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Introduction 
 
Sex and Gender 
The terms sex and gender are commonly used interchangeably, or are referred 
to a dichotomous variable. However, gender and sex indicate different aspects. 
Gender is a sociocultural pattern that sorts and organizes social relationships, 
social standards and values, appropriate roles for men and women 1–3, while sex 
indicate the biological differences of the body. Thus sex-gender differences will 
reflect physiological distinctions between each sex, as well as environmental 
influences dictated by differences in the diet, life style, and exposure to 
environmental pollutants (e.g. chemicals, perfumes, cigarette smoke)3,4. Where 
appropriate, cultural and behavioral differences are highlighted and contrasted 
against those due to biological differences 5. Moreover, sex and gender interact 
constantly and their interactions could be more complex than previously 
believed. For example, nongenetic transgenerational inheritance presents a 
conspicuous marked sexual dimorphism. Thus, sex appears to be an 
‘environmental’ variable that includes cellular, metabolic, physiological, 
anatomical and even behavioural differences, either in girls or boys or between 
men and women; thus, it should be included in the experimental tasks. 
Historically, men have been the investigators and the participants of health 
research but data arising from these studies have been extrapolated to represent 
the experiences of both sexes 6. Nevertheless, it is indisputable that there are 
substantial biological and social differences in the lives of females and males. 
These differences could have important health consequences along lifespan.  
The recognition of the differences and similarities can modify diagnosis and 
improve the prevention, the efficacy and the safety of the treatments 3,7. All these 
goals require experimental and clinical studies in which the design and analysis 
are performed in a new perspective, in order to go beyond a rough evaluation of 
differences and similarities, including the fact that females are not a 
homogenous population. It should also be considered what happens to and 
around us. Thus, social relationships should be examined: phenotype inevitably 
depends on the interaction of the individual with the environment (stress 
response) 8,9, on maternal behaviour (e.g. rat mothers behave differently versus 
female and male pups)10,11. 
Sexual dimorphism starts in uterus and seems also to occur at a pregonadal 
stage 12. It is well known that female fetus, that develops between male fetuses, 
enters puberty later and is more aggressive towards other females; whereas, a 
male fetus, that develops between two female fetuses, is less aggressive and has 
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less sexual activity 13. Also, neonatal changes can perpetuate, in adulthood and in 
the successive generation, involving somatic epigenomic alterations, 
hypothalamic-pituitary-adrenal axis12,14–16. Considering that sex-gender 
“dimension” starts in a very early age, it is salient to investigate differences in 
cell coming from individuals at very early age such as the cells of the umbilical 
cord.  
Beyond the phenotypic differences,  males and females differ in health, life span, 
cognitive abilities17,18, in drug responses19, diseases such as anemia20, 
hypertension, coronary heart disease 21–23 and renal dysfunctions24–28. 
The evolution of knowledge regarding sex-gender differences in coronary heart 
disease (CHD) has allowed us to highlight differences in terms of prevalence, 
onset of symptoms, and pathophysiology of CHD between men and women. 
Seung Hwan Han et al.21 show that male patients were significantly younger than 
women, had lower levels of HDL cholesterol and the atherosclerotic plaques 
were larger and had more pronounced eccentricity. It has also been reported 
that the aggressive revascularization strategies do not lead to the same benefits 
in women than in men21,29,30. However, the mechanisms underlying these 
differences remain obscure. The clinical data and in vitro studies show that one 
of the first consequences of the outbreak of the atherosclerotic process is the 
remodeling of the vascular smooth muscle31. 
The spindle-shaped VSMC derived from mesenchymal cells form the tunica 
media of the vessels. In mature animals, these cells are deeply specialized and 
participate in the regulation of blood vessel tone and/or diameter, and blood 
flow distribution. Contraction and dilatation are controlled by innervation for 
example through noradrenaline, by hormones, autocrine/paracrine agents such 
as angiotensin II (Ang II), leukotrienes32,33. Ang II is a multifunctional hormone 
that has pleiotropic effects on smooth vascular muscle causing vasoconstriction, 
proliferation of vascular smooth muscle cells (VSMC)34,35, cellular senescence, 
oxidative stress 36–39, inflammation and apoptosis40,41. Ang II acts through at least 
two types of receptors: AT1 e AT2. The AT1 is seven transmembrane class of G-
protein-coupled receptor that mediates the major cardiovascular effects of Ang 
II42. The human genome contains a unique gene coding for the AGTR1 receptor, 
localized in 3q24. Multiple alternatively spliced transcript variants have been 
reported for Ang II receptor, type 1 (AGTR1) gene. AGTR2 is located in Xq22-q23 
and encodes AT2 receptor that belongs to the G-protein coupled receptor 1 
family43,44. It is an integral membrane protein that is highly expressed in fetus, 
but scantily in adult tissues, except brain, adrenal medulla, and atretic ovary 45 
.This receptor has been shown to mediate programmed cell death and this 
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apoptotic function may play an important role in developmental biology and 
pathophysiology46. All Human fibroblasts have an abundant expression of both 
AT1 and AT2 receptors , whereas VSMC express only AT147. Leukotrienes are 
lipid mediators generated de novo from membrane-associated arachidonic acid 
which play a role in the control of bronchial48–50 and vascular muscle where 
modulate proliferation, hypertrophy, hyperplasia, and remodeling of the arterial 
wall of vascular smooth muscle51. They activate cysteinyl leukotriene receptor 1 
which is encoded by the CYSLTR1 gene48. located in Xq13.2-21.1. Noteworthy 
genes located in X chromosome for humans, are also located in X chromosome 
for every mammals or at least for those in Homologene database  

(http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=homologene&d
opt=HomoloGene&list_uids=4837-20172-28). 

Indeed, while somatic chromosome are very arranged among species, this is not 
true for sexual ones which are very conserved52 ,probably due to the need to 
maintain a dosage compensation and simultaneously sex determining role53. 
Notably, VSMC appear to be, in the adult mammalian, cells with a high plastic 
properties, capable of run into major, reversible changes in morphology and 
gene expression in response to local stimuli both in vivo and in vitro31,54 e.g. they 
can also differentiate into osteoblast-like cells at sites of atherosclerosis/arterial 
calcification55. VSMC possess receptors of sexual hormones, and the estrogen 
receptors diverge in male and female21,38,56–58. Nevertheless, only few studies 
have been focused on sex-gender differences in VSMC and they are performed in 
VSMC obtained from animals. The differences involve proliferation, cell death 
(apoptosis and autophagic process) and redox state59,60.  
Human VSMC can be easily obtained from the umbilical cord which connects the 
developing embryo or fetus to the placenta61 and in humans it normally contains 
two umbilical arteries and one umbilical vein, immersed in Wharton's jelly. The 
umbilical vein and arteries are twisted in a spiral with only a small amount of 
Wharton’s jelly between them. This close association raises the possibility of a 
hemodynamic interaction between the arterial and venous vessels62. The 
umbilical veins transport oxygenated, nutrient-rich blood to the fetus from the 
placenta. Conversely, the umbilical artery transports the fetal deoxygenated, 
nutrient-depleted blood through back to the placenta63. Human VSMC obtained 
from the umbilical cord have been already used in experimental settings that 
study the physiology and pathology of cardiovascular system64. 
As already mentioned, the androgen receptor (AR) is present in VSMC and 
belongs to nuclear receptor subfamily 3, group C, member 4. The human gene 

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=homologene&dopt=HomoloGene&list_uids=4837-20172-28
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=homologene&dopt=HomoloGene&list_uids=4837-20172-28
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the encodes the AR has been localized to Xq11-12. The AR regulates directly and 
indirectly gene expression65–69. The activation of AR exerts controversial effects 
on VSMC. Hashimura et al. found that androgens stimulates an increase in GAG 
length and the binding capacity to LDL in VSMC cultures from mammary 
arteries67. On the other hand, Somjen et al.68 found that the effect is dose 
dependent, low concentration and high concentration increases and decrease 
VSMC proliferation, respectively. In humans, low plasma testosterone level is 
associated with advanced atherosclerosis 65 suggesting that androgens play a 
role in cardiovascular function. 

