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ABSTRACT 
 

Parkinson’s disease (PD) is a chronic and progressive motor 

neurodegenerative disorder. It is among the most common incurable 

diseases in the world: in the United States, at least 500,000 people suffer 

from PD, and about 50,000 new cases are reported annually. For these 

reasons, researchers are still looking for new therapies. Several genetic and 

environmental factors are demonstrated to be responsible for the onset of 

the disease. 

In this work we have focused on the LRRK2 gene in which mutations are 

the most common causes of familial and sporadic PD. Since, LRRK2 

pathobiology is still not well understood, the aim of this study is to 

understand the overall contribution of the GTPase domain to the 

regulation of LRRK2 kinase activity and cellular phenotypes related to 

Parkinson’s disease.  

A collection of synthetic mutations analogous to well-characterized and 

conserved functional substitutions in members of the Ras and Raf families 

were developed for expression in mammalian cells. GTP binding, GTP 

hydrolysis, kinase activity and cellular phenotypes of FLAG-tagged LRRK2 

were explored in HEK-293T cells. Since it was previously demonstrated 

that LRRK2 forms homodimers, the formation of dimers by FLAG-tagged 

wild-type (WT) LRRK2 and functional variants was verified by fast protein 

liquid chromatography and by co-immunoprecipitation with MYC-tagged 

WT LRRK2.  

Finally, the effect of altered GTPase activity on neurite length was verified 

in cortical primary neurons obtained from P0 Sprague-Dawley rats and 

then transfected with WT and mutated FLAG-tagged LRRK2. 

Data shows that both GTP binding and hydrolysis are independent from 

kinase activity and that both of them can contribute to the positive 
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modulation of LRRK2 kinase activity. Moreover, reduced, but not 

enhanced, GTPase activity critically alters neurite length in primary cortical 

neurons.  

In summary, we generated a complete library of LRRK2 functional variants 

to elucidate the interplay between ROC and kinase domains. Our 

biochemical results seem to indicate that LRRK2 enzymatic regulation is 

quite complicated and it does not follow the canonical GDP/GTP cycle 

that is typical of the Ras/Raf/ERK pathway.  

Moreover, decreased, but not increased, GTPase activity causes inhibition 

of axonal length. To date, we do not have any data to demonstrate that 

increased GTP hydrolysis can rescue GTPase-impaired neurite shortening. 

Therefore, new experiments are required to investigate the potential 

protective effects of modulating GTP hydrolysis in in vitro and in vivo model 

systems expressing GTPase-impaired pathological mutations. 
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1. INTRODUCTION 
 

Parkinson's disease (PD) belongs to a group of conditions called motor 

system disorders and it is the result of the death of dopaminergic neurons. 

PD is both chronic, meaning it persists over a long period of time, and 

progressive, because its symptoms grow worse over time. As the disease 

progresses, the shaking, or tremor, which affects the majority of PD 

patients, may begin to interfere with daily activities and sometimes these 

problems are accompanied by depression and other emotional changes, 

difficulty in swallowing, chewing, and speaking. The diagnosis of this 

disorder is difficult, because PD symptoms often become evident when the 

neuronal damage is already at an advanced stage. At present, there is no 

cure for this neurodegenerative disease, but there are several medications 

for its symptomatic treatment. Therefore, current research programs 

funded by the Institutes of Health of different countries are using animal 

models to study PD progression and to develop new drug therapies. 

Among all PD causative genes, in this work we focused on LRRK2 that 

largely contributes to both familial and sporadic PD cases. On the basis of 

these findings, LRRK2 pathobiology was hypothesized to give scientists the 

opportunity to better understand PD pathogenesis. Unfortunately, to date 

LRRK2 functions are still unclear. The aim of this work is to shed light on 

the enzymatic regulation of this protein, how it promotes PD onset and to 

hypothesize new LRRK2-related therapeutic strategies. 

1.1 Parkinson’s disease 

Parkinson’s disease (PD) is the most common neurodegenerative motor 

disorder and was discovered first in 1817 by James Parkinson (Parkinson, 

1817). The motor abnormalities of Parkinson's disease result from the 

death of dopaminergic (DAergic) neurons in the substantia nigra pars compacta 
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(SNpc) and their projections to the striatum (Figure 1); the causes of this cell 

death are still unknown.  

 

Figure 1. The nigro-striatal dopaminergic pathway implicated in Parkinson’s disease. 

PD affects 1% to 2% of the population over 60 years of age (Gasser, 2009), 

prevalently males. During the progression of the disease, the most common 

symptoms include resting tremor, bradykinesia, muscular rigidity and 

postural instability. Later, cognitive and behavioral problems may take place 

in the advanced stages of the disease and they can include dementia, 

sensory, sleep and emotional problems in ~30% of PD cases. None 

efficacious therapy has not yet been identified and until now PD treatment 

is based on L-3, 4-dihdroxyphenylalanine (levodopa, L-DOPA). This 

compound is the metabolic precursor of dopamine (DA) and is orally 

delivered; it is converted to dopamine in dopaminergic neurons after its 

intestinal absorption. L-DOPA is usually administered with a peripheral 

decarboxylase inhibitor to prevent its conversion to DA in the peripheral 

circulation and to increase the drug amount that reaches the central 

nervous system (CNS). Moreover, DA produced by decarboxylation of 

levodopa and present in the peripheral circulation provokes side effects 

including nausea and cardiovascular effects. The main limit to long-term L-

DOPA treatment is the gradual decrease in its ability to rescue the 

http://en.wikipedia.org/wiki/Tremor
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dopaminergic deficit, loading to dramatic fluctuations of striatal dopamine 

content in patients after each dose. Agonists of striatal dopamine receptors 

and inhibitors of enzymes involved in levodopa and dopamine metabolism 

are alternative therapies to L-DOPA. 

Approximately 80% of patients with Parkinson’s disease receives a 

probable clinical diagnosis of the pathology. The definitive diagnosis 

requires post mortem findings of neuronal loss and depigmentation of the 

substantia nigra and the presence of Lewy bodies in the brain stem (Hughes 

et al., 2002). Lewy bodies (intracellular inclusions, Figure 2) are the 

pathological hallmark of the idiopathic disorder, and their distribution 

throughout the parkinsonian brain varies from one individual to another. 

The anatomical localization of Lewy bodies is often directly related to the 

degree of clinical symptoms of each individual. Usually they appear first in 

the olfactory bulb and medulla and then take place an ascending course into 

the midbrain and finally into the cortex (Farrer, 2006).  

 
Figure 2. Lewis body in a dopaminergic neuron. 

1.2 Parkinson’s disease and the nigro-striatal dopaminergic 
pathway 

PD is characterized by a deficit in the nigro-striatal extrapyramidal pathway, 

which is a forebrain basal ganglia circuit that connects the substantia nigra to 

the striatum. In the SNpc there are the neuronal cell bodies of dopaminergic 

neurons that extend their axons to the striatum. In addition to nigral 

afferents, projections from thalamus and from whole cortex reach the 



8 
 

Alice Biosa – Exploring the contribution of LRRK2 GTPase activity to kinase activity and 
cellular phenotypes of Parkinson’s disease-associated LRRK2 – Ph.D. Thesis in Neurosciences 
(XXV cycle) – University of Sassari 

striatum to regulate motor activities by different neurotransmitters. The 

nigral dopaminergic neuronal loss that occurs in Parkinson's disease is 

associated with a deficit of DA in the striatum, leading to a decrease in 

motor cortex excitation from the thalamus. In fact, the reduced inputs of 

DA in the striatum cause the hyper-secretion of γ-amino-butyric acid 

(GABA) from this basal nucleus and, consequently, the ailments of 

hypokinesia. Moreover, in the striatum, the imbalanced ratio between 

inhibitory DAergic and excitatory cholinergic activities stimulates the 

outputs from this nucleus, provoking rigidity and tremor.  

DA is the main neurotransmitter of this pathway and belongs to the family 

of catecholamines and is involved in voluntary movement as well as in 

cognitive functions (O'Neill, 2005) and in the mesolimbic reward pathway 

(Wightman and Robinson, 2002). In dopaminergic neurons of the substantia 

nigra is expressed the tyrosine hydroxylase gene that encodes the enzyme 

converting the amino acid tyrosine to L-Dopa, which is transformed into 

DA by L-aromatic amino acid decarboxylase. At the presynaptic terminal, 

dopamine is concentrated into synaptic vesicles and released into the 

striatal synaptic cleft in response to an action potential. Then, DA binds the 

post-synaptic striatal receptors D1 and D2 to exert its physiological 

functions (Figures 3 and 6 A). The excess of dopamine in the synaptic cleft 

undergoes an inactivation by the catechol-O-methyl transferases (COMT) 

or a reuptake process for a new cycle of neurotransmitter release. The 

dopamine not stored in synaptic vesicles is oxidized by mitochondrial 

monoamine oxidases B (MAO-B). 

Alterations in dopamine synthesis, exocytosis, endocytosis and catabolism 

in the synaptic cleft can be associated with PD; therefore different drugs 

might be potentially used to modulate the dopaminergic pathway (Figure 

3).  
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Figure 3. Dopaminergic pathway in the central nervous system and its regulation by 
different drugs (Youdim et al., 2006). 

