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Selection in livestock is a technique that has been known for millenniums. In fact, Virgil, in 

the 3th book of the “Georgica” (36-29 B.C.), wrote about the procedures adopted in bovine 

selection in his era. Since then, the aim of animal selection has not changed substantially and 

is generally aimed to obtain animals with high resistance to diseases and high productive 

performance, both for milk yielded and meat produced. Many years later, Darwin (1869) 

proposed the use of selection in animal breeding and stated that “The key is man’s power of 

accumulative selection: nature gives successive variations; man adds them up in certain 

directions useful to him”. 

In any selection procedure, animals have to be evaluated objectively. Therefore, after the 

traits of interest are individuated, they are studied by using numerical parameters. The first 

statistical evaluation of the genetic merit of a dairy sire was developed by Lush in 1931. In his 

work, Lush asserted that the evaluation of an animal was more accurate using a progeny test 

than a rating based on the pedigree. By using a path coefficient and assuming that genetic 

and environmental components of variance were known, Lush gave a formula for assessing 

the genetic merit of dairy sires for factors affecting milk production, using the correlation 

between the average record of the daughters and the genotype of the sire (Lush 1931). 

Some years later, Hazel (1943) defined a selection index for measuring the net merit of 

individuals. To evaluate this index, multiple traits instead of a single trait were taken into 

account. Using traits of economic importance, an aggregate genotype value for each animal 

was obtained as a sum of its genotypes weighted by the relative economic value of that trait. 

Using this aggregate genotype, the selection index was obtained by maximizing the 

correlation between the aggregate genotype and the index itself, but to get a reliable index a 

well-estimated phenotype (measured on the animal itself and on its relatives) and a genetic 

variance-covariance matrix were used. 
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The introduction of the selection index was an important milestone in genetic selection 

because it was the first statistical method used to evaluate the genetic merit of an individual 

through its phenotype and the phenotypes of its relatives. 

Pedigree and phenotype to compute EBV  

The estimation of the breeding value (EBV) of animals involved in selection programs is the 

most important tool to obtain a high genetic improvement in livestock species. 

The estimation of breeding value, evaluated by using both pedigree and phenotype recorded 

on the animals under study, depends on the knowledge of the relationships between the 

involved individuals. As a consequence, the estimation of the proportion of the phenotypic 

variance explained to the genotype is obtained by using the relationship matrix. The 

combination of pedigree and phenotype information with the estimated heritability allows to 

evaluate the breeding values of the animals. However, due to the enormous dimension of 

the relationship matrix, a huge amount of computer resources and long computational time 

are needed (Calus, 2009). 

Henderson (1975) proposed a new computational method, named best linear unbiased 

prediction (BLUP), which is able to improve the accuracy of prediction of breeding values by 

using all relationships among animals. For many years, this technique has been largely 

applied and has led to positive results in genetic evaluation programs. However, to get a 

considerable genetic gain, lots of years are required, especially for traits that can be 

measured only in one sex (e.g. milk traits), after death (e.g. meat quality) or late in life (e.g. 

longevity) (Goddard and Hayes, 2009). Another negative aspect of the BLUP approach is that 

it contributes to an increase in the degree of inbreeding among animals, because it favors the 

close relatives. Finally, BLUP makes the assumption of the infinitesimal model (Fisher, 1918), 

where an infinite number of genes with very small effect contribute to the trait (Calus, 2009). 

This seems a practical but biologically unrealistic assumption because it is known that most 

of the infinitesimal model assumptions are not verified. Indeed, the number of loci is finite 
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or, after repeated selection, the assumption of normality may not be reasonable (Fairfull et 

al. 2011) 

 

EBV and quantitative trait loci 

BLUP and similar statistical procedures, which belong to the so called “quantitative genetics” 

area, do not use any genetic information directly. The introduction of new molecular 

techniques able to map the DNA and produce a sparse map of genetic markers has given new 

momentum to genetic improvement. Fernando and Grossman (1989) applied the BLUP 

technique to a mixed linear model that also incorporated a marker factor containing 

information on the linked quantitative trait loci (QTL). Lande and Thompson (1990) showed 

how molecular genetics could integrate the traditional methods of genetic selection based on 

phenotypes and pedigree. These methods, where molecular genetics information is 

integrated in the selection procedures, are known as marker-assisted selection (MAS). This 

approach was able to increase the genetic gain by 9-38% (Meuwissen and Goddard 1995).   

With this new approach a more realistic model, alternative to the infinitesimal model, was 

proposed. In this model, known as the finite locus model, most of phenotype expression is 

explained by a small number of loci with a large effect, i.e. the QTL, whereas the remaining 

part of phenotypic variance is explained by a great number of loci with an infinitesimal effect.  

The initial expectations of a wide use of QTLs in MAS were not completely satisfied because 

of the presence of some undesirable aspects. Early marker maps were very sparse and, 

therefore, the QTL mapping was extremely difficult. Associations between chromosome 

regions and QTLs were studied by using the linkage analysis, which usually locates QTLs at 

intervals greater than 20 cM. In this scenario, the identification of underlying mutations and 

the use of marker information in MAS is very difficult (Goddard and Hayes 2009). 

Nevertheless, some important QTL regions that control milk production were detected in 

cattle populations (Georges et al. 1995; Weller et al. 1990). However, their use in animal 
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breeding programs is not easy, because these models tend to overestimate the QTL effects 

(Beavis effect) (Xu, 2003b). Moreover, the estimated QTL effects should be validated in an 

independent population before this information could be used in genetic selection programs. 

More recent developments in QTL mapping methods have given more precise maps by using 

the linkage disequilibrium (LD) between markers and QTLs (Aulchenko et al. 2007). The 

advantage of using the LD for QTL mapping purposes is that the LD quickly decreases as the 

distance between markers and QTL increases. Consequently, a QTL can be located into a 

narrower region (Goddard and Hayes 2009). Recently, the availability of high density SNP 

platforms at reasonably low costs allows to map more and smaller QTLs. Nevertheless, the 

estimation of QTLs with small effects on the trait under study is difficult and decreases the 

precision with which the effects of total QTLs are estimated (Calus 2009). Another critical 

aspect of MAS is that, generally, few markers associated with a QTL are validated in an 

independent sample population. Using these validated markers, the ability to estimate the 

breeding value is limited because they explain only a small proportion of the genetic 

variance. This effect is also confirmed in complex traits studied in humans where only a 

proportion of the estimated trait hereditability, usually less than half, is explained by QTLs 

(Stranger et al. 2011).   

Genomic Selection 

Both accuracy and efficiency of breeding value estimation procedures increased by using the 

method of Meuwissen et al. (2001), who applied a multiple QTL approach known as genomic 

selection (GS). This method skipped the QTL-mapping step and estimated the effects of a 

high number of markers across the genome simultaneously. One of the main difference 

between the first type of MAS (QTL-MAS) and GS is that QTL-MAS uses the information of a 

few known QTLs in LD with some markers, whereas GS uses a huge number of markers 

available in a high density SNP platform. In this approach, all SNPs are considered in LD with a 

QTL and effects of known and unknown QTLs are accounted for. Furthermore, being all 

effects simultaneously estimated, the total genetic variance is not, on average, 

overestimated (Calus 2009; Goddard and Hayes 2009). 
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Genomic selection conceptually proceeds in two steps: 

• Estimation of the effects of each marker in a reference population where genotypes 

and a reliable EBV are known; 

• Prediction of the genomic estimated breeding values (GEBV) for animals not present 

in the reference population, such as young selection candidates, with known 

genotypes but without performance records. 

In the second step, GEBVs of animals with genotype data but not phenotypes are estimated 

by summing the effect of each marker across the whole genome: 

ˆGEBV Xg=  

where X is a design matrix allocating animals to genotypes, and ĝ is the vector of marker 

effects. 

There are, however, two main critical issues in the estimation of marker effects. The first is 

that the number of marker effects that have to be estimated is greater than the number of 

animals with known genotype and phenotype. The second regards the assumption related to 

the prior distribution of the variance of SNP effects. Some of the models proposed to solve 

these problems are the SNP-BLUP (Meuwissen et al. 2001; Moser et al. 2010), the GBLUP 

(Hayes et al. 2009, Van Raden et al. 2009) and the Bayesian approach termed as Bayes-

alphabet (Meuwissen et al. 2001; Xu 2003a). Each model makes different assumptions about 

the prior distribution of marker effects. 

 

SNP-BLUP (RR-BLUP) 

The SNP-BLUP (RR-BLUP) model assumes that each of m SNP has a very small effect on the 

genetic variance of the trait. If n is the number of animals with known genotype and reliable 

EBV and m is the number of markers, the model is: 
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1ny Xg eµ= + +  

where y is the reliable EBV, 1n is a vector of 1s, µ is the overall mean, X is a design matrix, 

allocating records to genotypes for markers (n rows and m columns), g  is a vector of random 

effect of markers, and e is a vector of residuals that are assumed to be normally distributed 

with ( )20, ee N Iσ . In this model marker effects are assumed to be normally distributed 

with ( )20, gg N Iσ , where 2
gσ  is the variance of the marker effects. The solution of the 

previous model is given by: 

1ˆ 1 1 1 1
ˆ 1

n n n n

n

X y
X X X Ig X y

µ
λ

−′ ′ ′    
=      ′ ′ ′+     

 

where 
2

2
e

g

σλ
σ

=  and I is the identical matrix. 2
gσ  is unknown but can be calculated from the 

total genetic additive variance 2
aσ , estimated, for instance, by REML (Gilmour et al. 2009). 

Therefore, assuming that all markers contribute equally to the total amount of the explained 

variance, the genetic variance can be estimated as 
2

2 a
g m

σσ = . This assumption, however, 

seems unrealistic (Meuwissen et al. 2001). A more accurate estimation of 2
gσ  can be done by 

taking into account the differences in marker allele frequencies as follows: 

( )

2
2

1
2 1

a
g m

j j
j

p p

σσ

=

=
−∑

 where jp is the allele frequency of marker j. 

 

G-BLUP 

An alternative and equivalent method to the SNP-BLUP, to estimate GEBV using marker 

information, is the G-BLUP, which uses a genomic relationship matrix G instead of the 

pedigree derived relationship matrix (Van Raden 2008, Hayes et al. 2009). Moreover, in the 
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G-BLUP, the genetic variance explained by each marker is not constant and changes 

according to marker allele frequencies. The G-BLUP model is: 

1ny Zg eµ= + +  

where y is the reliable EBV, 1n is a vector of 1s, µ is the overall mean, Z is a design matrix 

allocating records to breeding values, g  is the vector of SNP effects, and e is a vector of 

random residuals, which are assumed to be normally distributed with ( )20, ee N Iσ . Let 

g Wu= where iu is the a vector of breeding values  and 2( ) uVar g WW σ′= where 2
uσ  is the 

variance breeding values. W is a design matrix allocating records to genotypes with 

, , 2i j i j jw x p= − , where ,i jx is the genotype jth SNP of the ith animal and pj is the allele 

frequency of jth markers. If WW ′ is scaled, the genomic relationship matrix G is defined as 

,
1

n

i i
i

nWWG
w

=

′
=

∑
 and 2( ) gVar g Gσ= . Using this model, the breeding value for both phenotype and 

non-phenotype individuals can be evaluated by the equations as follows: 

1

2
1

2

1 1 1
ˆ 1

1ˆ

n n n
n

e
n

g

Z
y

Z Z Z Gg Z y
µ

σ
σ

−

−

′ ′ 
′    =     ′ ′ + ′     

 

This method is very attractive for populations without good pedigree records because the 

genomic relationship matrix will capture this information among the genotyped individuals. 

The accuracy of the estimation of GEBV in single breed populations of G-BLUP agrees 

reasonably well with the accuracy achieved with other methods such as BayesA.  When the 

animals in the reference and validation sets are in a multi-breed population, the accuracy of 

G-BLUP is lower than that of BayesA (Hayes et al. 2009). 
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BAYESIAN METHODS 

Both G-BLUP and SNP-BLUP approaches assume that all SNP effects are non-zero, small and 

normally distributed. Moreover, the two methods evaluate the genetic variance 2
gσ  from the 

additive variance 2
aσ . Under these assumptions, the vector of marker effects ĝ  can be easily 

estimated and consequently the GEBV of animals can be calculated. With different and more 

realistic assumptions about the variance explained by each locus or about the prior 

distribution of marker effects, the GEBV prediction could be more accurate. However, the 

evaluation of the genetic effects ĝ  is more complicated and requires complex statistical 

tools. 

 

BayesA 

The BayesA is an alternative method to BLUP to estimate the EBV. In this method data are 

modeled at two levels. The first model is developed at the level of the SNP and is similar to 

the SNP-BLUP model. The second model is developed at the level of variance across the 

SNPs. 

The first model is: 

1ny Xg eµ= + +  

where µ and g  are calculated from the posterior distribution of mean and SNPs effects, 

given the data y. From the Bayes theorem  

( ) ( ) ( ), | | , ,P g y P y g P gµ µ µ∝  

the posterior distribution of mean µ and effects g  given the data y, ( ), |P g yµ is 

proportional to the likelihood of the data given the parameters µ and g , ( )| ,P y gµ , 

multiplied by the prior distributions of µ and g ( ),P gµ . In this method, as proposed by 
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Meuwissen et al. (2001), the prior distribution of µ is uniform, whereas the prior distribution 

of ith SNP effect is ( )20,
ii gg N σ . The latter distribution highlights that the variance of each 

effect is not constant as in SNP-BLUP. This assumption seems to be more realistic. Indeed, if 

the variability of the variance that affects the effect ˆ ig , 2
igσ , is large then ˆ ig can be large, 

whereas if 2
igσ is small, then the effect ˆ ig decreases towards zero. This model, termed as 

BayesA, can be solved as: 

1

1
1

2

1 2
1 1

2

2

1 1 1 . 1

ˆ 11 .
ˆ

. . . . . .
ˆ

1 .
m

n n n n m

e n
n

g

m me
m n

g

X X

yX X X I X X
g X y

g X y
X X X X X I

σµ
σ

σ
σ

−′ ′ ′ 
  ′    ′ ′ ′+      ′    =

    
     ′    ′ ′ ′ +

  

. 

The second model, considered at the level of variances of SNP effects, allows to evaluate the
2

igσ for each SNP. The variance of effects is evaluated recursively. In the first step the prior 

distribution of 2
eσ  and the prior distribution of 2

igσ are fixed. After, the posterior distribution 

of effects across all the genome and the posterior distribution of the overall mean are 

evaluated. The prior distribution of error variance 2
eσ is chosen as ( )2 2,0χ − because it gives 

an uninformative and uniform prior distribution. With these assumptions, the conditional 

posterior distribution of error variance is:  

( ) ( )2 2Pr 2,0eior σ χ−=   →
 ( ) ( )2 2| 2,e i i iPost e n e eσ χ− ′= −  

where n is the number of markers. Finally, the prior distribution of 2
igσ  is obtained by using 

an inverted chi-squared distribution: ( ) ( )2 2Pr ,
igior v Sσ χ−= where v is the number of 

degrees of freedom (d.f.) and S is a scaled parameter. The chi-squared prior distribution is 
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useful because, by combining it with the normal distribution of data, the posterior 

distribution of 2
igσ also becomes a scaled inverted chi-squared: 

( ) ( )2 2Pr ,
igior v Sσ χ−=

 
 →   ( ) ( )2 2| ,

ig i i i iPost g v n S g gσ χ− ′= + +         

where ni is either the number of haplotype effects at segment i or 1 when a single effect is 

estimated for each SNP. Meuwissen et al. (2001) fixed v and S as v = 4.012 and S = 0.002 to 

get a distribution similar to that of QTL effects obtained by Hayes and Goddard (2001) and to 

obtain the expected heterozygosity of QTL when the neutral model is considered (Hayes and 

Daetwyler 2013). Xu (2003a) proposed 2
1χ
− (with 1 d.f.), whereas Ter Braak et al. (2005) 

proposed 2
0.998χ −  (with 1 2δ−  d.f.). As shown above, the posterior distribution of variance 

effects depends on the knowledge of the effect ig and, therefore, 2
igσ  cannot be directly 

estimated. Likewise, gi depends on 2
igσ . This problem can be solved using the Gibbs sampling 

to estimate effects and variances. The Gibbs sampler runs many times (more than 10,000 

cycles) for each SNP and, once the first hundreds of evaluations of ig are discarded, the final 

effect of the ith SNP, ˆ ig , is obtained as the average of the remaining evaluations of ig . The 

combination of the assumptions of normality distribution of marker effects and inverted chi-

squared distribution of variance effects results in a t-distribution of the posterior conditional 

distribution of marker effects, where the probability of getting SNPs with moderate or large 

effects is greater than in a normal distribution. 

 

Bayesian Lasso 

Bayesian Lasso (BayesL) (Xu 2003a; Yi and Xu 2008) is similar to the BayesA approach. BayesL 

uses the same model and the same procedure of BayesA to evaluate marker effects, but it 

makes a different assumption about the distribution of markers variance. In BayesL, 

( )2Pr
igior σ  is assumed to have an exponential distribution and, after integration, the 
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posterior distribution of SNP effects ĝ results in a double-exponential expression. Double-

exponential distribution has a larger peak at zero and heavier tails than the normal 

distribution. As a consequence, the effects of a large number of markers will be very close to 

zero. 

 

BayesB 

Another possible assumption about the distribution of marker effects is a situation where a 

lot of SNPs are located in regions with no QTL and, consequently, have zero, whereas some 

SNPs have a moderate or large effect because they are in linkage disequilibrium with QTLs. 

Meuwissen et al. (2001) called this method BayesB and proposed a prior distribution of 

marker effects where many SNPs have zero effects whereas the remaining markers have a 

normal distribution. In BayesB, the prior distribution is fixed with a high density, π, at 2 0
igσ =

and with an inverse chi-square distribution at 2 0
igσ > : 

2 0
igσ =   with probability π 

( )2 2 ,
ig v Sσ χ−=   with probability (1- π), 

where v = 4.234 and S = 0.0429 (Meuwissen et al. 2001). The Gibbs sampler described in 

BayesA cannot be used in the BayesB method, because it moves only where 2 0
igσ > . Indeed, 

if 0ig ≠ , it is not possible to sample from a distribution with 2 0
igσ = , whereas the 

probability of finding 0ig =  is infinitesimal when 2 0
igσ > . This problem was solved by 

sampling 2
igσ   and ig  simultaneously using a Metropolis-Hastings algorithm (Meuwissen et 

al. 2001). 

Even if there are many works where Bayesian methods yield a more accurate prediction of 

GEBV than SNP-BLUP, these results are often obtained using simulated published data 

(Meuwissen et al. 2001; Habier et al. 2007). However, when using real data, the best 
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performances of Bayesian methods are not consistently verified. One reason for the 

disagreement observed between real and simulated data could be differences between the 

genetic architecture of the real population and that of simulated data. It is well known that 

accuracy is proportional to hereditability (h2) and to the number of individuals in train 

population (Np). Daetwyler et al. (2010) demonstrated that the accuracy of SNP-BLUP, for a 

given Np and h2, was not dependent on the number of QTL (NQTL), whereas the accuracy of 

BayesB was high when NQTL was low but it decreased when NQTL increased. In addition, 

sometimes, the accuracy of SNP-BLUP was higher than the accuracy of BayesB when NQTL was 

high.  

Another problem that affects both BayesA and BayesB is their sensitivity to the prior 

distribution and the parameter specification. In a simulated dataset, Lehermeier et al. (2013) 

tested the sensitivity of four Bayesian methods frequently used in genome-based prediction: 

Bayesian Ridge, BayesL, BayesA and BayesB. The authors found that the predictive abilities of 

the tested Bayesian methods were similar, but the performances of BayesA and BayesB 

depended substantially on the choice of parameters. However, all Bayesian approaches 

require huge computer resources and are time expensive (Shepherd et al. 2010). The reason 

is that Markov Chain Monte Carlo techniques, such as Gibbs sampling and Metropolis-

Hasting algorithm, require thousands of samplings to detect the effect of each SNP. If the 

data dimension is small, these techniques are feasible. However, in genomic selection, 

animals are genotyped by using high density SNP platforms and, in this case, a huge 

computational time is needed. 

Several other methods have been proposed to predict the genomic breeding values of 

animals in selection programs. Apart from few approaches which assume an equal 

contribution of all loci to the genetic variance, a common challenge of the most part of these 

methods is to reduce the dimensionality of the SNP data (Calus 2009). The reduction of the 

number of SNP involved in genomic evaluations brings down the genotyping costs and might 

reduce the bias due to SNP that are not in LD with any QTL. 



  19 

Massimo Cellesi 

Statistical Tools for Genomic-Wide Studies 

Tesi di Dottorato in Scienze dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Scienze e Tecnologie Zootecniche – Università degli Studi di Sassari 

 

 

Genome-wide association studies 

Genome-wide association studies (GWAS) is a way to detect associations between markers 

and production or functional traits or diseases. Associations are studied by examining many 

common genetic variants in different individuals and then verifying if any variant is 

associated with a trait of interest. In animal breeding programs, knowledge of the genes that 

affect a particular trait can be used to select animals carrying desirable alleles (Goddard and 

Hayes, 2009; Ron and Weller, 2007; Wiener et al.  2011). There are many approaches to 

implement GWAS for quantitative traits, and the simplest one is the use of a linear regression 

for each marker. 

 

Single marker regression  

Under the assumption of random mating among animals with no population structure, the 

association between SNPs and traits can be tested by using the following model: 

y Wb Xg e= + +  

where y is the trait, W is a design matrix for fixed effects (e.g. mean, age and season of birth), 

b is the vector of fixed effects, X is the vector of the SNP genotypes, g is the effect of the 

markers, and e is the vector of residuals, assumed to be normally distributed with mean zero 

and variance 2
eσ : ( )20, ee N σ . In this model the effect of each marker is additive and is 

considered as a fixed effect. The null hypothesis H0 is that the marker has no effect on the 

trait, whereas the alternative hypothesis H1 is that the marker is in LD with a QTL that affects 

the trait. The statistical test used to test the H0 is a F-test and H0 is rejected if , ,n mF Fα>

where α is the level of significance and n and m are the degrees of freedom. The choice of 

the level α of significance is a crucial point in GWAS. In genomic data analyses, tens of 

thousands of markers are tested and, therefore, the α value of 0.05 normally used leads to a 
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very high number of false positive associations. For example, the 50K Illumina’s chip contains 

around 50,000 SNP. If a threshold is fixed, the expected false positive associations are 

50,000 0.05 2,500× = . To overcome this problem, a correction for the multiple test error can 

be applied. Usually, the Bonferroni correction is adopted, but it is extremely conservative and 

discards most of possible true associations. In fact, referring to the previous example, the 

threshold that should be fixed with the Bonferroni correction is 60.05 10
50,000

α −= =  and this 

value would probably cut off most associations. An alternative
 
empirical procedure is the 

permutation test (Churchill and Doerge, 1994), which is an excellent method for setting 

significance thresholds in a random mating population. On the other hand, the permutation 

test takes a lot of time because it fixes the α threshold by randomly shuffling, for each 

marker, the phenotypes across individuals thousands of times.  

Another source of spurious associations is the stratification of the population due to the 

genetic drift or to the artificial selection that exists in some livestock populations (Ma et al., 

2012). These effects can be removed by using a mixed model with the population structure 

as random effect. 

 

The mixed model 

In mixed models, the expectation of the outcome y is modeled using both fixed and random 

effects. Fixed effects are the same as those of the single marker regression, whereas random 

effects are the polygenic effect due to population structure. In cattle breeds, the assumption 

of independence between traits does not hold because relatives in the sample population 

share genomes and the traits are controlled by genome. The heritability h2 characterizes the 

strength of control of the trait by genome, whereas the coefficient of relationship ,i jφ , which 

characterizes the relationship between a couple of relatives i and j, is roughly proportional to 

the genome shared identical-by-descent. Correlations among phenotypes of the relatives i 

and j depend on the degree of relatedness ,i jφ and on the heritability h2 of the trait, and are 
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evaluated by the relation 2
, ,i j i jhρ φ= . The model which takes into account the correlation 

structure is the following: 

1ny bX Za eµ= + + +  

where y is the vector of reliable EBV,  1n  is a vector of 1s, µ is the overall mean, X is the 

vector of the considered SNP genotype, b is the regression coefficient, Z is a design matrix for 

animal effects, a is the vector of the random additive polygenic effects with 2(0, )aa N σΦ , 

where { },i hρΦ =   is the additive genetic relationship matrix, and e random residual effect 

with 2(0, )ee N Iσ  (Yu et al. 2006, Aulchenko et al. 2007). The structure of the mixed model 

is like that of BLUP and, therefore, its solutions are obtained as previously described for the 

BLUP model. The significance of the regression coefficient b and consequently the 

associations between SNPs and traits are assessed by using a t-test or Wald chi-squared. 

Even if the mixed model solves the problem of the population stratification, it still has the 

shortcomings of multiple testing. When a single-marker linear regression is used to test 

associations for complex traits, the model might lead to inconsistent estimation of marker 

effects because markers are in linkage disequilibrium with many QTL (de Los Campos et al. 

2010). In animal breeding, most of the productive traits are affected by a large number of 

genes with possible interactions among them. As a consequence, in genetic studies of 

complex traits, the single-locus analysis does not produce reliable results (Cordell, 2009). 

Another disadvantage of the single SNP approach is that LD could extend to a wide genome 

region. In this case, the detection of the region containing the true mutation and the 

significant associated SNPs could be difficult (Pryce et al. 2010). A possible solution to this 

problem could be to fit all SNPs simultaneously by using the Bayesian-alphabet model. 

Whatever the method used for GWAS, SNPs declared associated with a trait have to be 

validated, even if a stringent threshold is used to detect the statistical associations. The best 

way to validate the detected SNPs is to verify the associations in an independent population. 

In livestock, where the degree of inbreeding is high and the pedigree structure could affect 
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independent samples, the most convincing validation method is across breeds. However, if a 

SNP does not segregate in the breeds considered in the validation procedure, the validation 

of the SNP across breeds might fail. 

 

Imputation 

Genotype imputation indicates the process of predicting genotypes that are not directly 

assayed from a SNP chip panel. These “in silico” genotypes can be used to boost the number 

of SNPs across the whole genome as part of a GWAS or a GS program. The imputed markers 

can be also used in a more focused region as part of a fine-mapping study (Marchini and 

Howie 2010). In GWAS and GS, high-density marker panels of different SNP densities (50K 

and 777K) are currently used to genotype bulls and elite cows under study (Hayes et al. 2009, 

Schopen et al. 2011, Chamberlain et al. 2012). In animal science, genotyping costs are one of 

the major constraints which limit a large-scale implementation of GS. However, the 

commercial availability of low-density SNP panels has offered new opportunities to increase 

the number of animals involved in association studies and, above all, in selection programs. 

Genotypes obtained from a low-density panel are currently imputed to a high-density chip 

and used in addition to genotypes obtained with a high density panel.  

Imputation is very useful when genotypes coming from different chips panel have to be 

joined (Druet et al 2010). In this case, imputation can increase the sample size of the 

population under study. In GWAS this implies an increase in the power of a given study and 

can also facilitate meta-analyses in studies that combine genotypes obtained from different 

sets of variants (Howie et al. 2011). 