More information are available on the role of estrogen receptors (ER) in VSMC. 
Estrogens exert their action through different types of receptors70–72. Two 
classes of estrogen receptor exist: ER alpha and beta, which are member of the 
nuclear hormone family of intracellular receptors, and the estrogen G protein-
coupled receptor GPR30 (GPER), which is a G protein-coupled receptor73,74. 
ERα and ERβ are encoded by a separate gene (ESR1 and ESR2, respectively) 
which show significant overall sequence homology, and both are composed of 
five domains. Ligands may differ in their affinity for alpha and beta isoforms of 
the ER75. Additionally, the presence of different ER combinations may be the 
cause different response to various ligands76. The ratio of α- to β- subtype 
concentration has been proposed to play a role in certain diseases75. 

To make this situation even more complicated there is at least another nuclear 
estrogen receptor: Estrogen-related receptor alpha (ERR-α), also known as 
NR3B1 (nuclear receptor subfamily 3, group B, member 1). This is a nuclear 
receptor encoded by the ESRRA gene that is closely related to the estrogen 
receptor alpha and in humans is located in 11q13. The protein encoded acts as a 
site-specific transcription regulator77,78. This protein has been also shown to 
interact with estrogen and the transcription factor TFIIB by direct protein-
protein contact. The binding and regulatory activities of this protein have been 
demonstrated in the regulation of a variety of genes including lactoferrin, 
osteopontin, medium-chain acyl coenzyme A dehydrogenase (MCAD) and 
thyroid hormone receptor genes79 . Finally, the ERR alpha/PGC1alpha complex 
is a regulator of energy metabolism (STRING DATABASE). Recently it has also be 
individuated another ER namely GPER. This receptors is a specific membrane 
receptor and induce rapid nongenomic effects even in the vessels80. Its 
activation rapidly activates a series of signaling pathways in the cell, such as 
MAPK, cAMP, PI3K/Akt cascades and calcium current81–86. 
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ERα and ERβ and GPR30 affect cardiovascular function74,87–92. Nevertheless, 
there are still controversial aspects in the distribution of the expression of ER 
subtypes between the components of human cardiovascular system93. 

Many sex-gender differences has been also described in liver. The most studied 
differences involve drug metabolism3. Actually, it is known that both phase 1 
and phase 2 enzymes are sexually divergent and they could explain numerous 
differences in the drug response. Genetic polymorphisms94, the personal history 
of exposure to drugs and environmental chemicals95, dietary factors96,97, 
pregnancy98, diseased states99, epigenetic factors100, age and sex-gender101 affect 
the activity of drug-metabolizing enzymes. Sex-gender differences involve CYP 
enzymes3, sulfotransferases102, glutathione transferases103 altering the 
bioavailability and clearance of xenobiotics3 in male and in female. 

GSH plays a central role in redox state. It can directly scavenge reactive oxygen 
species or act as substrate of enzyme such as glutathione transferases. These 
enzymes, as already mentioned, are sexual divergent and are involved in drug 
metabolism. Actually, it is less known whether the synthesis of GSH is sex-gender 
dependent. The rate limiting step in the synthesis of GSH is the glutamylcysteine 
ligase (GCL)104. The ligase incorporate cysteine in the GSH molecule, while a part 
of cysteine is degraded into sulfate, H2S and taurine105,106. Notably, the enzyme is 
also involved in hepatic paracetamol toxicity107,108 participating to redox state 
and xenobiotic metabolism109. 

 
Genetically based differences 
 
Genetic diversity in humanity has been estimated at about one nucleotide to 
300110 so every individual has a combination of genetic variants with a total effect 
that varies widely from one individual to another. 
Female mammals cells possess two copies of the X chromosome but, generally 
speaking, they do not synthesize twice as much of those proteins whose gene is 
located in the X chromosome because one of the X chromosome is inactivated 
through a process called lionization, the A Barr body (named after discoverer 
Murray Barr)111,112. In 1961, Mary Lyon shows that process occurs early in 
embryonic development and in mammals it occurs at random113 Later, Beutler, 
studying heterozygous females for Glucose-6-phosphate dehydrogenase (G6PD) 
deficiency discovered the female mosaicism114. 
The inactive X chromosome (Xi) when compared to the active X chromosome 
(Xa) has high levels of DNA methylation, low levels of histone acetylation, low 



8 

 

Marco Fois 
Gender differences in human smooth muscle cells and rat liver  
Phd School In Biomedical Science For Gender Pharmacology 
Dept. Biomedical Sciences, University of Sassari, Italy 

levels of histone H3 lysine-4 methylation, and high levels of histone H3 lysine-9 
methylation, all of which are associated with gene silencing115. Additionally, a 
histone variant called macroH2A (H2AFY) is exclusively found on nucleosomes 
along the Xi116. Xi does not express the majority of its genes but not the whole 
barr body is inactive117. Talebizadeh et al.118 found, in a published dataset of 
multiple normal human tissues119, that on average 5.1 and 4.9% of genes 
showed higher expression in females compared with 7.4 and 7.9% in males, 
respectively, for X-linked and autosomal genes118. 
 
Epigenetics 
Living beings need for a continuous adaptation to the environment, in other 
words, environment modulates the expression of genes and gene networks 
through fine adjustments based on the conditions of life, and on molecules with 
which they come into contact. Such molecules come not only from food and 
drugs, but also from botanical remedies, dietary supplements, drinks and 
airborne substances (e.g. alcohol and environmental pollutants like tobacco 
smoke and metals)120,121. The influence of environment could generate different 
response in male or female bodies. All this falls under the action of epigenetic 
mechanisms122  

 

Hormonal Differences 

They are briefly mentioned when AR and ER have been discussed. 