1.3 Parkinson’s disease etiopathogenesis 

At first, PD was thought to be a sporadic disease, or an environmentally-

related disorder. After the discovery of SNCA as a causative gene of PD in 

1997, there was an increasing recognition that genetic factors can be 

responsible for this disease, particularly in familial cases. Currently, PD is 

considered both sporadic and inherited disease.  

Several studies in PD models suggested the existence of two main 

mechanisms for its pathogenesis: 

 Mitochondrial dysfunction and oxidative stress; 

 Protein misfolding and aggregation. 

1.3.1 Environmental factors 

Since many cases of Parkinson's disease occur sporadically, without any 

apparent cause, it has been hypothesized that the onset of PD might be the 

result of a complex interaction between environmental causes and genetic 

risk factors. The exposure to substances such as rotenone, paraquat, 
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transition metals, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1 

,2,3,6-tetrahydropyridine (MPTP) (Figure 4) are among the possible causes 

of sporadic PD. All mentioned above compounds provoke oxidative stress 

and mitochondrial dysfunction. 

 
Figure 4. Main neurotoxins used in experimental models of PD. 

Rotenone 

Rotenone is a cytotoxic compound derived from roots extract of some 

tropical plants and widely used as an insecticide and pesticide (Bové et al., 

2005). Rotenone is a high lipophilic molecule (Figure 4); therefore it easily 

crosses cell membranes and accumulates within mitochondria. Rotenone 

impairs mitochondrial oxidative phosphorylation by inhibiting NADH-

ubiquinone reductase activity of complex I. This enzymatic down-

regulation increases the production of O2
•-, which provokes the formation 

of hydroxyl radicals or reacts with nitric oxide to form peroxynitrite. These 

radicals can cause cellular damage by reacting with nucleic acids, proteins 

and lipids. The target of these molecules seems to be the electron transport 

chain (Cohen, 2000), whose inhibition leads to mitochondrial dysfunction 

and reactive oxygen species (ROS) production. The presence of ROS may 

also increase the amount of misfolded proteins. Dopaminergic neurons are 
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particularly sensitive to ROS production, since metabolism of dopamine 

produces H2O2 and O2
•- and its auto-oxidation generates DA-quinone 

(Graham, 1978), which mostly reacts with cysteine residues of damaged 

proteins.  

Rotenone might also inhibit microtubules formation from tubulin 

monomers. Since an excess of tubulin monomers may be toxic for cells, 

this effect could be relevant in the mechanism of degeneration of 

dopaminergic neurons (Bové et al., 2005). 

Paraquat 

The herbicide paraquat (N, N'-dimethyl-4-4'-bipiridinio), is another 

molecule that can induce Parkinsonism and that is considered an 

environmental toxin. Its toxicity is related to radical O2
•- formation (Day et 

al., 1999) and so far several paraquat-related deaths have been reported. It 

cannot easily diffuse through the blood-brain barrier (BBB) (Figure 4).  

Transition metals 

As already mentioned, the neurons of the SNpc are particularly vulnerable 

to oxidative stress because of dopamine metabolism, even under 

physiological conditions. Substantia nigra of PD patients contains high levels 

of divalent iron (Fe2+), which forms the highly cytotoxic hydroxyl radicals 

(OH•) and superoxide anions (O2
•-) by means of Fenton reactions. 

In humans, high concentration of manganese (Mn2+) might generate a 

syndrome similar to Parkinson's disease (Elbaz and Moisan, 2008). 

Experiments carried out on PC12 cells, a tumor line able to produce and 

secrete DA, showed that Mn2+ is able to induce apoptosis (Desole et al., 

1997), moreover other in vitro (Migheli et al., 1999) and in vivo studies (Serra 

et al., 2000) demonstrated that subtoxic concentrations of Mn2+ increase 
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the cytotoxicity of L-DOPA. L-DOPA and DA increased auto-oxidation 

have been suggested as a mechanism by which Mn2+ causes toxicity. 

6-hydroxydopamine (6-OHDA) 

In 1968 Ungerstedt first demonstrated that 6-OHDA injection into the 

murine substantia nigra is associated with degeneration of dopaminergic 

neurons. 6-OHDA (Figure 4) is a hydroxylated analog of DA that shows a 

high affinity for both dopamine (DAT) and norepinephrine transporter 

(NET) (Luthman et al., 1989). Because of these features, the 6-OHDA can 

enter into dopaminergic and noradrenergic neurons causing a damage along 

the catecholaminergic pathway in the central and peripheral nervous 

system. The reason why this toxin is able to destroy catecholaminergic cells 

is related to a synergistic effect of both H2O2 and paraquinone production 

(Bové et al., 2005). 

1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) 

In humans and monkeys, MPTP causes a severe and irreversible Parkinson-

like syndrome that recapitulates PD symptoms including tremor, rigidity, 

slowness of movement and postural instability (Nicklas et al., 1987). In 

human and non-human primates exposed to MPTP it is possible to see the 

same benefits and complications of long-term L-DOPA administration 

observed in idiopathic PD patients. MPTP is a highly lipophilic molecule 

(Figure 4) and crosses the BBB in a few minutes after systemic 

administration (Markey et al., 1984). Once it reaches the brain, MPTP is 

oxidized to MPDP+ (1-methyl-4-phenyl-2, 3-dihydropyridinium) by 

monoamine oxidases B (MAO-B) of glial cells and serotonergic neurons. 

After its spontaneous oxidation, the MPDP+ is converted to MPP+ that is 

released into the extracellular space. Since this is a charged molecule, MPP+ 
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uses its affinity to DAT to be internalized into neurons (Javitch et al., 1985; 

Mayer et al., 1986) (Figure 5).  

 
Figure 5. MPTP metabolism (Dauer and Przedborski, 2003). 

Then, MPP+ enters neuronal mitochondria and inhibits oxidative 

phosphorylation by down-regulating the activity of NADH-ubiquinone 

reductase (Nicklas et al., 1985). This inhibition leads to a drastic ATP 

depletion in some tissues, especially in the striatum and in the ventral 

midbrain (Chan et al., 1991; Fabre et al. 1999). Moreover, MPP+ can 

stimulate ROS production and, consequently, impairs the activity of 

vesicular monoamine transporter 2 (VMAT2) that is no longer able to 

transport DA into synaptic vesicles (Johnson, 1988). These initial events are 

usually not directly involved in cell death, but they can trigger a cascade of 

reactions that cause dopaminergic neuronal death (Mandir et al., 1999; 

Saporito et al., 2000; Vila et al. 2001). 

1.3.2 Genetic risk factors and causative genes of Parkinson’s 
disease 

By genome-wide association studies (GWAS) and linkage analyses within 

different populations, several susceptibility loci and causative genes were 
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identified (Table 1). For example, common variations in the MAPT, 

RAB7L1, GBA, SNCA and LRRK2 genes are associated with an increased 

risk for developing idiopathic PD (Leroy, E. et al., 1998), although some of 

these genes are not exclusive to this disorder, for example, MAPT and 

GBA. Mutations in at least eight genes (PINK1, DJ-1, PARK2, ATP13A2, 

VPS35, EIF4G1, SNCA and LRRK2) are known to cause familial forms of 

PD (Kumari and Tan, 2009).  

Table 1. Genetic risk factors and causative genes of Parkinson’s disease (AD, 
Autosomal dominant; AR, Autosomal recessive; PD, Parkinson’s disease). 

Most of the PD-associated genes are directly or indirectly involved in 

protein misfolding and aggregation. Under physiological conditions the 

ubiquitin-proteasome system (UPS) is responsible for the degradation of 
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damaged or misfolded proteins (McNaught and Olanow, 2003). The 

impairment of the UPS results in protein accumulation in the cytosol and 

subsequent inclusion formation, leading to alterations in cellular 

homeostasis and integrity. Lewy bodies (LBs) are spherical aggregates of 

different eosinophilic cytoplasmic proteins (Spillantini et al., 1998) and are 

the main hallmark of PD for a definitive diagnosis (Gibb and Lees, 1988). 

Microtubule-associated protein tau, RAB7L1 protein and β-glucocerebrosidase (GBA) 

Common genetic variations in the MAPT gene (on chromosome 17) were 

reproducibly associated with susceptibility to PD (Rademakers et al. 2005) 

and are one of the major risk factors for sporadic PD.  

Mutations in the GBA gene (on chromosome 1) occur in 7% of patients 

with Parkinson’s disease and are a well-established risk factor for PD (Lwin 

et al., 2004; Lill et al., 2012; Alcalay et al., 2012). 

In 2010 Tuzzi et al. identified a coding variant in PD cases within the 

RAB7L1 gene (on chromosome 1, locus PARK16). Conversely, in Chinese 

PD patients no one RAB7L1 mutant was found (Yan et al., 2011), raising 

the question about the contribution of RAB7L1 mutant to increasing the 

susceptibility to PD. 