The Hidden Markov Model (HMM) is the most useful approach to perform imputation. It is 

used in many of the available software suite programs, such as Beagle (Browning and 

Browning 2009), IMPUTE2 (Howie et al. 2009) and FastPHASE (Scheet and Stephens 2006). 
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Hidden Markov model 

HMM are probabilistic models where the resulting sequences are generated by two 

concurrent stochastic processes. The first is a one-state Markov model where the probability 

of transition from state j-1 to state j depends only on state j-1. In the second process, there is 

the emission of a value (the haplotypes or the genotypes) which is regulated by an emission 

probability depending on the state. The result is a sample of sequences conditioned by the 

transition between states (i.e. ACCGTC). Because only the final sequence can be observed, 

with no understanding of the Markov process, the model is termed hidden.  

 

Figure 1 A Hidden Markov model for DNA sequences. The circled Si are the hidden states and the arrows 

between the states indicate the state-transition probabilities. Letters inside squares indicate the symbols of 

emission and the arrows between a state and a symbol are the emission probabilities. 

Using Rabiner’s notation (Rabiner 1989), the five components of a HMM are as follows: 

• N hidden states: S1, S2, …. , SN; 

• M different symbols (the haplotypes A C G T): v1, v2, …. , vM; 

• State-transition probabilities ,{ }i jA a= : ( ), 1|i j t j t ia P x S x S−= = = that is the 

probability to transit from the state Si to the state Sj ; 
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• Emission probabilities ,{ }j kB b= : the probability of observing the symbol vk in the 

state Sj; 

• Initial-state probabilities distribution { }iπ π= : ( )1i iP x Sπ = =  that is the probability 

that the HMM process starts at state Si. 

In Figure 1 there is a HMM for DNA sequences with the Rabiner’s notation. 

Once parameters N and M are fixed, the model is described by means of { , , }A Bλ π= , which 

is obtained fixing suitable values for A, B and π . Several problems arise with a HMM 

inferring the probability of an observed sequence or detecting which could be the most likely 

sequence. If the entire sequence s of length L generated by the HMM is known and if w is the 

path of the starting state till the final state, the joint probability to observe s is: 

( ) 0,1 , 1 ,
1

, |  
L

t t t k
t

P s w a a bλ +
=

= ∏ . Being w unknown, all possible paths should be considered and, 

consequently, the probability to observe the sequence s is ( ) ( )| , |
w

P s P s wλ λ=∑ . The 

procedure to evaluate s is computationally expensive, even for simple applications. To solve 

this problem, the forward-backward algorithm was proposed (Baum and Egon 1967; Baum 

1972). This algorithm reduces the number of paths to be considered and, consequently, the 

probability of sequence s can be determined. Once the sequence is fixed, the next step is to 

detect the most probable state sequence that generated it. This issue can be efficiently 

solved by using the Viterbi algorithm (Viterbi 1967).  

In conclusion, an important shortcoming of the methods based on HMMC is that all of them 

require a very long computation time. 

 

Outline of the thesis  

The overall aim of this thesis is to propose some alternative approaches to evaluate the 

genomic breeding value of animals involved in genomic selection programs. Moreover, a new 
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method to develop genome wide association studies is proposed. This new method was also 

used to reduce the dimensionality of the SNP data. These selected SNPs were then used to 

estimate the breeding values. 
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Summary  

In genomic selection (GS) programs, direct genomic values (DGV) are evaluated by using 

information provided by high-density SNP chip. Being DGV accuracy strictly dependent on 

SNP density, it is likely that an increase of the number of markers per chip will result in 

severe computational consequences. Aim of present work was to test the effectiveness of 

principal component analysis (PCA) carried out by chromosome in reducing the marker 

dimensionality for GS purposes. A simulated data set of 5,700 individuals with an equal 

number of SNP distributed over 6 chromosomes was used. PCs were extracted both genome-

wide (ALL) and separately by chromosome (CHR) and used to predict DGVs. In the ALL 

scenario, the SNP variance-covariance matrix (S) was singular, positive semi-definite and 

contained null information which introduces ‘spuriousness’ in the derived results. On the 

contrary, the S matrix for each chromosome (CHR scenario) had a full rank. Obtained DGV 

accuracies were always better for CHR than ALL. Moreover, in the latter scenario DGV 

accuracies became soon unsettled as the number of animals decreases whereas, in CHR, they 

remain stable till 900-1,000 individuals. In real applications where a 54K SNP chip is used, the 

largest number of markers per chromosome is about 2,500. Thus a number of around 3,000 

genotyped animals could lead to reliable results when the original SNP-variables are replaced 

by a reduced number of PCs. 

 

Introduction  

In the last decade, several countries have developed breeding programs based on genomic 

selection (GS). In this approach, the genetic merit of an animal is assessed by using marker 

information provided by dense SNP platforms (Fernando et al. 2007). The BovineSNP50 

BeadChip (Illumina Inc., San Diego, CA), which contains 54K SNP-markers, has been the most 

used platform in bovine genomic studies. It is likely that SNP chip density will be further 

enlarged in the very next future, being direct genomic value (DGV) accuracy strictly 
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dependent on SNP density (Solberg et al. 2008). Recently, a 777K SNP platform has been 

made  available (Illumina Inc., San Diego, CA) for bovine genotyping. In human genetics, for 

example, over one million SNPs are usually typed per individual (Hinds et al. 2005; The 

International Hapmap Consortium 2005). However, expertise is hardly transferable to 

animals being genomic information, in human genetics, mainly used for association studies. 

In genomic selection, the primary aim of animal genotyping is the estimation of DGV which is 

highly computational demanding. Moreover, being DGV accuracy strictly dependent on the 

number of animals with genotypes and phenotypes available (i.e. size of the reference 

population), a large number of individuals has to be genotyped, thus increasing the amount 

of data to be processed. As an example, a data matrix (X) of nearly 4 billion columns is 

generated if 5,000 animals are genotyped with the 777K chip. Such amount of records is very 

difficult to handle and the use of  complex algorithms such as BLUP, Bayes A (Meuwissen et 

al. 2001) or LASSO (Park & Casella 2008) requires a huge computational capacity. Therefore, 

the search for methods able to reduce the dimension of the X matrix represents a priority. 

With this aim, Vazquez et al. (2011) proposed to select relevant SNP by single marker 

regression on phenotypes. However, results on actual data highlight a reduction of DGV 

accuracy when a number of SNP are deleted. Moreover, being SNP selection based on their 

relevance on the analyzed phenotype, specific sets of SNP should be needed for different 

traits (Habier et al. 2009). 

Actually, the deletion of some columns in the data matrix X should be avoided, considering 

the great economic effort for genotyping a large number of animals with the highest marker 

density available. A more rational approach should summarize information contained on the 

whole SNP panel in a smaller set of new variables. This is the case of the principal component 

analysis (PCA) (Hotelling 1933). This technique removes any redundancy in the original data 

by searching for a new set of mutually orthogonal variables (the principal components, PC), 

each accounting for decreasing amount of variance in the data. PCA has been used to analyze 

human genetic patterns  (Cavalli Sforza & Feldman 2003; Paschou et al. 2007). Recently, 

Lewis et al. (2011) applied PCA to a genomic dataset (30,000 SNP) generated in a study 
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involving 19 breeds (13 taurine, three zebu, and three hybrid breeds).  Authors demonstrated 

that 250-500 carefully selected SNP are sufficient to trace the breed of unknown cattle 

samples. In GS simulated experiments, PCA has been used to reduce the dimension of the 

SNP data matrix for DGV prediction (Macciotta et al., 2010; Solberg et al., 2009), obtaining 

similar accuracies when either SNPs or PCs were used as predictors. These results indicate 

that PCA can be considered a suitable tool to reduce the number of SNP variables in GS 

programs.  

Aim of this work was to demonstrate, both in theory and in practice, that a proper use of PCA 

may be effective in reducing the marker dimensionality for GS purposes. 

 

The Principal Component Analysis 

PCA is a statistical procedure that transforms a number of (possibly) correlated variables into 

an equal number of uncorrelated variables called PCs. The objective of PCA is to redistribute 

the original variability of data. Thus, the first principal component accounts for as much as 

possible of original variability in the data, and all components are extracted in order to 

maximize successively the amount of variance explained (Morrison 1976; Krzanowsky 2003). 

In other words, to summarize information contained in the starting m-dimensional space (the 

m SNP-variables), original directions are rotated into a new m-dimensional space. The new 

m-directions are the principal components where the jth PC is represented by a linear 

combination of the observed variables Xm: 

1 1 ...j j mj mPC v X v X= + +  

with j=1,……,m. The vmj weights are the components of the eigenvectors extracted from the 

variance-covariance (correlation) matrix (S) in a so called “eigenvalue problem”. The S matrix 

is symmetric and positively semi-definite. It has on the diagonal the variances of each m-

variable and off diagonal the covariance between variables. The trace of S (trS) represents 
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the total variance of the multivariate system. The eigenvalue problem applied to S gives the 

following results: 

i) m eigenvalues, λ1> λ2>………> λm ≥0, such as  
m

i
i

trSλ =∑ . 

ii) a set of m vectors (eigenvectors), one for each eigenvalue. These vectors are mutually 

orthogonal and their components are the weights vmj used to compose the PCs. These 

vectors constitute the matrix V of the eigenvectors.  

The first eigenvalue is greater than the second, the second is greater of the third and so on. 

The proportion of the total variance accounted by the ith component (varexpl) can be 

empirically evaluated as:  

explvar i

trS
λ

=  

 Finally, the matrix P whose columns are the new variables, can be calculated as: 

P X V= ⋅  

whose dimension is (nxm).  

One crucial step of PCA concerns the choice of the number of PCs to be retained. Several 

methods have been proposed (see Jolliffe, 2002, for a review of the most frequently used 

criteria). The simplest is to retain a number of p components (p<m) until the cumulative 

variance explained reach a fixed value. Generally this value is fixed at around 80 – 85% of the 

total variance.  

The rank of the genomic variance-covariance S matrix and its effect on PC 
extraction 

The rank (ρ) of a matrix is defined as the maximum number of independent rows (or 

columns). For a rectangular matrix Anxm, ρ is minor or equal to the minimum value between n 

and m, i.e. ρ ≤ min(n; m) (Bumb 1982; Patterson et al. 2006). In the case of the data matrix 
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Xnxm, being  n<<m, ρx ≤ n. Therefore, its variance-covariance square matrix S has dimension 

mxm but not full rank (ρS ≤ n-1). As a consequence, it has one or more eigenvalues equal to 

zero.  

Let we consider a real situation where X has n=4k rows and m=50k columns. The extraction 

of principal components starts from a S matrix with dimension 50 50k k×  and rank 

4 1S kρ ≤ −  . In the best situation, only 4k-1 eigenvalues are greater than zero, and therefore, 

the maximum number of non-redundant PCs is 4k-1. The remaining PCs are directions along 

which the observations do not have components. The total variability, originally distributed 

over 50k variables, has been compressed in 4k-1 directions, being 
4 1

1

k

i trSλ
−

=∑   . This result is 

a non-sense because, being the PCs new axes obtained by rotation, their number should be 

equal to the original axes. Moreover, the number of PCs is further reduced if a threshold of 

85% of the total variance explained is considered. 

The same problem has been raised by Bumb (1982) for factor analysis, another dimension-

reduction multivariate technique. The author observed “spurious” results, i.e. characterized 

by a random variability, when the number of variables exceeds the number of observations.  

The S rank issue is particularly relevant in genomic selection due to the huge number of 

columns in the SNP data matrix. The extraction of PCs by chromosome instead of genome-

wide could represent a possible strategy to deal with this problem. The approach is 

supported by the substantial biological orthogonality between chromosomes. Moreover, as 

stated in the previous section, the number of markers per chromosome is lower than 2,500 

in the commercial 54K SNP platform. The current size of reference populations in genomic 

projects often exceeds 3,000 individuals.  Therefore, both X and S matrices evaluated by 

chromosome (XCHR and SCHR) could have a full rank and the related PCs would not lead to 

spurious results. 
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A simulation study 

Materials 

Data were extracted from an archive generated for the XII QTLs – MAS workshop, freely 

available at: http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html. Briefly, 

a genome of six chromosomes with 6,000 biallelic evenly spaced SNP was generated. A total 

of 300 SNP were deleted: 75 monomorphic, and 225 with MAF lower than 10%. A number of 

animals (5,700) equal to the retained SNP was considered: 5,600 of reference (REF), and the 

remaining 100 younger individuals as prediction population (PRED). All animals had 

phenotypes available. For complete details on the data generation see Lund et al. (2009). 

 

Methods 

Effects of SNP markers on phenotypes in the REF population were estimated by using a BLUP 

mixed linear model that included either the fixed effects of mean, sex and generation, and 

the random effect of principal component scores (Meuwissen et al. 2001). The overall mean 

and the estimated effects of PC scores were then used to predict DGV in PRED population 

(for more details on DGV evaluation see Macciotta et al. 2010). Accuracy of DGV prediction 

was evaluated by calculating Pearson correlations between DGV and true breeding value 

(TBV) in PRED animals. 

Two scenarios were simulated. PCs were extracted on all SNP simultaneously (ALL) or 

separately by chromosome (CHR). Different sizes of REF population and number of extracted 

PCs (corresponding to different percentages of the total variance explained) were tested for 

each scenario. In particular, the size of REF was fixed at 5,700, 3,000, 1,000, 900, 800, 500, 

400, and 300 animals. Variance retained by PCs ranged from 60% to 95% by a step of 5%.  
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Results and discussion 

The ability of PCA in reducing the space of the 5,700 SNP-variables can be seen in Figure 1, 

where the first 2,000 PCs are displayed. In particular,  the percentage of explained variance is 

around 85% and 95% when 300 or 700 PCs are retained, respectively. Thus the information 

contained in around 6k markers can be summarized in a small number of PCs (5 or 12% of the 

total PCs).  

 

Figure 1 Pattern of the cumulative variance explained as the number of retained principal components increases 

Table 1 displays the number of retained PCs for increasing amounts of explained variance 

and for different sizes of the REF population, both for CHR and ALL approaches. As expected, 

the number of extracted PCs decreases together with the population size in each scenario. 

For example, when the REF size reduces from 5,700 to 1,000 individuals and 85% of variance 

explained is considered, the reduction in predictor dimensionality obtained by PC extraction 

is equal to 37% and 13% for ALL and CHR scenarios, respectively. These results highlight that 

in PCA the total variance is compressed in a smaller space when the number of observations 

is lower than the number of variables (as in ALL). On the other hand, in the CHR scenario the 

correct number of PCs is retained till the number of individuals exceeds the maximum 

number of SNP per chromosome (i.e. 1,000). Therefore, in a real situation where animals are 

genotyped with the 54K chip the number of retained PCs, for 85% of variance accounted, is 
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likely to be around 3,000-3,500. Such a number of variables can be easily managed with any 

personal computer and the computational time for DGV evaluation reduces to few minutes.  

Table 1 Number of retained principal components in genome-wide (ALL) and by chromosome (CHR) scenarios 

both for original variance explained and the number of involved animals’ reduction 

 
Number of animals 

Variance 5700 1000 800 500 300 
explained (%) CHR ALL CHR ALL CHR ALL CHR ALL CHR ALL 

50 95 64 89 42 89 41 84 34 84 34 
55 116 80 107 52 107 51 101 43 98 41 
60 140 99 130 65 128 62 121 53 117 50 
65 169 123 155 80 153 77 144 64 140 61 
70 205 152 186 98 184 95 174 79 170 74 
75 251 190 225 122 222 118 210 97 205 90 
80 312 240 277 153 272 148 257 120 250 109 
85 400 313 350 196 344 190 323 150 313 135 
90 542 430 466 263 455 253 429 193 409 170 
95 831 670 696 383 677 366 630 261 589 224 

 

Figure 2 displays DGV accuracies for decreasing sizes of REF population and for different 

amounts of accounted variance. Values are in agreement with reports on simulated and real 

data (Van Raden et al., 2009). The starting point of simulation is when both SALL and SCHR have 

full rank (figure 2a), i.e. when the number of animals is approximately equal to the number of 

SNP. In particular, DGV accuracies show a regular rising pattern both for ALL and CHR, with 

higher values for the latter scenario. This result is probably due both to mathematical and 

“biological” reasons. For a fixed amount of explained variance, the number of components 

extracted by chromosome is greater than those obtained genome-wide. This result seems to 

indicate a redundant PC calculation in CHR, because PCA is more efficient when the same 

amount of variance is accounted by a smaller number of new variables. As a consequence, 

higher DGV accuracies for ALL compared to CHR should be expected. However, results 

reported on figures 1 highlight a similar behavior of the two methods. Thus the substantial 

chromosome orthogonality allows, in the CHR approach, for a correct assessment of PCs 
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number. Moreover, it can be seen that CHR outperforms ALL for low percentages of retained 

variance. The gap between the two scenarios reduces when variance is > 95% or more, i.e. 

when almost all the total variance is accounted for. 

 

Figure 2 Accuracies of direct genomic value (DGV) for increasing values of variance explained and decreasing 

number of animals in training population 
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Figure 3 Accuracies of direct genomic value (DGV) for increasing values of variance explained and decreasing 

number of animals in training population 

Differences between accuracies obtained in the two approaches tend to increase as the 

number of animals decreases (figure 2). Moreover, the pattern becomes more irregular for 

ALL. These figures are in agreement with other studies that observed spurious results when 

the rank of S is markedly smaller than its dimension (Bumb 1982). Figure 3 clearly displays 

this effect highlighting that also CHR pattern tends to be irregular for a REF size lower than 

1,000 animals. Starting from figure 3a, the behavior became more unpredictable with a 

random loss of accuracy (Figure 3b) when 75% of variance is explained by PCs. However, 
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both figure 2 and 3 shows that DGV accuracies in CHR are always higher than ALL for an 

accounted variance greater than 80-85%. Such a value could be used as a criterion for 

retaining PC extracted chromosome-wide in an implementation of the PC approach on real 

genomic data. Moreover, for these values of variance, DGV accuracies range from 90 to 80% 

until the SCHR has a full rank (1,000 animals, in our simulation). On the other hand, they 

decrease till around 70% (figure 2d) for a REF size of 300. Thus a number of animals greater 

than the number of SNP per chromosome should be used to obtain good accuracies. 

 

Conclusions  

With the recent development of high-density marker chips that are routinely used in 

genomic selection programs, the need for reducing predictor dimensionality is of primary 

importance. The principal component analysis can represent a useful tool for summarizing 

and reallocating the overall information contained in the SNP data. A proper use of the 

technique requires a full rank S matrix to produce reliable results. This is a relevant issue in 

genomic analysis where the number of variables always exceeds the number of genotyped 

animals. According to the results of the present work, such an issue can be addressed by 

extracting PCs separately by chromosome, i.e. by using this technique on a series of full rank 

SCHR matrices. Better accuracies of DGVs have been obtained when PCs are extracted by 

chromosome instead of genome-wide, even with both SALL and SCHR at full rank. In the 

Illumina 54K chip the largest number of markers per chromosoma, about 2,500, is located on 

BTA1. Thus  a number around 3,000 genotyped animals could lead to reliable results when 

the original SNP-variables are replaced by a reduced number of PCs. Results of the present 

work, although obtained with a genome size and number of markers different from the 

conditions found on field data, seems to be rather realistic. The recently released Bovine3k 

genotyping BeadChip is finding a large use in genomic selection programs. Thus in the very 

next future several animals will have genotypes available with this marker density.  
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Abstract 

Background 

The objective of the present study was to test the ability of the partial least squares 

regression technique to impute genotypes from low density single nucleotide polymorphisms 

(SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was 

used.  

Methods 

Data consisted of 2,093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with 

the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from 

Holstein animals. Then, to enlarge the training population, data from the three breeds were 

combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using 

the partial least squares regression method were compared with those obtained by using the 

Beagle software. The impact of genotype imputation on breeding value prediction was 

evaluated for milk yield, fat content and protein content.  

Results  

In the single-breed approach, the accuracy of imputation using partial least squares 

regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding 

accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time 

required by the partial least squares regression method was on average around 10 times 

lower than computing time required by Beagle. Using the partial least squares regression 

method in the multi-breed resulted in lower imputation accuracies than using single-breed 

data. The impact of the SNP-genotype imputation on the accuracy of direct genomic 

breeding values was small. The correlation between estimates of genetic merit obtained by 

using imputed versus actual genotypes was around 0.96 for the 7K chip. 
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Conclusions  

Results of the present work suggested that the partial least squares regression imputation 

method could be useful to impute SNP genotypes when pedigree information is not 

available.  

 

Background  

In genomic selection programs, the breeding value (GEBV) of an individual is assessed by 

combining both genomic and traditional pedigree-based predictions. High-density marker 

platforms (HDP) of different SNP (single nucleotide polymorphism) densities (50K and 777K) 

are currently used to genotype bulls under selection (Hayes et al. 2009) and elite cows and to 

test for marker-phenotype associations (Schopen et al. 2011, Chamberlain et al. 2012). 

Genotyping costs are among the major constraints for large-scale implementation of 

genomic selection in many breeds. However, the commercial availability of low density SNP 

panels (LDP), such as the Illumina Bovine3K Genotyping BeadChip or the Illumina BovineLD 

BeadChip, which contains around 7K markers (Boichard et al. 2012), has offered new 

opportunities to increase the number of animals involved in selection programs. Genotypes 

obtained from an LDP must be imputed to the 50K platform by using suitable algorithms. 

Genotype imputation can also be useful when combining data sets that were generated using 

different SNP chips (Druet et al. 2010). 

Genotype imputation refers to in silico reconstruction of missing genotypes. Several 

techniques have been proposed to routinely impute SNP genotypes. The following three 

steps are common to all procedures: (1) a training population (TP) genotyped with an HDP is 

created; (2) a prediction population (PP) is generated by using an LDP; and (3) a suitable 

algorithm is used to impute missing SNPs in the PP. 

On the basis of the information considered to infer missing marker genotypes, imputation 

methods can be classified into three groups. The first relies on linkage and family information 
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(Daetwyler et al. 2011, Hickey et al. 2011)), the second uses linkage disequilibrium based on 

population information (Scheet et al. 2006, Browning et al. 2009), and the third combines the 

two former sources of information (Druet et al. 2010, Van Raden et al. 2011). Several factors 

affect imputation accuracy. In particular, imputation accuracy strongly depends on the 

number of individuals in the training population and on the marker density of the LDP (Druet 

et al. 2010, Weigel et al. 2010a, Weigel et al. 2010a, Zhang et al. 2010b). 

The impact of imputed genotypes on GEBV accuracies has been investigated. Results are 

sometimes discordant or expressed in different ways. For example, Chen et al. (2011) 

compared GEBV values obtained with actual and imputed data. Two computer programs, 

Findhap (Van Raden et al. 2011) and Beagle (Browning et al. 2009), were used to impute SNP 

genotypes from a 3K panel to a 50K panel. The loss of reliability in GEBV prediction by using 

imputed data was around 6.5% and 2.6% with Findhap and Beagle, respectively. Recently, 

Segelke et al. (2012) reported a reduction in reliability of genomic predictions, averaged over 

12 traits, ranging from 5.3% to 1% for the 3K and 7K chips, respectively. Moser et al. (2010) 

proposed the use of an LDP that included the highest ranked SNPs for a trait under study. 

However, the gain in accuracy of GEBV obtained with the highest ranked SNP was only 

slightly higher (5-6%) than the accuracy obtained with an equal number of evenly spaced 

markers. Nevertheless, with this strategy, considering that a specific pool of markers is 

required for each trait, the use of evenly spaced SNP seems to be preferable over choosing a 

specific SNP set for each trait. 

Several imputation algorithms have been proposed and implemented in freely available 

software such as Beagle (Browning et al. 2009), DAGPHASE (Druet et al. 2010) and Findhap 

(Van Raden et al. 2011). Chen et al. (2011) found Beagle to be the most accurate but at the 

expense of longer computation time. 

A method that uses the Partial Least Squares Regression (PLSR) technique to impute SNP 

genotypes was proposed recently (Dimauro et al. 2011). It was tested on a simulated genome 

consisting of 6000 SNPs equally distributed on six chromosomes and a data set of 5865 
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individuals (TP = 4665 and PP = 1200). The PLSR method yielded accuracies in marker 

imputation ranging from 0.99 to 0.86 when 10% or 90% genotypes were imputed, 

respectively. In the latter case, the accuracy of direct genomic values (DGV) dropped from 

0.77 to 0.74. Furthermore, Dimauro et al. (2011) highlighted that, with a fixed percentage 

(50%) of SNPs to be predicted, imputation accuracies slowly decreased from 98% with TP = 

5000, to 87% with TP = 1000 and to 69% with TP = 600. PLSR requires only genotype data, 

and other data, such as pedigree relationships, is not needed. Therefore, this approach could 

be useful when the population structure is not known.  

The aim of the present work was to test the PLSR imputation method on real data. In 

particular, a scenario with a 50K genotyped TP and a PP genotyped using either the 3K or 7K 

panel was simulated. Moreover, the ability of the PLSR method to predict SNP genotypes for 

different bovine breeds and in a multi-breed approach was tested.  

 

Methods 

Data 

Data consisted of SNP genotypes belonging to 2179 Italian Holstein bulls genotyped with the 

Illumina 50K Beadchip (single-breed dataset). Only markers located on the 29 autosomes 

were considered. Monomorphic SNPs and SNPs with more than 2.5% missing values were 

discarded. No editing for minor allele frequency (MAF) was applied. A total of 43 427 SNPs 

were retained and any missing genotypes for these SNPs were replaced by the most frequent 

genotype at that locus. Data on a total of 86 bulls were discarded, of which 48 were 

replicates or had inconsistent Mendelian inheritance information, and 38 had a low overall 

call rate (lower than 95%).  

To study the performance in a multi-breed sample, 749 Brown Swiss and 470 Simmental bulls 

were also available. For the multi-breed data set, data from the three breeds were edited 
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together to obtain the same SNPs in all data sets. At the end of the editing procedure, 30 055 

markers were retained. 

Genotypes were coded according to the number of copies of a given SNP allele they carried, 

i.e. 0 (homozygous for allele B), 1 (heterozygous) or 2 (homozygous for allele A). The 

phenotypes available for all animals were polygenic estimated breeding values for milk yield, 

protein and fat content. Animals were ranked according to their age: the oldest were 

designed as TP with all genotypes considered known, whereas the youngest represented the 

PP. For both the single and multi-breed approach, SNPs belonging to 3K and 7K LDP were 

identified in the PP animals and all other genotypes were masked, thus mimicking the two 

Illumina LDP. 