 

Autophagic, lysosomial marker and mTOR  
Macroautophagy (hereafter called autophagy) is a process during which the 
regulated turnover of cellular constituents happens trough lysosomial 
machinery123. Autophagy delivers cytoplasmatic cargo to the lysosomes through 
a double–wall vescicles called autophagosomes which fuse with lysosomes to 
form an autophagolysosome. This process, which exists in all eukaryotic cells, is 
tightly controlled, and in extreme cases can results in cell death124. For example, 
autophagy is fundamental during oocyte-to embryo transition125,126, in 
starvation autophagic cells are frequently observed in certain disease such 
neurodegenerative disorders like Alzheimer’s and Parkinson’s disease127, in liver 
failure, hepatitis, liver cancer and steatosis128. In addition, alterations in 
autophagic process seem to be implicated in hypertensive heart disease and 
heart failure129,130 in ischemia/reperfusion131,132. So it is plausible that autophagy 
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is not only an adaptive response to nutrient limitation but also a mechanism for 
cell suicide and a mechanism for cell homeostasis133,134 . Many proteins are 
involved in the autophagic processes. Beclin 1 is involved in the early steps of 
autophagic vesicle formation and it is a haplo-insufficient tumor suppressor 
gene135,136. Also microtubule-associated protein light chain 3 (LC3)137 involved in 
autophagy. Upon induction of autophagy, native LC3 (LC3 I) is lipidated by 
conjugation to phosphatidylethanolamine (becoming LC3II) and targeted to 
autophagic membranes. Therefore, changes in LC3 expression and localization 
have been used to measure autophagy. Thus, the LC3-II/LC3-I is a good early 
marker for autophagy. 
Actually, it is not known whether autophagy present sexual dimorphism. 
However few papers suggest that it could occur. Du et al.138 found that nutrient 
restriction increased autophagosome formation in males rat neurons more than 
in females. It has been shown that spontaneous and induced autophagy diverges 
in rat VSMC59 obtained from male and female animals. Data on organ are missing 
therefore one of the aim of this thesis was to examine autophagy in diffent rat 
organs studying two autophagic biomarkers: Beclin-1 which is required for the 
initiation of the formation of the autophagosome135,139,140 and microtubule-
associated protein light chain 3 (LC3)137. 
Furthermore, we also evaluated an opposite regulator in autophagy induction: 
the kinase mTOR, which, when activated, inhibits autophagy139 and oxidation of 
proteins and lipids because redox state is an important event for induction of 
autophagy. In view of the role of lysosomes in the autophagy139, we also 
measured LAMP-1, a constitutive protein of lysosomial membrane. 
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Methods 

Animals  
18 male and 18 female Sprague–Dawley rats (7 weeks old) were purchased from 
Harlan (Italy) and housed 2–3 per cage. Rats were maintained on a 12 h 
light/dark cycle and were allowed food and water ad libitum till the sacrifice. 
The experimental protocols were carried out in accordance with Italian law (DL 
116, 1992) and the NIH principles of laboratory animal care (NIH 80-33, revised 
1996). All experimental procedures were approved by the Department of 
Veterinary Public Health, Food Security and Collegial Organs for the Protection 
of Health (Ministry of Health) as requested by Italian law. As it was impossible to 
have males and females at the same age of the same weight, we decided to 
perform experiments in samples obtained from male and female animals of the 
same age. Animals were euthanized by decapitation, then thoracic and 
abdominal cavities were opened to access the liver, which was rapidly removed, 
washed, and divided into two weighed parts, one part was homogenized in ice 
cold PBS. Homogenates were stored at −80° C and analyzed within 1 month. Part 
of the liver was used for immunohistochemical staining, after fixation in 4% 
paraformaldehyde and paraffined.  
 
Thiol measurement  
Thiols were measured according to Zinellu et al.141. For thiol analysis , 100 µl of 
standard or samples were mixed with 10 µl of TBP (10%), vortexed for 30 s and 
subsequently incubated at 4◦C. After 10 min 100 µl of 10% trichloroacetic acid 
(TCA) were added and the mixture. After vortexing for 10 s, the reaction mixture 
was centrifuged for 10 min at 3000 × g. 100 µl of supernatant were mixed with 
100 µl of 300 mmol/l Na3PO4 at pH 12.5 and with 25 µL of 5-IAF (4.1 mmol/l), 
and subsequently incubated at room temperature (RT) for 10 min. The mix was 
diluted 1/100 before being injected for capillary electrophoresis with a laser-
induced fluorescence detector 141. 
 
Taurine detection  
50 µl of hepatic homogenate were mixed with 50 µl IS homocysteic acid (200 
μmol/l) then were 100 µl of TCA (10%) added to precipitate total proteins. After 
centrifugation at 3000 × g for 5 min, 10 µl of supernatant were mixed with 90 µl 
of 100 mmol/l Na2HPO4, pH 9.5 and 11 µl of 15 mmol/l FITC. After 20 min 
incubation time at 100◦C, samples were diluted 100-fold and injected into a 
capillary electrophoresis apparatus. Analysis was performed in an uncoated 
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fused silica capillary, 75 um I.D. and 47 cm length (40 cm to the detection 
window), injecting 18 nl of sample. Separation was carried out in a 20 mmol/l 
tribasic sodium phosphate buffer, pH 11.8, 23 °C at normal polarity 22 kV142. 
 
Measurement of H2S 
H2S was determined using the method described in Hua et al. (2009) with slight 
modifications. In brief, 1 ml of liver homogenate was mixed with 100 µl of zinc 
acetate (1%, w/v) and incubated at 37 °C for 10 min. After proteins precipitation 
with 20% TCA, supernatant was collected by centrifugation (14,000 rpm × 20 
min, 4 °C) and diluted twice with distilled water and incubated with N,N- 
dimethyl-p-phenylenediamine sulfate (2 g/l) and ferric chloride (FeCl3, 3 g/l) in 
HCl 6 N for 20 min at room temperature [RT] followed by a centrifugation at 
14,000 rpm for 5 min at 4 °C. The absorbance of the resulting solution was 
measured at 670 nm and H2S concentration was calculated using a calibration 
curve of sodium hydrosulfide in water (100–3.125 μM). H2S blanks were 
obtained incubating the supernatant with FeCl3 only. Results are expressed as 
nmol/mg protein. 
 
Malondialdehyde (MDA) detection  
MDA levels were measured according to Esterbauer and Cheeseman (Esterbauer 
and Cheeseman, 1990) with slight modifications. 200 μl of tissue homogenate 
were mixed with 200 μl of dilute acetic acid (1:3 in H2O). 150 μl of 10% sodium 
dodecylsulphate (SDS), to easily precipitate the proteins, and 200 μl of Tris-HCl 
50 mM were added. The solution was kept in incubation for 10 min at RT and 
then 500 μl of a solution of thiobarbituric acid [0.75% in dilute acetic acid and 
NaOH 1N (1:1)] were added. The mixture was boiled for 60 min, quenched in ice 
(10 min), added with 400 μl of acetic acid (1:3 in H2O) and centrifuged at 4°C at 
13000 rpm for 20 min. The quantification was performed 
spectrophotometrically at 532 nm by measuring the absorbance produced by 
the sample. Standards of MDA at known concentration (5, 10, 25, 50 μM) were 
used to construct the calibration curve. 
 