ATP13A2 

Mutations in the ATP13A2 gene (on chromosome 1, locus PARK9) cause 

Kufor-Rakeb syndrome (KRS), a juvenile-onset pallido-pyramidal 

neurodegenerative disorder. Several homozygous (F182L [Ning et al., 

2008], G504R [Di Fonzo et al., 2007] and G877R [Santoro et al., 2011]) and 

heterozygous (T12M [Di Fonzo et al., 2007], G533R [Di Fonzo et al., 2007] 

and A746T [Lin et al., 2008]) mutations have recently been identified in 

patients with early-onset forms of familial or sporadic Parkinsonism or PD 

suggesting that ATP13A2 mutations may also contribute to early-onset PD.  
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Vacuolar protein sorting 35 (VPS35) and eukaryotic translation initiation factor 4-

gamma (EIF4G1)  

Recently two groups have independently identified a single mutation in the 

VPS35 gene (on chromosome 16, locus PARK17) (c.1858G>A; p.D620N) 

as one cause of autosomal dominant familial PD (Zimprich et al., 2011; 

Vilariño-Güell et al., 2011). To date, the pathogenicity of this variant 

requires confirmation. 

Genome-wide analyses showed that a mutation in the EIF4G1 gene 

(chromosome 3) segregates with late-onset Parkinson’s disease in an 

autosomal dominant family (Chartier-Harlin et al., 2009). The encoded 

protein, EIF4G1, is a translation initiation factor and might be involved in 

the stress response. Loss of EIF4G1 leads to impaired nutrient sensing and 

mitochondrial bioenergetics. The same mutation was thereafter identified in 

several Caucasian families, but not in control individuals. These findings 

still need to be replicated.  

PTEN-induced kinase 1 (PINK1) 

Homozygous and heterozygous mutations in the PINK1 gene 

(chromosome 1, locus PARK6) were identified in 1-2% of cases of early-

onset recessive PD (Hatano et al., 2004). PTEN-induced kinase 1, which is 

the protein encoded by this gene, is ubiquitously present and includes a 

mitochondrial targeting motif and a protein kinase domain that is also 

found in the Ca2+/calmodulin family of serine-threonine kinases (Valente, 

E. M. et al., 2004). Mutations in the PINK1 gene provoke different effects 

on protein stability, localization and kinase activity (Petit et al., 2005; Beilina 

et al., 2005). Biological data is lacking, although wild-type (WT) PINK1 

protects cultured neurons from mitochondrial dysfunction and oxidative 

stress-induced apoptosis (Deng et al., 2005). 
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DJ-1 

The DJ-1 gene is located on chromosome 1 and encodes a protein of 189 

amino acids with cytoplasmic and mitochondrial localization (Lee and Liu, 

2008; Shendelman et al., 2004). To date, its physiological function is 

unknown; however some groups have suggested a role as an antioxidant 

protein (Mitsumoto and Nakagawa, 2001). In this context, it seems that a 

Cys106 residue might have an important role, although none molecular 

mechanism was yet elucidated. Finally, DJ-1 may function as a molecular 

chaperone protein to limit α-synuclein aggregation in neurons (Shendelman 

et al., 2004). 

Parkin 

The parkin gene is localized on chromosome 6 (locus PARK2) with 

homozygous mutations causing familial recessive PD (Kitada et al., 1998). 

These variants are mostly found in patients with early-onset disease, about 

30 years, and in patients with late-onset disease (Lincoln et al., 2003). 

Parkin is an E3 ubiquitin ligase (Zhang et al., 2000; Shimura et al., 2000), a 

component of the UPS complex that ubiquitinates unfolded or damaged 

proteins and targets them to proteasome for degradation (Sherman and 

Goldberg, 2001). Pathological mutations at the PARK2 locus impair 

parkin-mediated ubiquitination of its substrates leading to protein 

accumulation into the cytoplasm. 

α-Synuclein 

The SNCA gene is located on chromosome 4 (loci PARK1 and PARK4) 

and its three missense mutations A53T, A30P and E46K and gene 

multiplications are responsible for autosomal dominant forms of familial 

PD (Polymeropoulos et al., 1997; Kruger et al., 1998). Moreover, common 

variations in the SNCA gene, together with the MAPT gene, are two major 
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risk factors for the development of idiopathic PD (Pankratz et al., 2009; 

Satake et al., 2009; Simon-Sanchez et al., 2009; Edwards et al., 2010). α-

Synuclein protein is highly expressed in the brain, mostly in cell bodies and 

is enriched within pre-synaptic nerve terminals (Maroteaux et al., 1988; 

George et al., 1995). Its biological function is not yet known, although it 

has been suggested to play a role in synaptic vesicle trafficking and 

recycling (Kahle et al., 2002). At striatal dopaminergic terminals, α-

synuclein is involved in the modulation of synaptic functions probably by 

regulating the speed at which synaptic vesicles are recycled (Abeliovich et 

al., 2000). Under physiological conditions, α-synuclein is natively unfolded 

(Recchia et al., 2004) and mutations tend to enhance its fibrillization and 

the formation of amyloid fibrils (Conway et al., 1998; Giasson et al., 1999) 

and protofibrils (Conway et al., 1998). The evidence that PD-linked 

mutations promote the formation of protofibrils (Conway et al., 2000), 

suggested that these fibrils are responsible for α-synuclein-induced toxicity. 

In agreement with this hypothesis, some studies have reported that α-

synuclein protofibrils might form pore-like structures at the membrane of 

synaptic vesicles (Volles et al., 2001; Lashuel et al., 2002), leading to the 

abnormal permeabilization of dopamine-containing vesicles thus enabling 

DA to diffuse into the cytoplasm and participate in reactions that generate 

oxidative stress .  

Moreover, the discovery of α-synuclein in LBs suggested that its 

overexpression and its propensity to form fibrils could be the cause of 

neurotoxicity in Parkinson's disease. 

Figure 6 B provides a summary of environmental and genetic factors 

implicated in the pathogenesis of PD. 
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Figure 6. Dopamine signaling under physiological conditions (A); environmental and 
genetic factors associated with PD pathogenesis (B). 



20 
 

Alice Biosa – Exploring the contribution of LRRK2 GTPase activity to kinase activity and 
cellular phenotypes of Parkinson’s disease-associated LRRK2 – Ph.D. Thesis in Neurosciences 
(XXV cycle) – University of Sassari 

1.4 Leucine-Rich Repeat Kinase 2 as a common genetic 
cause of Parkinson’s disease 

The discovery of the Leucine-Rich Repeat Kinase 2  gene (LRRK2, locus 

PARK8, OMIM 607060) as a causative PD gene (Paisán-Ruiz et al., 2004; 

Zimprich et al., 2004) has significantly contributed to the understanding of 

PD etiopathology and to the providing some useful information for new 

therapies development.  

Mutations in the LRRK2 gene are the most common causes of inherited 

PD and genetic variations in LRRK2 increase the risk of developing 

sporadic PD (Zimprich et al., 2004; Satake et al., 2009).  

1.4.1 Distribution and cellular localization of LRRK2 

In mammals, LRRK2 is expressed at different levels depending on tissue 

type and developmental stage (Biskup et al., 2007). LRRK2 expression can 

be detected in rat brain by embryonic day 16 to 17; the expression level 

increases during neuronal maturation and postnatal stages, and finally 

reaches a maximum level in kidney, lung and lymph nodes in adult rats. In 

adult mammalian brain, LRRK2 protein is particularly prominent in 

cerebral cortex, striatum, substantia nigra, hippocampus and cerebellum (Biskup 

and West, 2009; Galter et al., 2006; Higashi et al., 2007•; Higashi et al., 

2007••; Higashi et al., 2007•••). In the nigro-striatal pathway, LRRK2 mRNA 

is abundantly detected in striatal medium-sized spiny output projections 

neurons, cholinergic and GABAergic interneurons, but at significantly 

lower levels in dopaminergic neurons of the substantia nigra pars compacta 

(Higashi et al., 2007•; Higashi et al., 2007••). Under physiological conditions, 

endogenous LRRK2 predominantly localizes in neurons, adopts a diffuse 

cytosolic distribution and is enriched upon multiple organelles and 

intracellular membranes, including endosomes, lysosomes, multivesicular 

bodies, mitochondrial outer membrane, lipid drafts, microtubule-associated 
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vesicles, Golgi complex and endoplasmic reticulum (Biskup et al., 2006). In 

primary cortical neurons LRRK2 co-localizes with lysosomal and 

mitochondrial markers (Biskup et al., 2006; Hatano et al., 2007) and it is 

enriched within synaptosomal fractions from rat brain (Biskup et al., 2006).  

1.4.2 LRRK2 protein structure 

ROC, COR, LRR and WD40 domains 

LRRK2 is a large protein of 2527 amino acids and belongs to the ROCO 

protein family, including a Ras-related GTPase domain (ROC) followed by 

a C-terminal of ROC domain (COR) and a kinase domain (Bosgraaf and 

Van Haastert, 2003). ROC and kinase domains are also flanked by ankyrin 

and leucine-rich repeats at the N-terminus and by WD40 repeats at the C-

terminus (Figure 7). 

 
Figure 7. LRRK2 protein structure and its pathological variants (Lee et al., 2012). 