 

The partial least squares regression imputation method 

PLSR is a multivariate statistical covariance-based technique that is able to predict a response 

matrix Y(n × p) from a predictor matrix X(n × m) and to describe the common structure of the two 

matrices (Dimauro et al. 2011). In both X and Y, n represents the number of animals involved, 

m is the number of SNPs in the LDP and p is the number of SNPs to be imputed. PLSR allows 

for the identification of underlying variables (known as latent factors) which are linear 

combinations of the explanatory variables X, that best model Y. Dimauro et al. (2011) 

demonstrated that the accuracy of PLSR prediction increases with the number of latent 

factors approaching the number of SNPs to be predicted (the columns of Y). The maximum 

number of latent factors depends on the size of X, which has a lower number of columns 

than Y. For this reason, in each run, the number of extracted latent factors was fixed to be 

equal to the number of predictors (the number of columns of X). PLSR is a multivariate 

statistical technique particularly useful in genomic studies in which a great number of 

variables are involved. It can overcome the strong collinearity between SNP variables in X or 

Y and, at the same time, maximize correlations between Y and X variables (Dimauro et al. 
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2011, Abdi 2003). A more detailed description of the PLSR imputation method can be found 

in Dimauro et al. (2011). 

In the present work, each chromosome was processed independently and data were 

analyzed by using the PLS procedure of SAS® software (SAS® institute Inc., Cary, NC). 

Datasets were organized in a multivariate manner, having SNPs as columns and animals as 

rows. The 50K SNPs were divided into SNPs that have to be imputed (Y) and SNPs used as 

predictors (X). In particular, X contained only SNPs belonging to the 3K or 7K LDP. For animals 

in the PP, genotypes in Y were masked and constituted the SNPs to be predicted.  

Genotype imputation from 3K (7K) LDP to the 50K SNP panel 

The comparison of imputation performances from different publications is difficult due to the 

many differences between studies. TP size and number of markers in LDP heavily affect the 

accuracy of prediction. Moreover, the relationships between training and validation animals 

have an impact on imputation accuracies (Dassonneville et al. 2011). So, before applying the 

PLSR imputation method to our data, the method was tested on external data provided by 

Daetwyler et al. (2011) who exploited the ChromoPhase program (Daetwyler et al. 2011) to 

impute missing genotypes from low to high density SNP platforms. The data consisted of 

1183 Holstein bulls genotyped with the Illumina 50K chip. Only the 2529 markers on 

chromosome 1 were available. A PP genotyped with the 3K chip (182 SNP) was simulated by 

masking the markers not present on the 3K chip. In particular, the PP was divided into non-

founders (112 individuals that have at least one genotyped parent) and founders (212 

animals that do not have a genotyped parent) and imputation accuracies were evaluated for 

both categories of animals. The PLSR method and Beagle (Browning et al. 2009) software 

were used to impute SNP genotypes in the PP and results were compared with accuracies 

obtained by Daetwyler et al. (2011). Population structure or pedigree was not used with 

either method.  

In our experimental data, PLSR was first applied to the Holstein breed. Animals were ranked 

by age and divided in TP = 1993 (the older bulls) and PP = 100 (the younger) and both 3K and 
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7K scenarios were investigated. The Beagle software was applied to the same data. No 

pedigree information was used for either PLSR or Beagle.  

On simulated data, Dimauro et al. (2011) demonstrated that, for each chromosome, the PLSR 

imputation accuracy improved as the number of variables contained in X increased. The 

reason is that when many variables have to be predicted (the columns of the Y matrix), the 

number of extracted latent factors should be large. The maximum number of possible latent 

factors is, however, less or equal to the number of variables in X. So, for chromosomes with a 

relatively low number of markers in X, a lower PLSR predictive ability is expected. This 

hypothesis can be easily tested by comparing the imputation accuracies obtained in the 3K 

and 7K scenarios. Moreover, a PLSR run using an X matrix obtained by combining SNPs 

belonging to chromosomes 26, 27 and 28, was carried out to test for possible improvement 

in genotype imputation accuracy when X is artificially enlarged. 

Genotype imputation from 3K LDP to the 50K SNP panel for different breeds 

The availability of a sufficiently large TP is a crucial factor for genotype imputation. 

Therefore, it is interesting to investigate if a multi-breed TP could enhance the accuracy of 

genotype predictions. Some authors (Kizilkaya et al. 2010, Pryce et al. 2011) reported a slight 

advantage of using a multi-breed TP to evaluate the genetic merit of animals under selection. 

However, Hayes et al. (2012) showed that, in sheep breeds, accuracy of imputation in single-

breed analyses was higher than accuracy of imputation in a multi-breed analysis. To test the 

PLSR method in a multi-breed context, three groups of animals, one for each breed, were 

selected. Each group contained 479 bulls (the size of the Simmental population) and was split 

into a TP of 379 and a PP of 100 individuals. The imputation was first performed separately 

for each single breed and then by combining the three groups, thus obtaining a multi-breed 

dataset with TP = 1137 and PP = 300 bulls.   

Evaluation of imputation accuracy 

The ability of PLSR to impute SNP genotypes was quantified by considering the allele 

imputation error rate. This index represents the number of falsely imputed alleles divided by 
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the total number of imputed alleles (Zhang et al. 2010). In practice, considering the real and 

the imputed genotypes, 0 error was counted if both genotypes were identical, 1 if the real 

genotype was homozygous and the imputed genotype heterozygous (or vice versa) and 2 if 

the real and imputed genotypes were both homozygous but different. The imputation 

accuracy (R), for each SNP, was equal to 1 minus allele error rate. The allele error rate and 

the related imputation accuracy were averaged both by chromosome and across all 

chromosomes.  

The effect of SNP imputation on accuracy of  DGV was also evaluated. DGV for milk yield, fat 

content and protein content were calculated using both the actual 50K markers (DGV) and 

the imputed genotypes (DGV_IMP). Briefly, effects of SNP genotypes on phenotypes in the 

TP population were estimated using a BLUP model (Meuwissen et al. 2001): 

1y Zg eµ= + +  

where y is the vector of polygenic breeding values, 1 is a vector of ones, µ is the overall 

mean, Z is the matrix of SNP scores, g is the vector of SNP regression coefficients assumed 

identically and normally distributed with ( )20,
ii gg N Iσ  where 

2
2

i

a
g k

σσ =  ( 2
aσ = additive 

genetic variance, k = number SNP), and e is the vector of random residuals. The overall mean 

( µ̂ ) and the vector ( ĝ ) of the marker effects estimated in the TP were used to calculate the 

DGV for PP as: 

*ˆ ˆ ˆy Z gµ= +  

where ŷ is the vector of estimated DGV and *Z is the matrix of SNP scores in PP. For each 

phenotype, both DGV and DGV_IMP were obtained and correlations between DGV and 

DGV_IMP were calculated (r). 

Results 

Results obtained by analyzing Daetwyler’s data are reported in Table 1.  
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Table 1 Accuracy of genotype imputation from 3K to 50K with ChromoPhase, Beagle and PLSR algorithms for 

founders (F) and non-founders (NF) 

 Imputation accuracy 
Type ChromoPhase1 Beagle PLSR 
NF 
F 

0.925 0.926 0.929 
0.924 0.728 0.868 

1Values from Daetwyler et al. (2011). 

Values of R for both PLSR and Beagle were higher than those obtained with ChromoPhase, 

especially for founder bulls. Nearly equal values were obtained by PLSR and Beagle for non-

founder animals whereas for founders, imputation accuracy using PLSR was more than 5% 

higher than with Beagle.  

Table 2 contains accuracies obtained with PLSR and Beagle for imputation from 3K and 7K 

SNP chips to 50K based on the 2093 Holstein bulls. The average R using PLSR was 89.6% (± 

1.6%) and 94.2% (± 1.0%) for imputation from 3K and 7K chips, respectively. Accuracies 

obtained with PLSR were 4% higher than with Beagle for both LDP. As expected, R for each 

chromosome was higher for imputation from 7K than for imputation from 3K. For both LDP, 

imputation accuracies were higher for chromosomes with a high number of SNPs. For 

example, R was more than 4% higher for BTA1 than for BTA28, for imputation from 3K (Table 

2). Finally, R obtained by combining SNPs on BTA27, 28 and 29 was 87.4%, which was nearly 

equal to the average R of the three chromosomes (87.3%), indicating that no advantage was 

obtained by combining markers from multiple chromosomes.  

Imputation accuracies obtained by including the Brown Swiss and Simmental breeds, both for 

imputation within breed and in the multiple breed scenario, are reported in Table 3. For the 

3K LDP, R was 0.88 and 0.89 for Holstein and Brown Swiss breeds, respectively, whereas R 

was equal to 0.83 for Simmental. Imputation accuracies from 7K to 50K were, on average, 4% 

higher than imputation accuracies from 3K to 50K. However, the multi-breed approach led to 

a considerable decrease in accuracy and to a reduction of differences in imputation 

accuracies between breeds, for imputation from both 3K and 7K.  
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Table 2 Number of SNPs per chromosome in the 50K, 3K and 7K SNP panels and the accuracy of imputation 

based on 3K and 7K panels with PLSR and Beagle 

 Number of SNP  Imputation accuracy  
(PLSR) 

 Imputation accuracy  
(Beagle) 

Chromosome 50K 3K 7K  3K 7K  3K 7K 
1 2814 146 320  0.916 0.953  0.876 0.919 
2 2294 119 277  0.911 0.951  0.863 0.922 
3 2191 107 261  0.897 0.944  0.846 0.898 
4 2123 106 237  0.903 0.941  0.861 0.908 
5 1812 107 233  0.912 0.948  0.872 0.912 
6 2164 109 254  0.908 0.953  0.867 0.914 
7 1876 95 215  0.908 0.949  0.858 0.915 
8 2026 104 232  0.919 0.953  0.872 0.915 
9 1708 92 214  0.904 0.949  0.851 0.909 
10 1841 97 209  0.909 0.946  0.872 0.915 
11 1913 91 222  0.901 0.947  0.862 0.914 
12 1408 85 175  0.903 0.942  0.856 0.899 
13 1486 75 166  0.910 0.949  0.860 0.911 
14 1453 70 166  0.897 0.945  0.850 0.912 
15 1427 74 167  0.898 0.945  0.864 0.915 
16 1337 74 160  0.910 0.950  0.864 0.913 
17 1367 65 156  0.888 0.936  0.842 0.900 
18 1147 59 136  0.877 0.924  0.825 0.884 
19 1164 56 143  0.878 0.935  0.827 0.895 
20 1351 70 172  0.921 0.960  0.886 0.933 
21 1170 58 134  0.881 0.934  0.832 0.899 
22 1087 57 133  0.894 0.941  0.849 0.900 
23 919 47 118  0.887 0.938  0.842 0.895 
24 1072 54 135  0.888 0.941  0.842 0.903 
25 831 41 109  0.865 0.926  0.816 0.887 
26 905 45 102  0.889 0.931  0.841 0.890 
27 834 41 100  0.872 0.924  0.832 0.890 
28 806 46 99  0.871 0.922  0.826 0.879 
29 901 47 110  0.875 0.934  0.828 0.888 
 
Total SNP 43427 2237 5155 

 
Mean 

 
0.896 

 
0.942 

  
0.851 

 
0.905 

 

Table 3 Average accuracy of imputation from 3K and 7K to 50K panels using single-breed and multi-breed 

information 

 Imputation accuracy 
 3K 7K 
Breed Single-breed Multi-breed Single-breed Multi-breed 
Holstein 0.882 0.806 0.914 0.837 
Brown Swiss 0.893 0.827 0.921 0.858 
Simmental 0.826 0.788 0.854 0.817 



  56 

Massimo Cellesi 

Statistical Tools for Genomic-Wide Studies 

Tesi di Dottorato in Scienze dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Scienze e Tecnologie Zootecniche – Università degli Studi di Sassari 

 

Accuracies of DGV predictions were moderate (Table 4), in accordance with the low number 

of animals in TP. However, correlations between polygenic EBV and DGV (rEBV,DGV) and 

correlations between EBV and DGV_IMP (rEBV,DGV_IMP) were quite similar with actual and 

imputed data. This result is in agreement with the relatively high correlations between DGV 

and DGV_IMP (rDGV,DGV_IMP), which were on average 0.96 across the three considered traits 

with the 7K LDP. However, rDGV,DGV_IMP was lower when using the 3K LDP, for which 

rDGV,DGV_IMP was on average 0.89. 

Table 4 Correlations of direct genetic values (DGV) with polygenic estimated breeding values (EBV) (rEBV,DGV) and 

with DGV based on imputed genotypes (DGV_IMP) (rDGV,DGV_IMP) for milk yield, fat content and protein content 

Scenarios Milk yield  Fat content  Protein content 
 rEBV,DGV rDGV,DGV_IMP  rEBV,DGV rDGV,DGV_IMP  rEBV,DGV rDGV,DGV_IMP 
Actual data (50K) 
Imputation from 7K 

0.58   0.45   0.44  
0.55 0.95  0.43 0.96  0.43 0.96 

Imputation from 3K 0.52 0.89  0.42 0.93  0.38 0.86 
 

Discussion 

Results of PLSR applied to Daetwyler’s data (Table 1) showed that the method did not 

produce different imputation accuracies for founders and non-founders, unlike ChromoPhase 

and, partly, Beagle. In our analyses, we never used pedigree information. As a consequence, 

both founders and non-founders were handled in the same manner. However, having a 

parent in the reference dataset seemed to be more important when using Beagle than when 

using PLSR.  This is probably due to the different algorithms implemented in Beagle 

(Browning  et al. 2009) and PLSR (Abdi 2003, Li et al. 2009). 

PLSR imputation accuracies, from 3K and 7K LDP to the 50K panel, were higher than 

accuracies obtained with Beagle and ChromoPhase. These results indicate that, if no 

pedigree information is available, the PLSR method should be preferred over the other 

methods studied here when imputation is from 3K or 7K to 50K.  
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PLSR was further used to impute SNP genotypes both in single and multi-breed scenarios 

based on Holstein, Simmental and Brown Swiss data sets. No MAF threshold was applied in 

the editing procedure. To investigate whether differences in imputation accuracies between 

PLSR and the Beagle algorithms could arise with edits based on MAF, the impact of several 

MAF thresholds (no limit, 0.01, 0.05, 0.10) was evaluated. However, no differences in 

imputation accuracies were observed between the PLSR and Beagle results.  

Mean R values obtained with PLSR in the single-breed scenario were 89.6% and 94.2% for the 

3K and 7K LDP, respectively. It is worth mentioning that, in the present study, the ratio 

between the number of animals (n = 2179 Holstein bulls) involved in the study and the mean 

number of markers (m = 1497) on each chromosome, /n mR , was 1.45. Dimauro et al. (2011), 

tested the PLSR imputation method on a simulated data set with m = 1000 markers on a 

chromosome and n = 5865 individuals. The resulting /n mR was 5.9. In ordinary statistics and, 

even more, in multivariate statistics, the availability of a larger number of observations 

guarantees more accurate results. Thus, Dimauro et al. (2011) applied the PLSR method in a 

more optimal dataset, obtaining an imputation accuracy of 0.86. Even if the latter study and 

the present research are difficult to compare, the large difference between /n mR  ratios 

suggests that PLSR also works properly with actual data. This is an important result because, 

if a particular technique gives good results when applied to simulated data, it is not obvious 

that similar performances are obtained with actual data.  

PLSR is an ordinary statistical technique included in the most popular commercial and free 

software packages that are currently used to perform genomic data analyses, such as SAS® 

and R. The PLSR approach could thus be easily implemented in software for genomic 

evaluations previously developed. Moreover, with PLSR, the computing time needed to 

impute SNP genotypes was, on average, around 10 times lower than with Beagle. For 

example, with the 7K LDP, PLSR took around 1 h to impute SNP genotypes for the first 

chromosome, whereas Beagle needed around 8 h. This aspect should not be underrated 

when an algorithm is chosen to perform imputation. In particular, PLSR could probably be 
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used to impute SNP genotypes from the 50K chip to the denser Illumina 777K platform in a 

reasonable amount of time. 

Imputation from 7K to 50K (R = 0.94) was more accurate than imputation from 3K to 50K (R = 

0.90). This is an expected result and it is comparable to that obtained by Mulder et al. (2012), 

who found a mean imputation accuracy of around 88% for 3K and 92% for 7K, respectively. 

The mean R for each chromosome (Table 2) showed that genotype imputation accuracy 

depends strongly on the number of SNP variables in the X matrix. For example, in the 3K 

panel, BTA1 and BTA25 have 146 and 41 SNPs, respectively, and the related values of R were 

0.92 and 0.87. Dimauro et al. (2011) found that imputation accuracy increases as the number 

of extracted latent factors in the PLSR procedure increases. The maximum number of 

possible latent factors is lower than or equal to the number of variables in X. This can explain 

the lower imputation accuracy for chromosomes with a lower number of markers. Moreover, 

the dimension of X cannot be artificially enlarged by using SNP from several chromosomes 

because it resulted in an accuracy that was equal to the mean of accuracies obtained with 

each chromosome. This result suggests that a chromosome can be considered as a 

genetically and statistically independent unit.  

Results for imputation based on information from multiple breeds obtained in this study, 

basically confirm previous reports. Values of R using multi-breed information (Table 3) were 

considerably lower than R for imputation within breeds. Similarly, Hayes et al. (2012) 

obtained no advantage or, sometimes, worse results, for imputation based on information 

from multiple breeds, compared to single-breed information. Also, R for Simmental was 

lower than R for the other breeds. Dassonneville et al. (2012) also reported lower imputation 

accuracies in the French Blonde d’Aquitaine beef breed (around 5%) than in two dairy 

breeds. The lower imputation accuracy for Simmental may be partially explained by the fact 

that the Illumina 50K platform was not tested on the Simmental breed (Illumina 2011)  and 

that the effective population size of the three breeds is very different, being higher for the 

Simmental than the other breeds (Medugorac et al. 2009, Hagger 2005, de Roos et al. 2008). 
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Differences in the underlying structure (Ajmone-Marsan et al. 2012) of the three populations 

may impact imputation accuracies. Finally, the use of a multi-breed TP also did not give 

better accuracies in GEBV prediction than the single-breed scenario (Pryce et al. 2012, Hayes 

et al. 2009). 

The impact of the SNP genotype imputation on the accuracy of DGV was small. Correlations 

between DGV and DGV_IMP were, on average, 0.96 for all traits for imputation from 7K to 

50K, and 0.89 for imputation from 3K to 50K. Similar results were obtained by Berry and 

Kearney (2011), who reported an average correlation of 0.97 across 15 traits for the 3K LDP. 

The lowest correlations between DGV and DGV_IMP were observed for imputation from 3K 

to 50K for protein content (0.86) and milk yield (0.89). The correlation between DGV and 

DGV_IMP was approximately the same (around 0.96) for all traits, when imputation was from 

7K to 50K. Weigel et al. (2010) reported similar values, both for milk yield and protein 

content, and confirmed that DGV_IMP predictions improve if the number of SNPs on the LDP 

increases, both for protein content and milk yield. Therefore, the 7K chip seems to be an 

efficient imputation tool and the imputed genotypes could be used to correctly estimate DGV 

for milk yield, and fat and protein content. 

Conclusions 

This study demonstrates that the PLSR imputation method can efficiently impute missing 

genotypes from LDP to HDP. With this method, the same good results are obtained whether 

animals in the PP have parents in the TP or not. Moreover, the computing time was markedly 

lower than with Beagle. The PLSR method was applied chromosome-wise and the results 

indicate that imputation accuracies are higher when the number of SNPs in the X matrix is 

high. However, combining markers from several chromosomes did not increase the accuracy 

of imputation, which confirms that chromosomes are independent genetic and statistical 

units. The 7K LDP gave good results both in terms of R and DGV prediction. Similar to the 3K 

LDP, the multi-breed approach applied to the 7K scenario, did not yield better results than 

the single-breed approach.  
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Abstract  

The availability of high-density SNPs panels for humans and, recently, for 

several animal species has given a great impulse at genome-wide association 

studies toward the identification of genes associated with complex traits and 

diseases. Marker relevance is traditionally assessed by using the frequentist or 

the Bayesian approach. The first is the most used method being intuitive and 

easy whereas the second is more complicated than the former but has the 

advantage to verify prior information by a posterior probability of association. 

In this work we suggest a new empirical method for genome-wide studies that 

does not require explicit assumptions on data distribution and it solves the 

problem of false positive using a posterior probability that allows for the 

exclusion of random associations. This method, called Maximum Difference 

Analysis, was applied to find associations between single nucleotide 

polymorphisms and milk, fat and protein yield and fat and protein percentage 

in 2,093 Italian Holstein bulls. To validate the method, results were compared 

with annotated genes linked with traits under study and with results obtained 

in previous studies. The method was able to locate important gene as the 

diacylglycerol O-acyltransferase 1 (DGAT1), the β-lactoglobulin (BLG), the 

bovine casein gene cluster, the prolactin receptor (PRLR). These results 

confirm the ability of Maximum Difference Analysis to detect associations 

between markers and traits.  

 

Introduction 
The availability of high-density SNP panels has given a great impulse toward 

the identification of genomic regions associated to complex traits and 

diseases in humans and, recently, in several livestock species (Yang et al. 

2010, Hayes and Goddard 2010). Even if SNPs are not always directly 
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responsible for the observed phenotypic variation, they have been co-

inherited together with unknown causal variants thus enabling the detection 

of genomic regions harboring the polymorphisms influencing traits or 

diseases. Cattle breeds are of particular interest for studying genetic 

differences due to the strong artificial selection they have been subjected 

(Hayes et al. 2009b, Qanbari et al 2010). Several genome-wide association 

studies (GWAS) pointed out associations between markers, production and 

functional traits in dairy breeds (Cole et al. 2009, Pryce et al. 2010, Hayes et 

al. 2010).  

In spite of a relevant amount of information on genes and genomic regions 

that could be implemented in animal breeding, several issues remain to be 

addressed in GWAS. A first point is represented by theoretical assumptions on 

the genetic architecture of the trait under study. Standard linear models of 

quantitative genetics assume additive effects not considering interactions 

between genes. This fact may result in false positive associations (Platt et al. 

2010). On the other hand, inclusion of factors such as epistasis, lead to a 

highly parameterized model structure (Morota et al. 2013). A further cause of 

spurious associations can be found in the stratification that exists in cattle 

populations, due genetic drift or artificial selection (Ma et al. 2012). 

Moreover, the genetic variance explained by markers is usually lower than 

estimates obtained by classical quantitative genetics through the 

implementation of the polygenic models that fits the genetic (co)variance 

between individuals using pedigree relationships (van Binsbergen et al. 2012). 

Finally, the sampling effect should be mentioned: apart from associations that 

deal with genes with an assessed major effect on phenotypes such as the 

DGAT1 for milk production traits, very often significant SNPs found in a 

sample of animals are not confirmed in an independent sample. For example, 

Chamberlain et al. (2012) recently tested in a validation population, 423 SNPs 
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declared significantly associated with milk production traits in different 

screening experiments. The association of only 72 markers with milk traits 

was finally validated. 

 A key point for association studies is represented by the criteria used to 

declare a marker as significantly associated to a specific trait. Since the 

beginning of genome scans aimed at investigating QTLs in livestock by using 

microsatellites markers, the problem of assessing a suitable threshold for the 

test statistics has been pointed out by many researchers. The two main issues 

are represented by the approximation of the test statistics under the null 

hypothesis and by the multiple hypothesis testing, i.e. several tests are carried 

out for this purpose, but many of them are not independent (Churchill and 

Doerge 1994).  

In frequentist methods, the issue of multiple testing can be addressed using 

the Bonferroni correction that, however, is extremely conservative and 

usually discards almost all detected associations (Baldin 2006). An alternative 

empirical procedure is the permutation test (Churchill and Doerge 1994). It is 

remarkably less stringent, but considering the large number of makers 

currently tested in GWAS (tens of thousands), a high risk of false positives 

could be hypothesized.  

On the other hand, the Bayesian approach requires several explicit 

assumptions about the prior probability of association (π), the prior 

parameter distribution and the effect size at truly associated SNP. These 

assumptions are needed for calculating the Bayes factor (BF).  However, small 

differences in  could result in very diffe     r 

probability of association (Stephens and Balding 2009). Moreover, the BF 

evaluation requires complex computational procedure as the resolution of 

high-dimensional integrals and the posterior density distribution is unknown. 



  69 

Massimo Cellesi 

Statistical Tools for Genomic-Wide Studies 

Tesi di Dottorato in Scienze dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Scienze e Tecnologie Zootecniche – Università degli Studi di Sassari 

 

So the BF is approximated by using the Markov chain Monte Carlo analysis 

which, however, requires long computing time. 

In this paper, an empirical method is presented for testing associations 

between SNP genotypes and milk production traits in dairy cattle. This new 

proposed method is termed Maximum Difference Analysis (MDA) because it is 

based on the comparison of genotypic frequencies between two groups of 

animals ranked according to a specific phenotype. MDA could be considered a 

different option because does not rely on prior distributions of marker effects, 

it is not characterized by a complex mathematical structure, and the 

significance of marker association is evaluated by using a posterior probability 

distribution obtained with a bootstrap resampling procedure.  

In this study, the MDA was used to detect possible associations between SNP-

genotypes belonging to Italian Holstein bulls and five productive traits: milk 

(MY), fat (FY) and protein yield (PY), fat (FP) and protein percentage (PP). 

Results were compared with previous associations reported in literature 

(Pryce et al. 2010, Meredith et al. 2012, Jiang et al. 2010). The Python code of 

MDA method is provided in this work as supplemental material [S2] 

 

Results  

 Significant associations 

A large number of SNPs were initially declared candidate for possible 

associations with one of the 5 traits under study, i.e. with the MDAk,j>1.66 for 

at least one resampling (Table 1).  In particular, more than 30,000 for MY, 

around 29,000 for PY and around 31,000 for FY, FP and PP associations were 

pointed out. Most of them, however, were considered false positive 

associations. If the threshold value for posterior probability of bootstrap 
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(pboot) was fixed at 0.95, only a range of 0.5% - 1.8% of the original associated 

SNP were confirmed (Table 1). 

Table 1  Number of SNPs associated with the trait for different threshold values.  

 MY FY PY FP PP Total 

  N° SPNs with MDZ >1.66 30,295 31,148 29,337 31,845 31,662   

N° SNPs with pboot > 0.95 542 360 684 143 246 1,432 

N° SNPs with pboot = 1 51 21 65 26 43 169 

 

For a threshold pboot = 1, fewest markers were selected for each trait (Table 1). 

For MY, most of the selected SNPs were located on BTAs 14 and 20. For FY, the 

25% of SNPs with a pboot =1 were located on BTA2. Chromosomes 4, 9 and 20 

showed the 10% each of significant associated SNPs for PY. For FP and PP, over 

the 95% of SNPs with pboot =1 were distributed on BTA14 and BTA20 

respectively. It should be remembered that these SNP were associated to the 

trait in all 10,000 times in the resampling procedure. Therefore the reliability of 

a possible association of these markers with the trait could be considered very 

high. Considering threshold for pboot > 0.95, the highest number of significantly 

associated SNPs with MY and FY were identified on BTA2 whereas the lowest 

number were detected on BTA26 and BTA27. For PY, the highest number of 

markers was identified on BTAs 1, 7 and 8, whereas the lowest number was on 

BTA 26. In the whole genome scan, BTA14 presented the largest number of 

significant SNPs for FP whereas there were several autosomes with only 0 or 1 

significant SNPs. Finally, respect the five considered traits, yield traits exhibited 

the largest number of significant markers genome-wide whereas PP had the 

highest number for an autosome (BTA20) (Table 2). 
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Table 2 Distribution of SNPs significantly (pboot > 0.95) associated with the 5 traits in the 29 

autosomes. 