Assay of carbonyls  
Total amount of carbonylated proteins was quantified as described by Fagan et 
al143 with some modifications. In brief, 10 μl of tissue homogenate were washed 
with 10 volumes of acetone-HCl (30:1); the pellet resuspended in 100 µl of PBS 
and 900 µl of 2,4-dinitrophenylhydrazine (DNPH) (10 mM in HCl 2 N) were 
added and incubated for 1 h at RT, with occasionally mixing. Blanks were 
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incubated with HCl 2 N only. Proteins were precipitated with 20% 
trichloroacetic acid (TCA), collected by centrifugation (10 min, 15000 rpm, 4°C) 
and washed with 10% TCA. To remove unreacted DNPH, samples were washed 
three times with 1 ml mixture of ethyl acetate-ethanol 1:1 and then the protein 
pellet was re-suspended in guanidine hydrochloride (6 M in HCl 2 N) at RT. The 
absorbance was recorded at 370 nm and the carbonyl concentration was 
calculated using the extinction molar coefficient of DNPH (ε= 22000) after 
subtracting blank’s absorbance. Carbonyls concentration was normalized using 
the protein concentration of blanks measured at 280 nm. 
 
Western blot GCL, actin, β-tubulin, glyceraldehyde- 3-phosphate 
dehydrogenase (GAPDH) in liver homogenates.  
80 ug of protein for each sample were loaded. The reaction was carried out 
using anti-actin IgG fraction of antiserum developed in the rabbit (A5060, 
Sigma–Aldrich, Italy), a polyclonal rabbit anti-β-tubulin (2146S, Cell Signalling 
Technology, DBA Italia, Italy), a monoclonal rabbit anti-GAPDH (2118S, Cell 
Signalling Technology, DBA Italia, Italy) and a poly- clonal rabbit anti-GCLc (sc-
2275S, Cell Signalling Technology, DBA Italia, Italy). Specific protein was 
detected by chemiluminescence reaction (LumiGLO, Cell Signalling Technology, 
DBA Italia, Italy), followed by densitometric analysis of immunoblot by 
dedicated software (Labworks). Western blot analysis showed that total actin 
and GAPDH expression were significantly higher in females than in males (P= 
0.048 and P= 0.017, respectively; data not shown) whereas β-tubulin expression 
was significantly lower in female than in male tissue (P= 0.006; data not shown) 
and therefore we were unable to normalize Western blot data for these proteins. 
The reported differences were in line with those found by others.  
80 µg proteins were resolved by SDS-PAGE (4-15%) at 100 V for 1 h at RT and 
then electrophoretically transferred to PVDF membrane for 1 h at 250 mA and 4 
°C using a mini-PROTEAN tetra-Cell system (Bio-Rad Italia, Segrate, Italy). The 
PVDV membrane was treated with 5% w/v skim milk in Tris buffer (150 mM 
NaCl, 20 mM Tris-HCl, pH 7.2) at RT for 2 h and then probed overnight at 4°C 
with specific polyclonal antibodies, (actin (1:1000), β-tubulin (1:1000), 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1:1000), mTOR 
(1:1000), Beclin-1 (1:1000), LAMP-1 (1:1000) and LC3 which reacts with both 
LC3-I and LC3-II (1:500). Antibodies were obtained from Cell Signalling 
Technology (DBA Italia, Segrate, Italy) with the exception of anti-LC3 antibody 
that was purchased from Eppendorf Italia (Milan, Italy). 
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After washing in Tris buffer, blots were incubated for 1 h with horseradish 
peroxidase (HRP)-conjugated secondary antibody (1:2000; Cell Signalling 
Technology, DBA Italia, Segrate, Italy). Specific proteins were detected by 
chemiluminescence reaction (Luminata TM Classic Western Blot HRP substrate, 
Millipore, Vimodrone, Italy), followed by densitometric analysis of immunoblot 
by dedicated software (Labworks). 
 
Selection of housekeeping protein for normalization of western blot data 
Previously, in rat liver, it was shown that some housekeeping proteins most 
frequently used to normalize Western Blot were sexually divergent144Therefore, 
we evaluated actin, β-tubulin and GAPDH, in livers to select the protein for 
normalization. Fig. 1 evidenced that all three proteins were sexually divergent 
in the livers. Consequentially, data from liver were normalized using total 
proteins, which did not diverge between males and females. 
 

 
Fig. 1. Densitometric analysis (panel A) and representative Western blot (panel 
B) of β-tubulin, actin and GAPDH expression in livers obtained from male and 
female rats. Data for densitometric analysis are reported as mean ±SD of 5 
independent samples per group.* P=0.006; † P=0.048; § P=0.017. 
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Immunohistochemistry of GCL  
Immunohistochemistry was performed using a polyclonal rabbit anti-GCLc (Cell 
Signalling Technology, DBA Italia, Italy) and the LSAB+ System-HRP Kit (Dako, 
Italy). For antigen retrieval, 3-m thick sections were heated at inter- mediate 
power in a conventional microwave oven in citrate buffer (10 mM, pH 6) for 10 
min. The slides were blocked with 3% hydrogen peroxide for 20 min and 
incubated with primary antibody (1:50) in PBS/BSA 1% overnight at 4◦C, 
washed, incubated with biotiny- lated goat anti-rabbit IgG in PBS for 30 min, 
washed, incubated with streptavidin-HRP reagent for 30 min, washed, and 
incubated with diaminobenzidene substrate for 2 min. Finally, slides were 
counterstained with hematoxylin, dehydrated in graded ethanol washes and 
washed in xylene. Liver sections were examined in a blinded manner under light 
microscopy (DM4000B, Leica).  
 
Immunofluorescence microscopy of LAMP-1 and LC3 
Immunofluorescence microscopy analyses were carried in livers. A double 
labeling of LAMP-1 and LC3 was performed. The first is a lysosome-associated 
membrane protein involved in the maintenance of lysosome acidity and is used 
to mark lysosomal localization. The second is a microtubule-associated protein, 
present in the cells in two forms: soluble form (LC3-I) and autophagosome-
associated form (LC3-II). LC3-II and LAMP-1 co-localization indicates 
autophagolysosomes formation (Trincheri et al., 2007). 5 μm thick sections were 
deparaffinized by washing in xylene and rehydrated through a graded series of 
ethanol. After redistilled water washings, sections were incubated with 
polyclonal anti-LC3 (Eppendorf Italia, Milan, Italy), which reacts with both LC3-I 
and LC3-II, and monoclonal anti-LAMP-1 (Santa Cruz Biotechnology, California, 
USA) for 30 min at 37 °C. After extensive washing, sections were exposed to the 
appropriate TRITC- and FITC-conjugated secondary antibody (Sigma–Aldrich, 
Milan, Italy) for 30 min at 37 °C. For nuclear staining, the dye Hoechst 33258 
(Sigma–Aldrich, Milan, Italy) was used. Samples were examined with an 
Olympus BX51 microscope and immunofluorescence analyses were carried out 
by intensified video microscopy (IVM) by a Charge-coupled device camera (Carl 
Zeiss, Oberkochen, Germany). 
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Cell isolation and cultivation 
 
Source of materials and selection of donors  
Umbilical cords were provided by the Department of Pharmacology, Gynecology 
and Obstetrics, University of Sassari. We selected umbilical cord coming from 
human healthy male and female newborns (total female =16 , total male =16), 
which were vaginal delivered from Caucasian, healthy, non-obese and non-
smoking mothers that were drug free with exception of folic acid.  
Informed consent was obtained from all subjects donating cords in accordance 
with the Declaration of Helsinki. 
 