The ROCO protein family consists of complex proteins, conserved among 

prokaryotes and eukaryotes. Three other members of human ROCO 

proteins were identified, including leucine-rich repeat kinase 1 (LRRK1), 

malignant fibrous histiocytomas-amplified sequences with leucine-rich 

repeats (MFHAS1) and death-associated protein kinase 1 (DAPK1). 

Members of the ROCO family differ from each other by the presence or 

absence of protein-protein interaction modules and a kinase domain.  

LRRK2 is a GTPase protein, although it exhibits a weak enzymatic activity. 

The LRRK2 ROC domain is responsible for GTP binding and hydrolysis 
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and it shares homology with members of the Ras/GTPase superfamily: 

Ras, Rab/Ran, Rho/Rac and Arf. The GTP binding occurs through the 

predicted guanine nucleotide phosphate-binding loop (P-loop) which 

includes the conserved sequence GNTGSGKT (residues 1341-1348, Figure 

8). In LRRK2 orthologous and paralogous proteins, Lys1347 and Thr1348 

residues are highly conserved and they mediate the interaction between 

LRRK2 protein, GTP β-phosphate and magnesium (Mg2+) ion. The Mg2+ 

ion interacts with Oβ3 atom of GTP β-phosphate, hydroxyl oxygen (Oϒ1) of 

Thr1348 and four water molecules. Moreover, Oβ1 and Oβ2 from GTP β-

phosphate group and the free oxygen atom from GTP α-phosphate interact 

with four contiguous backbone amides from the P-loop (Gly1344, 

Serine1345, Gly1346 and Lys1347) through hydrogen bondings. All these 

water-mediated hydrogen bondings allow the Mg2+ ion to be linked to 

switch I and II regions for GTP hydrolysis (Deng et al., 2008). The motif 

responsible for LRRK2 GTPase activity (switch II region) includes the 

DFAGR sequence (residues 1394-1398, Figure 8), where Asp (D) and Gly 

(G) residues are highly conserved. The majority of well-known small 

GTPase proteins possess Gln (Q) rather than Arg (R) at 1398 position, 

suggesting that this difference can explain why LRRK2 exhibits such a slow 

rate of enzymatic activity. After GTP binding, the ROC domain changes its 

conformation to allow GTP hydrolysis. Different groups are studying 

LRRK2 GTPase activity and to date, there are contrasting results, including 

both negative (Ito et al., 2007) and positive (Lewis et al., 2007; Guo et al., 

2007; Li et al., 2007) data, depending on experimental conditions. The 

principal issue is related to the slow enzymatic GTPase activity of LRRK2. 

In contrast, the GTP hydrolysis is much more active when the ROC 

domain is isolated from the full-length protein either in E. coli (Deng et al., 

2008) or in mammalian cells (Li et al., 2007), suggesting that sequences 
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outside of ROC domain can directly or indirectly repress GTP hydrolysis 

activity. 

Interestingly, some groups found that, similarly to other small GTPases, 

LRRK2 interacts with proteins that increase its GTPase activity (GAP 

proteins) (Stafa et al. 2012; Xiong et al., 2012), conversely other authors 

hypothesized that LRRK2 does not need a GAP protein because 

dimerization alone may instead be sufficient to activate GTP hydrolysis 

(Gasper et al., 2009). 

The LRRK2 kinase domain shares closest sequence homology with a 

subclass of mitogen-activated protein kinase kinase kinase (MAPKKK) 

proteins and with the receptor-interacting protein kinases (RIPKs). In fact, 

LRRK2 shows all expected subdomains of a Serine/Threonine kinase. The 

ATP binding loop is characterized by a Glycine-rich loop (1885-1982) 

facilitating backbone interactions with the γ-phosphate of ATP and 

includes a highly conserved Lys1906 residue for ATP binding. The 

Asp1994 residue is part of the DLK motif within the catalytic loop: it 

accepts the proton from the hydroxyl group of its substrate (Ser, Tyr or 

Thr) and then forms the oxyanion species responsible for the further 

nucleophilic attack on ATP γ-phosphate. The kinase active site is located in 

the activation segment (2017-2043 residues, Figure 8), starting N-terminally 

with the tripeptide motif DFG and ending C-terminally with the APE 

motif (Nolen et al., 2004). The invariable Asp2017 residue is responsible 

for binding to a magnesium ion required for ATP phospho-transfer, while 

the rest of the motif contributes to hydrophobic interactions with the αC 

helix from the small lobe that is important for the catalytic activity (Nolen 

et al., 2004).  
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Figure 8. Highly conserved sequence in LRRK2 protein. 

Protein kinases usually remain in an inactive state until a conformational 

changes occurs in the activation segment; often the signal is represented by 

autophosphorylation, phosphorylation by another kinase protein or by 

binding to a regulator domain. It is likely that LRRK2 kinase domain 

activation depends on the autophosphorylation of its activation segment, 

because triple mutation of Thr2031, Ser2032 and Thr2035 totally impairs 

the capacity of LRRK2 to phosphorylate itself. By means of in vitro and in 

vivo autophosphorylation assays it was demonstrated that LRRK2 is an 

active kinase (West et al., 2005; Li et al., 2007, Luzon-Toro et al., 2007) and 

that this reaction occurs in cis (Greggio et al., 2008). Unfortunately, this data 

does not prove that autophosphorylation is a relevant event under 

physiological conditions. 

Different LRRK2 kinase substrates have been proposed: 

ezrin/radix/moesin (ERM) (Thr558) (Jaleel et al., 2007), β-tubulin (Thr107) 

(Gillardon, 2009), FoxO1 (Ser319) (Kanao et al. 2010), 4E-BP1 (Thr37/46) 

(Imai et al., 2008), MKK proteins (Gloeckner et al., 2009), α-synuclein 

(Ser129) (Qing et al., 2009), Drosophila Futsch (Lin et al., 2010) and 

ArfGAP1 (Stafa et al., 2012; Xiong et al., 2012). 

The presence of so many protein-protein interaction motifs in LRRK2 

(ankyrin-like, LRR and WD40 domains) might indicate that this protein is 

involved in different molecular pathways. For example, in other proteins, 

WD40 domains mediate the association with lipids, suggesting that LRRK2 
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could be associated with intracellular membranes. Moreover, different 

LRRK2 interacting proteins were identified: parkin (another protein whose 

variants segregate with PD), Rab5b (a small GTPase involved in 

endocytosis) (Shin et al., 2008), heat-shock protein 90 (a chaperone protein) 

(Wang et al., 2008), α- and β-tubulin (for the link to cytoskeleton) (Gandhi 

et al., 2008) and Fas-associated death protein (for the induction of the cell 

death cascade) (Ho et al., 2009). 

LRRK2 protein complexes  

By means of co-immunoprecipitation (Co-IP) (Gloeckner et al., 2006), fast 

protein liquid chromatography (FPLC) (Sen et al., 2009) and BLUE native 

PAGE analyses (Greggio et al., 2008; Sen et al., 2009) it was demonstrated 

that LRRK2 forms homodimers, similar to other ROCO kinase proteins. It 

was found that different points of interaction exist between two LRRK2 

monomers: COR-COR (Greggio et al., 2008), ROC-COR (Deng et al., 

2008; Greggio et al., 2008) and ROC-LRR (Greggio et al., 2008), suggesting 

that the association of two LRRK2 monomers is relatively strong. 

Interestingly, without the ROC-COR interaction LRRK2 dimer formation 

is not compromised, therefore it is possible that this interaction stabilizes 

the dimer but is not essential for dimer formation.  

For different kinase proteins, autophosphorylation of well-conserved 

residues in the activation loop leads to conformational changes in this 

region and, consequently, to kinase activation and protein dimerization. It 

was hypothesized that LRRK2 kinase activity was modulated in a similar 

way. For this purpose, the capacity of dimeric and monomeric states of 

LRRK2 to phosphorylate itself and a generic substrate was investigated in 

vitro. It was demonstrated that only LRRK2 dimeric complexes show kinase 

activity (Sen et al., 2009). To date, it is not yet clear whether LRRK2 

dimerization depends on kinase domain activation or vice versa. Moreover, it 



26 
 

Alice Biosa – Exploring the contribution of LRRK2 GTPase activity to kinase activity and 
cellular phenotypes of Parkinson’s disease-associated LRRK2 – Ph.D. Thesis in Neurosciences 
(XXV cycle) – University of Sassari 

was shown that phosphorylation of the kinase activation segment is not 

necessary for dimerization (Greggio et al., 2008), suggesting that the 

regulation of LRRK2 kinase activity differs from most other kinase 

proteins. It is worth considering that different groups have found that all 

LRRK2 kinase-dead mutants are unable to form dimers by Co-IP assay 

(Greggio et al., 2008) and BLUE native PAGE technique (Sen et al., 2009). 

Surprisingly, the elution profile of kinase-dead mutants corresponds to a 

high molecular weight (≈1.3MDa) complex by FPLC analysis (possibly due 

to aberrant interactions of LRRK2 monomers with other proteins) 

(Greggio et al., 2008 and Sen et al., 2009). All these pieces of data 

demonstrate the relationship between kinase activity and dimerization but 

leave unsolved the question of whether LRRK2 dimer formation depends 

on kinase domain activation or vice versa.  