BTA MY FY PY FP PP 
1 26 19 47 8 17 
2 38 45 27 9 12 
3 26 12 39 5 4 
4 26 10 41 8 5 
5 26 13 28 6 7 
6 25 16 27 2 9 
7 31 28 45 3 5 
8 29 15 45 1 6 
9 24 19 24 5 4 

10 29 9 27 3 2 
11 26 22 36 0 11 
12 9 14 20 0 6 
13 27 17 29 8 7 
14 18 7 27 37 12 
15 8 5 8 1 6 
16 22 7 18 2 7 
17 24 8 16 6 6 
18 10 9 16 3 7 
19 15 14 26 6 5 
20 28 20 33 13 65 
21 20 8 27 1 3 
22 6 9 11 3 1 
23 12 4 15 1 17 
24 8 8 8 1 4 
25 5 3 8 4 3 
26 2 8 5 1 4 
27 5 2 9 4 2 
28 8 6 11 1 0 
29 9 3 11 1 9 

total 542 360 684 143 246 
 

BTA27 resulted as the chromosome with less significant SNPs for all traits 

analyzed. Among the associated markers with pboot > 0.95, several SNPs 

influenced more than one trait (Table 3).  

Table 3  Number of SNPs associated with one or more traits. 

N° of traits N° of SNPs 
1 1,166 
2 221 
3 44 
4 1 
5 0 
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In particular 221 SNPs were shared by two traits, 44 SNPs by three traits and 1 

SNP was in common with four traits. No significant marker was associated with 

all the five considered traits.  

The Manhattan plots for BTAs 6, 11, 14, and BTA20 are reported in Figures 1-4, 

respectively.  

 

Figure 1 Plot of SNPs detected for traits and annotated genes on BTA6. The horizontal lines 

indicate pboot = 0.95 
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Figure 2 Plot of SNPs detected for traits and annotated genes on BTA11. The horizontal lines 

indicate pboot = 0.95 

 

Figure 3 Plot of SNPs detected for traits and annotated genes on BTA14. The horizontal lines 

indicate pboot = 0.95 
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Figure 4 Plot of SNPs detected for traits and annotated genes on BTA20. The horizontal lines 

indicate pboot = 0.95 

 

A list of markers associated with all traits under study represented above the 

horizontal line (pboot =0.95), is reported in Table S1 [Supplemental material].  

SNPs declared associated with a trait in the MDA were used for a gene discovery 

study. In particular, MDA associated SNPs were compared with markers and 

annotated genes detected in previous association studies ( Pryce et al. 2010, 

Meredith et al. 2012, Jiang et al. 2010, Hayes et al. 2009a, Flori et al. 2009, Cole 

et al. 2011). 

Milk yield 

On whole genome, a total of 542 SNPs with a pboot > 0.95, were identified as 

significantly associated with MY (Table 1). Among these, on BTA14, 4 significant 

SNPs corresponded to markers detected by Jiang et al. (2010), 9 corresponded 

to markers detected by Meredith et al. (2012) and Pryce et al. (2010). Some of 
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these markers are located in a region spanning from 76Kbp to 679Kb (Figure 3) 

that harbors the diacylglycerol O-acyltransferase 1  (DGAT1) locus. Moreover, 8 

significant SNPs located between 30-41 Mb on BTA20, were the same reported 

by Meredith et al. (2012) (Figure 4). MDA highlighted a SNPs associated with MY 

(pboot>0.95) on BTA6. This marker was located at 37.5 Mb and it identifies a 

cluster of genes ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2), 

polycystic kidney disease 2 (PKD2), secreted phosphoprotein 1 (SPP1) already 

proposed by several authors as candidates for milk QTL (Ron and Weller  2007). 

Moreover, the Hapmap  26848-BTC-038527 marker (44.7 Mb), highlighted on 

BTA6, was close to the peroxisome proliferator-activated receptor gamma, 

coactivator 1 alpha (PPARGC1A) gene, which has been reported to be associated 

to milk traits (Ogorevc et al. 2009). Three significant SNPs (Hapmap42161-

BTA26363, BTA-92644-no-rs and ARS-BFGL-NGS-65409) from 41.2 Mb to 41.6 

Mb were highlighted on BTA20, where PRLR locus maps. In this study the PRLR 

polymorphism is in agreement with the results of Zhang et al. (2007) in Chinese 

Holstein and Wang et al. (2012) in German Holstein-Frisian population.  

Fat yield 

The MDA method highlighted 360 SNPs (Table 1). Several of them were close to 

annotated genes known to affect lipid metabolism as DGAT1, glutamate 

receptor, ionotropic, N-methyl D-aspartate-associated protein 1 (GRINA), 

alkylglycerone phosphate synthase (AGPS), vasoactive intestinal peptide (VIP), 

ATP-binding cassette, sub-family G (WHITE), member 5 (ABGC5), ATP-binding 

cassette, sub-family G (WHITE), member 8 (ABCG8), lysophosphatidylglycerol 

acyltransferase 1 (LPGAT1). Moreover, 4 SNPs on BTA14 and 8 SNPs on BTA 20 

were the same SNPs declared associated with FY by Meredith et al. (2012) in 

Irish Holstein Friesian. 
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Protein yield 

For the PY trait, 684 significant SNPS were detected (Table 1). Two SNPs were 

close to casein cluster on BTA6 (88.8 Mb), and one to the β-lactoglobulin locus 

on BTA11 (107.6 Mb). It is known that caseins (CSNs) and β-lactoglobulin genetic 

polymorphisms are related to milk production traits (Boettcher et al. 2004, 

Lunden et al. 1997). Four relevant SNPs nearby to the DGAT1 gene were the 

same reported in previous studies ( Pryce et al. 2010, Meredith et al. 2012, Jiang 

et al. 2010). In the central portion of BTA20, a well-known major QTL affecting 

the PY, but also PP and MY, was identified using the MDA. This relatively narrow 

region contains the Growth hormone receptor (GHR) and the PRLR loci. In 

particular the significant marker ARS-BFGL-NGS-118998 positioned at 34 Mb 

was found to fall within the GHR gene. This marker was the same reported by 

Jiang et al. (2010) for Chinese Holstein. The F279Y polymorphism in GHR was 

associated with a strong effect on milk yield and composition (Zhang et al. 2007) 

and it was considered responsible for the phenotypic variability in Holstein-

Friesian milk (Plante et al. 2001, Blott et al. 2003). 

Fat percentage 

Most of 143 significant SNPs associated to FP (Table 1) were located on BTA14 

and BTA20 (37 and 13 respectively). 34 out of 37detected SNPs on BTA14 and 5 

out of 13 on BTA 20, respectively, were in common with the markers selected by 

Meredith et al. (2012) in Irish Holstein Friesian. 25 markers located on BTA14 

were in common with SNPs detected by Jiang et al. (2010) in Chinese Holstein 

and 27on BTA 14 and 8 on BTA 20 were shared with Pryce et al. (2010) on 

American Holstein bulls, respectively. On BTA 14, all the significant SNPs 

detected were contained in a region spanning from 50 Kb to 5,000 Kb where a 

known QTL for milk traits was located. Figure 3 shows a region crowded of 

significant SNPs near the centromere where DGAT1 locus was positioned. 
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Protein percentage 

For PP a total of 246 significant SNPs were discovered (Table 1). 49 out of 65 and 

45 out of 65 significant SNPs detected on BTA20 were in common with Meredith 

et al. (2012) and Pryce et al. (2010). Moreover, 13 out of 65 markers were in 

common with SNPs detected by Jiang et al. (2010). In Figure 4 a dense region of 

SNPs (between GHR and PRLR loci) could be observed. A considerable number 

of significant SNPs associated with PP were detected on BTA1 and BTA23 (Table  

S1).  

 

Discussion 

In the present work a method for GWAS was developed and tested on 2,093 

Italian Holstein Frisian bulls for detecting associations between SNP markers 

and five dairy traits. The MDA approach was able to select 1,432 significant 

SNPs spanning the entire genome. This number of associated markers is 

comparable with results obtained in analogue studies developed by using 

common GWAS approaches (Pryce et al. 2010, Meredith et al. 2012, Jiang et 

al. 2010, Kolbehdari et al. 2009, Mai et al. 2010). The significant markers were 

distributed across all 29 autosomes and the positions were generally in 

agreement with those reported in literature (Meredith et al. 2012, Jiang et al. 

2010, Khatkar et al. 2004, Smaragdov 2006). The number of significant 

markers reflected the assessed genetic architecture of traits: more relevant 

SNP were found for yield in comparison with composition traits. Actually it is 

well known that the genetic control of milk composition traits could be 

ascribed to a relatively small number of genes with a large to moderate effect 

(Hayes et al. 2010, Grisart et al. 2002) whereas a stronger polygenic 

background could be hypothesised for yield traits. 
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The whole genome scan confirmed, as expected, the important role of major 

QTLs for milk traits on BTA14 (Grisart et al. 2002, Bennewitz et al. 2003) and 

BTA20 (Blott et al. 2003). In addition, MDA highlighted candidate QTLs on 

BTA2 for MY and FY, and on BTA7 and BTA8 for PY. These three chromosomes 

have been recently investigated by other authors for association with milk 

traits (Buitenhuis et al. 2013, Gray et al. 2012). 

BTA6 is one of the most studied chromosomes for milk QTLs within and 

between cattle breeds [37-41]. In a meta-analysis investigation, Khatkar et al. 

(2004) reported at least 77 QTLs on BTA6 with around 60% of them involved 

in milk production traits. The MDA was able to find, on BTA6, three significant 

SNPs mainly associated with PP were found at about 40Mb, where the slit 

homolog 2 (Drosophila) (SLIT2) gene maps (Figure 1). This locus encodes a 

protein expressed during neuronal development and also in mammary gland 

during ductal morphogenesis (Strickland et al. 2006). 

 On BTA11, MDA detected one SNP associated with FY, (BTB-01550704) 

located close to ABCG5 and ABCG8 at 27.4 Mb. These genes are believed to be 

involved in the mammalian cholesterol balance and in the physiology of 

intracellular lipid transport (Schmitz et al. 2001). Viturro et al. (2006) 

hypothesized their potential role in lipid trafficking and excretion during 

lactation. Many association studies identified QTLs affecting FY and FP in the 

centromeric region of BTA14 (Meredith et al. 2012, Jiang et al. 2010, Ogorevc 

et al. 2009, Viitala et al. 2003). The DGAT1 locus is an enzyme that catalyzes 

the synthesis of diacylglycerols involved in several biological processes (Mai et 

al, 2010). The association between polymorphisms in the DGAT1 gene and 

milk fat content in dairy cattle has been evidenced in several breeds (Grisart 

et al. 2002). To explain the genetic variability presented by milk production 

traits Bennewitz et al. (2003) hypothesized the existence of a further QTL with 
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possible epistatic effects in linkage with the DGAT1 locus. This second QTL was 

localized closely to the gene cytochrome P450, family 11, subfamily B, 

polypeptide 1 (CYP11B1) (Mai et al, 2010). In cattle this enzyme is involved in 

the lipogenesis and lipolysis mediated by corticosteroids (Kaupe et al. 2007). 

For all five milk traits considered in this study, MDA highlighted, on BTA14, 

several significant SNPs in the region where DGAT1 and CYP11B1 loci are 

located. These SNPs were the same observed by Jiang et al. (2010) in Chinese 

Holstein population, Pryce et al. (2010) in bulls of American Holstein and 

Meredith et al. (2012) in Irish Holstein-Frisian. Moreover, other six significant 

SNPs, delimited a QTL region spanning from 62Mb to 69 Mb, associated to PY, 

PP and MY phenotypes were found when MDA was applied on BTA14. Within 

this genomic segment a QTL affecting production traits in Holstein cattle was 

already detected (Heyen et al 1999, Ashwell et al. 2004). 

On BTA22, at 55.7 Mb, the Ghrelin-obestatin prepropeptide (GHRL) 

(Hapmap41094-BTA83358), associated with FP trait, was pointed out. This 

gene encodes a precursor that generates two hormones: ghrelin and 

obestatin. The first molecule is involved in the regulation of the growth 

hormone release and influences the body general metabolism. Recently, GHRL 

was proposed as candidate gene for milk production traits (Gil et al. 2011). 

Indeed, a polymorphism affected FY, FP and PP was observed in water buffalo 

and Polish Holstein-Friesian (Gil et al. 2011, Kowalewska-Luczak et al. 2011). 

In addition to the QTLs discussed above, MDA method confirmed two QTLs 

affecting milk traits previously reported in literature. The significant marker 

Hapmap43212-BTA-23629 on BTA4 pointed out the CD36 molecule 

(thrombospondin receptor) (CD36) locus already reported by Lemay et al. 

(2009) in an analysis of genes expressed in cattle during lactation. The 

Hapmap41328-BTA-66089 on BTA29 focused the fibroblast growth factor 4 
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(FGF4) gene. Hayes et al. (2009a) speculate about the presence of a QTL for 

MY in BTA29 asserting that the strongest candidate gene for harboring a 

mutation affecting the trait was FGF4. Also Pryce et al. (2010) considered this 

region like an area for further investigation in Holstein and Jersey cattle 

breeds. Indeed, during mammary gland morphogenesis and involution this 

gene regulates the apoptosis and induces the end of lactation (Monks and 

Henson 2009). Using MDA two new intriguing QTLs not previously associated 

to milk production traits were detected. On BTA2 the marker ARS-BFGL-N GS-

110442 was significantly associated with FY. This marker is located at 137 Mb 

where the phospholipase A2 gene cluster containing the phospholipase A2, 

group IIA (platelets, synovial fluid) (PLA2G2) maps. This gene cluster encodes 

for a group of enzymes involved in the hydrolysis of phospholipids into fatty 

acids and other lipophilic molecules. The expression level of transcripts varied 

between dry period and lactation in mammary gland (Golik et al. 2006).   

On BTA24 two significant markers, the BTB-00885200 and BTB-00885058 

were associated with MY. These SNPs were positioned close the Aquaporin 4 

(AQP4) gene. Aquaporins (AQPs) is a family of ubiquitous membrane proteins 

involved in the transport of water and a wide range of solutes (Gomes et al. 

2009). Recently, a functional role for AQP1, AQP3, AQP4, AQP5 and AQP7 

during the production and secretion of bovine milk was confirmed in an 

immunohistochemical study conducted by Mobasheri et al. (2011). Therefore, 

on the basis of results of the present study and of previous investigations, 

PLA2G2 and AQP4 could be considered as potential candidate genes for dairy 

traits in cattle. 

In the present work, as in many previous studies (Pryce et al. 2010, Mai et al. 

2010, Smaragdov 2006), 266 SNPs showing significant effects on more than 

one trait have been detected. The genetic correlation can be the result of 
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pleiotropic effects of single QTL affecting more than one trait or of linkage 

disequilibrium between two or more QTLs each affecting one trait only 

(Bolormaa et al. 2010). Therefore, the pleiotropic action of QTLs should be 

considered when animal will be selected for a particular breeding goal. More 

detailed investigations, such the use of much denser marker map, will be 

necessary to move from the marker associations toward the discovery of 

causal mutations underlying economically important traits in dairy cattle.    

 

Materials and Methods 

The data 

Data consisted of SNPs genotypes belonging to 2,093 Italian Holstein bulls, 

born between 1979 and 2007. Animals were genotyped with the Illumina 50K 

BeadChip. Only SNPs located in the 29 autosomes, with a call rate higher than 

2.5% were retained for the analysis. Missing genotypes in each single SNP 

were imputed according to the most frequent allele at that locus. After 

editing, 49,933 SNPs were retained. Genotypes were coded as the number of 

copies of one SNP allele it carries, i.e. 0 and 2 for homozygous alleles, 1 for 

heterozygous alleles. Phenotypes were polygenic estimated breeding values 

for milk yield (MY), protein yield (PY) fat yield (FY), fat percentage (FP) and 

protein percentage (PP) supplied by the Italian Holstein Association (ANAFI). 

 

The MDA method 

MDA is an empirical method based on the comparison of the genotypic 

frequencies recorded in two different groups of animals ranked according to a 

particular trait (T).  
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Let n the number of animals in whole data set (A) and S a subset containing p 

individuals (p < n) randomly sampled from A. The MDA starts by sorting 

animals in S according to T. Two groups, each with pbw individuals (pbw << p) 

are then selected from S. They consist of the top (B) and bottom (W) ranked 

animals. B and W are, therefore, two disjoint subsets of S which contain 

animals with a different genetic merit for T. Thus animals belonging to B and 

W should be genetically more similar within each group than between groups. 

The next step is the calculation of the genotypic frequencies for each SNP, 

both in B and W, and the identification of the genotype having the largest 

frequency (fB) of animals in B . The maximum difference is then calculated as 

the difference between fB and the frequency of the same genotype in W (fW). 

An example is reported in (Table 5). SNP1 has the maximum frequency for the 

genotype 2 (fB= 58), while in W, the frequency of the same genotype is  fW= 

26. Thirty-two represents the maximum difference (MD) between the 

genotypic frequencies for the SNP1 

58 26 32B WMD f f= − = − =  

 

Table 5 Genotypic frequencies evaluated both for SNP in best (B) and worst (W) subset. The 

maximum difference (MD) between genotypic frequencies in B and W is also reported. 

Subset  Genotype  Snp1 Snp2 Snp3 Snp4 … 

B 
0 12 78 20 40 … 

1 30 20 65 38 … 

2 58 2 15 22 … 

W 
0 20 40 25 75 … 

1 54 51 65 15 … 

2 26 9 10 10 … 

 MD 32 36 0 -35 … 
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A marker i, located on autosome k with a large value for MDi,k (max value 

equal to pbw) is considered a putative candidate for association with T. Low or 

negative MD values may indicate that the locus is not involved the genetic 

determinism of the trait (genotypic frequencies fB and fW are similar) or that 

the predominant allelic combination at that locus is not favorable for T. After 

standardization, according to MD mean and standard deviation of the k-th 

chromosome, MDk,i can be considered a random variable approximately 

normally distributed with mean zero and standard deviation 1. In the present 

paper, a marker was declared positively associated with T if its standardized 

MDk,i value was greater than 1.66.  

A test for possible false positive associations of candidate SNPs found in the 

previous step was then developed by using a bootstrap resampling procedure 

without replacement. The size of the S subset was fixed at p=1,500 whereas 

the dimension of both B and W groups was set at pbw=100. For each marker, 

N=10,000 randomly subset S were generated by resampling and the MDA was 

calculated each time. At the end of the resampling procedure, a frequency 

value, fi, was calculated for each SNP. This value indicates how many times a 

marker was flagged as associated to T (MD >1.66) in the bootstrap procedure. 

The posterior probability (pboot) of association between T and the ith marker 

was the calculated as:  

i

i
boot

fp =
N

 

A level of 0.95 of significance for pboot, was considered indicating association 

between markers and traits.  

The MDA procedure was applied on whole genome and to the goodness of 

method was mainly evaluated performing the analysis on four chromosomes 

(BTA6, BTA11, BTA14 and BTA20) known to harbor genes affecting milk 

production traits. Results obtained confirmed the effectiveness of the MDA 
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procedure. The Baylor release BTAU_4.0 assembly, 

(http://genome.ucsc.edu/cgi-bin/hgGateway?org=cow) was used to locate 

the genes position and detected SNPs were considered associated to a gene if 

the locus was contained within a window of 250 Kb upstream and 

downstream the marker position. 

 

Conclusions  

MDA is a new empirical method able to discover associations between SNPs 

and quantitative traits. This technique was applied on a population of Italian 

Holstein bulls born between 1979 and 2007. Some among selected SNPs were 

detected close to well-known genes that affect milk production traits. 

Moreover, the MDA detected numerous markers in common with other 

association studies. These results confirmed that the MDA should be used to 

perform GWAS analysis. 

 

 

http://genome.ucsc.edu/cgi-bin/hgGateway?org=cow
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Chapter 5 

 

Prediction of direct genomic values by using 
a restricted pool of SNP selected by maximum 
difference analysis 
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Introduction  

In the last few years, several national breeding organizations have implemented genomic 

selection (GS) programmes for dairy cattle. Expected results are an acceleration in the 

breeding cycle and a gain in reliability of the genomic breeding value (GEBV) estimation (Van 

Raden and Sullivan 2010) compared to traditional EBV. However, genotyping costs and 

computational difficulties are two of the most important constraints that limit a wider 

diffusion of the GS. Several researches demonstrated that accuracy of genomic predictions 

strongly depend on the size of the training population (TP) that  should be as large as 

possible (Goddard and Hayes 2009), and on the SNP platform density (Solberg et al. 2008, 

Habier et al. 2009). Actually, the Illumina 50K BeadChip high-density platform (HDP), is the 

most widely used chip in bovine GS programs. Costs for genotyping in a large population are, 

however, still high and become prohibitive when HDPs are used to genotype animals 

belonging to species as chicken, rabbit or sheep whose individuals have a lower economic 

importance. Moreover, the combination of a large genotyped population size and a high 

number of SNP variables requires huge amount of computer resources and long 

computational time. 

Most of these problems could be partially overcome by using a reduced number of markers 

able to produce genomic predictions with good reliabilities. Actually, some low density SNP 

panels (LDP), cheaper than the 50K chip, are commercially available (the Illumina Bovine3K 

Genotyping BeadChip or the Illumina BovineLD Bead-Chip, for example) (Boichard et al. 

2012). These panels have offered new opportunities to increase the number of animals 

involved in genomic selection programs. The resulting GEBV reliabilities are, however, lower 

than accuracies obtained by using the 50K platform (Solberg et al. 2008, Habier et al. 2009). 

For this reason, genotypes obtained from a commercial LDP are usually imputed to HDP by 

using suitable algorithms. Dimauro et al. (2013), for example, obtained up to 95% of 

reliability in DGV evaluation by using data imputed from the 7K to the 50K Illumina’s chips for 

milk, protein and fat yield in Italian Holstein bulls. In a similar scenario, Segelke et al. (2012) 
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reported a negligible reduction in reliability of genomic predictions, averaged over 12 traits, 

of around 1% by using the Beagle package (Browning and Browning, 2009). 

Several authors have proposed different strategies to select, for each trait under study, a 

suitable restricted pool of SNP from a HDP. This approach should assure that the pool of 

selected markers  is the smallest as possible and that it is specific for the population and the 

trait under study. Vazquez et al. (2010), starting from the 50K Illumina’s BeadChip, selected 

several SNP subsets  that could be used to develop a LDP. Two strategies were adopted. In 

the first, evenly spaced SNP across the genome were selected; in the second, “best” SNP 

were chosen on the basis of their estimated effects on six traits of economic interest. Results 

indicated that LDP including “best” SNP outperformed predictions based on evenly spaced 

SNP. With 2,000 “best” SNP, the 95% of the predictive ability provided by the HDP was 

reached. Similar results were obtained by Zhang et al. (2011) who exploited simulated data 

to obtain the best combination of the number of SNP in LDP and the effective population size 

to respect a specific trait. As before 95% of reliability obtained by using an HDP was reached 

with the “best” combination.  

In the present research, an alternative strategy for selecting a reduced number of SNP 

significantly associated with some traits from a HDP, is developed. The method was called 

Maximum Difference Analysis (MDA) and the association with traits was assessed on the 

basis of the differences between the genotypic frequencies of each SNP. The selected 

markers could be used to produce a custom low cost breed-specific assay to genotype 

animals involved in GS programs.  

Aim of this work was 1) to assess the ability of MDA to detect SNP significantly associated 

with five productive traits, 2) to compare the direct genomic value (DGV) of the involved 

animals obtained by using both the MDA selected markers and the full original marker set. 
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Materials and methods 

The data 

Data consisted of SNP genotypes belonging to 2,054 Italian Holstein bulls genotyped with the 

Illumina’s 50K BeadChip. Genotypes were generated into two research projects: SELMOL and 

PROZOO, funded by the Italian Ministry of Agriculture and Fondazione CARIPLO, respectively. 

Animals were ranked according with age: the 204 youngest bulls were flagged as prediction 

population (PP), whereas the remaining animals were considered as training population (TP). 

PP animals were excluded from the original dataset and used only in the direct genomic 

value (DGV) evaluation. Only markers located on the 29 autosomes were considered. Non 

mapped SNP, monomorfic markers and SNP with more than 2.5% missing values were 

removed. At the end of the data editing 39,555 SNP were retained. Missing genotypes at 

each single locus were imputed according to the most frequent allele. Genotypes were coded 

as the number of copies of one SNP allele it carries, i.e. 0 (homozygous for allele A), 1 

(heterozygous) or 2 (homozygous for allele B). Phenotypes were deregressed proofs for milk 

(MY), fat (FY) and protein (PY) yield, fat (F%) and protein (P%) percentage calculated by the 

Italian Holstein Association (ANAFI) 

 

The MDA approach 

MDA is an empirical method based on the comparison of the genotypic frequencies recorded 

in two different groups of individuals selected to respect a particular trait T.  

Let n the number of the involved animals and S a subset containing  p-animals (p < n) 

randomly selected from n. The MDA starts with the sorting of S animals by T. Two groups, 

each with pb individuals (pb << p) are selected. The first group, named best (B), consists of 

the top ranked animals for T. On the contrary, the second group, named worst (W), contains 

individuals with the lowest values of T.  B and W are, therefore, two disjoint subsets of S and 

the two groups contain animals whose T values are very different. As a consequence, we 

assume that animals belonging to B and W are genetically more similar within groups than 
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between groups. In other words, B and W bulls should have allele combinations positively (B) 

or negatively (W) associated with the trait under study, respectively. To detect positively 

(P_SNP) and negatively (N_SNP) associated markers, the genotypic frequencies for each SNP 

are calculated both in B and W, respectively,  and then compared. Table 1 shows an example 

of genotypic frequencies evaluated for some markers. 

Table 1 Genotypic frequencies evaluated both for best (B) and worst (W) dataset. The maximum 
difference (MD) between genotypic frequencies in B and W is also reported. 

Subset Genotype Snp1 Snp2 Snp3 Snp4 … 

B 
0 12 78 20 40 … 
1 30 20 65 38 … 
2 58 2 15 22 … 

W 
0 20 40 25 75 … 
1 54 51 65 15 … 
2 26 9 10 10 … 

 MD 32 36 0 -35 … 
 

P_SNP for a particular T are detected by considering, for each marker, the maximum 

genotypic frequency in B. For SNP1 (Table 1), for example, the maximum frequency, fB= 58, is 

obtained for genotype=2. In W, for the same genotype=2, the frequency is fW= 26. The 

difference MD1 = fB- fW = 32 represents the maximum difference (MD) between the 

genotypic frequencies for the SNP1. The MDs were evaluated for each SNP into a 

chromosome and for all chromosomes. MD can be considered a random variable 

approximately normally distributed and, after standardization within each chromosome, with 

mean zero and standard deviation one. Markers with high MD (max value equal to pb) are 

considered as P_SNP, whereas markers with low or negative MD indicate that the marker 

does not positively influence T. The i-th marker is considered positively associated with T if its 

MDi value is greater than 1,66. A test for possible false positive associations is then 

developed by using a bootstrap procedure to generate a posterior probability distribution. 

