeasts.    

These major findings, along with the series of accompanied results, represent a new 

approach in the field of cell-cell and cell-environment interactions. It’s worthy to note 

that in major part of handled experiments, the cell viability of flor strains treated 

with nitrogen compounds was constantly similar to control cells without treatments. 

Even though, the adhesion and biofilm formation ability were highly affected, 

positively or negatively, in the presence of these compounds.  

Considering I) the innate cell wall diversity and the conferred high hydrophobicity 

and adhesion ability of flor strains; II) the enhancement of cell wall chitin and 

mannan in the presence of some of tested compounds (PAF26 and L-histidine) and 

III) the particular physiochemical characteristics of such molecules, we hypothesize 

that our results reflect potentially the unspecific interactions between the cell surface 

and its enclosed environment. We also showed the involvement of FLO11 gene in 

such unspecific interactions with the cell environment and its role in modulating the 

cell surface net charge which potentially modulates the cellular growth. 

Results in this PhD thesis could be of a high interest, because the microbial adhesion 

and biofilm formation is becoming a key factor in microorganisms control at the 

biotechnological level. Beside, Flo11p is a cell wall glycoprotein homologous to 

glycoproteins of other species, involved in the virulence of these species. In fact, 

investigations on the dimorphism in S. cerevisiae has been instrumental to uncover 

many of the signaling routes that control hyphal growth and virulence in a growing 

number of human pathogenic fungi. For this, further experiments at the molecular 

level are fundamental to understand and maybe lead to apply these results on other 

microbial biofilms. 
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