It was also shown that hydrolysable GTP, its non-hydrolysable analog 

GTPϒS and GDP does not influence the capacity of LRRK2 to form 

dimers, suggesting that LRRK2 dimerization is not dependent on GTP 

binding and hydrolysis (Klein et al., 2009; Taymans et al., 2011). 

Interestingly, James et al. demonstrated that LRRK2 localized diffusely 

throughout the cytosol predominantly exists as monomers, while 

membrane-associated LRRK2 forms dimers or tetramers (James et al., 

2012). This data suggests the existence of a ‘LRRK2 protein cycle’: this 

protein remains in an inactive state in the cytosol until, in response to a 

specific stimulus, it is recruited to cellular membranes where it becomes 

active upon dimer formation.  

1.4.3 LRRK2 pathological mutations 

Mutations in the LRRK2 gene are responsible for late-onset, autosomal 

dominant familial PD (Paisán-Ruiz et al., 2004; Zimprich et al., 2004) with 

clinical and neurochemical phenotypes mostly indistinguishable from the 
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idiopathic disease (Haugarvoll et al., 2006; Paisán-Ruiz et al., 2004; 

Zimprich et al., 2004). 

To date, six missense mutations were identified in PD (figure 9): four 

within the ROC/GTPase domain (N1437H, R1441C/G/H), one within 

the COR domain (Y1699C) and two within the MAPKKK domain 

(G2019S and I2020T) (Brice 2005). Additional polymorphic variants were 

found: one within the COR domain (R1628P) (Tan et al., 2008; Ross et al., 

2008) and one within the WD40 domain (G2385R) (Mata et al., 2005) 

(Figure 9).  

 
Figure 9. LRRK2 pathological mutants (red), polymorphisms considered as genetic risk 
factors (orange) and variants with uncertain pathogenicity (blue) (Giasson and Deerlin, 
2008). 

Among all LRRK2 pathological variants, G2019S is the most common and 

it is found in 3-41% of familial PD patients and 1-2% of sporadic cases 

with a high prevalence in North African families with a frequency of 41% 

(Lesage et al., 2005) and a lower prevalence in European populations with a 

frequency of 3-6% among familial cases (Goldwurm et al., 2005; Kachergus 

et al., 2005). Gly2019 is part of the highly conserved DF/YG motif and this 

residue is localized at the N-terminus of the activation loop, the flexible 

region in the kinase domain responsible for controlling kinase activity. In 

most kinase proteins, the phosphorylation of specific amino acids within 

this loop causes a conformational change that allows access to the 

substrate. It is possible to hypothesize that the G2019S substitution may 

allow the kinase loop to constitutively remain in an active state (Greggio 
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and Cookson, 2009). This idea is supported by the finding that analogous 

mutations to G2019S in cancer are associated with hyperactive kinases 

and increased cell growth (Greenman et al., 2007).   

I2020T, contiguous to G2019 residue, likely affects kinase activity but 

results are highly variable among different research groups (Gloeckner et 

al., 2006).  

In 2004, the R1441C and R1441G mutations were first identified in several 

families (Paisàn-Ruiz et al., 2004; Zimprich et al., 2004). These mutations 

are associated with decreased GTPase activity, independently from GTP 

binding (Guo et al., 2007; Lewis et al., 2007; Li et al., 2007). Some groups 

found that Arg1441 stabilizes the ROC-COR domain interface by 

hydrophobic interactions, because this is the only residue in ROC domain 

that can form two hydrogen bondings with specific amino acids belonging 

to the opposite monomer (Deng et al., 2008; Gotthardt et al., 2008).   

Y1699C substitution is localized in the COR domain and in in vitro systems 

is associated with reduced GTPase activity, independently from GTP 

binding, and alters the folding properties of LRRK2 (Deng et al., 2008; 

Daniëls et al., 2011). This suggests that this substitution destabilizes 

LRRK2 dimers and consequently impairs GTP hydrolysis. 

There are also two polymorphic variants (G2385R and R1628P) found 

mostly in Asian populations that increase PD risk by approximately two-

fold (Mata et al., 2005; Di Fonzo et al., 2006).  The identification of risk 

variant carriers can be an opportunity to include these subjects in 

neuroprotective clinical trials for shedding light on LRRK2 physiological 

and pathological pathways.  
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1.4.4 LRRK2 cellular functions in physiolog ical and 
pathological conditions 

To date, LRRK2 has been implicated in different cellular pathways, 

including mitochondrial function, vesicular trafficking, cytoskeletal 

dynamics, protein aggregation, autophagy, neurite morphology and protein 

translation. It is known that microtubule (MT) dynamics and axon growth 

are mostly related to kinase function (Gillardon, 2009; MacLeod et al., 

2006), whereas localization of LRRK2 to intracellular vesicles and 

membranous compartments are associated with LRRK2 kinase and 

GTPase activities (Conde and Caceres, 2009). Despite this information, to 

date, the LRRK2 molecular pathway that is critical for PD etiology or 

progression is still elusive. 

Mitochondrial dysfunction 

Mitochondria are the source of cellular ATP and they play a vital role in 

calcium homeostasis, ROS formation and apoptosis initiation. For this 

reason, mitochondrial function is critically important for cellular 

homeostasis. Moreover, cellular respiration has a critical role in brain 

function and its impairment is implicated in multiple neurodegenerative 

diseases, such as PD.  

In brains of mice carrying human G2019S LRRK2 an abnormal 

accumulation of condensed and aggregated mitochondria was showed 

(Ramonet et al., 2011) implicating mitochondrial autophagy in LRRK2-

related PD pathogenesis.  

A significant reduction in ATP levels and mitochondrial membrane 

potential and altered mitochondrial morphology were identified in cultured 

patient-derived fibroblasts harboring the G2019S LRRK2 mutation, 

suggesting an impairment of mitochondrial function in PD cases 

(Mortiboys et al., 2010). 
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In rat primary neurons, LRRK2 overexpression correlates to mitochondrial 

fragmentation, ATP depletion and ROS accumulation through a Drp1-

dependent mechanism (Wang et al., 2012). 

Researchers hypothesized that mitochondrial impairment can be 

responsible for microtubule network integrity and autophagic-lysosomal 

pathway function in sporadic PD cases. According to this theory, 

bioenergetic defects derived from mitochondrial dysfunction would be 

responsible for microtubule network breakdown and, consequently, for 

impairments of vesicular trafficking, autophagosome maturation and 

autophagosome-lysosomal fusion (Figure 10). Unfortunately, to date, it is 

impossible to confirm that mitochondrial dysfunction is the primary 

pathogenic effect of LRRK2-related PD cases.  

 
Figure 10. Relationship between mitochondrial impairment and alterations in 
microtubule dynamics and autophagic-lysosomal pathway in sporadic PD cases 
(Arduíno et al., 2010). 
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Synaptic vesicular trafficking 

Synaptic dysfunction is one of the principal features of PD patients and 

severe neurotransmission defects were observed in different LRRK2 

models. In fact, multiple studies showed that LRRK2 is involved in 

exocytosis and endocytosis, suggesting that this protein is part of the 

presynaptic complex (Shin et al., 2008; Xiong et al., 2010). For example, 

Matta et al. (2012) observed that LRRK2 affects synaptic endocytosis by 

phosphorylating Endophilin A (Endo A), a protein involved in the late step 

of this mechanism. G2019S LRRK2-mediated hyperphosphorylation of 

Endo A impaired synaptic endocytosis because increased Endo A 

phosphorylation reduces its presynaptic membrane affinity, leading to an 

accumulation of nascent uncoated vesicles and to an inhibition of DA 

reuptake. Matta et al. (2012) hypothesized the existence of a LRRK2-

mediated phosphorylation-dephosphorylation Endo A cycle that modulates 

presynaptic endocytosis.  

Moreover, given that LRRK2 can interact with different synaptic vesicle-

related proteins, LRRK2 has been proposed to be involved in: 

 anchoring synaptic vesicles to the cytoskeleton, 

 neurotransmitter exocytosis, 

 disassembling of SNARE complexes, 

 endocytosis. 

Moreover, several LRRK2 in vivo models showed defects in DAergic 

transmission. In fact, transgenic mice expressing LRRK2 pathological 

mutations present decreased DA release and re-uptake (Li et al., 2009; Li et 

al., 2010), impairment of D2 receptor function (Tong et al., 2009) and 

reduced striatal extracellular DA content compared to non-transgenic mice 

(Melrose et al., 2010). All these pieces of data taken together suggest a 

prominent role for LRRK2 in DAergic synaptic control. 
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Furthermore, the effects of LRRK2 on synaptic function as a primary 

neurodegenerative event still need to be reported. Moreover, the 

dysfunction of mitochondrial dynamics, vesicle trafficking or cytoskeletal 

dynamics could indirectly affect synaptic maintenance and functions as 

well. 