The original animals are N=10,000 times resampled. At each resample, the subset S which 

contains p <n individuals, is generated. In the present study, p was fixed equal to 1,220 and  

pb equal to 100. The MDA procedure was run on all the 10,000 S-subsets and SNP with MDi 
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>1,66 were retained. At the end of the resampling procedure, a frequency value (fi) was 

assigned to each SNP. This value indicated how many times a marker was flagged as a P_SNP 

in the bootstrap procedure. The posterior probability (pboot) of association between T and 

the i-th marker is calculated as: 

N
fpboot i

i =  

At the end of the procedure only the P_SNP with a pboot greater than 0.80 were retained.  

To select the N_SNP associated with T, the MDA was completely redeveloped simply 

changing the group where the MD is evaluated. In other words, if we consider the former 

example (Table 1), for SNP1 in W, the maximum frequency, fW= 54, is obtained for 

genotype=1. In B, for the same genotype=1, the frequency is fB= 30. The MD value fW-fB = 

24 is calculated and the entire MDA procedure is repeated. At the end, a pool of N_SNP is 

selected.  

 

Direct genomic value evaluation 

DGV for milk, fat and protein yield, fat and protein content were calculated using both the 

about 40K original markers and the P_SNP+N_SNP selected in the MDA procedure. Effects of 

SNP markers on phenotypes in the TP population were estimated by using the following 

BLUP model: 

1y Xg eµ= + +  

where y is the vector of the deregressed proofs, 1s is a vector of ones, µ is the overall mean, 

X is the matrix of SNP genotypes, g is the vector of SNP regression coefficients treated as 

random, and e is the vector of random residuals. The overall mean (µ) and the vector (ĝ) of 

the marker effects estimated in the TP were used to calculate the DGV for PP as: 

* ˆŷ X g=  
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where ŷ is the vector of estimated DGV and X* is the matrix of SNP genotypes in PP. For each 

phenotype, the DGV for the PP was evaluated by using both all original markers and the 

P_SNP+N_SNP.  Moreover, a number of evenly spaced markers equal to the MDA selected 

SNP were chosen across the entire genome. These SNP were used to evaluate the DGV of the 

PP to test the goodness of MDA SNP selection. Accuracies in DGV predictions were assessed 

calculating the Pearson correlations between the evaluated DGVs and the original 

deregressed proofs. 

 

Results  

Results of the MDA procedure are reported in Table 2 where, for each T, the selected P_SNP, 

N_SNP and their common markers into traits are displayed. Moreover, some identically 

markers were detected among two or more traits and, considering them only one time, the 

little number of 2,213 different markers were selected for all the involved traits. 

Table 2 Number of MDA selected markers positively (P_SNP) and negatively (N_SNP) associated to each trait. 

The number of SNPs associated both positively and negatively (P_SNP+N_SNP) and the number of common 

SNPs between P_SPN and N_SNP are also displayed for each trait. 

Trait  P_SNP N_SNP P_SNP+N_SNP Common SNP 
Milk yield  478 346 763 61 
Fat yield 300 297 557 40 
Protein  yield 512 377 823 66 
Fat % 215 210 380 45 
Protein  % 286 264 515 35 

 

DGV accuracies for the PP evaluated by using all markers (All_SNP) of the chip after editing, 

the MDA selected SNP and an equal number of evenly spaced markers are displayed in Table 

3.  
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Table 3 Direct genomic values (DGV) accuracies evaluated by using the MDA selected SNP (P_SNP+N_SNP), all 

the original SNP (All_SNP) and 2,200 evenly spaced SNP. 

Markers 
DGV accuracies for 

Milk yield Fat yield Protein yield Fat % Protein % 
All_SNP 0.43 0.41 0.39 0.44 0.51 
P_SNP+N_SNP 0.45 0.51 0.39 0.61 0.57 
Evenly spaced 0.41 0.25 0.24 0.35 0.31 

 

For each trait, accuracies in DGV prediction for P_SNP+N_SNP were greater or nearly equal 

than values obtained with All_SNP. In particular, accuracies for fat percentage and fat yield 

were around 0.17 and 0.10 greater than results obtained with All_SNP, respectively. Finally, 

DGV accuracies obtained by using 2,200 evenly spaced markers were lower than values 

obtained both with All_SNP and P+N_SNP. 

 

Discussion  

The MDA procedure was able to select a reduced pool of associated markers for each trait. 

The number of the N_SNP was nearly equal for every T, apart from for protein yield, where 

the number of P_SNP was 25% greater than the number of N_SNP. Moreover, F% shows the 

lowest number of both P_SNP and N_SNP respect to the number of associated markers for 

the other traits. Particularly important are markers in common to P_SNP and N_SNP. These 

markers have both a positive and a negative impact on the trait. All common SNP are 

homozygous with genotypes, for example, AA in P_SNP and BB in N_SNP or vice-versa. In 

consequence, these common SNP have a positive influence on the trait for the best animals, 

negative in worst animals. Among the P_SNP+N_SNP selected for each T, several markers are 

common to two or more traits and, in consequence, the total number of selected SNP is 

lower than the simple sum of P_SNP+N_SNP across the traits. Our study suggests that 2,213 

markers could be enough to turn out a custom LDP to genotype Italian Holstein bulls. The 

obtained data could be used to evaluate the genetic merit of the involved animals to respect 
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the six traits used in selecting markers with the MDA procedure. This procedure could be 

useful to lay out a GS program for livestock species different from bovine. First, a TP 

genotyped with a HDP should be created. Then, a restricted pool of markers should be 

selected by using the MDA procedure. A PP would be created by using the LDP which 

contains the MDA selected markers. At the end, the overall costs of the genomic breeding 

program should be reduced.  

DGV accuracies obtained by using the P_SNP+N_SNP (table 3) were on average nearly equal 

or, sometimes, greater than accuracies obtained by using all SNP. In particular accuracies for 

fat and, partially, for protein percentage are considerably greater than values obtained with 

all original SNP. Moreover, the number of P_SNP+N_SNP selected for the two percentage 

traits is the lowest among the traits under study.  

 

Conclusion 

The MDA method applied to 2,054 Italian Holstein bulls selected 2,213 markers that could be 

used to develop a LDP to genotype animals under selection. Accuracies of the estimated DGV 

were equal or greater than accuracies obtained by using all SNP. Therefore, no SNP 

imputation to a HDP is required if the MDA selected markers are used. This results in a 

considerable reduction in the computational time as well as a reduction costs.  
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Chapter 6 

 

Conclusions 
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One of the most important issues in genomic selection is the estimation of the effects of tens of 

thousands of SNPs by using only few thousands of genotyped animals. Multivariate dimension 

reduction techniques, such as the principal component analysis (PCA), could be an alternative 

approach to other methods, such as BayesB and BayesL. Using the PCA, the contribution of each 

marker is estimated taking into consideration the total SNP variance structure, whereas the 

reduction of both data dimensionality and computational complexity do not decrease the 

accuracy of GEBV evaluation (Macciotta et al. 2010). All PCAs start from the variance-covariance 

matrix obtained from the X matrix of data. In Chapter 2, the impact of the rank of the variance-

covariance matrix on GEBV accuracy is studied when the PCA technique is used to reduce the 

dimensionality of the data. Results indicated that, if the variance-covariance matrix has a full 

rank, the reduction of the data dimensionality by using the PCA does not worsen the accuracy of 

GEBV predictions. In particular, the study evaluated the accuracy of GEBV when the number of 

animals in a reference population decreased comparing two scenarios: one where the PCs were 

extracted genome-wide (ALL) and another where PCs were extracted separately by 

chromosome (CHR). In ALL, the GEBV accuracies became soon unsettled as the number of 

animals decreased because the SNP variance-covariance matrix (S) was singular. Differently, in 

CHR, the S matrix of each chromosome had a full rank and, consequently, the GEBV accuracy 

remained stable as long as the number of animals remained greater than or equal to the 

number of SNPs in the chromosomes. Moreover, obtained GEBV accuracies were always better 

for CHR than for ALL. Results of the present study can be used to fix the size of the reference 

population at a value nearly equal to the number of SNPs in the largest chromosome when the 

PCA technique is used.  

 

Another important issue that affects the genomic selection is the low number of animals 

involved in selection programs. Generally, only males and elite females are genotyped by using 

high-density platforms (Weigel et al. 2010). The reason is that their commercial price is high, 

thus limiting their use only to animal population with high economic value, such as cattle or 

swine. To increase the number of animals involved in breeding programs, cheaper low-density 
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panels (LDP) could be used. However, to avoid a reduction in the accuracy of GEBV estimation, 

markers not present in economic chips are currently imputed to HDP. In Chapter 3, the partial 

least squared regression (PLSR) is proposed to impute missing genotypes from a LDP to a HDP. 

The study demonstrates that the PLSR imputation method can efficiently impute missing 

genotypes from LDP to HDP and requires much less time than the commonly used methods. 

The study was performed on a single-breed and on a multi-breed and tested the ability of PLSR 

to impute from a LDP of 3K and 7K to a HDP with 50K SNP. In the single-breed approach, the 

accuracy of imputation using PLSR was approximately 90 and 94% for the 3K and 7K platforms, 

respectively; whereas the corresponding accuracies obtained with Beagle were approximately 

85% and 90%. Moreover, computing time using the PLSR method was on average around 10 

times lower than the computing time required by Beagle. Imputation accuracy obtained with 

PLSR was lower in the multi-breed than in the single-breed data. Moreover, in the single-breed 

approach, the impact of the SNP-genotype imputation on the accuracy of GEBV was small and 

the correlation between estimates of genetic merit obtained by using imputed versus SNPs of 

HDP was around 0.96 for the 7K chip. 

 

In Chapter 4, a new empirical approach for GWAS is proposed. The method called Maximum 

Difference Analysis (MDA) could be an alternative to the frequentist and Bayesian methods that 

are usually used. MDA does not need any assumptions about genome architecture or data 

distribution. The obtained results were validated by comparing them with those published in 

other studies which used both frequentist and Bayesian approaches.  MDA was applied to find 

associations between SNP and five quantitative traits: milk, fat and protein yield and fat and 

protein percentage. The MDA method was able to locate some well-known genes that affect 

milk production, such as diacylglycerol O-acyltransferase 1 (DGAT1), β-lactoglobulin (BLG), 

bovine casein gene cluster, and prolactin receptor (PRLR). In addition, some hardly identified 

genes in other studies were located by MDA. For example, on BTA4, MDA located the CD36 

molecule (thrombospondin receptor) (CD36) locus previously reported by Lemay et al. (2009) in 

an analysis of genes expressed in cattle during lactation. Moreover, on BTA29, MDA identified 
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the fibroblast growth factor 4 (FGF4) gene. Hayes et al. (2009) speculated about the presence of 

a QTL for milk yield in BTA29 asserting that the strongest candidate gene for harboring a 

mutation affecting the trait was FGF4. The results demonstrated the ability of MDA to detect 

associations between markers and traits. 

 

Results obtained in Chapter 4 were then used to reduce the dimensionality of the data in a 

study proposed in Chapter 5. In this research, markers selected by MDA were used to evaluate 

the GEBV of the animals involved. Results indicate that accuracies obtained with the MDA 

selected SNPs are comparable with and sometimes better than results obtained by using all 54K 

markers. In particular, accuracies for fat percentage and fat yield were around 0.17 and 0.10 

percentage units greater than the accuracy obtained with all SNPs, respectively. These results 

were obtained using 380 and 555 selected SNPs for fat percentage and fat yield, respectively, 

instead of the 39,555 SNPs available in HDP. The selected SNPs could be implemented in a 

cheaper customized LDP that could be used instead of a HDP. The results obtained in this 

chapter confirmed the goodness of MDA to select SNPs. 
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Supplemental material (Chapter 4) 
Table S1 List of significant SNPs detected using MDA method (pboot>0.95) for milk yield (MY), fat yield (FY) protein yield( PY) 
fat percentage (FP) and protein percentage (PP). 

chr 
position  

(Kp) 
marker Trait 

1 29 
Hapmap52416-
rs29016842 

MY     

1 1,480 ARS-BFGL-NGS-39992  FY PY   

1 1,937 BTA-120704-no-rs  FY    

1 2,486 ARS-BFGL-NGS-79093   PY   

1 2,581 BTB-00001612  FY    

1 3,211 ARS-BFGL-NGS-108686  FY    

1 4,071 BTB-01747944 MY FY    

1 4,827 ARS-BFGL-NGS-111125 MY  PY   

1 9,576 ARS-BFGL-NGS-113570    FP  

1 10,144 Hapmap51183-BTA-19351    FP  

1 11,132 Hapmap38737-BTA-22640    FP  

1 14,322 
Hapmap24335-BTA-
127763 

  PY   

1 14,841 BTA-28028-no-rs   PY   

1 15,464 ARS-BFGL-BAC-13008    FP  

1 16,276 Hapmap41782-BTA-16216  FY    

1 16,444 BTB-01084253   PY   

1 16,958 
Hapmap60239-
rs29019581 

 FY    

1 17,455 
Hapmap49012-BTA-
109196 

 FY    

1 17,516 
Hapmap48613-BTA-
112066 

 FY    

1 17,699 Hapmap44269-BTA-67047   PY   

1 23,763 
Hapmap32844-BTA-
151959 

 FY PY   

1 24,040 BTB-00010021  FY    

1 25,183 ARS-BFGL-BAC-6737  FY PY   

1 25,510 BTA-49289-no-rs   PY   

1 25,790 BTA-49283-no-rs  FY  FP  

1 27,135 ARS-BFGL-BAC-5834   PY   

1 31,801 BTB-01335860    FP  

1 40,996 ARS-BFGL-NGS-20360 MY  PY   

1 41,169 BTB-01249999   PY   

1 42,390 
Hapmap23514-BTA-
150593 

  PY   

1 53,341 Hapmap38361-BTA-93866  FY    

1 54,738 Hapmap48975-BTA-99363 MY     

1 67,948 BTA-05186-no-rs   PY   

1 76,506 ARS-BFGL-NGS-116528   PY   

1 76,557 ARS-BFGL-NGS-15456   PY   

1 84,394 Hapmap40421-BTA-39479 MY  PY   

1 84,416 ARS-BFGL-NGS-69661 MY  PY   

1 93,284 Hapmap41804-BTA-24071 MY     

1 98,640 ARS-BFGL-NGS-96389    FP  

1 117,880 Hapmap24434-BTA-48171     PP 

1 118,986 ARS-BFGL-NGS-10545  FY    

1 120,397 BTB-02013809 MY  PY   

1 120,444 BTB-01877866 MY     

1 121,510 BTB-00052125 MY  PY   

1 121,532 BTB-01476130 MY     

1 121,811 ARS-BFGL-BAC-13578 MY     

1 123,610 Hapmap43795-BTA-16918 MY     

1 123,918 BTA-49414-no-rs     PP 
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1 124,766 UA-IFASA-8594     PP 

1 124,845 BTB-00055741     PP 

1 124,989 ARS-BFGL-BAC-14851   PY   

1 125,016 Hapmap38963-BTA-50274   PY   

1 127,445 
Hapmap41768-BTA-
120174 

MY     

1 127,680 ARS-BFGL-NGS-98257 MY     

1 128,191 ARS-BFGL-NGS-27011 MY  PY   

1 130,259 ARS-BFGL-NGS-116868   PY   

1 130,335 ARS-BFGL-NGS-99827 MY     

1 131,506 BTB-01662109     PP 

1 131,552 Hapmap38448-BTA-92131     PP 

1 131,657 
Hapmap35746-
SCAFFOLD181011_3284 

    PP 

1 134,026 BTB-00059569 MY  PY   

1 136,344 
Hapmap35582-
SCAFFOLD40562_2432 

MY     

1 137,001 ARS-BFGL-NGS-72308   PY   

1 137,924 ARS-BFGL-NGS-107390  FY    

1 140,707 ARS-BFGL-NGS-82122     PP 

1 141,310 ARS-BFGL-NGS-73455     PP 

1 141,469 ARS-BFGL-NGS-14502   PY   

1 141,510 ARS-BFGL-NGS-104662   PY  PP 

1 142,224 Hapmap41574-BTA-54365   PY  PP 

1 142,643 ARS-BFGL-NGS-22768     PP 

1 144,559 ARS-BFGL-NGS-31728     PP 

1 145,522 ARS-BFGL-NGS-106222     PP 

1 145,578 BTB-00068200     PP 

1 146,075 ARS-BFGL-NGS-82590 MY     

1 148,570 ARS-BFGL-NGS-65139   PY   

1 148,765 
Hapmap47854-BTA-
119090 

  PY   

1 148,854 ARS-BFGL-NGS-25873 MY     

1 148,912 ARS-BFGL-NGS-30170     PP 

1 149,025 ARS-BFGL-BAC-12960   PY   

1 149,865 BTA-58315-no-rs MY FY PY   

1 150,396 BTB-01975281   PY   

1 150,807 ARS-BFGL-BAC-5688  FY    

1 151,530 ARS-BFGL-NGS-105124   PY   

1 152,228 ARS-BFGL-NGS-110653   PY   

1 153,237 ARS-BFGL-NGS-105623   PY   

1 153,609 
Hapmap60790-
rs29024220 

    PP 

1 154,731 ARS-BFGL-NGS-45342   PY   

1 155,843 ARS-BFGL-NGS-95240   PY   

1 157,424 
Hapmap60257-
rs29016165 

   FP  

2 373 ARS-BFGL-NGS-11180 MY     

2 1,030 
Hapmap55208-
ss46526613 

  PY   

2 2,241 ARS-BFGL-NGS-113652 MY  PY   

2 7,564 ARS-BFGL-NGS-90839   PY   

2 7,745 
Hapmap60397-
ss46527095 

  PY   

2 8,882 ARS-BFGL-NGS-37283    FP  

2 9,505 BTB-02094616 MY  PY   

2 9,590 Hapmap43273-BTA-47993   PY   

2 11,032 BTA-23383-no-rs   PY   

2 16,525 BTB-00080812  FY    

2 16,561 ARS-BFGL-NGS-100666     PP 

2 16,632 
Hapmap35360-
SCAFFOLD145911_8451 

    PP 

2 17,552 BTA-49719-no-rs MY  PY   

2 17,932 BTA-04435-no-rs   PY   

2 18,171 ARS-BFGL-NGS-24246  FY    
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2 19,105 ARS-BFGL-BAC-35137  FY    

2 19,202 
Hapmap53232-
rs29020795 

  PY   

2 19,256 Hapmap43615-BTA-54400 MY  PY   

2 20,045 ARS-BFGL-NGS-23300  FY    

2 20,235 
Hapmap59161-
rs29014139 

    PP 

2 20,505 BTB-01112976  FY    

2 20,738 BTB-00083220  FY    

2 21,841 UA-IFASA-1574  FY    

2 21,961 ARS-BFGL-NGS-119036  FY    

2 22,381 Hapmap50971-BTA-46778  FY    

2 22,512 BTB-00085286  FY    

2 22,556 ARS-BFGL-NGS-32709  FY    

2 26,218 Hapmap51238-BTA-46810  FY    

2 26,428 Hapmap43586-BTA-46818  FY    

2 26,937 BTB-00088008 MY FY PY   

2 28,144 BTB-00091356  FY    

2 35,032 BTB-00088434   PY   

2 38,338 BTA-55603-no-rs MY     

2 39,159 ARS-BFGL-NGS-28859 MY     

2 40,697 ARS-BFGL-NGS-60043    FP  

2 42,702 Hapmap38483-BTA-25757 MY     

2 42,771 BTB-01341517 MY     

2 43,208 BTA-47440-no-rs MY     

2 43,229 Hapmap50154-BTA-91586 MY     

2 43,875 BTB-01242184 MY FY PY   

2 44,195 ARS-BFGL-NGS-115659 MY     

2 46,284 ARS-BFGL-NGS-93283     PP 

2 48,820 
Hapmap57575-
rs29011345 

MY     

2 52,255 BTA-47682-no-rs    FP  

2 53,269 BTA-47612-no-rs MY  PY   

2 53,307 BTB-00098202 MY  PY   

2 54,237 BTB-00098707 MY FY    

2 54,258 BTB-00098730 MY FY    

2 54,637 BTB-00098773    FP  

2 55,505 ARS-BFGL-NGS-49789 MY     

2 56,762 
Hapmap34718-
BES7_Contig295_922 

MY  PY   

2 58,164 BTB-01160816  FY    

2 59,718 BTA-19224-no-rs  FY    

2 64,245 ARS-BFGL-NGS-109852 MY FY PY   

2 65,110 ARS-BFGL-NGS-12099 MY     

2 65,525 ARS-BFGL-NGS-102253  FY    

2 65,624 Hapmap39338-BTA-47826   PY   

2 66,145 ARS-BFGL-NGS-100643 MY     

2 71,513 BTB-01941823 MY  PY   

2 74,662 ARS-BFGL-NGS-105719 MY     

2 79,981 BTB-02066351 MY     

2 80,592 BTA-48073-no-rs MY     

2 80,678 BTB-00103137 MY     

2 80,701 ARS-BFGL-NGS-111158 MY     

2 83,588 ARS-BFGL-NGS-38368     PP 

2 83,641 ARS-BFGL-NGS-114651    FP  

2 88,599 Hapmap47638-BTA-47957 MY     

2 97,062 BTA-24303-no-rs MY FY    

2 98,989 ARS-BFGL-NGS-2970  FY    

2 101,231 Hapmap51953-BTA-48787 MY FY    

2 101,681 BTA-48456-no-rs     PP 

2 101,850 Hapmap44082-BTA-48435     PP 

2 101,883 ARS-BFGL-NGS-31792     PP 

2 102,811 ARS-BFGL-NGS-5965    FP  
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2 103,004 ARS-BFGL-NGS-107381    FP  

2 106,249 BTA-27937-no-rs  FY    

2 111,235 ARS-BFGL-NGS-108395  FY    

2 111,917 BTA-48867-no-rs  FY    

2 112,139 ARS-BFGL-NGS-82228  FY    

2 113,354 BTB-00111019  FY    

2 113,572 Hapmap48786-BTA-49002  FY    

2 113,931 
Hapmap59378-
rs29018764 

 FY    

2 116,200 Hapmap39834-BTA-49029  FY   PP 

2 116,462 ARS-BFGL-NGS-274  FY    

2 116,798 ARS-BFGL-NGS-12225     PP 

2 117,480 UA-IFASA-2047    FP  

2 118,686 Hapmap43218-BTA-26258     PP 

2 122,549 ARS-BFGL-NGS-110996  FY PY   

2 127,173 ARS-BFGL-NGS-109716    FP  

2 130,628 ARS-BFGL-NGS-118505 MY FY PY   

2 131,281 ARS-BFGL-NGS-34317  FY    

2 131,318 ARS-BFGL-NGS-21994  FY    

2 132,409 ARS-BFGL-NGS-41994 MY     

2 133,769 ARS-BFGL-NGS-36151  FY    

2 133,982 BTA-49769-no-rs     PP 

2 134,028 ARS-BFGL-NGS-33709  FY PY   

2 135,336 ARS-BFGL-NGS-110186   PY   

2 135,752 BTB-01978832  FY PY   

2 136,681 ARS-BFGL-NGS-100214   PY   

2 137,038 ARS-BFGL-NGS-110442  FY    

3 7,009 BTB-01678060  FY    

3 31,193 ARS-BFGL-NGS-112694     PP 

3 33,866 ARS-BFGL-NGS-113746 MY     

3 34,191 ARS-BFGL-NGS-40213 MY     

3 36,915 Hapmap41054-BTA-67528   PY   

3 37,863 ARS-BFGL-NGS-14022 MY     

3 39,299 ARS-BFGL-NGS-23295   PY   

3 39,339 ARS-BFGL-NGS-117495   PY   

3 40,024 ARS-BFGL-NGS-1886   PY   

3 44,394 
Hapmap60335-
rs29018229 

    PP 

3 47,248 
Hapmap32570-BTA-
141315 

  PY   

3 49,688 Hapmap38207-BTA-19427   PY   

3 50,463 BTA-18980-no-rs MY  PY   

3 50,486 Hapmap42865-BTA-18979 MY     

3 53,427 ARS-BFGL-NGS-23466 MY  PY   

3 54,013 
Hapmap57732-
rs29023272 

  PY   

3 56,417 Hapmap43965-BTA-89883   PY   

3 60,237 ARS-BFGL-NGS-103935   PY   

3 60,523 
Hapmap43156-BTA-
112841 

  PY   

3 60,996 Hapmap44119-BTA-67972   PY   

3 61,622 
Hapmap43441-BTA-
103289 

  PY   

3 62,908 ARS-BFGL-NGS-16054   PY   

3 65,463 BTA-68142-no-rs   PY   

3 65,706 BTB-00131364 MY FY PY   

3 65,833 BTB-01587097 MY  PY   

3 65,860 BTB-01587043 MY  PY   

3 66,290 
Hapmap51550-BTA-
111095 

MY     

3 89,434 Hapmap47699-BTA-68564  FY    

3 91,680 ARS-BFGL-NGS-11694   PY   

3 93,948 Hapmap32684-BTA-89476   PY   

3 94,618 BTB-00141843   PY   
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3 95,082 BTB-00143272   PY   

3 95,291 ARS-BFGL-NGS-100400   PY   

3 95,509 Hapmap41332-BTA-68635    FP  

3 95,552 BTB-00142550   PY   

3 95,572 BTB-00142497   PY   

3 97,188 
Hapmap32622-BTA-
155129 

  PY   

3 97,233 ARS-BFGL-NGS-40591 MY FY PY   

3 97,485 ARS-BFGL-NGS-73518  FY    

3 99,280 ARS-BFGL-NGS-111451     PP 

3 103,040 
Hapmap52129-
rs29016142 

  PY   

3 103,945 BTB-00147905 MY  PY   

3 105,270 BTB-00150138 MY  PY   

3 108,063 ARS-BFGL-NGS-3713 MY  PY   

3 108,917 ARS-BFGL-NGS-32606     PP 

3 109,147 ARS-BFGL-NGS-102829   PY   

3 109,604 ARS-BFGL-NGS-118597 MY     

3 111,281 ARS-BFGL-NGS-55043 MY     

3 111,321 ARS-BFGL-NGS-1038 MY     

3 111,371 BTB-00154062 MY     

3 112,790 BTB-00148908 MY     

3 114,946 
Hapmap35089-
BES2_Contig293_493 

   FP  

3 114,969 ARS-BFGL-NGS-66328    FP  

3 115,221 ARS-BFGL-NGS-117810    FP  

3 115,721 ARS-BFGL-NGS-87394   PY   

3 116,604 ARS-BFGL-NGS-34881    FP  

3 120,475 
Hapmap56950-
ss46526304 

MY FY PY   

3 120,899 ARS-BFGL-NGS-32060  FY    

3 122,299 ARS-BFGL-NGS-115542 MY  PY   

3 125,025 ARS-BFGL-NGS-111207 MY     

3 125,046 ARS-BFGL-NGS-101315 MY     

3 125,114 ARS-BFGL-NGS-90439 MY     

3 127,818 ARS-BFGL-NGS-114675  FY    

4 21 Hapmap38667-BTA-28216   PY   

4 5,129 ARS-BFGL-NGS-91047    FP  

4 8,952 ARS-BFGL-NGS-106242    FP  

4 14,620 BTA-70786-no-rs MY  PY   

4 14,645 ARS-BFGL-NGS-113152 MY  PY   

4 23,086 
Hapmap33790-BTA-
159878 

  PY   

4 23,125 
Hapmap27025-BTA-
159880 

 FY    

4 28,917 Hapmap48233-BTA-16470  FY    

4 29,093 BTB-01114634  FY    

4 36,814 Hapmap44123-BTA-70017   PY   

4 37,909 
Hapmap34749-
BES4_Contig461_1146 

  PY   

4 40,236 BTB-01885061   PY   

4 40,280 
Hapmap24263-BTA-
161141 

  PY   

4 41,684 Hapmap43212-BTA-23629   PY   

4 42,073 BTB-00176150 MY  PY   

4 42,107 Hapmap43659-BTA-70032  FY PY   

4 42,909 BTB-01927917   PY   

4 43,207 BTB-00178712   PY   

4 44,482 BTA-70272-no-rs    FP  

4 44,896 ARS-BFGL-NGS-113663 MY     

4 46,361 Hapmap38427-BTA-70434 MY FY PY   

4 46,393 Hapmap49715-BTA-70437 MY FY PY   

4 48,626 ARS-BFGL-NGS-104842     PP 

4 62,192 ARS-BFGL-NGS-71481    FP  



  113 

Massimo Cellesi 

Statistical Tools for Genomic-Wide Studies 

Tesi di Dottorato in Scienze dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Scienze e Tecnologie Zootecniche – Università degli Studi di Sassari 