Isolation of Human Umbilical Artery Smooth Muscle Cells: HUASMC 
Various methods of isolation are described in the literature145–147, however in 
my hand, none was satisfactory in term of the cells recovery, the purity and 
cellular suffering. So I proceeded to some modifications. Precisely, cords were 
washed externally in PBS (Sigma-Aldrich, Saint Louis, USA) immersed in PBS 
and cut into segments not longer than 8 cm to avoid supercoilings. Then, cords 
were longitudinally opened following the path of the arteries and were 
separated from connective gelatinous (Wharton's jelly) and adventitia. The 
blood contained in the arteries were drained from the ends, and the segments 
were incubated at 37°C for 45 'in 5 ml of a solution 800 U/ml of collagenase 
from Clostridium histoliticum (Sigma-Aldrich, Saint Louis, USA) dissolved in 
DMEM medium with Glutamax (Gibco). Then the suspension of segments of 
artery was inverted in a cell culture grade Petri dish. After adding further 15 ml 
of PBS, segments were grasped with tweezers at one end and externally scraped 
along the entire length with another, so as to facilitate the suspension of 
HUASMC. The complex thus obtained is then diluted with PBS to the extent of 
100 ml each 10 cm in length of the cord to reduce the viscosity due to the 
extracellular matrix solubilized by enzymatic action. Macroscopic debris are 
discarded and only the aqueous phase is centrifuged (at 1000G for 15 min). The 
pellet were resuspended in 15ml of 20% FBS DMEM medium with glutamax, 
(Sigma-Aldrich, Saint Louis, USA), with 1% antibiotic / antimycotic (Sigma- 
Aldrich, Saint Louis, USA), and seeded in gelatin coated culture flasks (Sigma-
Aldrich, Saint Louis, USA;1% in PBS, dried) to the extent of 75 cm2 of adhesion 
surface each 20cm departure umbilical cord and kept at 37°C in an atmosphere 
of 95% relative humidity at 5% CO2. After six days, the flask were gently 
horizontally shaken to resuspend the thin extracellular sediment layer, the old 
medium was aspirated and the culture washed with PBS, then fresh medium 
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were added. Upon reaching confluence the p0 cells were trypsinized and 
reseeded at 75% confluence (Fig. 2). 
 

 
 
Fig.2. Huasmc proliferation and transition from secretory to contractile 
phenotype. That transition become definitely evident in two or three days at 
100% of confluency. 
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Fig.3. Female and Male HUASMC P1 cultures. The picture show the morphology, 
alpha smooth muscle actin and the confluence of HUASMC. 
 
 
Cellular characterization by alpha smooth muscle actin-specific 
immunofluorescence 
The cells were seeded at a density of 35000 cells/cm2 in chamber slide. 48 hours 
later, after settling down, cells were washed with PBS and then fixed in 4% PFA 
in PBS for 5 minutes at RT. After a further wash in PBS cell layer was fixed in 
cold methanol for 1 minute at room temperature to facilitate the 
permeabilization. The cells, washed again with PBS were treated with blocking 
solution (PBS with the addition of 4% BSA and 0.1% Triton X-100) for 10 
minutes and incubated with the primary antibody (alpha smooth muscle actin-



18 

 

Marco Fois 
Gender differences in human smooth muscle cells and rat liver  
Phd School In Biomedical Science For Gender Pharmacology 
Dept. Biomedical Sciences, University of Sassari, Italy 

specific dilution 1:400 in blocking solution) for 60 minutes at RT. After 2 washes 
with PBS we proceed with the incubation with the secondary antibody (diluted 
from 1:64 to 1:100), conjugated with the fluorescent probe, for 30 minutes in 
the dark. After further washing in PBS, cell layer was stained with DAPI, 
(1ug/ml) for 4 minutes in the dark, to label the nuclei. After a final wash in PBS, 
the slides are mounted with mounting Medium for fluorescence (Fig.3). 
 
RNA extraction and reverse transcription 
P1 cultures of HUASMC, were washed with PBS and total RNA extracted by the 
use of silica column/buffer guanidinium and DNA digestion “in-column” by 
means of the commercial kits "RNeasy mini prep" and the enzyme DNase-RNase 
free both from Qiagen according to the manufacturer's instructions. The 
extracted RNA was quantified by spectrophotometric reading at 260 nm and 
A280 nm to assay the protein contamination. 1ug of RNA for each sample was 
converted into cDNA by the “High Capacity cDNA Reverse Transcription Kit”, 
purchased from Applied Biosystems, according to the indication of the producer. 
Random RNA samples were always retrotranscipted with H2O instead of reverse 
transcriptase (rt-blanks) to check for genomic amplification during real time 
PCR. 
 
Real time PCR 
The Real time PCR reactions were carried out at first in triplicate then in 
duplicate to save sample, given that the "variability between the technical 
replicates" was too small to be relevant. 20ng of cDNA were used as template in 
a total reaction volume of 10μl. We used the TaqMan probes according to the 
manufacturer's instructions. Taqman probes were chosen checking the 
existence of synonyms in databases and specificity compared to pseudogenes 
and isoforms. where possible have been selected probes straddling exon 
junctions. Rt-PCR results for rt-blanks were always negative given that 
treatment with DNase during RNA extraction prevented any genomic 
contamination. Two housekeeping genes were used to normalize real time PCR 
results: the gene that encode the ribosomal protein l30 (Rpl30) a protein that is 
a component of the ribosomal 60S subunit148 and the gene that encode β2 
microglobulin, a component of MHC class I molecule149, that is a good candidate 
as a housekeeping gene for normalization150. 
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Statistical analysis  
Each sample was determined in duplicate and statistical analysis of data was 
done by comparing parameters obtained from male and female rat livers. 
Continuous parametric variables were analyzed using the Student t-test. Non-
parametric variables were compared with the Mann-Whitney rank test. For all 
tests a P-value ≤0.05 was considered as statistically significant. The association 
of strength between pairs of variables was calculated by the Spearman Product 
Moment Correlation coefficient or the Pearson Product Moment Correlation 
coefficient using SigmaStat software.  
For statistical analysis of real time data Relative expression software tool 
(REST©) were used, with 2000 iterations. 
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Results  
 
Sex-gender differences in livers obtained from male and female rats 
 
Weight of animals and liver total protein content 
7 weeks old male and female rats were weighted and as expected, females were 
significantly smaller (P < 0.001) in comparison with males (Table 1). After the 
sacrifices, total liver was assayed and they did dot differ between sexes.  
 
Table 1. Body weight and total liver protein content of male and female 
rats. 
 