Cytoskeletal dynamics 

The cytoskeleton plays an important role in maintaining the structural 

polarity of neurons and, consequently, their function. Impaired cytoskeletal 

dynamics in dopaminergic neurons is one of the most important features of 

PD because a subtle interplay between MTs and MT-dependent motor 

proteins is necessary in these cells to transport dopamine to the synaptic 

bouton (Witte and Bradke, 2008; Bradke, and Dotti, 2000; McMurray, 

2000). 

Different studies verified that LRRK2 interacts with both α- and β-tubulin 

through its GTPase domain, albeit in a GTP-independent manner, and that 

can phosphorylate them (Gandhi et al., 2008; Gillardon 2009; MacLeod et 

al., 2006). LRRK2 mostly phosphorylates β-tubulin and, subsequently, 

regulates the MT network. In fact, in vivo studies showed that G2019S 

LRRK2 stabilizes MTs, promoting the accumulation of insoluble β-tubulin 

polymers (Gillardon, 2009). On the basis of this data it is possible to 

hypothesize that the balance in MT dynamics is critical for neuronal length, 

axonal trafficking and synaptic formation and that G2019S-related 

phosphorylation results in the deregulation of MT dynamics and, in turn, 

neuronal death.  

Moreover, MTs and MT-axonal transport were reported to play a critical 

role in maintaining Golgi structure and integrity (Cole and Lippincott-

Schwartz, 1995; Lane and Allan, 1998). 
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Protein inclusions 

Brains of PD patients carrying LRRK2 pathological mutations show Lewy 

bodies and neurofibrillary tangles mostly in the neuronal soma (Giasson et 

al., 2006; Higashi et al., 2007).  

In primary neurons LRRK2 promotes cytosolic protein accumulation in a 

kinase-dependent manner. In fact, in neurons, G2019S and I2020T mutants 

increase the formation of LRRK2-positive inclusion bodies containing 

hyperphosphorylated tau, swollen lysosomes and cytoskeletal components 

(MacLeod et al., 2006). Nonetheless, it is not yet understood if these 

inclusions are important for LRRK2-relatated neurodegeneration. 

Moreover, this protein does not seem to be a component of Lewy bodies 

or other protein inclusions (Biskup et al., 2006; Biskup et al., 2007; Higashi 

et al., 2007; Greggio et al., 2006; Higashi et al., 2009) but, to definitively 

exclude the absence of LRRK2 in Lewy bodies in brains of LRRK2-related 

PD patients, we must await the discovery of specific anti-LRRK2 

antibodies. Given that LRRK2 pathological mutants correlate with protein 

aggregates, it is likely that LRRK2 could modulate protein accumulation, 

aggregation and degradation mechanisms, by regulating the ubiquitin-

proteasome system (UPS), autophagy, chaperone proteins, endosomal and 

lysosomal pathways and MT-mediated transport.  

Autophagy 

Autophagy is the common neuronal downstream effect in some LRRK2 

genetic models of PD, by participating in the clearance of protein 

aggregates and injured mitochondria. However, the potential consequences 

of autophagy dysregulation on synaptic structure and function remain 

unknown. Supporting this theory is the presence of components of the 

autophagy machinery localized to the synaptic bouton (Seichdenbecher et 

al., 2004).  
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LRRK2 is localized to autophagic vacuoles in human brains and in cultured 

cells and it seems to be directly or indirectly involved in autophagy 

regulation. In fact, G2019S LRRK2-induced neurite shortening is reverted 

by inhibition of autophagy components but enhanced by rapamycin, an 

autophagy activator (Plowey et al., 2008; artic24). Moreover, the G2019S 

mutation induces the accumulation of autophagic vacuoles in neuritic 

processes and soma of cultured neurons (Plowey and Chu, 2011). To date, 

it is not yet clear whether impaired autophagy is a primary 

neurodegenerative event in LRRK2-related PD or is a secondary 

consequence of other mechanisms. 

Neurite morphology and branching 

In neurons the cytoskeleton assumes an important role in maintaining 

neuronal shape, process length and function. To date, the mechanisms by 

which neuronal processes are extended and their length is regulated are still 

elusive. In fact, because of neuronal plasticity, even during the adulthood, 

neurons can repair cell damage, within a physiological range, by modulating 

cytoskeletal dynamics to re-extend injured processes and recover neuronal 

integrity.  

To date, it was not demonstrated whether changes in axonal length occur 

both under physiological and pathological conditions, but it was verified 

that loss of dopaminergic axonal processes that extend from the SN to the 

striatum, precedes the loss of DAergic neuron cell bodies (Abeliovich and 

Beal, 2006).  

This data suggests that neurite shortening or retraction might be an early 

feature of this neurodegenerative disease. 

To verify if changes in axonal length are associated with LRRK2 

expression, some groups measured axonal length using in vitro and in vivo 

LRRK2 models of PD. In the intact rodent CNS and neuronal cell lines, 
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overexpression of LRRK2 cDNA containing PD-associated mutations 

correlates with a phenotype of neurite injury and retraction that temporally 

precedes apoptotic cell death (MacLeod et al., 2006; Plowey et al., 2008; 

Smith et al., 2005; Smith et al., 2006). On the basis of this data, MacLeod et 

al. hypothesized that LRRK2 is involved in maintaining neurite length and 

complexity in the mammalian brain. 

LRRK2-related neuronal injury is also accompanied by altered autophagy, 

which might contribute to neurite shortening (Plowey et al., 2008). WT 

LRRK2 overexpression in rat cortical neurons is unable to alter neuronal 

morphology and soma size. The overexpression of pathological variants 

(i.e. G2019S, I2020T and R1441G mutants) in cultured neurons leads to: 

 a dramatic reduction in axonal length (G2019S, I2020T and R1441G 

mutants) 

 a significant decrease in neurite branching (pathological mutations 

within the kinase domain only),  

 tau-positive inclusions with lysosomal features (PD-related mutations 

within the kinase domain only)  

 cell death, ~15 days after transfection (G2019S, I2020T and R1441G 

mutants) (MacLeod et al., 2006).  

Suppression of LRRK2 overexpression by short hairpin RNA molecules 

(shRNAs) rescues the phenotype of reduced axonal length and branching 

in cultured neurons (MacLeod et al., 2006).  

All these pieces of data taken together seem to show that LRRK2 protein 

has an important role in maintaining neuronal morphology and function. 

Regulation of protein translation  

It has been demonstrated that LRRK2 can control protein translation 

through 4E-BP1 phosphorylation (Imai et al., 2008) and interaction with 

the microRNA pathway in Drosophila (Gehrke et al., 2010).  
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Although the presence of all these exiting pieces of data from in vitro and in 

vivo LRRK2 PD models, its physiological functions in neurons are still 

unknown. Moreover, the molecular pathway whose impairment is the 

primary cause of LRRK2-induced neurodegeneration was not yet identified. 

Further studies are required to shed light on this question.  
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1.5 LRRK2: an example of kinase function autoregulated by 
GTPase activity? 

It is known that LRRK2 GTPase and kinase domain sequences share high 

similarity with H-Ras and Raf-1 proteins, respectively. As kinase proteins 

are common effectors of Ras family members in the Ras/Raf/ERK 

transduction cascade, researchers hypothesized that LRRK2 might be part 

of a complicated molecular pathway and that its kinase activity may be a 

downstream effect of its GTPase activity. Scientists considered this 

hypothesis because: 

 mutations in ROCO proteins are often associated with different 

diseases, suggesting that this protein family regulates multiple cellular 

processes; 

 in Dictyostelium, the GTPase domain of guanosine monophosphate 

(cGMP)-binding protein (GbpC) autoregulates its kinase activity and 

this protein is involved in chemotaxis (Marín et al., 2008); 

 in D. melanogaster, loss of the LRRK gene leads to abnormalities in 

locomotor activity and to a decreased number of dopaminergic 

neurons in the fly brain (Lee et al., 2007). 

To better understand the molecular basis of LRRK2 enzymatic regulation, 

the H-Ras/Raf-1/ERK pathway is going to be discussed in the next 

section. 

1.5.1 The GTP/GDP cycle in Ras proteins 

Ras proteins belong to the small G-protein family and consist of three 

different isoforms (H-Ras, N-Ras and K-Ras) that are expressed in 

different cell types. These proteins contain a highly conserved P-loop for 

GTP binding (GAGGVGKS, 10-17 residues) and a switch II motif for 

guanosine nucleotide hydrolysis (DTAGQ, 57-61 residues). 
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The H-Ras/Raf-1/ERK pathway can be activated by cellular stress such as 

osmotic shock and ionizing radiation, cytokine stimulation and growth 

factors. Following stimulation, signals are relayed into the cell via a series of 

protein modifications that result in physiological cellular responses (i.e. 

cellular proliferation, cellular senescence, survival and differentiation) 

(Chung and Kondo, 2011) (Figure 11).  

 
Figure 11. The Ras/Raf/ERK pathway. 

The extracellular stimuli promote the dimerization of receptors tyrosine 

kinases (RTKs) and their kinase activity. The phosphorylation of tyrosine 

residues at the intracellular domain of RTKs provides docking sites for 

proteins containing Src homology (SH2) and phosphotyrosine binding 

(PTB) domains, such as the adaptor protein growth factor receptor-bound 

protein 2 (GRB2). Then, this adaptor protein recruits the son-of-sevenless 

(SOS) protein, a guanine-nucleotide-exchange factor (GEF) for the 

activation of the GTP/GDP cycle.  