 

4 63,586 BTB-00192005    FP  

4 63,721 ARS-BFGL-NGS-3438    FP  

4 63,774 BTB-00191572    FP  

4 74,927 
Hapmap42065-BTA-
111154 

MY     

4 75,091 BTB-01595788 MY     

4 75,135 BTB-01708864 MY     

4 76,782 ARS-BFGL-NGS-55672 MY     

4 78,755 ARS-BFGL-NGS-112329 MY     

4 82,824 
Hapmap46191-BTA-
101479 

MY  PY   

4 84,629 BTB-01497290 MY     

4 84,788 BTB-00566744 MY     

4 86,308 BTA-96855-no-rs   PY   

4 86,342 BTB-01142755   PY   

4 86,402 BTA-96837-no-rs     PP 

4 87,190 BTB-01278461   PY   

4 87,452 BTB-01443627 MY     

4 88,270 BTB-01257567     PP 

4 89,021 BTA-65916-no-rs   PY   

4 91,593 ARS-BFGL-NGS-26218   PY   

4 94,254 ARS-BFGL-NGS-109045   PY   

4 94,520 ARS-BFGL-NGS-118100    FP  

4 95,049 ARS-BFGL-NGS-114724 MY  PY   

4 95,125 
Hapmap32136-BTA-
160383 

MY  PY   

4 96,632 
Hapmap25269-BTA-
142380 

  PY   

4 96,652 ARS-BFGL-NGS-110997   PY   

4 97,467 BTB-00203494 MY  PY   

4 97,734 BTB-01502164 MY FY PY   

4 99,412 ARS-BFGL-NGS-38881 MY  PY   

4 99,532 ARS-BFGL-NGS-103036   PY   

4 99,587 ARS-BFGL-NGS-13008   PY   

4 99,998 
Hapmap50564-BTA-
110789 

MY  PY   

4 100,994 ARS-BFGL-NGS-52947 MY  PY   

4 101,912 ARS-BFGL-NGS-77010   PY   

4 105,002 ARS-BFGL-NGS-36185   PY   

4 105,339 ARS-BFGL-NGS-25648   PY   

4 108,845 ARS-BFGL-NGS-5899   PY   

4 108,885 ARS-BFGL-NGS-76596   PY   

4 109,186 ARS-BFGL-NGS-3479   PY   

4 111,350 ARS-BFGL-NGS-39879     PP 

4 117,784 ARS-BFGL-NGS-119857     PP 

5 1,751 ARS-BFGL-NGS-109950 MY     

5 1,792 ARS-BFGL-NGS-104371 MY  PY   

5 1,905 BTB-01252633 MY  PY   

5 3,785 BTB-01357570   PY   

5 3,951 
Hapmap55203-
rs29023737 

    PP 

5 12,945 BTA-23621-no-rs  FY PY   

5 15,738 BTA-72768-no-rs   PY   

5 16,101 
Hapmap36482-
SCAFFOLD163485_1458 

  PY   

5 17,250 BTA-05007-rs29019174  FY    

5 20,301 Hapmap45956-BTA-74297   PY   

5 20,328 BTA-74300-no-rs   PY   

5 22,523 BTA-27242-no-rs MY  PY   

5 23,091 BTA-06872-rs29021228 MY     

5 25,064 ARS-BFGL-NGS-44305 MY     

5 25,740 ARS-BFGL-NGS-29300 MY  PY   

5 36,496 BTB-01226567     PP 

5 36,959 BTB-01496004 MY     
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5 39,604 BTB-00225371 MY     

5 40,261 BTB-01635088   PY   

5 40,346 BTB-01832706   PY   

5 45,449 ARS-BFGL-NGS-18989     PP 

5 46,500 BTB-00226702 MY     

5 46,856 BTB-01675520     PP 

5 50,023 ARS-BFGL-NGS-98210 MY  PY   

5 50,069 ARS-BFGL-NGS-114616   PY   

5 54,953 ARS-BFGL-NGS-114918     PP 

5 58,821 BTA-54940-no-rs   PY   

5 59,065 ARS-BFGL-NGS-3921   PY   

5 60,764 ARS-BFGL-NGS-4763 MY  PY   

5 64,566 
Hapmap53993-
rs29024740 

  PY   

5 64,749 ARS-BFGL-NGS-5504  FY    

5 70,327 ARS-BFGL-NGS-20849  FY    

5 72,205 ARS-BFGL-NGS-28026  FY    

5 72,980 Hapmap49622-BTA-46973  FY    

5 84,392 
Hapmap57435-
rs29016994 

    PP 

5 86,756 BTA-74203-no-rs   PY   

5 88,530 
Hapmap49859-BTA-
109537 

    PP 

5 91,221 ARS-BFGL-NGS-71971 MY FY    

5 93,640 ARS-BFGL-NGS-11173   PY   

5 94,607 BTB-01602960 MY     

5 94,733 BTB-01278306  FY    

5 96,688 Hapmap50624-BTA-22932 MY     

5 97,370 
Hapmap23365-BTA-
156277 

 FY    

5 98,725 
Hapmap33512-BTA-
158274 

 FY  FP  

5 103,348 ARS-BFGL-NGS-29237 MY     

5 105,028 
Hapmap59520-
rs29021624 

   FP  

5 105,238 
Hapmap46939-BTA-
114206 

  PY   

5 108,587 ARS-BFGL-NGS-81143  FY  FP  

5 108,769 
Hapmap36373-
SCAFFOLD248777_1273 

   FP  

5 114,329 ARS-BFGL-NGS-118406  FY    

5 114,799 BTA-74965-no-rs MY     

5 116,803 ARS-BFGL-NGS-6829    FP  

5 116,877 ARS-BFGL-NGS-32908    FP  

5 118,958 BTA-75110-no-rs MY  PY   

5 119,005 
Hapmap23876-BTA-
143610 

MY     

5 122,834 ARS-BFGL-NGS-78419   PY   

5 123,572 ARS-BFGL-NGS-36365   PY   

5 123,841 ARS-BFGL-NGS-1089 MY     

6 2 
Hapmap27542-BTC-
062507 

 FY    

6 6,995 ARS-BFGL-NGS-104900   PY   

6 7,962 BTB-00242529   PY   

6 19,485 
Hapmap57362-
rs29014889 

MY     

6 24,357 Hapmap49541-BTA-24412 MY     

6 26,537 
Hapmap27407-BTA-
143867 

  PY   

6 26,946 ARS-BFGL-NGS-22019 MY FY PY   

6 27,720 ARS-BFGL-NGS-10082  FY    

6 30,817 
Hapmap53749-
rs29023061 

 FY    

6 31,265 ARS-BFGL-NGS-103412 MY  PY   

6 32,130 BTA-120439-no-rs     PP 

6 33,499 Hapmap41633-BTA-75713   PY   

6 33,720 
Hapmap27945-BTC-
073459 

  PY   
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6 37,564 
Hapmap27503-BTC-
033786 

MY     

6 37,670 
Hapmap26259-BTC-
033526 

  PY   

6 39,509 BTB-00260450   PY   

6 39,604 
Hapmap27818-BTC-
035199 

 FY    

6 40,700 
Hapmap60113-
rs29017603 

    PP 

6 40,741 BTB-00252917     PP 

6 40,967 
Hapmap57625-
rs29027071 

 FY PY  PP 

6 42,099 BTB-00251852  FY    

6 42,376 Hapmap44280-BTA-75941  FY PY   

6 42,512 Hapmap43676-BTA-75936   PY   

6 42,787 BTA-95818-no-rs   PY   

6 43,805 ARS-BFGL-NGS-42501  FY PY   

6 44,699 
Hapmap26848-BTC-
038527 

MY     

6 45,960 Hapmap49746-BTA-76106 MY  PY   

6 46,921 BTA-76116-no-rs     PP 

6 48,864 
Hapmap39620-BTA-
113785 

    PP 

6 50,150 BTA-18812-no-rs   PY   

6 55,267 BTB-00843793     PP 

6 60,289 ARS-BFGL-NGS-106371   PY  PP 

6 60,704 BTA-97854-no-rs  FY    

6 75,093 BTA-76827-no-rs    FP  

6 85,083 Hapmap43417-BTA-96760     PP 

6 88,807 ARS-BFGL-NGS-82008 MY     

6 88,947 
Hapmap57014-
rs29019575 

MY  PY   

6 89,355 ARS-BFGL-NGS-54753 MY     

6 90,356 
Hapmap51409-BTA-
122717 

MY FY PY   

6 92,788 Hapmap40845-BTA-97263 MY     

6 93,683 BTB-01428718 MY     

6 94,434 ARS-BFGL-NGS-83066 MY     

6 95,043 BTA-77154-no-rs   PY   

6 95,528 ARS-BFGL-NGS-100802 MY     

6 99,688 BTB-00274080 MY  PY   

6 100,740 Hapmap10869-BTA-77464 MY     

6 101,684 
Hapmap30053-BTA-
161410 

MY     

6 102,756 BTB-01791461 MY     

6 103,177 Hapmap50779-BTA-77533   PY   

6 103,431 ARS-BFGL-NGS-114582   PY   

6 104,437 ARS-BFGL-NGS-93120 MY FY PY   

6 107,336 
Hapmap53924-
rs29022499 

MY     

6 107,444 ARS-BFGL-NGS-116512   PY   

6 109,808 ARS-BFGL-NGS-10777  FY    

6 113,960 BTB-01754370    FP  

6 116,998 
Hapmap55397-
rs29017692 

MY     

6 122,474 ARS-BFGL-NGS-29384 MY     

7 15,513 
Hapmap60436-
ss46526689 

    PP 

7 18,373 BTB-00296617   PY   

7 23,021 BTA-78558-no-rs     PP 

7 23,447 
Hapmap59434-
rs29012267 

    PP 

7 30,629 BTB-00549060 MY     

7 30,891 ARS-BFGL-NGS-21597 MY  PY   

7 33,067 UA-IFASA-4938  FY    

7 36,876 ARS-BFGL-NGS-17959 MY     

7 36,967 Hapmap32661-BTA-28979 MY     

7 36,997 ARS-BFGL-NGS-18669 MY     
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7 37,319 ARS-BFGL-NGS-119880 MY     

7 37,339 ARS-BFGL-NGS-35666 MY  PY   

7 39,761 ARS-BFGL-NGS-30468   PY   

7 40,196 BTB-00368665    FP  

7 44,805 BTB-00309643 MY  PY   

7 45,473 BTB-00310653  FY    

7 50,743 ARS-BFGL-NGS-96012 MY  PY   

7 53,416 
Hapmap58262-
rs29024901 

    PP 

7 55,024 
Hapmap54976-
rs29019286 

    PP 

7 55,357 BTB-01961486   PY   

7 57,095 
Hapmap52252-
rs29011665 

   FP  

7 57,365 BTB-00311684   PY   

7 57,651 ARS-BFGL-NGS-33432 MY  PY   

7 57,712 BTB-00311926   PY   

7 57,747 BTB-00311957 MY  PY   

7 58,158 BTB-00313206   PY   

7 58,355 BTB-00314357 MY FY PY   

7 62,700 BTB-00316348 MY     

7 63,358 
Hapmap36214-
SCAFFOLD145184_7453 

  PY   

7 63,609 ARS-BFGL-NGS-113819 MY     

7 63,664 ARS-BFGL-NGS-109819 MY FY    

7 65,093 ARS-BFGL-NGS-42452 MY FY PY   

7 69,587 BTB-00318531 MY FY PY   

7 72,070 BTA-112613-no-rs   PY   

7 72,456 BTB-01217472  FY PY   

7 72,746 
Hapmap48995-BTA-
103787 

 FY PY   

7 72,792 BTB-01557864  FY PY   

7 72,871 ARS-BFGL-NGS-89239   PY   

7 73,749 ARS-BFGL-NGS-26484   PY   

7 74,122 ARS-BFGL-NGS-23727 MY     

7 77,583 BTB-01339356  FY    

7 78,201 ARS-BFGL-NGS-31863 MY FY    

7 78,653 BTB-01273562  FY    

7 81,598 ARS-BFGL-NGS-11872 MY     

7 81,753 BTB-01514268 MY     

7 84,571 Hapmap51053-BTA-80120 MY  PY   

7 84,684 ARS-BFGL-NGS-103162 MY  PY   

7 84,854 BTB-01363214   PY   

7 86,472 BTB-01455682 MY     

7 86,515 ARS-BFGL-NGS-110503 MY     

7 88,937 Hapmap43690-BTA-80156  FY    

7 89,538 Hapmap39294-BTA-80145  FY    

7 94,536 ARS-BFGL-NGS-43916 MY  PY   

7 95,187 Hapmap46388-BTA-93108   PY   

7 95,640 ARS-BFGL-NGS-113774   PY   

7 96,469 
Hapmap47490-BTA-
108189 

  PY   

7 96,893 Hapmap48501-BTA-87072   PY   

7 96,986 ARS-BFGL-NGS-68719  FY    

7 97,011 
Hapmap24200-BTA-
147598 

 FY PY   

7 98,261 ARS-BFGL-NGS-94147   PY   

7 99,797 ARS-BFGL-NGS-70915  FY PY   

7 99,898 ARS-BFGL-NGS-70114  FY    

7 100,457 BTA-87872-no-rs   PY   

7 102,077 
Hapmap31054-BTA-
112283 

 FY    

7 102,166 ARS-BFGL-NGS-4342    FP  

7 103,092 BTA-80441-no-rs  FY    

7 105,245 BTB-00955215   PY   
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7 106,689 Hapmap50111-BTA-80468   PY   

7 106,918 Hapmap48479-BTA-80447  FY    

7 107,109 ARS-BFGL-NGS-69739  FY    

7 109,340 Hapmap44412-BTA-80524  FY    

8 1 
Hapmap42099-BTA-
120289 

  PY   

8 4,169 
Hapmap54974-
rs29015318 

 FY PY   

8 4,251 BTA-86031-no-rs   PY   

8 4,287 BTB-01956236   PY   

8 4,999 ARS-BFGL-NGS-68739   PY   

8 6,369 Hapmap44053-BTA-28733  FY PY   

8 6,585 Hapmap43365-BTA-81894   PY   

8 7,456 ARS-BFGL-NGS-20843     PP 

8 14,685 BTA-92138-no-rs     PP 

8 16,151 Hapmap51695-BTA-16700     PP 

8 16,988 
Hapmap53455-
rs29027941 

MY     

8 18,616 Hapmap50115-BTA-80812     PP 

8 22,250 ARS-BFGL-NGS-3384   PY   

8 22,833 BTB-01168801   PY   

8 22,856 ARS-BFGL-NGS-34771   PY   

8 26,936 ARS-BFGL-NGS-24524     PP 

8 33,339 BTB-01469421 MY     

8 33,664 
Hapmap54720-
rs29023017 

  PY   

8 35,520 
Hapmap23351-BTA-
123397 

  PY   

8 41,832 
Hapmap32013-BTA-
104628 

  PY   

8 42,208 ARS-BFGL-NGS-82111    FP  

8 43,646 ARS-BFGL-NGS-30070   PY   

8 43,709 BTA-80993-no-rs  FY PY   

8 44,047 
Hapmap52331-
rs29021338 

MY  PY   

8 45,276 ARS-BFGL-NGS-86183  FY    

8 46,413 
Hapmap54235-
rs29024181 

  PY   

8 47,990 ARS-BFGL-NGS-113176   PY   

8 51,778 Hapmap42685-BTA-81134 MY  PY   

8 53,071 ARS-BFGL-NGS-10990 MY     

8 61,711 ARS-BFGL-NGS-118882 MY  PY   

8 62,535 ARS-BFGL-NGS-100613 MY  PY   

8 64,072 BTB-00105019   PY   

8 64,104 ARS-BFGL-NGS-118369   PY   

8 64,140 BTB-00351490   PY   

8 64,871 ARS-BFGL-NGS-97020   PY   

8 66,814 ARS-BFGL-NGS-16925   PY   

8 67,247 Hapmap43062-BTA-81698   PY   

8 67,282 Hapmap44415-BTA-81700   PY   

8 67,320 ARS-BFGL-NGS-66565 MY  PY   

8 67,350 
Hapmap30871-BTA-
158348 

MY  PY   

8 67,696 BTA-19348-no-rs  FY    

8 68,392 ARS-BFGL-NGS-24979   PY   

8 69,841 ARS-BFGL-NGS-29663 MY     

8 70,711 
Hapmap59270-
rs29027144 

MY  PY   

8 71,591 
Hapmap25871-BTA-
152798 

  PY   

8 75,261 BTB-01227548 MY     

8 75,485 ARS-BFGL-NGS-16507 MY     

8 75,556 ARS-BFGL-NGS-29576 MY     

8 77,113 ARS-BFGL-NGS-5294   PY   

8 80,713 ARS-BFGL-NGS-29876 MY     

8 88,798 ARS-BFGL-NGS-26532   PY   
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8 88,843 ARS-BFGL-NGS-104204   PY   

8 90,328 ARS-BFGL-NGS-119337 MY     

8 91,547 ARS-BFGL-NGS-104416   PY   

8 92,786 ARS-BFGL-NGS-33495   PY   

8 95,575 
Hapmap48568-BTA-
103950 

 FY    

8 96,576 BTB-01864543  FY PY   

8 97,070 BTA-101737-no-rs  FY PY   

8 97,099 BTA-101724-no-rs  FY PY   

8 97,973 BTB-01734135 MY FY    

8 98,726 ARS-BFGL-NGS-52705 MY     

8 99,390 ARS-BFGL-NGS-113098   PY   

8 108,182 BTB-00369009 MY     

8 112,918 Hapmap49333-BTA-82773 MY     

8 113,162 BTB-01515798 MY     

8 114,396 ARS-BFGL-NGS-33591 MY  PY   

8 114,480 Hapmap49395-BTA-98771 MY     

8 115,942 
Hapmap53326-
rs29023047 

MY     

9 2,289 
Hapmap36664-
SCAFFOLD50340_7682 

MY FY    

9 9,412 ARS-BFGL-NGS-57285    FP  

9 9,957 ARS-BFGL-NGS-10202 MY     

9 12,088 ARS-BFGL-NGS-59162 MY FY PY   

9 13,730 BTA-91270-no-rs MY  PY   

9 15,209 
Hapmap28752-BTA-
146270 

MY     

9 15,958 BTB-01407982 MY     

9 19,432 UA-IFASA-1686   PY   

9 19,560 Hapmap47550-BTA-25655   PY   

9 21,423 BTB-01095008     PP 

9 21,474 BTA-20861-no-rs  FY    

9 23,736 ARS-BFGL-NGS-74851     PP 

9 24,624 BTB-01362120  FY    

9 27,740 
Hapmap31053-BTA-
111664 

  PY   

9 28,519 ARS-BFGL-NGS-79864   PY   

9 30,185 BTB-00387060 MY     

9 34,031 ARS-BFGL-NGS-14098 MY     

9 34,706 UA-IFASA-814 MY     

9 40,130 
Hapmap29482-BTA-
146449 

  PY   

9 42,326 ARS-BFGL-NGS-72216   PY   

9 42,423 ARS-BFGL-NGS-13783   PY   

9 44,569 UA-IFASA-4157  FY    

9 46,601 BTA-10828-no-rs MY  PY   

9 48,193 
Hapmap34923-
BES9_Contig458_891 

MY     

9 50,230 ARS-BFGL-NGS-27097   PY   

9 52,206 ARS-BFGL-NGS-22125  FY    

9 52,314 UA-IFASA-4980    FP  

9 57,732 BTB-01828494  FY    

9 58,626 BTB-01151441   PY   

9 58,723 Hapmap49396-BTA-98905   PY   

9 59,861 BTA-104917-no-rs MY FY PY   

9 59,894 BTB-01604502 MY FY PY   

9 62,055 Hapmap49337-BTA-83888 MY     

9 62,195 ARS-BFGL-NGS-107809 MY     

9 65,149 ARS-BFGL-NGS-36482    FP  

9 65,181 BTB-01673493    FP  

9 67,711 BTA-33284-no-rs  FY    

9 72,409 Hapmap49339-BTA-84110 MY     

9 73,068 ARS-BFGL-NGS-78172   PY   

9 75,732 ARS-BFGL-NGS-36451 MY  PY   
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9 75,802 BTA-84237-no-rs MY  PY   

9 75,843 Hapmap42339-BTA-84231 MY  PY   

9 83,201 BTB-01182727 MY     

9 84,177 ARS-BFGL-NGS-99576  FY PY   

9 85,451 ARS-BFGL-NGS-25441 MY     

9 89,138 ARS-BFGL-NGS-43711  FY    

9 89,501 
Hapmap54036-
ss46525997 

 FY    

9 92,155 BTB-00404735    FP  

9 92,490 ARS-BFGL-NGS-46105  FY    

9 92,776 BTB-00404235  FY    

9 93,253 BTB-01839335  FY    

9 95,864 ARS-BFGL-NGS-112933     PP 

9 96,229 Hapmap44147-BTA-84872   PY   

9 105,894 ARS-BFGL-NGS-87714     PP 

10 2,690 ARS-BFGL-NGS-118679     PP 

10 8,136 ARS-BFGL-NGS-115023 MY  PY   

10 11,075 BTB-00407977   PY   

10 13,344 ARS-BFGL-BAC-13545   PY   

10 13,592 ARS-BFGL-NGS-71024   PY   

10 13,840 ARS-BFGL-NGS-100004   PY   

10 20,945 
Hapmap57100-
rs29013509 

 FY    

10 31,421 BTB-00416806 MY  PY   

10 31,807 BTB-00415821 MY     

10 31,948 BTB-00416033 MY  PY   

10 31,973 BTB-00416055   PY   

10 34,700 
Hapmap25237-BTA-
125338 

 FY    

10 35,862 
Hapmap34243-
BES6_Contig306_1185 

MY  PY   

10 35,929 
Hapmap55209-
rs29013243 

MY     

10 36,426 ARS-BFGL-NGS-35605   PY   

10 36,557 
Hapmap53714-
rs29017586 

MY     

10 38,937 ARS-BFGL-BAC-12872 MY  PY   

10 39,506 BTB-00093532 MY  PY   

10 40,770 BTA-122483-no-rs   PY   

10 41,245 BTB-01700213   PY   

10 45,088 ARS-BFGL-NGS-16794   PY   

10 46,922 ARS-BFGL-NGS-15826 MY     

10 47,637 ARS-BFGL-NGS-36243 MY     

10 47,879 ARS-BFGL-NGS-103757   PY   

10 48,053 ARS-BFGL-NGS-104551 MY     

10 49,231 ARS-BFGL-BAC-11657  FY PY   

10 54,386 BTB-01137783 MY  PY   

10 54,632 Hapmap47128-BTA-89018 MY     

10 54,740 BTB-01137914 MY  PY   

10 54,810 BTA-95978-no-rs MY  PY   

10 61,188 
Hapmap57627-
rs29027143 

MY  PY   

10 62,511 ARS-BFGL-NGS-1410  FY PY   

10 66,285 ARS-BFGL-NGS-69379 MY  PY   

10 68,128 BTA-100674-no-rs   PY   

10 69,724 ARS-BFGL-NGS-110711 MY  PY   

10 70,431 ARS-BFGL-NGS-57077 MY     

10 70,455 
Hapmap50263-BTA-
122214 

MY     

10 71,120 ARS-BFGL-NGS-12520 MY     

10 71,842 BTA-74271-no-rs MY     

10 86,227 BTB-00436473 MY     

10 86,940 ARS-BFGL-NGS-117016    FP  

10 88,110 ARS-BFGL-NGS-16573 MY     

10 92,399 Hapmap39512-BTA-79353 MY     
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10 93,400 ARS-BFGL-NGS-26052    FP  

10 93,838 BTB-00445081  FY    

10 95,836 ARS-BFGL-NGS-74928 MY FY PY   

10 96,040 
Hapmap54178-
rs29021913 

   FP  

10 96,098 BTB-00446145  FY    

10 96,955 Hapmap50620-BTA-21279  FY    

10 105,001 BTA-83475-no-rs     PP 

11 6,209 ARS-BFGL-NGS-91251 MY FY PY   

11 6,516 BTB-00454142   PY   

11 7,134 ARS-BFGL-NGS-47869  FY    

11 7,545 BTA-101065-no-rs  FY PY   

11 11,906 ARS-BFGL-NGS-19864  FY    

11 12,468 ARS-BFGL-BAC-13568   PY   

11 13,451 BTA-85470-no-rs     PP 

11 14,044 ARS-BFGL-NGS-13679   PY   

11 15,627 BTB-00483333 MY     

11 15,648 BTB-00461989 MY     

11 15,690 ARS-BFGL-NGS-74492   PY   

11 16,521 ARS-BFGL-BAC-14856  FY    

11 17,940 BTB-01391227   PY   

11 18,851 BTB-01934985   PY   

11 18,999 BTB-01679746   PY   

11 19,023 BTB-01940421   PY   

11 19,130 BTB-01913936   PY   

11 20,980 ARS-BFGL-NGS-104435   PY   

11 23,779 ARS-BFGL-NGS-43804 MY     

11 27,454 BTB-01550704  FY    

11 35,658 BTB-01431917   PY   

11 35,716 BTB-01293391   PY  PP 

11 35,947 BTB-02040693   PY   

11 36,475 BTA-91929-no-rs     PP 

11 37,465 ARS-BFGL-NGS-112269 MY     

11 38,704 ARS-BFGL-NGS-32737  FY    

11 40,185 ARS-BFGL-NGS-118144     PP 

11 40,276 ARS-BFGL-BAC-14233     PP 

11 43,053 ARS-BFGL-NGS-14714     PP 

11 50,639 ARS-BFGL-NGS-68510   PY   

11 50,695 ARS-BFGL-NGS-108232   PY   

11 50,727 
Hapmap59833-
rs29027583 

  PY   

11 57,819 BTA-32746-no-rs  FY    

11 58,725 BTB-01079189     PP 

11 58,778 BTB-00475277     PP 

11 65,840 
Hapmap34879-
BES7_Contig396_841 

  PY   

11 65,871 ARS-BFGL-NGS-100607   PY   

11 68,383 BTA-101061-no-rs  FY    

11 68,724 ARS-BFGL-NGS-109780  FY PY   

11 69,456 ARS-BFGL-NGS-18300 MY     

11 70,246 
Hapmap34845-
BES7_Contig520_696 

 FY PY   

11 70,268 Hapmap12055-BTA-86516 MY  PY   

11 71,197 
Hapmap27139-BTA-
102152 

 FY   PP 

11 73,281 ARS-BFGL-NGS-110450 MY  PY   

11 73,342 ARS-BFGL-NGS-20385  FY    

11 75,076 ARS-BFGL-NGS-74702 MY FY    

11 76,426 ARS-BFGL-NGS-95312 MY  PY   

11 78,221 
Hapmap25799-BTA-
126762 

 FY    

11 78,484 ARS-BFGL-NGS-112276 MY     

11 80,363 ARS-BFGL-NGS-61477 MY     

11 80,576 ARS-BFGL-NGS-73132 MY     
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11 80,973 ARS-BFGL-NGS-32286   PY   