 Male Female P 
Body weight (g)  223.3 ± 16.8  190.0 ± 10.87  <0.001 
Total liver protein 
(mg protein/mg 
tissue) 

0.16 ± 0.04 0.14 ± 0.04  NS  

 
Data are reported as mean ± SD of 18 independent animals per group.  
 
As shown in the material and method section, we did not find any valid 
housekeeping protein for a solid normalization between the two sexes. So we 
proceeded to normalize data on sample total protein content per mg of hepatic 
tissue. 
 
Biomarkers of oxidative stress: MDA and protein carbonylation 
The redox state can be subject to sexual dimorphism60. We evaluated two 
oxidative stress markers MDA, a marker of lipid peroxidation151, and protein 
carbonylation152. Both MDA and protein carbonyls did not diverge in the liver of 
male and female rats (Fig. 4 and 5). 
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Fig. 4. MDA levels (data are reported as mean ± SD of 18 independent animals 
per group). 
 
 

  
Fig. 5. Protein carbonylation levels, 18 independent animals per group. Boxes 
represents the interquartile range, or the middle 50% of observations. The line 
represents the median. Whiskers represent the 10th and 90th percentiles, dots 
represent the minimum and maximum observations.  
 
Liver levels of some noteworthy thiol compounds  
In view of the importance of GSH in the metabolism of drugs we examined GSH 
and its precursors. GSH did not vary significantly between sexes but remarkably, 
L-cysteine was significantly higher in females than in males (Table 2), however 
precursor of cysteine, L–methionine, was not divergent between sexes (Table 2). 
L-cysteine metabolites, taurine and H2S was also detected because both have 
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important physiological functions. Briefly, taurine acts as antioxidant and is an 
endogenous hypochlorous acid scavenger153–155, while H2S participate in 
gastrointestinal mucosal defense and repair156, and regulation of vascular 
function157–163. Although we did not find any significant differences in taurine, 
H2S was significantly lower in female liver than in male liver (Table 2). 
 
 
Table 2. Levels of some thiol compounds (nmol/mg prot) in liver from 
male and female rats 
 Male liver Female Liver P 
GSH 15.2 (10.64–

37.76) 
13.2 (5.63–38.54) NS 

L -Cysteine 2.39 (1.32–5.03) 4.22 (2.03–7.99) 0.007 
L -Methionine  4.93 ± 1.20  5.49 ± 1.79  NS 
Taurine 38.7 ± 14.0  35.2 ± 14.6  NS 
H2S 0.22 ± 0.04  0.18 ± 0.04  0.016 
 
Data are reported as mean ± SD of at least 18 independent animals per group when normally 
distributed and as median (range) if they have a non-Gaussian distribution.  

 
 
Expression of GCL, the key enzyme in GSH synthesis 
GCL was significantly lower (41%) in females than in males (P = 0.002) 
according to Western blot analysis (Fig. 6., panel A). The biochemical data was 
confirmed by immunohistochemistry staining. Immunohistochemistry image 
showed smaller areas of positive staining (indicative of the different distribution 
of the enzyme) in paraffin sections obtained from female livers (Fig. 6, panel B) 
in comparison with paraffin sections obtained from male livers. 
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Fig. 6. Densitometric analysis, and representative Western blot of GCL 
expression (panel A) and a representative light microscopy demonstrating 
immunohystochemical staining of GCL (panel B) as observed in male and female 
rat livers. Data for densitometric analysis are reported as mean ± SD of 7 
independent samples per group. *P = 0.002. Ellipses indicate positively stained 
areas (brown cells). Images were captured at 20× (bar = 50 μm) of the picture.  
 
Correlations 
Interestingly, in our findings, both in males and in females GSH and MDA 
(−0.785,  P<0.001; −0.554 P =0.017, respectively) were inversely related, also 
GSH and protein carbonylation were negatively correlated both in males (-0,598 
P<0.001) and in females (-0,43; P=0,0728) even if P-value did not reach 
statistical significance in females, while L-cysteine and GSH (0.820, P<0.001) 
such as L-cysteine and L-methionine (0.723, P <0.001), and L-cysteine and 
taurine (0.554, P=0.017) were positively associated only in males. GSH and 
taurine, L-cysteine and H2S were not associated in both sexes.  
 
Autophagic, lysosomial marker and mTOR  
One of the most informative marker of the lysosomal membrane is the 
lysosome-associated membrane protein 1 (LAMP-1)164,165. Strikingly LAMP-1 
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was more expressed (Fig. 7) in male liver than in female liver (P=0.04). 
Immunofluorescence staining confirmed the datum, indeed more numerous red 
spots, indicative of lysosome number, were in cells of livers sections from male 
rats (Fig. 7) in comparison with those from female. Nevertheless, merging green 
fluorescence of LC3 immunostaining and red fluorescence of LAMP-1, a 
particular yellow pattern (indicative of LC3-II autophagosome accumulation) 
was more present in male rats (Fig. 7). 
Expression of Beclin-1, a protein required for the initiation of the formation of 
the autophagosome123, and the expression of microtubule-associated protein 
light chain 3 (LC3), and it is lipidated form obtained  by conjugation to 
phosphatidylethanolamine (becaming LC3II) and the ratio between LC3II/LC3I 
did not diverge between sexes (Fig 7). Finally, an opposite regulator in 
autophagy induction the kinase mTOR, was not different in male and female 
livers (Fig. 7).  
 
Correlations between LAMP-1, beclin-1, LC3I; LC3II, mTOR 
In female livers, only one correlation has been found, in particular Beclin-1 and 
mTOR were directly associated (0.627; P=0.039), in male livers none 
correlations was found.  
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Fig. 7. Densitometric analysis of Western Blots of Beclin-1, mTOR, LAMP-1, LC3-
I, LC3-II, LC3-II/LC3-I ratio in male and female rat livers. Data are reported as 
mean ± SD or boxes with whiskers (Boxes represents the interquartile range, or 
the middle 50% of observations, the line represents the median; whiskers 
represent the 10th and 90th percentiles, dot represents the minimum and 
maximum observations of at least 8 independent experiments and are 
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normalized on total proteins * P<0.05. Representative immunofluorescence 
images of liver from a male and a female rat. Left panels show LAMP-1 positive 
staining (red fluorescence); middle panels show both forms of LC3 (LC3-I and 
LC3-II) positive staining (green fluorescence); right panels show the merge of 
two fluorescences (yellow punctuate pattern) indicating the co-localization of 
LAMP-1 and LC3. 

 

Gene expression in HUASMC 
 
Estrogen receptors alpha and beta 
Both alpha and beta estrogen nuclear receptor were markedly more expressed 
males than in females (Fig. 8 and 9). 
 

 
Fig. 8. ER alfa was up-regulated in males in comparison to females group by a 
mean factor of 8,564 [P(H1)=0,000]; P(H1): probability of alternate hypothesis 
that difference between groups is due only to chance. Boxes represent the 
interquartile range, or the middle 50% of observations. The dotted line 
represents the median gene expression. Whiskers represent the minimum and 
maximum observations. 
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Fig. 9. ER-beta was up-regulated in male group in comparison to female group 
by a mean factor of 2,901 (P(H1)=0,047). Boxes represents the interquartile 
range, or the middle 50% of observations. The dotted line represents the median 
gene expression. Whiskers represent the minimum and maximum observations. 
 