In the small G-protein Ras family, this cycle involves a GEF (guanine-

nucleotide-exchange factor), a GAP (GTPase-activating-protein) and a 

GDI (guanine-nucleotide-dissociation inhibitor). GEFs facilitate the 

exchange of GDP with GTP and, consequently, activate Ras protein (GTP-
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bound state). Conversely, GAPs increase the rate of Ras GTP hydrolysis 

and inactivate Ras protein (GDP-bound state). Finally, GDIs ‘freeze’ the 

protein in the inactive state, preventing GTP binding (Figure 12). In the 

GTP-bound conformation only, Ras is associated with the plasma 

membrane where, it can activate the extracellular-signal regulated kinase 

(ERK) and, consequently, the mitogen-activated protein kinases (MAPKs) 

cascade.  

 
Figure 12. The GDP/GTP cycle in Ras proteins (Coleman et al., 2004). 

Simultaneous to the Ras/Raf/ERK cascade and toward the same 

extracellular stimulus, Ras proteins may also activate the Ras/PI3K/AKT 

signaling pathway by the recruitment of different proteins to regulate 

cellular growth and survival.  

1.5.2 Raf-1 kinase activity regulation 

Raf-1 is the predominant effector of H-Ras proteins and is a 

serine/threonine kinase. In mammals there are three main isoforms of Raf 

protein: A-Raf, B-Raf and C-Raf (also called Raf-1), each one 

predominantly expressed in specific tissues. Raf-1, likely all Raf proteins, 

consists of a N-terminal regulatory domain and a C-terminal catalytic 

domain. The first one encompasses a region that binds GTP-loaded Ras 

(CR1) and a serine-rich region (CR2) that binds 14-3-3 when Ser259 and 
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Ser621 are both phosphorylated. The CR3 region of Raf-1 contains the 

kinase domain (Figure 13).  

Similarly to other kinase proteins and within the catalytic domain, Raf-1 

contains the well-conserved Lys376 for ATP binding and the sequence 

DFG (486-488 residues) at the N-terminus of the catalytic site for the 

phospho-transfer from ATP molecules to Ser or Thr residues of its 

substrate (Ito et al., 2007).  

 
Figure 13. Raf-1 protein domains. 

Raf kinase cycles between the inactive and the active state and vice versa. In 

quiescent cells, Raf-1 is blocked in the inactive conformation by 14-3-3 

binding and localizes in the cytosol. In response to a specific stimulus, the 

interaction between GTP-bound Ras and Raf-1 is required for the 

displacement of 14-3-3 from the CR2 region, the translocation of Raf-1 to 

the plasma membrane and its dephosphorylation. Raf-1, to increase its 

kinase activity, forms heterodimers with B-Raf and then interacts with and 

phosphorylates its effector: the extracellular-signal-regulated kinase (ERK) 

(Figure 14). Activated ERK, in turn, phosphorylates cytosolic signaling 

proteins, including p90 ribosomal S6 kinase (RSK), MAPK-interacting 

serine/threonine kinase (MNK) and transcription factors, such as cAMP 

response element binding protein (CREB), c-Fos, c-Jun and mitogen-

activated protein kinase/ERK kinase (MEK) to regulate cell fate, 

proliferation, differentiation, migration and apoptosis (Andreadi et al., 

2011; Dhillon et al., 2007; Chung et al., 2011). 
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The temporal activation of this cascade is regulated by scaffolding proteins 

(Raf kinase inhibitor protein), phosphatases (PP1, PP2A and PP5) and 

various feedback pathways (Pearson et al., 2001; Rubinfeld et al., 2005; 

Jimenez et al., 2005) (Figure 14). 

 
Figure 14. Model of Raf-1 regulation by phosphatases and heterodimerization (Dhillon 
et al., 2007). 

1.5.3 Functional interplay between LRRK2 GTPase and 
kinase domains  

LRRK2 is a dual enzymatic protein, having both GTPase and kinase 

activities and belonging to the ROCO family. As previously mentioned, the 

high degree of homology of LRRK2 with well-known and conserved 

proteins (H-Ras and C-Raf) raised some questions about the similarity 

between LRRK2 enzymatic regulation and the Ras/Raf pathway.  

In this chapter, a functional comparison of LRRK2 with Ras and Raf 

biochemical properties is going to be discussed.  

Different research groups observed that LRRK2 GTPase activity proceeds 

at a slower rate than in other small G-proteins (Ito et al., 2007), raising 

some questions about the possible causes of such a reduced enzymatic 

activity. The main hypothesis is that LRRK2 may possess a different GTP 

hydrolysis regulation compared to other small GTPases and there are 

several pieces of data in support of this notion.  
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First, it is noteworthy that there are some differences between Ras proteins 

and LRRK2 in the amino acid sequences. At position 1398 of the switch II 

region, LRRK2 possesses an arginine, critically required for GTP 

hydrolysis, whereas the equivalent residue in most other small GTPases is a 

glutamine (Ito et al., 2007). The equivalent position of R1398 is occupied 

by a proline in LRRK1 and by an aspartic acid in MFHAS1. Therefore it is 

possible that these substitutions are responsible for the decrease in the 

enzymatic activity of ROCO proteins even if, to date, the reasons are not 

well understood. Moreover, the Gln61Leu mutation decreases the GTP 

hydrolysis of H-Ras resulting in a constitutively active GTP-bound protein, 

conversely the equivalent Arg1398Leu variant increases LRRK2 GTP 

hydrolysis (Xiong et al., 2010; Stafa et al., 2012).  

Second, the enzymatic activity of small G-proteins is regulated by GEFs 

and GAPs, whereas it was hypothesized that ROCO proteins do not 

require a GTPase domain activator since they have a high intrinsic 

GDP/GTP exchange rate and activate GTP hydrolysis through 

dimerization (Gasper et al., 2009). According to this theory LRRK2, as a 

putative member of GTPases activated by nucleotide-dependent 

dimerization (GAD), is postulated to follow a non-conventional 

mechanism for regulating GTP hydrolysis (Gasper et al., 2009) (Figure 15). 

In fact, the GTPase activity would require the contribution of specific 

residues in the catalytic site from each LRRK2 monomer to participate in 

catalysis or stabilize the dimer. According to this hypothesis, LRRK2 cycles 

between the inactive, monomeric GDP-bound state and the active, dimeric 

GTP-bound conformation, with the latter stable able to activate its kinase 

domain and biological functions. After GTP binding, GTP hydrolysis 

occurs and LRRK2 returns to an inactive form.  
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Figure 15. Model of LRRK2 enzymatic regulation according to GAD theory (Gasper et 
al., 2009). 

This theory is supported by data coming from human LRRK2 and its 

homologues in C. tepidum. Cis-dimerization is crucial for GTP hydrolysis 

because pathological mutations that impair LRRK2 capacity to form dimers 

(R1441C, R1441Q, and Y1699C) are associated with reduced ROC 

enzymatic activity (Guo et al., 2007; Lewis et al., 2007; Li et al., 2007; 

Gotthardt et al., 2008; Deng et al., 2008; Daniëls et al., 2011). Moreover, 

mutations in C. tepidum of the residues that are analogous to those involved 

in LRRK2 dimer formation lead to impaired GTP hydrolysis, suggesting a 

relationship between dimeration and GTPase activity (Gotthardt et al., 

2008).  

Despite this, to date, there are no data demonstrating that LRRK2 is a 

GAD protein. In fact, this theoretical mechanism does not fit well for 

LRRK2 protein because it was demonstrated that there is no difference in 

its molecular weight in presence of GDP or GTP by Co-IP and FPLC 

analyses (Klein et al., 2009; Taymans et al., 2011). 

Third, other research groups observed that ArfGAP1 is able to interact 

with LRRK2 in vitro and in vivo and increases its GTP hydrolysis (Stafa et al., 



44 
 

Alice Biosa – Exploring the contribution of LRRK2 GTPase activity to kinase activity and 
cellular phenotypes of Parkinson’s disease-associated LRRK2 – Ph.D. Thesis in Neurosciences 
(XXV cycle) – University of Sassari 

2012; Xiong et al., 2012), suggesting a LRRK2 GTPase activity regulation 

that is incompatible with the GAD-like mechanism.  

Like other members of the ROCO protein family, LRRK2 possesses a 

kinase domain that shares homology with Raf-1 (Ito et al., 2007). Since a 

regulatory kinase domain in ROCO proteins was not identified, they must 

require an alternative mechanism to modulate auto- and trans-

phosphorylation activities. Several research groups detected LRRK2 kinase 

activity only in the homodimeric protein (Sen et al., 2009). This activation 

mechanism seems to be similar to the heterodimerization strategy used by 

Raf-1 to increase its kinase activity (Figure 16) (Dhillon et al., 2007). In this 

scenario, LRRK2 cycles between the monomeric, kinase inactive, GDP-

bound state and the dimeric, kinase active, GTP-bound state in presence of 

specific GAPs and GEFs (Figure 16).  