11 83,876 ARS-BFGL-NGS-105586 MY FY    

11 84,956 
Hapmap46768-BTA-
117394 

MY FY    

11 87,632 ARS-BFGL-NGS-83288 MY  PY   

11 88,003 ARS-BFGL-NGS-107825 MY  PY   

11 88,023 
Hapmap43168-BTA-
119307 

MY  PY   

11 89,891 ARS-BFGL-NGS-33784 MY     

11 92,078 Hapmap42125-BTA-19379 MY  PY   

11 94,840 ARS-BFGL-NGS-14308   PY   

11 98,252 
Hapmap41435-BTA-
115556 

MY  PY   

11 100,331 ARS-BFGL-NGS-113879 MY     

11 103,079 ARS-BFGL-NGS-114094 MY  PY   

11 105,482 ARS-BFGL-NGS-39065 MY  PY   

11 105,535 ARS-BFGL-NGS-102267 MY     

11 106,046 ARS-BFGL-NGS-22188   PY   

11 107,651 ARS-BFGL-NGS-114744   PY   

12 126 ARS-BFGL-NGS-104447  FY    

12 5,492 BTA-17590-no-rs  FY    

12 6,221 ARS-BFGL-NGS-28486   PY   

12 8,964 ARS-BFGL-NGS-112946 MY     

12 11,872 Hapmap50654-BTA-31559 MY     

12 12,313 ARS-BFGL-NGS-31202  FY    

12 14,213 ARS-BFGL-NGS-16501   PY   

12 14,373 BTA-31571-no-rs   PY   

12 14,511 ARS-BFGL-NGS-42200 MY  PY   

12 15,522 ARS-BFGL-NGS-43671 MY FY PY   

12 18,461 ARS-BFGL-NGS-62217  FY    

12 21,939 BTA-120906-no-rs  FY    

12 22,947 ARS-BFGL-NGS-51613  FY    

12 52,640 Hapmap43521-BTA-23812  FY    

12 52,880 
Hapmap59400-
rs29023728 

    PP 

12 53,843 BTB-00496702   PY   

12 55,173 ARS-BFGL-NGS-2151     PP 

12 55,793 BTB-00499073   PY   

12 55,813 
Hapmap56826-
rs29013564 

  PY   

12 57,806 BTB-01839492     PP 

12 65,371 BTB-01337869   PY   

12 65,419 BTB-01337853 MY  PY   

12 65,741 ARS-BFGL-BAC-14364   PY   

12 65,797 ARS-BFGL-NGS-90411   PY   

12 67,030 ARS-BFGL-NGS-54132 MY FY PY   

12 68,594 BTB-00503215   PY   

12 73,402 UA-IFASA-2256 MY FY PY   

12 73,480 ARS-BFGL-NGS-19305 MY FY PY   

12 75,467 ARS-BFGL-NGS-12480   PY   

12 78,334 Hapmap42176-BTA-31298     PP 

12 78,512 
Hapmap59799-
rs29010339 

 FY PY   

12 80,766 ARS-BFGL-NGS-53938  FY    

12 80,870 ARS-BFGL-NGS-107794  FY    

12 81,408 BTB-01315661 MY     

12 81,705 ARS-BFGL-NGS-41933     PP 

12 82,410 BTB-01198427   PY   

13 680 BTB-01141508  FY PY   

13 1,122 BTA-122179-no-rs   PY   

13 1,311 ARS-BFGL-BAC-12483 MY     

13 1,372 BTA-15911-no-rs MY     

13 1,498 Hapmap45253-BTA-15908  FY    

13 3,111 
Hapmap35931-

  PY   
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SCAFFOLD200024_14429 

13 3,251 ARS-BFGL-BAC-15070 MY  PY   

13 3,483 ARS-BFGL-NGS-4272   PY   

13 4,058 ARS-BFGL-NGS-62490  FY PY   

13 4,078 ARS-BFGL-NGS-105636 MY     

13 4,457 BTB-01748916   PY   

13 4,566 BTB-00511781   PY   

13 5,019 ARS-BFGL-NGS-98610  FY PY   

13 5,082 ARS-BFGL-NGS-92938 MY     

13 5,660 ARS-BFGL-NGS-84327 MY FY PY   

13 6,459 ARS-BFGL-NGS-105883   PY   

13 8,968 ARS-BFGL-NGS-93056  FY    

13 12,438 Hapmap50305-BTA-27942  FY    

13 13,139 ARS-BFGL-NGS-114459   PY  PP 

13 13,408 ARS-BFGL-NGS-109071   PY   

13 13,909 ARS-BFGL-NGS-113489  FY    

13 15,059 ARS-BFGL-NGS-92946    FP  

13 16,262 Hapmap39397-BTA-31932 MY     

13 16,285 Hapmap42509-BTA-31930 MY     

13 24,489 Hapmap42181-BTA-31908  FY    

13 24,517 ARS-BFGL-NGS-104788 MY     

13 25,233 BTA-31957-no-rs MY     

13 26,814 Hapmap25132-BTA-96391  FY PY   

13 32,893 Hapmap40947-BTA-32313 MY     

13 33,741 
Hapmap57166-
rs29020401 

MY  PY   

13 35,765 BTB-00517708   PY   

13 36,033 BTB-00517668   PY   

13 38,193 BTA-32346-no-rs MY  PY   

13 39,178 ARS-BFGL-NGS-110611     PP 

13 39,371 ARS-BFGL-BAC-14448   PY   

13 41,409 BTB-00522444    FP  

13 42,319 Hapmap51209-BTA-32563 MY  PY   

13 42,702 ARS-BFGL-NGS-57335 MY     

13 44,016 ARS-BFGL-NGS-5872    FP  

13 44,039 ARS-BFGL-NGS-104720    FP  

13 44,982 BTB-01376014 MY  PY   

13 45,361 BTB-01505690     PP 

13 46,536 ARS-BFGL-NGS-97782     PP 

13 47,301 ARS-BFGL-NGS-80072    FP PP 

13 48,171 
Hapmap54365-
rs29014934 

  PY   

13 48,188 BTB-01718516   PY   

13 48,300 ARS-BFGL-NGS-3711 MY  PY   

13 48,393 BTB-00527671     PP 

13 55,371 BTB-00529185 MY  PY   

13 55,818 Hapmap40246-BTA-32935   PY   

13 56,446 ARS-BFGL-NGS-1365 MY     

13 61,718 ARS-BFGL-NGS-83014    FP  

13 72,684 ARS-BFGL-NGS-81880    FP  

13 77,103 ARS-BFGL-NGS-104779  FY    

13 78,470 ARS-BFGL-NGS-18031 MY FY    

13 79,539 ARS-BFGL-NGS-16572   PY   

13 82,440 ARS-BFGL-NGS-56575    FP  

14 5 
Hapmap29758-BTC-
003619 

   FP  

14 51 
Hapmap30381-BTC-
005750 

   FP  

14 77 
Hapmap30383-BTC-
005848 

MY  PY   

14 101 BTA-34956-no-rs    FP  

14 237 ARS-BFGL-NGS-57820 MY  PY FP  

14 444 ARS-BFGL-NGS-4939 MY  PY FP  
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14 596 ARS-BFGL-NGS-71749    FP  

14 680 ARS-BFGL-NGS-107379 MY FY  FP PP 

14 742 ARS-BFGL-NGS-18365    FP  

14 763 
Hapmap30922-BTC-
002021 

   FP  

14 812 UA-IFASA-8997    FP  

14 931 ARS-BFGL-NGS-101653    FP  

14 997 ARS-BFGL-NGS-26520    FP  

14 1,154 
Hapmap29888-BTC-
003509 

   FP  

14 1,264 ARS-BFGL-NGS-3122    FP  

14 1,285 
Hapmap25486-BTC-
072553 

   FP  

14 1,308 ARS-BFGL-NGS-31471  FY  FP  

14 1,409 ARS-BFGL-NGS-41248    FP  

14 1,461 
Hapmap30646-BTC-
002054 

   FP  

14 1,889 ARS-BFGL-NGS-74378 MY   FP  

14 1,913 ARS-BFGL-NGS-117542    FP  

14 2,011 ARS-BFGL-BAC-1511     PP 

14 2,049 
Hapmap30730-BTC-
064822 

   FP  

14 2,131 ARS-BFGL-NGS-33248    FP  

14 2,202 UA-IFASA-9288    FP  

14 2,262 
Hapmap24777-BTC-
064977 

   FP  

14 2,347 ARS-BFGL-NGS-22111    FP  

14 2,370 UA-IFASA-7269    FP  

14 2,392 
Hapmap26072-BTC-
065132 

   FP  

14 2,419 
Hapmap26527-BTC-
005059 

   FP  

14 2,580 ARS-BFGL-NGS-56327  FY    

14 2,712 UA-IFASA-5306    FP  

14 2,826 
Hapmap27703-BTC-
053907 

   FP  

14 3,019 
Hapmap22692-BTC-
068210 

MY     

14 3,100 
Hapmap23302-BTC-
052123 

MY     

14 3,122 ARS-BFGL-NGS-113309     PP 

14 3,189 
Hapmap25217-BTC-
067767 

   FP  

14 3,698 ARS-BFGL-NGS-78318     PP 

14 3,834 
Hapmap32262-BTC-
066621 

   FP  

14 3,941 
Hapmap30091-BTC-
005211 

   FP  

14 4,694 
Hapmap30988-BTC-
056315 

   FP  

14 4,956 ARS-BFGL-NGS-112858    FP  

14 5,282 ARS-BFGL-NGS-110894    FP  

14 5,640 
Hapmap32234-BTC-
048199 

  PY   

14 8,692 ARS-BFGL-NGS-28580   PY   

14 8,810 
Hapmap25450-BTC-
055819 

  PY   

14 10,792 ARS-BFGL-NGS-119373 MY     

14 11,525 
Hapmap57409-
rs29021898 

  PY   

14 14,073 ARS-BFGL-NGS-33755   PY   

14 14,132 ARS-BFGL-NGS-117354   PY   

14 14,409 ARS-BFGL-NGS-549   PY   

14 14,560 UA-IFASA-5528   PY   

14 14,806 BTA-122375-no-rs   PY   

14 14,884 
Hapmap60993-
rs29025756 

  PY   

14 16,048 BTB-00553468   PY   

14 16,746 
Hapmap33723-BTA-
156547 

MY  PY   

14 16,788 UA-IFASA-9744 MY     
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14 17,851 UA-IFASA-6305     PP 

14 17,956 BTB-01720377   PY   

14 18,078 BTB-00555233   PY   

14 18,116 ARS-BFGL-NGS-100788   PY   

14 21,668 UA-IFASA-7382   PY   

14 33,321 Hapmap40239-BTA-20881   PY   

14 33,756 Hapmap49579-BTA-34549   PY   

14 34,728 ARS-BFGL-NGS-72344  FY    

14 38,982 ARS-BFGL-BAC-21453     PP 

14 46,013 BTB-01223066  FY    

14 47,657 ARS-BFGL-NGS-3879    FP  

14 61,165 ARS-BFGL-NGS-112068   PY   

14 62,078 
Hapmap58177-
rs29027340 

  PY   

14 65,845 ARS-BFGL-NGS-119102     PP 

14 66,091 ARS-BFGL-NGS-32742   PY   

14 69,097 ARS-BFGL-NGS-3717 MY     

14 69,119 ARS-BFGL-NGS-69078 MY  PY   

14 69,828 BTA-35465-no-rs   PY   

14 70,164 UA-IFASA-7141 MY     

14 77,487 ARS-BFGL-BAC-26943 MY     

15 1,808 ARS-BFGL-NGS-101623 MY     

15 3,801 Hapmap42143-BTA-23359  FY    

15 11,900 Hapmap45702-BTA-93884 MY     

15 14,307 ARS-BFGL-NGS-100235   PY   

15 14,339 Hapmap44375-BTA-37785   PY   

15 20,916 ARS-BFGL-NGS-73400  FY    

15 23,112 Hapmap42921-BTA-36160 MY     

15 31,000 BTA-09703-rs29025860   PY   

15 31,441 ARS-BFGL-BAC-35396     PP 

15 31,586 ARS-BFGL-NGS-107321 MY     

15 32,753 ARS-BFGL-NGS-2713 MY     

15 34,467 BTB-01444556  FY    

15 35,145 BTB-01559217   PY   

15 44,055 UA-IFASA-2402   PY   

15 44,672 ARS-BFGL-BAC-19395 MY     

15 44,705 BTB-01459155  FY    

15 47,944 ARS-BFGL-BAC-21163     PP 

15 58,052 
Hapmap53286-
rs29015961 

    PP 

15 58,948 
Hapmap57960-
rs29017396 

   FP  

15 61,155 BTB-01177461     PP 

15 61,202 BTB-01177436     PP 

15 68,125 ARS-BFGL-NGS-101744   PY   

15 72,891 BTA-98582-no-rs   PY   

15 73,800 BTB-00479196   PY   

15 75,599 ARS-BFGL-NGS-31754     PP 

16 2,468 ARS-BFGL-NGS-22265     PP 

16 2,656 ARS-BFGL-NGS-21426     PP 

16 9,738 BTB-01698088   PY  PP 

16 14,324 BTA-40290-no-rs MY  PY   

16 17,950 Hapmap42200-BTA-40314    FP  

16 19,001 ARS-BFGL-NGS-35246 MY     

16 27,619 ARS-BFGL-NGS-41039 MY  PY   

16 31,374 BTB-00636189 MY     

16 33,890 Hapmap42928-BTA-38715 MY     

16 34,941 BTA-38771-no-rs MY     

16 35,329 Hapmap47936-BTA-38791 MY     

16 35,581 ARS-BFGL-NGS-117892 MY     

16 35,606 BTB-00639530 MY     

16 43,454 ARS-BFGL-NGS-110930   PY   
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16 44,730 ARS-BFGL-NGS-111082   PY   

16 46,838 ARS-BFGL-NGS-59272   PY   

16 47,763 Hapmap39327-BTA-39134  FY PY   

16 48,117 ARS-BFGL-NGS-18487   PY   

16 48,227 BTB-00646159   PY   

16 49,781 ARS-BFGL-NGS-63175 MY  PY   

16 49,945 ARS-BFGL-NGS-111268   PY   

16 50,801 ARS-BFGL-NGS-29043 MY     

16 55,747 BTB-00648059 MY     

16 55,769 BTB-00648053 MY     

16 57,448 BTB-01492749   PY   

16 62,401 ARS-BFGL-NGS-61156 MY     

16 62,593 ARS-BFGL-NGS-101997  FY    

16 62,931 
Hapmap59629-
rs29013680 

MY FY PY   

16 63,025 ARS-BFGL-NGS-113169 MY FY PY   

16 66,661 BTA-39971-no-rs MY FY PY   

16 68,149 BTB-00659112     PP 

16 69,413 ARS-BFGL-NGS-36241     PP 

16 69,702 BTB-00660988  FY PY   

16 70,486 UA-IFASA-8461  FY    

16 70,546 ARS-BFGL-NGS-32521     PP 

16 71,333 Hapmap39023-BTA-39937     PP 

16 71,857 ARS-BFGL-NGS-112904 MY     

16 72,921 ARS-BFGL-NGS-117855    FP  

17 102 BTB-01851867 MY FY PY   

17 139 BTB-01927707   PY   

17 474 BTB-00666435 MY     

17 1,325 ARS-BFGL-NGS-45119   PY   

17 3,253 BTA-109611-no-rs  FY    

17 6,783 BTB-00669395 MY     

17 6,811 Hapmap47945-BTA-41852 MY     

17 6,838 BTB-00669586 MY     

17 7,693 
Hapmap54786-
rs29011077 

MY     

17 7,809 
Hapmap28805-BTA-
147247 

MY     

17 7,976 BTB-01381100 MY     

17 11,307 
Hapmap52387-
rs29021226 

MY     

17 11,991 
Hapmap47504-BTA-
111690 

MY  PY   

17 13,429 BTA-42193-no-rs MY     

17 13,548 ARS-BFGL-NGS-96040   PY   

17 14,162 
Hapmap24693-BTA-
156848 

   FP  

17 14,209 
Hapmap26095-BTA-
113931 

   FP  

17 14,231 
Hapmap28090-BTA-
113932 

   FP  

17 14,607 ARS-BFGL-NGS-22135    FP  

17 16,137 ARS-BFGL-NGS-29973  FY    

17 20,351 ARS-BFGL-BAC-34046 MY     

17 27,083 BTA-22770-no-rs     PP 

17 29,262 BTA-40721-no-rs MY     

17 29,830 
Hapmap58096-
rs29011314 

    PP 

17 33,515 ARS-BFGL-NGS-38157 MY     

17 47,053 ARS-BFGL-NGS-11160   PY   

17 48,762 BTA-117207-no-rs   PY   

17 60,835 ARS-BFGL-NGS-10055 MY     

17 61,232 ARS-BFGL-NGS-118636 MY     

17 61,413 ARS-BFGL-NGS-3759 MY     

17 62,375 ARS-BFGL-NGS-26121   PY   

17 63,451 Hapmap51186-BTA-21161 MY  PY   
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17 63,727 Hapmap49912-BTA-21169 MY     

17 64,993 BTB-01301223    FP  

17 65,228 BTA-41643-no-rs   PY   

17 65,255 ARS-BFGL-NGS-39284   PY   

17 65,289 ARS-BFGL-NGS-50172 MY     

17 66,561 ARS-BFGL-NGS-34489  FY   PP 

17 68,948 ARS-BFGL-NGS-118351  FY PY   

17 69,005 ARS-BFGL-NGS-118399   PY   

17 69,246 BTA-41779-no-rs     PP 

17 69,280 ARS-BFGL-NGS-114711     PP 

17 72,467 ARS-BFGL-NGS-70175     PP 

17 72,850 ARS-BFGL-NGS-116537    FP  

18 2,773 BTB-00691673   PY   

18 2,822 BTB-01590114 MY  PY   

18 6,448 BTB-00695596     PP 

18 8,739 ARS-BFGL-NGS-1116 MY  PY   

18 12,987 ARS-BFGL-NGS-25688 MY     

18 21,508 Hapmap51449-BTA-42665  FY    

18 23,970 ARS-BFGL-NGS-32550  FY    

18 25,961 ARS-BFGL-NGS-66258   PY   

18 28,275 ARS-BFGL-NGS-99463    FP  

18 34,256 ARS-BFGL-NGS-23693  FY    

18 37,107 Hapmap45736-BTA-43103     PP 

18 39,837 ARS-BFGL-NGS-88483    FP PP 

18 40,852 ARS-BFGL-NGS-63087   PY   

18 41,399 BTA-42967-no-rs MY  PY   

18 41,453 BTA-23408-no-rs   PY   

18 41,828 ARS-BFGL-NGS-112414   PY   

18 41,887 Hapmap40976-BTA-43213  FY    

18 43,246 UA-IFASA-8905     PP 

18 43,330 ARS-BFGL-NGS-113354     PP 

18 43,604 ARS-BFGL-NGS-3258     PP 

18 43,660 ARS-BFGL-NGS-75672     PP 

18 46,112 UA-IFASA-2345  FY PY   

18 47,572 ARS-BFGL-NGS-110180 MY     

18 48,909 ARS-BFGL-BAC-35461 MY     

18 51,133 Hapmap49609-BTA-43790   PY   

18 52,162 ARS-BFGL-NGS-114962    FP  

18 52,355 UA-IFASA-9064   PY   

18 53,069 ARS-BFGL-NGS-10036 MY  PY   

18 53,126 ARS-BFGL-NGS-116232 MY  PY   

18 54,290 ARS-BFGL-NGS-100074   PY   

18 55,150 BTA-43890-no-rs MY     

18 55,626 BTA-43831-no-rs  FY    

18 55,862 ARS-BFGL-NGS-25104  FY    

18 61,209 ARS-BFGL-NGS-49873   PY   

19 1,965 Hapmap50697-BTA-44862  FY    

19 16,212 ARS-BFGL-NGS-6298 MY     

19 18,879 ARS-BFGL-NGS-82757   PY   

19 21,097 
Hapmap53206-
rs29014774 

 FY    

19 21,681 Hapmap41542-BTA-44740   PY   

19 23,211 ARS-BFGL-NGS-4411   PY   

19 24,364 ARS-BFGL-NGS-4744   PY   

19 24,407 ARS-BFGL-NGS-81462   PY   

19 25,075 ARS-BFGL-NGS-103353   PY   

19 25,556 ARS-BFGL-NGS-101545   PY   

19 25,806 
Hapmap46758-BTA-
108921 

  PY   

19 26,253 ARS-BFGL-NGS-1837   PY   

19 31,896 ARS-BFGL-NGS-57209     PP 
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19 31,954 ARS-BFGL-NGS-39118 MY  PY   

19 32,590 ARS-BFGL-NGS-103323 MY     

19 34,150 BTA-45034-no-rs   PY   

19 34,230 ARS-BFGL-BAC-33744    FP  

19 40,563 ARS-BFGL-NGS-119404 MY FY PY   

19 44,019 ARS-BFGL-NGS-28651    FP  

19 46,188 BTB-00753901    FP  

19 46,499 ARS-BFGL-NGS-31468 MY     

19 46,829 ARS-BFGL-BAC-2364    FP  

19 48,216 BTA-23253-no-rs    FP  

19 51,542 BTA-45898-no-rs MY FY    

19 51,635 ARS-BFGL-NGS-105988 MY     

19 51,667 ARS-BFGL-NGS-83703  FY    

19 51,692 ARS-BFGL-NGS-102298  FY    

19 61,273 UA-IFASA-8477   PY   

19 61,456 
Hapmap32800-BTA-
133450 

  PY   

19 61,653 ARS-BFGL-NGS-111401    FP  

19 62,807 ARS-BFGL-NGS-116261 MY  PY   

19 62,832 Hapmap43271-BTA-46356  FY PY   

19 63,214 ARS-BFGL-BAC-32334  FY PY   

19 63,380 ARS-BFGL-NGS-88748  FY    

19 63,763 ARS-BFGL-NGS-39527 MY     

19 64,258 BTB-01987097  FY    

19 64,283 ARS-BFGL-NGS-101226  FY PY   

19 64,446 ARS-BFGL-NGS-54958 MY     

19 64,517 ARS-BFGL-NGS-43321   PY   

19 64,590 ARS-BFGL-NGS-72483   PY   

19 64,618 ARS-BFGL-NGS-108629   PY   

19 64,648 ARS-BFGL-NGS-32846  FY PY   

19 65,133 ARS-BFGL-NGS-18449   PY   

20 1,291 ARS-BFGL-NGS-17557 MY     

20 3,014 ARS-BFGL-NGS-23863  FY    

20 8,767 ARS-BFGL-NGS-44829 MY     

20 13,234 ARS-BFGL-NGS-12791  FY    

20 19,982 
Hapmap50241-BTA-
115966 

MY     

20 20,006 ARS-BFGL-NGS-110436 MY     

20 20,041 BTA-115956-no-rs MY     

20 23,528 ARS-BFGL-NGS-110975   PY   

20 24,231 Hapmap50712-BTA-50068  FY PY   

20 26,229 ARS-BFGL-NGS-108866   PY   

20 26,556 ARS-BFGL-NGS-18978     PP 

20 27,037 ARS-BFGL-NGS-38132     PP 

20 29,212 ARS-BFGL-BAC-36217     PP 

20 29,734 ARS-BFGL-NGS-17586   PY   

20 29,838 BTA-50190-no-rs   PY   

20 30,094 ARS-BFGL-NGS-31598 MY     

20 30,129 ARS-BFGL-BAC-27914     PP 

20 30,613 BTB-01328684     PP 

20 31,203 ARS-BFGL-BAC-27930     PP 

20 31,886 ARS-BFGL-NGS-16297     PP 

20 32,980 BTA-103550-no-rs     PP 

20 33,014 
Hapmap59121-
rs29022980 

    PP 

20 33,079 
Hapmap54258-
rs29018641 

    PP 

20 33,122 UA-IFASA-9183     PP 

20 34,037 ARS-BFGL-NGS-118998   PY  PP 

20 34,954 
Hapmap39724-BTA-
122305 

    PP 

20 34,983 ARS-BFGL-NGS-89478     PP 

20 35,433 
Hapmap39811-BTA-
122745 

   FP  
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20 35,457 BTB-01888575    FP  