Estrogen-related receptor alpha  
Estrogen-related receptor alpha (ERR-alpha), also known as NR3B1 (nuclear 
receptor subfamily 3, group B, member 1) did not diverge between sexes (Fig. 
10). 
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Fig. 10. ESRRA expression ratio. Boxes represents the interquartile range, or the 
middle 50% of observations. The dotted line represents the median gene 
expression. Whiskers represent the minimum and maximum observations. 
 
G Protein coupled receptor 30  
Evidence suggests that estrogen may also interact with specific membrane 
receptors and induce additional rapid and nongenomic vascular effects80. GRP30 
as ESRRA did not diverge between sexes (Fig. 11.).  
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Fig. 11. GPER expression ratio. Boxes represent the interquartile range, or the 
middle 50% of observations. The dotted line represents the median gene 
expression. Whiskers represent the minimum and maximum observations. 
 
Androgen receptor 
We found that male-HUASMC express more gene that encode AR than female-
HUASMC but the difference was not a significant (Fig 12). 
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Fig. 12. Androgen receptor expression ratio. Boxes represent the interquartile 
range, or the middle 50% of observations. The dotted line represents the median 
gene expression. Whiskers represent the minimum and maximum observations. 
 
 
Ang II Receptor (AGTR) 1 and 2:  
Ang II acts through at least two types of receptors: agtr1 e 2. In HUASMC the 
gene that encode did no present disparity between the two sexes (Fig.13.), 
while the gene that encode AT2 receptors was undetectable. This was in line 
with previous results and was a further molecular confirmation that our cells 
cultures were free of fibroblast contamination47. 
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Fig. 13. Ang II receptor 1. Boxes represent the interquartile range, or the middle 
50% of observations. The dotted line represents the median gene expression. 
Whiskers represent the minimum and maximum observations. 
 
Cysteinyl-leukotriene receptor 1 
Cysteinyl-leukotrienes are potent lipid mediators synthesized from arachidonic 
acid by a variety of cells and trigger contractile and inflammatory processes 
through the specific interaction with cell surface receptors. Cysteinyl leukotriene 
receptor 1 (CYSLTR1) is a member of the superfamily of G protein-coupled 
receptors. Activation of this receptor by LTD4 results in contraction and 
proliferation of VSMC. In humans CYSLTR1 gene localizes in Xq13-q21. Due to its 
position on the X chromosome and for its involvement in the inflammatory 
cascade we were wondering if it was expressed in HUASMC and most of all, if it 
was subjected to sex gender dimorphism or lionization (dosage compensation) 
in HUASMC. We found CYSLTR1 was expressed in males and females VSMC, and 
the difference was not significant (Fig. 14.). 
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Fig. 14. Cysteinyl-leukotriene receptor 1. Boxes represent the interquartile 
range, or the middle 50% of observations. The dotted line represents the median 
gene expression. Whiskers represent the minimum and maximum observations. 
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Discussion 
 
Numerous sexual differences has been described in the metabolic activity of the 
liver: one of the best known difference involves the expression and activity of 
hepatic drug metabolizing enzymes103. Here, we show that, glutamyl cycle, 
another metabolic pathway involved in drug metabolism, is sexual divergent and 
it is relevant in the paracetamol toxicity107,108. In particular, we found no sexual 
significant difference in methionine levels, the precursor of L-cysteine which in 
turn is the GSH precursor; but L-cysteine is higher in the female liver while GSH 
levels are not sexual divergent. To better understand this point, we measured 
the rate limiting enzyme in the synthesis of GSH that is also responsible in the 
early recovery of GSH. The GCL expression (measured with western blot and 
immunohistochemistry) is higher in the male liver than in the female one. The 
lower levels of GLC observed in female rat liver can impact in liver protection 
from xenobiotics and many reports indicate that females are more susceptible 
versus toxic effect of xenobiotics108,166–170. However, it is important to recall that 
GCL is higher in the liver of transgenic and ICR female mice than in the liver of 
male mice107,108,171, while in the liver of CD-1 mice, others do not find any 
significant differences in GCL between male and female172. The previous 
observations strongly suggest that the sexual disparity in GCL can be species 
specific as occurs for the various liver cytochrome P450 isoforms173. Indeed, our 
results suggest that male rats compensate for the smaller availability of L-
cysteine with a major efficacy of the rate limiting step of GSH, which, as already 
mentioned, is higher in the male liver than in the female one. 
The expression of GLC is influenced by lipid peroxidation174; however MDA, a 
marker of lipid peroxidation, is not different between the male and the female 
rat liver. Our findings counteract with previous results, which show that MDA 
levels were higher in the male than in the female liver175. The apparent 
discrepancy could be due to the dependence of MDA levels176,177 on animal age. 
Although MDA levels are not significantly different in the male and in the female 
liver, we have to remark that they are higher in female livers and this could have 
some biological consequences. For example, it could contribute to higher L-
cysteine levels observed in females, which can auto-oxidize and produce 
reactive oxygen species.  
Finally, we examined the byproducts of L-cysteine: GSH, taurine and H2S. The 
two antioxidant molecules namely GSH and taurine were not significantly 
different. Remarkably, H2S, a molecule implicated in gastrointestinal and 
cardiovascular functions156–158,160,161,178 is significantly higher in male liver 
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versus the female one. This could partially explain a major use of L–cysteine in 
male liver in comparison with female liver. Regarding this last point, it is 
important to recall that, at least in vascular tissues, testosterone influences H2S 
production179,180. In conclusion, GSH amounts are similar between female and 
male rats, while liver GCL expression in female rats is lower than in male 
indicating that the capacity of GSH biosynthesis to counteract the liver injury 
induced by various xenobiotics, may be sex-gender dependent. The importance 
of sex-gender difference was also confirmed by higher L-cysteine levels and 
lower H2S in the female liver. These results also indicate that experimental 
design should include male and female subjects (both animals and humans), 
taking into consideration methodological questions regarding sex-gender 
differences such as the sexual differences in housekeeping proteins.  

In the liver, it has been also studied autophagic process. Sex-gender 
differences in autophagic process have been already seen in heart of cachetic 
tumour-bearing mice181, in VSMC59 in fibroblasts and neurons138. Basal 
autophagy is a conserved mechanism182 for targeted degradation of superfluous 
or damaged organelles and is crucial to maintain cellular homeostasis and to 
maintain the normal structure and function of an organ or a tissue183 even from 
the very beginning of embryogenesis124,126. Autophagy is also a way to assure 
cell survival or cell death. It is activated by ischemia/reperfusion131,132,184,185 and 
by heart failure129, situations that present numerous sex-gender differences at 
clinical level29. The biomarker of autophagic process beclin-1, the two isoform of 
LC3 and their ratio, and the most important autophagic checkpoint, mTOR 186,187, 
are not significantly different on the basis of western blot analysis. However 
different associations are found in male and female rat liver. In particular, a 
positive correlation between mTOR and beclin-1 is found in female livers but not 
in male ones, suggesting that in the absence of variation in protein expression, 
the signalling between mTOR and beclin-1 could be different in the two sexes. 
Considering that oxidative stress has a pivotal role in autophagy38,56,59,188, it is 
important to underlie that we do not observe any significant sexual variation in 
lipid peroxidation and protein oxidation. 
Notably, either western blot or immunofluorescence of livers strongly evidence 
that a marker of lysosomes (LAMP-1) is significantly more expressed in male 
livers versus female ones indicating that the male rat liver is richer in lysosomes 
than the female one. LC3 and LAMP-1 colocalize suggesting that the male liver 
contains a greater number of autophagosomes in comparison with the female 
liver. Importantly, to our knowledge, this is the first report which evidences a 
sex-gender difference in the number of liver lysosomes and autophagosomes. Of 
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course in order to understand the physiological relevance of this result more 
studies are necessary and should include all metabolic function of lysosomes 
such as lipophagy189. Lypophagy regulates intracellular lipid stores and lipid 
metabolism and lipid metabolism presents numerous sex-gender differences190. 
In conclusion, although there are obvious sex-gender differences in physiology 
and pathology of the liver, most studies did not include male and female animals 
or do not analyze the results for sex, however, as shown here, when the male 
and females are included and analysis of results is stratified for sexes the 
differences emerge. Therefore, it urges to include both sexes in order to have 
better understanding of sex-gender differences. The consideration of the 
differences could short the time form bench to bed sides and could ameliorate 
diagnostic and therapeutic procedure in clinical practice. Importantly, the 
knowledge of the differences at hepatic levels considering the importance of the 
liver in drug metabolism could have paramount consequences in drug efficacy 
and safety. Adverse drug reactions (ADR) are a problem for 3~5% of subject 
taking a drug191–194 but the frequencies in hospitalization for ADR is bigger in 
women than in men19,195. Women have greater risk, in comparison with men, in 
experiencing ADR. This risk could be reduced through the appropriate 
knowledge of sex and gender differences, reducing so individual, social and 
economic costs. 
We chose HUASMC as a model for smooth muscle because they are relatively 
easy to obtain, although one must recall that umbilical arteries transport venous 
blood and live in a medium completely unique from the point of view of 
hormones, characterized by high levels of estrogen, progesterone and cortisol196. 
Despite the advantage of working on umbilical cord and the large amount of 
publications147,197 on how isolate VSMC from their arteries, none of the methods 
described before has led us to a satisfactory result in terms of cell quantity, 
quality and purity (free from contamination from adjacent tissues), as well as 
simplicity, economy and reproducibility. The method that we use for isolation 
has been largely modified and is suitable for both female and male origin cells. In 
particular, as showed in the pictures (Fig. 2-3), both for male and female 
HUASMC, after only 13 days of culture p0, reached the critical density needed to 
induce the transition from secretory to contractile phenotype. Transition 
becomes definitely evident when cells reached 100% of confluency. To avoid the 
risk of molecular and phenotypic changes during cell culture, we proceeded to 
RNA isolation when cells were at first passage58,198,199. Morphology and 
phenotype, varies with the number of replicative cycles as an effect of telomeres 
shortening, leading to cellular senescence and death200. 
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In this experimental model we examined the expression of some genes. In 
particular, we measured the gene of estrogen and androgen receptors that can 
be involved in sex-gender differences and genes that encode receptors that play 
a crucial role in many function of VSMC, namely angiotensin 1 and 2 receptors 
and cysteinyl-leukotriene receptor 1. ESRRA, GPER30 and AR and Cysteinyl-
leukotriene receptor 1 (CYSLTR1) did not diverge between sexes, while genes 
encoding estrogen receptor alpha and beta were sexual divergent being ERbeta 
and ERalpha more expressed in male and female cells, 8.5 and 3 times 
respectively. Consequentially, the ratio between the two receptors diverges and 
it might affect the percentages of the protein dimerization products (Fig. 15). 
We evaluated this hypothesis but the different ratio of ER1 and 2 gene 
expression between males and females is likely to be due only to chance 
(p>0.05).  
 

 
Fig. 15. 2^deltaCT between ER1 and ER2 representation. Boxes represents the 
interquartile range, or the middle 50% of observations. The line represent the 
median. Whiskers represent the 10th and 90th percentiles, dots represents the 
minimum and maximum observations. 
 
Sex-gender differences in nuclear estrogen receptors alpha and beta gene 
expression are relevant because ER alpha and beta control numerous functions 
in many tissues201–205. For example, activated estrogen receptor-alpha in skeletal 



37 

 

Marco Fois 
Gender differences in human smooth muscle cells and rat liver  
Phd School In Biomedical Science For Gender Pharmacology 
Dept. Biomedical Sciences, University of Sassari, Italy 

muscle can stimulate the genomic expression even for other nuclear hormone 
receptors and promote long chain fatty acid uptake, mitochondrial shuttling and 
β oxidation206. Indeed, the different expression of ER1 and ER2 may be involved 
in the develope of many somatic tissues to say nothing of the reproductive 
organs207–209. 
Notably, the AR receptor gene, that is located on X chromosome does not 
significantly diverge in male and female cells, however we found that male 
HUASMC express the AR gene 1.8 times more than female ones. Since the human 
gene encoding for the androgen receptor is located on the X chromosome (which 
is in two copies in female cells and in single copy in male cells), we suggest that 
this gene is subject to dosage compensation in order to equalize the level of gene 
expression between males and females112,210. 
We measured also gene expression for Ang II receptors and Cysteinyl-
leukotrienes receptor-1 which have a pivotal role in vascular function 
controlling  proliferation, contraction, cytoskeletal arrangement, 
inflammation211–216. Nevertheless, some data suggest that renin–angiotensin 
system can be sexual dimorphic217. The differences could be due to different 
activity of AT receptors43,44, if so the difference does not depend on gene 
expression47. Finally, the gene which encode Cysteinyl leukotriene receptor 1 
(CYSLTR1), whose activation by LTD4 results in contraction and proliferation of 
VSMC218, is expressed in both male and female cells and it is not sexually 
divergent although it is located on chromosome X. 
In conclusion, the previous results suggest that sexual differences are present at 
the beginning of life and seem to be mainly dependent on estrogen system in 
comparison with androgen system. Expression levels for estrogen receptor 
genes are selectively regulated since differences are limited to ESR1 and ESR2.  
If the reader calculates the overall percent of significant differences between 
two sex-gender found in this PHD thesis, it might perhaps be surprised to find 
that it amounts to about 38%. The occurrences observed in this study are not 
only statistical different between sexes. They are a biomolecular part of an 
amount of data indicating the necessity to pay attention to the biochemical 
aspects characterizing sex-gender differences in phisiopathological and 
pharmacological aspects. One of the lessons from the diversity found in nature is 
that it does not lie in the amount of DNA, but especially in the regulation of gene 
expression, which for some limited aspects is clearly evident, for others, often 
more important, must be investigated. Once this diversity comes out, it seems 
irrational disregard for aspects in health that are closely linked to it.  
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