20 35,552 ARS-BFGL-BAC-2469    FP  

20 35,671 ARS-BFGL-NGS-26909    FP PP 

20 36,394 
Hapmap54938-
rs29013720 

  PY   

20 36,956 
Hapmap57531-
rs29013890 

    PP 

20 37,399 BTB-00778154  FY  FP PP 

20 37,443 BTB-00778141    FP PP 

20 37,479 ARS-BFGL-NGS-34049   PY   

20 37,708 ARS-BFGL-NGS-38482     PP 

20 37,785 ARS-BFGL-NGS-84088     PP 

20 37,866 Hapmap39660-BTA-50453     PP 

20 37,946 BTB-00779241 MY     

20 38,002 BTB-00780234 MY     

20 38,076 BTB-00780124 MY     

20 38,201 
Hapmap52690-
ss46526609 

    PP 

20 38,296 BTA-50420-no-rs     PP 

20 38,381 BTB-01912756     PP 

20 38,519 ARS-BFGL-NGS-13317  FY PY  PP 

20 38,540 ARS-BFGL-NGS-11884  FY   PP 

20 38,590 ARS-BFGL-NGS-63936   PY  PP 

20 38,741 ARS-BFGL-NGS-2860     PP 

20 38,900 ARS-BFGL-NGS-22355     PP 

20 38,936 Hapmap51600-BTA-50467 MY     

20 39,486 BTB-00782435  FY PY  PP 

20 39,519 BTA-13793-rs29018751  FY PY  PP 

20 39,601 BTB-01842107  FY PY  PP 

20 39,639 
Hapmap53888-
rs29021190 

    PP 

20 39,667 INRA-620  FY PY  PP 

20 39,698 Hapmap38412-BTA-50496   PY  PP 

20 39,728 
Hapmap53199-
rs29014437 

  PY  PP 

20 39,826 
Hapmap57276-
ss46526009 

MY     

20 39,861 Hapmap42572-BTA-50505   PY  PP 

20 39,950 BTA-50515-no-rs     PP 

20 40,005 BTB-00781699     PP 

20 40,519 ARS-BFGL-NGS-38574 MY     

20 40,634 ARS-BFGL-NGS-91540     PP 

20 40,923 BTB-01423688     PP 

20 41,064 BTB-01163526  FY   PP 

20 41,189 Hapmap42161-BTA-26363 MY     

20 41,217 BTA-92644-no-rs     PP 

20 41,633 ARS-BFGL-NGS-65409 MY     

20 41,818 BTB-01898603 MY     

20 41,861 ARS-BFGL-BAC-34879 MY     

20 41,923 ARS-BFGL-NGS-36606     PP 

20 41,947 BTA-102910-no-rs     PP 

20 41,976 
Hapmap42401-BTA-
102906 

MY     

20 42,197 ARS-BFGL-NGS-73590     PP 

20 42,740 ARS-BFGL-BAC-33668     PP 

20 43,164 BTB-01410122     PP 

20 43,585 Hapmap43599-BTA-50578 MY     

20 45,121 Hapmap38112-BTA-50631   PY   

20 45,288 BTB-01263010     PP 

20 45,582 BTB-01263230 MY     

20 45,936 BTA-50635-no-rs     PP 

20 46,950 Hapmap50991-BTA-50645     PP 

20 48,368 ARS-BFGL-NGS-37203 MY     

20 48,464 BTB-00785931     PP 
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20 48,504 Hapmap43873-BTA-50695     PP 

20 48,572 ARS-BFGL-NGS-57668 MY     

20 48,703 BTB-00786292   PY   

20 50,644 BTB-00411452     PP 

20 53,350 UA-IFASA-2994     PP 

20 53,387 
Hapmap54729-
rs29023630 

    PP 

20 55,293 BTB-02040655     PP 

20 56,645 Hapmap40003-BTA-50839     PP 

20 60,208 BTA-50852-no-rs     PP 

20 61,736 BTB-01648514   PY   

20 61,903 ARS-BFGL-NGS-111931   PY   

20 64,019 BTB-01340958     PP 

20 64,066 BTB-01341053   PY   

20 64,397 BTB-01580948   PY   

20 64,482 BTB-01456930     PP 

20 64,508 BTB-01899482     PP 

20 65,379 ARS-BFGL-BAC-34915     PP 

20 66,093 BTB-00793280   PY   

20 66,150 ARS-BFGL-BAC-36223   PY   

20 66,705 ARS-BFGL-NGS-17058     PP 

20 70,190 ARS-BFGL-NGS-41833 MY     

20 70,409 ARS-BFGL-NGS-118449 MY FY PY   

20 71,165 ARS-BFGL-NGS-109799 MY     

20 71,407 BTB-01525417 MY     

20 72,558 ARS-BFGL-NGS-34321 MY     

20 72,851 ARS-BFGL-NGS-29478 MY     

20 73,497 ARS-BFGL-NGS-117598  FY    

20 73,749 BTA-51296-no-rs MY     

21 4,359 Hapmap50019-BTA-52721 MY  PY   

21 4,500 ARS-BFGL-NGS-44523   PY   

21 4,657 ARS-BFGL-NGS-34864   PY   

21 6,007 Hapmap38507-BTA-52931   PY   

21 6,464 ARS-BFGL-NGS-46597     PP 

21 7,947 ARS-BFGL-NGS-118623 MY     

21 8,284 
Hapmap47860-BTA-
120557 

  PY   

21 8,336 ARS-BFGL-NGS-21637   PY   

21 9,707 ARS-BFGL-NGS-8069   PY   

21 12,697 ARS-BFGL-NGS-109184 MY     

21 13,539 BTB-01258471 MY     

21 13,564 ARS-BFGL-NGS-86644  FY    

21 14,914 ARS-BFGL-NGS-25378 MY  PY   

21 15,037 ARS-BFGL-NGS-42615 MY     

21 15,058 BTA-53495-no-rs   PY   

21 15,142 ARS-BFGL-NGS-54451 MY  PY   

21 16,338 ARS-BFGL-NGS-30546 MY  PY   

21 16,994 ARS-BFGL-NGS-33483  FY PY   

21 17,382 ARS-BFGL-NGS-79733   PY   

21 18,331 BTB-00808681 MY  PY   

21 18,843 ARS-BFGL-NGS-41922   PY   

21 19,075 ARS-BFGL-BAC-33343 MY     

21 22,397 ARS-BFGL-NGS-69585   PY   

21 23,030 ARS-BFGL-NGS-28785   PY   

21 24,164 ARS-BFGL-NGS-99587   PY   

21 24,974 
Hapmap53212-
rs29015272 

  PY  PP 

21 26,007 ARS-BFGL-BAC-33968   PY   

21 26,070 BTA-51988-no-rs  FY PY   

21 26,661 
Hapmap60593-
rs29025761 

 FY PY   

21 26,782 BTA-51981-no-rs   PY   

21 30,629 Hapmap46427-BTA-51697 MY     
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21 32,960 ARS-BFGL-NGS-104404 MY     

21 37,998 ARS-BFGL-NGS-119377   PY   

21 40,026 BTB-01533089 MY  PY   

21 40,230 
Hapmap35241-
BES8_Contig395_800 

  PY   

21 40,877 BTB-00818669 MY     

21 49,392 BTA-52470-no-rs MY     

21 65,869 ARS-BFGL-NGS-2582    FP  

22 84 Hapmap46833-BTA-54748  FY    

22 982 ARS-BFGL-NGS-103852     PP 

22 1,071 ARS-BFGL-NGS-39898   PY   

22 1,159 BTB-01355483   PY   

22 1,317 ARS-BFGL-NGS-118681   PY   

22 3,945 
Hapmap60454-
rs29020896 

  PY   

22 4,862 
Hapmap46936-BTA-
113993 

  PY   

22 6,126 BTA-08756-no-rs MY     

22 6,168 ARS-BFGL-NGS-66672 MY     

22 6,574 BTB-01641930 MY     

22 14,514 ARS-BFGL-NGS-74971 MY     

22 19,979 ARS-BFGL-NGS-114883   PY   

22 38,334 ARS-BFGL-NGS-87577  FY    

22 51,758 
Hapmap58292-
rs29023404 

 FY PY   

22 51,812 ARS-BFGL-NGS-111216  FY    

22 51,910 ARS-BFGL-NGS-102411  FY PY   

22 54,992 
Hapmap60563-
ss46526220 

 FY    

22 55,641 Hapmap41094-BTA-83358    FP  

22 57,441 BTB-00855998    FP  

22 58,128 BTA-109257-no-rs    FP  

22 60,851 ARS-BFGL-NGS-54563 MY     

22 61,419 
Hapmap39470-BTA-
121373 

 FY    

22 61,644 ARS-BFGL-NGS-41433   PY   

23 2,821 BTA-55567-no-rs  FY    

23 3,017 ARS-BFGL-NGS-15303  FY    

23 7,611 Hapmap50393-BTA-57089 MY     

23 7,809 ARS-BFGL-NGS-112194 MY     

23 8,319 ARS-BFGL-NGS-44219     PP 

23 8,838 BTA-57141-no-rs     PP 

23 9,244 
Hapmap23991-BTA-
137000 

MY  PY   

23 14,993 ARS-BFGL-NGS-8960 MY     

23 16,666 ARS-BFGL-NGS-34042 MY  PY   

23 17,631 ARS-BFGL-NGS-114979    FP  

23 22,371 ARS-BFGL-NGS-20819   PY   

23 22,681 UA-IFASA-5859   PY   

23 24,748 UA-IFASA-8890     PP 

23 25,816 
Hapmap28130-BTA-
137222 

MY     

23 26,060 ARS-BFGL-NGS-117031 MY     

23 27,197 Hapmap47328-BTA-56087 MY     

23 29,745 ARS-BFGL-NGS-109612 MY     

23 38,839 ARS-BFGL-NGS-88425     PP 

23 39,049 BTA-56563-no-rs     PP 

23 40,052 BTA-01409-rs29012374     PP 

23 40,288 
Hapmap57401-
rs29021597 

 FY    

23 42,523 
Hapmap59016-
rs29021748 

    PP 

23 43,007 BTA-56863-no-rs     PP 

23 43,029 ARS-BFGL-NGS-95117     PP 

23 43,195 UA-IFASA-4209     PP 

23 43,681 Hapmap42978-BTA-56919     PP 
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23 44,801 ARS-BFGL-NGS-105406     PP 

23 45,179 Hapmap47993-BTA-56668     PP 

23 45,589 BTB-00869928   PY   

23 45,686 ARS-BFGL-NGS-84634     PP 

23 45,727 ARS-BFGL-NGS-41732     PP 

23 46,011 BTA-56731-no-rs     PP 

23 46,217 ARS-BFGL-NGS-104353     PP 

23 49,704 ARS-BFGL-NGS-108142   PY   

23 50,770 ARS-BFGL-NGS-119306   PY   

23 51,015 Hapmap39230-BTA-56961   PY   

23 51,536 ARS-BFGL-NGS-11502   PY   

23 51,584 ARS-BFGL-NGS-118139   PY   

23 51,691 ARS-BFGL-NGS-112069   PY   

23 52,506 BTB-01381524   PY   

23 52,611 ARS-BFGL-NGS-17155   PY   

23 53,092 
Hapmap57192-
rs29027634 

  PY   

24 2,619 ARS-BFGL-NGS-108020 MY     

24 7,657 BTB-01414130 MY FY PY   

24 21,679 
Hapmap59517-
rs29027550 

 FY    

24 22,361 ARS-BFGL-NGS-1701  FY    

24 25,540 ARS-BFGL-NGS-108732 MY FY    

24 29,475 ARS-BFGL-NGS-5141 MY     

24 30,667 BTB-00885200 MY     

24 30,726 BTB-00885058 MY     

24 34,936 ARS-BFGL-NGS-116211   PY   

24 35,638 BTB-00886759   PY   

24 37,929 BTB-01978737  FY    

24 38,800 ARS-BFGL-NGS-49210 MY  PY   

24 42,553 ARS-BFGL-NGS-73693   PY   

24 46,427 
Hapmap33939-
BES5_Contig460_1314 

  PY   

24 47,271 
Hapmap56316-
rs29025240 

    PP 

24 47,359 Hapmap44102-BTA-58355  FY    

24 53,329 ARS-BFGL-NGS-19883    FP  

24 60,413 ARS-BFGL-NGS-45332     PP 

24 62,662 ARS-BFGL-NGS-112116   PY   

24 64,042 BTB-00893217     PP 

25 4,361 ARS-BFGL-NGS-16204 MY  PY   

25 4,393 
Hapmap30941-BTC-
018717 

MY  PY   

25 4,426 
Hapmap23660-BTC-
018762 

MY  PY   

25 16,557 ARS-BFGL-NGS-18399   PY   

25 17,233 ARS-BFGL-NGS-16007 MY  PY   

25 17,349 ARS-BFGL-NGS-74312    FP  

25 17,784 ARS-BFGL-NGS-102125  FY    

25 22,525 ARS-BFGL-NGS-57864     PP 

25 23,954 ARS-BFGL-NGS-117215     PP 

25 24,531 ARS-BFGL-NGS-15260 MY     

25 26,103 ARS-BFGL-NGS-31959    FP  

25 26,138 ARS-BFGL-NGS-42319    FP  

25 26,240 ARS-BFGL-NGS-1148    FP  

25 28,024 ARS-BFGL-BAC-42500  FY    

25 30,630 BTB-01701816  FY    

25 32,150 ARS-BFGL-NGS-103963     PP 

25 33,271 
Hapmap31673-BTC-
065823 

  PY   

25 38,858 ARS-BFGL-NGS-76406   PY   

25 41,134 ARS-BFGL-NGS-42041   PY   

26 8,781 ARS-BFGL-NGS-37164     PP 

26 9,468 BTB-01211987 MY  PY   
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26 11,300 BTA-62062-no-rs     PP 

26 20,477 ARS-BFGL-NGS-111739     PP 

26 28,969 
Hapmap50547-BTA-
102741 

 FY    

26 29,484 BTB-01619529  FY    

26 29,566 ARS-BFGL-NGS-43819  FY    

26 29,590 Hapmap44427-BTA-92700  FY    

26 31,529 ARS-BFGL-NGS-91860  FY    

26 32,420 ARS-BFGL-NGS-22409    FP  

26 32,480 ARS-BFGL-NGS-89840  FY    

26 32,708 BTA-61163-no-rs  FY    

26 36,834 ARS-BFGL-NGS-36795   PY   

26 41,317 ARS-BFGL-NGS-111901   PY   

26 41,545 ARS-BFGL-NGS-10498   PY   

26 41,950 ARS-BFGL-NGS-33804   PY   

26 43,017 INRA-573 MY     

26 46,189 ARS-BFGL-NGS-35886  FY    

27 990 ARS-BFGL-NGS-102273   PY   

27 11,888 BTB-01753761   PY   

27 12,293 BTB-01581312  FY    

27 12,324 BTB-01581416  FY PY   

27 12,829 
Hapmap24215-BTA-
163266 

MY     

27 13,049 ARS-BFGL-NGS-21780 MY     

27 13,929 BTB-00953522   PY   

27 19,314 Hapmap42678-BTA-79248 MY     

27 21,188 ARS-BFGL-NGS-110610   PY   

27 27,098 ARS-BFGL-NGS-102382   PY   

27 29,065 ARS-BFGL-NGS-339    FP  

27 29,087 ARS-BFGL-NGS-110867    FP  

27 30,697 Hapmap42020-BTA-97693 MY     

27 36,004 ARS-BFGL-NGS-35260     PP 

27 36,527 
Hapmap35718-
SCAFFOLD271203_2920 

  PY   

27 40,301 BTA-121522-no-rs     PP 

27 44,368 ARS-BFGL-NGS-64852   PY   

27 44,540 
Hapmap41400-BTA-
101218 

  PY   

27 46,730 ARS-BFGL-NGS-112603    FP  

27 46,768 ARS-BFGL-NGS-116840    FP  

28 608 BTA-64665-no-rs   PY   

28 3,488 ARS-BFGL-NGS-114198 MY FY PY   

28 6,185 ARS-BFGL-NGS-43798 MY  PY   

28 6,469 BTB-00974967 MY  PY   

28 7,858 
Hapmap57617-
rs29026743 

  PY   

28 10,431 
Hapmap55640-
rs29014036 

  PY   

28 12,845 ARS-BFGL-NGS-42033   PY   

28 14,380 Hapmap50823-BTA-92119  FY    

28 15,987 ARS-BFGL-NGS-105316 MY  PY   

28 16,091 ARS-BFGL-NGS-1363    FP  

28 19,213 Hapmap48416-BTA-63708 MY     

28 19,697 Hapmap48125-BTA-92753 MY     

28 25,440 ARS-BFGL-NGS-109305  FY    

28 27,975 
Hapmap55318-
rs29013309 

 FY    

28 37,463 BTB-01640085   PY   

28 41,598 BTA-99379-no-rs   PY   

28 43,076 ARS-BFGL-NGS-116671 MY  PY   

29 2,118 ARS-BFGL-NGS-13527   PY   

29 4,211 BTB-01360311     PP 

29 4,598 ARS-BFGL-NGS-18177     PP 

29 6,275 ARS-BFGL-NGS-86658     PP 
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29 6,415 ARS-BFGL-NGS-112954     PP 

29 6,750 ARS-BFGL-NGS-35685     PP 

29 7,164 BTB-01892890     PP 

29 7,693 ARS-BFGL-NGS-35993     PP 

29 12,323 BTB-01007059   PY   

29 15,449 BTB-00426200   PY   

29 23,628 UA-IFASA-7930     PP 

29 26,295 ARS-BFGL-NGS-64656     PP 

29 29,653 
Hapmap54158-
rs29026721 

  PY   

29 29,797 Hapmap40781-BTA-65234 MY     

29 30,945 ARS-BFGL-NGS-119428   PY   

29 32,144 ARS-BFGL-NGS-98534   PY   

29 32,284 Hapmap50431-BTA-65530   PY   

29 33,147 Hapmap42287-BTA-65439 MY     

29 33,423 ARS-BFGL-NGS-109714 MY     

29 35,829 Hapmap38768-BTA-66476 MY     

29 37,061 ARS-BFGL-NGS-101872    FP  

29 41,336 UA-IFASA-9622   PY   

29 42,982 ARS-BFGL-NGS-85356   PY   

29 43,970 
Hapmap34333-
BES2_Contig145_646 

  PY   

29 48,975 Hapmap41328-BTA-66089 MY     

29 49,317 
Hapmap24835-BTA-
140780 

 FY    

29 51,788 ARS-BFGL-NGS-14481 MY  PY   
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[S2] Python Script for MDA method 

''' 
Created on 18/apr/2013 
 
@author: Massimo Cellesi mcellesi@uniss.it 
''' 
# How to use MDA program: 
# In the script's folder must be present: 
#    the files, termed cromo1.txt,  cromo2.txt, ...., cromo29.txt, where the data are stored (animal_name SNP1 SNP2, ... 
SNPN) 
#    1 file (ebv.txt) where EBVs are stored (animal_name trait1 trait2, ... )  
#    a folder for each trait with the same name of the trait specified into ebv.txt file (trait1, trait2, ....). 
#   
#    file cromoN.txt (all variables have to be separated by a space) 
#    animal_name snp1 snp2 snp3 snp4 
#    Plate24-A01 0 1 2 0  
#    Plate24-A04 0 1 0 0 
#   
#    file ebv.txt (all variables have to be separated by a space) 
#    animal_name MY FY PY FP PP 
#    Plate24-A01 -2154.7 -63.12 -74.27 0.1976 -0.0281 
#    Plate24-A04 -895.2 -10.7 -45.09 0.2543 -0.1603 
# 
# Results will be stored into sub-folders MY, FY, ... (these names have to be the same of the traits into the ebv.txt file)  
# MDA generates files QTL_B1.txt, QTL_B2.txt, ..., QTL_B29.txt, one for each chromosome. 
#      nSnp gtype diffMean freqB pboot 
#      1 0 0.0 0 0.0  
#      2 0 1.8 1 0.1  
#      3 0 0.0 0 0.0 
# where: 
# nSnp is the considered SNP 
# gtype is the genotype of maximum difference selected by MDA 
# diffMean is not used  
# freqB specify how many times the SNP is associated to the trait 
# pboot is the posterior probability of bootstrap     
 
import sys, os 
from operator import itemgetter   
import random 
import datetime 
from math import sqrt 
 
def main(argv): 
    global _trait_, _ebv_, _nboot_, _nds_, _best_ 
    if len(argv)>=2: 
        _trait_=argv[0] 
        _ebv_=argv[1] 
        if len(argv)>=3: 
            _nds_=float(argv[2]) 
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            if len(argv)>=4: 
                _nboot_=int(argv[3]) 
                if len(argv)==5: 
                    if (argv[4]=='True') or (argv[4]=='true') or (argv[4]=='T') or (argv[4]=='t'): 
                        _best_=True 
                    else: 
                        _best_=False 
                else: 
                    _best_=True 
            else: 
                _nboot_=5000 
                _best_=True 
        else: 
            _nds_=1.66 
            _nboot_=5000 
            _best_=True 
    else: 
        print("syntax:") 
        print ("python MDA.py trait fileEbv [nds=1.66] [nboot=5000] [best=True[True/False]]") 
        print ("Example python MDA.py milk ebv.txt") 
        print ("Example python MDA.py FC ebv.txt 1.96") 
        print ("Example python MDA.py protein ebv.txt 1.96 1000") 
        sys.exit(2) 
 
 
def loadSetting(folderIn, folderOut, trait): 
    global pathIn, pathOut, feno 
    pathIn=folderIn+'/' 
    pathOut = folderOut+'/'+trait+'/' 
    feno=trait 
 
 
def leggiTrait(fIn):   
#legge il file dei trait e restituisce 2 liste: la prima con i nomi degli animali e la seconda con i trait 
    fp=pathIn+fIn 
    f = open(fp, 'r') 
         
    head = f.readline().split() 
    for ncol in range(0, len(head)): 
        if head[ncol] == feno: 
            nT=ncol 
            break 
                 
    nomi=[] 
    trait={} 
    for row in f: 
        nomi.append(row.split()[0]) 
        trait[row.split()[0]]= float(row.split()[nT]) 
    f.close() 
    return nomi, trait  
 
def leggiBTA(nBTA): 
    fp=pathIn+'cromo'+repr(nBTA)+'.txt' 
    f = open(fp, 'r') 
    f.readline().split()  # si legge la prima riga contenente le intestazioni 
    dati=[] 
    for row in f: 
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        dati.append(row.split()) 
    f.close() 
    return dati # snp 
     
 
 
def getDiffMda(primo, secondo): 
# restituisce una lista di liste. [nSnp, gtype, diff]  nSnp parte da 1!!!! 
    diff=[] 
    seq=[] 
    for i in range(1,len(primo[0])-1):  # si parte da 1 perche il primo e' il nome e l'ultimo e' il trait 
        zp=up=dp=zs=us=ds=0 
        for j in range(0,len(primo)): 
            if primo[j][i]=='0': 
                zp+=1 
            elif primo[j][i]=='1': 
                up+=1 
            elif primo[j][i]=='2': 
                dp+=1 
            if secondo[j][i]=='0': 
                zs+=1 
            elif secondo[j][i]=='1': 
                us+=1 
            elif secondo[j][i]=='2': 
                ds+=1 
        if (zp>=up): 
            if (zp>dp): 
                diff.append([i,0,zp-zs]) 
                seq.append(zp-zs) 
            else: 
                diff.append([i, 2, dp-ds]) 
                seq.append(dp-ds) 
        elif (up>dp): 
            diff.append([i,1, up-us]) 
            seq.append(up-us) 
        else: 
            diff.append([i,2, dp-ds]) 
    return media(seq), devStd(seq), diff 
 
def media(a): 
    n=float(sum(a)) 
    return n/len(a) 
 
def varianza(sequence): 
    #Calcola la varianza della sequenza. 
    med = media(sequence) 
    return sum([(x-med)**2 for x in sequence]) / len(sequence) 
 
def devStd(sequence): 
    #Calcola la deviazione standard della sequenza. 
    return sqrt(varianza(sequence)) 
     
def scriviQTL(ris, ncrom, Best): 
    if Best: 
        fp=pathOut+'QTL_B'+repr(ncrom)+'.txt' 
    else: 
        fp=pathOut+'QTL_W'+repr(ncrom)+'.txt' 
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    f = open(fp, 'w') 
    f.write("nSnp gtype diffMean freqB pboot\n") 
    for line in ris: 
        for x in line: 
            f.write("%s " % x) 
        f.write("\n") 
    f.close() 
     
def getNBW(numC): 
    if numC < 1000: 
        return int(numC *0.1) 
    elif numC < 1500: 
        return int(numC * 0.09) 
    elif numC < 2000: 
        return int(numC * 0.085) 
    elif numC < 3000: 
        return int(numC * 0.08) 
    elif numC < 4000: 
        return int(numC * 0.07) 
    elif numC < 5000: 
        return int(numC * 0.06) 
    elif numC < 7000: 
        return int(numC * 0.05) 
    else: 
        return int(numC * 0.45) 
 
def getNumCampione(numPop): 
    if numPop<1000: 
        return int(numPop * 0.7) 
    elif numPop<2000: 
        return int(numPop * 0.66) 
    elif numPop<5000: 
        return int(numPop * 0.6) 
    elif numPop<8000: 
        return int(numPop * 0.55) 
    else: 
        return int(numPop * 0.5) 
     
     
def bootQtl(nboot, chrIni, chrFin, nds, Best, fileTrain, numC=-1, nBW=-1): 
    now=datetime.datetime.now() 
    h=now.hour*100 
    m=now.minute 
    seed=h+m 
    random.seed(seed) 
     
    nomiAn, t=leggiTrait(fileTrain) 
    if numC == -1: 
        numC=getNumCampione(len(nomiAn)) 
    if nBW == -1: 
        nBW=getNBW(numC) 
     
    for ncrom in range(chrIni,chrFin+1): 
        print "BTA N.", ncrom, "...", datetime.datetime.now() 
        d=leggiBTA(nBTA=ncrom) 
         
        datiChr=[]        # prendo in esame solo gli animali di training 
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        for i in range(0,len(d)): 
            if d[i][0] in nomiAn: 
                d[i].append(t.get(d[i][0])) # nell'ultimo elemento abbiamo ebv 
                datiChr.append(d[i]) 
         
        nr=len(datiChr)  # nr contiene il numero di animali   
        for nb in range(0,nboot): 
            lrnd=random.sample(xrange(nr), numC) 
            lrnd=sorted(lrnd) 
            datiRnd=[] 
            for i in lrnd: 
                datiRnd.append(datiChr[i]) 
            t_ord= sorted(datiRnd, key=itemgetter(len(datiRnd[0])-1)) 
            chrW = t_ord[:nBW] 
            chrB = t_ord[-nBW:]  # si toglie l'ultimo elemento che e' l'EBV 
             
            if Best: 
                mean, ds, diffBW = getDiffMda(chrB, chrW) 
            else: 
                mean, ds, diffBW = getDiffMda(chrW, chrB) 
             
            soglia=mean+ds*nds 
            for i in diffBW: 
                if i[2]<soglia: 
                    i[2]=0 
                    i.append(0) 
                else: 
                    i.append(1) 
            # risMDA e' una lista di liste del tipo [nSnp, gtype, diff, freq] 
            if nb == 0: 
                risMDA = diffBW[:] 
            else: 
                for i in range(len(risMDA)): 
                    if diffBW[i][2]>0 and (risMDA[i][1]==diffBW[i][1] or risMDA[i][2]==0):  # stesso genotipo 
                        risMDA[i][2]+=diffBW[i][2]    # si sommano le diff 
                        risMDA[i][3]+=diffBW[i][3]    # is incrementa freq  
        
        for snp in risMDA: 
            snp.append(float(snp[3])/nboot) 
            snp[2]=float(snp[2])/nboot            # si aggiunge la colonna pboot 
         
        scriviQTL(risMDA, ncrom, Best) 
             
 
# ---------------------------- MAIN PROGRAM ----------------------------- 
if __name__ == '__main__': 
    main(sys.argv[1:]) 
 
     
loadSetting(folderIn=os.getcwd(), folderOut=os.getcwd(), trait=_trait_) 
 
bootQtl(nboot=_nboot_, chrIni=1, chrFin=29, nds=_nds_, Best=_best_, fileTrain=_ebv_) 
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