 
Figure 16. Model of LRRK2 kinase activation (Sen et al., 2009). 

Multiple studies reported that LRRK2 kinase activity is the downstream 

effector of LRRK2 GTPase function, suggesting an activation model 

common to both the GAD mechanism and GTP/GDP Ras-like cycle. In 

fact, synthetic mutations in the ROC domain influence kinase activity.  
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First, deletion of the GTPase domain or impairment of GTP/GDP binding 

by Lys1347Ala and Thr1348Asn mutations impairs LRRK2 kinase activity 

(West et al., 2007; Ito et al., 2007).  

Second, R1441C, R1441G and R1441H pathological mutations, which 

localize within the ROC domain and that are associated with impaired 

GTPase activity and normal GTP binding, present increased kinase activity 

(Guo et al., 2007; West et al., 2007; Webber et al., 2011). These pieces of 

data agree with the Ras/Raf activation pathway: oncogenic Ras, due to its 

reduced GTP hydrolysis, interacts longer in trans with Raf compared to WT 

Ras, causing increased kinase activity (Gasper et al., 2009).  

Third, Deng et al. (2007) observed that the GTP hyperactive functional 

mutant R1398Q/T1343G is characterized by reduced kinase activity, 

suggesting that LRRK2 GDP-bound conformation is in an inactive state 

and does not promote LRRK2 auto- and trans-phosphorylation reactions.  

Fourth, in a LRRK1-K745G mutant (corresponding to LRRK2-R1441G) 

kinase activity is reduced compared to LRRK1-WT (Korr et al., 2006), 

suggesting a different mechanism for regulating kinase activity by the ROC 

domain of LRRK1 compared to LRRK2.  

Finally, LRRK2 pathological mutations in the kinase domain do not 

influence the GTP binding at the ROC domain (West et al., 2005), 

outlining the independence of GTP binding from kinase domain. In 

Dictyostelium the GTPase domain of GbpC is completely independent from 

other functional domains, albeit the molecular bases of the interplay 

between ROC and kinase domains are still unknown (Li et al., 2007). 

Taymans et al. (2011) demonstrated that non-hydrolysable GTP analogs 

(GTPγS and GMPPCP) are able to stimulate WT-LRRK2 kinase activity in 

an indirect way, while GDP does not induce significant changes in kinase 

activity. This data suggests that LRRK2 kinase activation occurs by an 
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unknown activator protein when LRRK2 is in the GTP-bound 

conformation. 

Regarding LRRK2 kinase activity, so far, no unambiguous LRRK2 

substrates was identified and it is still not understood if this protein is also 

responsible for LRRK2 kinase activation. In this scenario, the predicted 

activator of LRRK2 kinase function should bind the ROC domain in a 

GTP-dependent manner, with a strong interaction with the GTP-bound 

state and a weaker interaction with the GDP-bound conformation and 

should be phosphorylated by LRRK2. The discovery of an authentic 

LRRK2 kinase substrate would be useful for understanding both LRRK2 

biological function and molecular pathway.  

On the other side, some researchers supposed that ROC domain activity is 

the downstream effector of LRRK2 kinase activity because 

autophosphorylation sites are localized within the ROC domain (Gloeckner 

et al., 2010; Greggio et al., 2009). 

Taken together, these pieces of data demonstrate that LRRK2 is a complex 

protein characterized by an intramolecular interplay between ROC and 

kinase domains.To date, we are awaiting the discovery of a LRRK2 

substrate to shed light on LRRK2 pathophysiological functions. 

1.6 GTPase activity as therapeutic target of LRRK2-related 
PD 

Since it was observed that a LRRK2 hyperactive kinase (i.e. G2019S) is able 

to generate neurotoxicity in cultured neurons (MacLeod et al., 2006), 

researchers hypothesized that targeting kinase activity might be a 

therapeutic strategy for familial LRRK2-related PD. Unfortunately, to date, 

no one kinase inhibitor is sufficiently selective against the LRRK2 protein: 

it is difficult to produce a specific kinase inhibitor because of the high 

similarity among kinase proteins. In fact, it was observed that LRRK2 

kinase inhibitors can reduce the enzymatic activity of other kinase proteins, 
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leading to ambiguous results (Lee et al., 2010; Dzamko et al., 2010; Liu et 

al., 2011; Yun et al., 2011). It is worth noting that LRRK2 kinase-dead 

mutants always show both phosphorylation at Ser910 and Ser935 and 14-3-

3 binding, whereas treatment with LRRK2 kinase inhibitors causes a loss of 

both of these biochemical properties, suggesting non-specific kinase 

inhibition.  

Due to all these experimental issues, researchers became interested in the 

effects of modulating ROC domain activity and its effects on kinase 

function and neurotoxicity.  

First, different lines of evidence showed that WT LRRK2 activates its 

kinase activity via the ROC domain, most likely in an indirect manner 

(West et al., 2005; Smith et al., 2006; Ito et al., 2007; Korr et al., 2006; Lewis 

et al., 2007). Moreover, Webber et al. (2011) showed that the R1441C 

pathological mutation has impaired GTP hydrolysis and increased kinase 

activity, suggesting that the LRRK2 GTP-bound conformation is associated 

with kinase activation. 

Second, a functional relationship between GTPase activity and 

neurotoxicity was demonstrated. In fact, Xiong et al. (2010) observed that 

enhanced GTPase activity (i.e. R1398L and R1398Q/T1343G) partly 

reduces neuronal cell death normally induced by WT LRRK2. Moreover, 

Greggio et al. (2006) demonstrated that the R1441C pathological variant, 

which is a GTPase impaired mutant, provokes nuclei fragmentation and 

inclusion body formation in cultured neurons compared to WT LRRK2. 

All these pieces of data taken together suggest that the LRRK2 GTP-bound 

conformation is associated with enhanced kinase activity and, consequently, 

with the onset of LRRK2 PD-related phenotypes. On the basis of this 

experimental data, researchers anticipated that neurotoxicity associated with 

R1441C-LRRK2 could be rescued by enhancing GTP hydrolysis or 

decreasing GTP binding. 
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According to this hypothesis, Stafa et al. (2012) showed that ArfGAP1, as 

LRRK2 GAP, is able to increase WT-LRRK2 GTPase activity and 

autophosphorylation and that it has synergistic effect on WT LRRK2-

induced neurite shortening. As demonstration of these exciting pieces of 

data, the knockdown of endogenous ArfGAP1 with shRNAs produced a 

complete rescue of WT and G2019S LRRK2-induced axonal shortening in 

cortical neurons. Therefore, it is likely that ArfGAP1, by enhancing LRRK2 

GTPase activity increases its kinase activity and consequently causes 

neurotoxicity.  

In contrast, other groups observed no changes in R1441C, R1441G and 

Y1699C kinase activity compared to WT, suggesting that the GTP-bound 

conformation is not associated with increased kinase activity (Kumar et al., 

2010; Lewis et al., 2007; Stafa et al., 2012; MacLeod et al., 2006; Greggio et 

al., 2006; Greggio et al., 2007; Jaleel et al., 2007). Moreover, Xiong et al. 

(2012) showed that LRRK2 autophosphorylation level is reduced in 

presence of ArfGAP1 and that WT, R1441C and G2019S LRRK2-induced 

cell death can be rescued by ArfGAP1 in cortical neurons.  

Because of this controversial data, the development of an efficacious and 

specific LRRK2 inhibitor/activator is difficult. Thus, it is necessary to 

obtain a better understanding of LRRK2 biochemical properties, regulatory 

mechanisms and dimerization process before planning a new PD 

therapeutic strategy. Moreover, another question is whether a LRRK2-

specific drug will be efficacious for non-familial idiopathic PD cases. 
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2. GOALS AND OUTLINE 
 
Although significant data supports a role for the LRRK2 gene in 

Parkinson’s disease, how mutations in this gene promote the initiation and 

progression of disease is unknown. Moreover, why LRRK2-related 

biological functions are so important in dopaminergic neurons is still an 

enigma, although recent findings demonstrated that LRRK2 is involved in 

synaptic vesicle endocytosis. 

To date, the LRRK2 primary protein structure is known: it is a large protein 

composed of different domains and it shares high homology with members 

of Ras and Raf protein families. Since in the Ras/Raf/ERK transduction 

cascade kinase proteins are effectors of Ras GTP-bound proteins, it was 

hypothesized that LRRK2 kinase activity might be a downstream effector 

of its ROC domain activity.  

To date, it is universally accepted that GTP binding is essential for LRRK2 

kinase activation, but the role of GTP hydrolysis was not yet explored. For 

this purpose, a library of LRRK2 functional mutants was generated and 

enzymatic assays were performed to clarify the interplay between ROC and 

kinase domains. 

Since it was observed that LRRK2 forms homodimers, our second goal was 

to explore the role of GTPase activity in regulating its dimerization. 

Moreover, it was previously demonstrated that hyperactive kinase (i.e. 

G2019S pathological mutation) promotes inclusion formation, neuronal 

death and neurite shortening. Therefore, the third aim of this work was to 

study the contribution of GTPase activity to granules formation in HEK-

293T cells and to axonal length in primary cortical neurons. 

Only a comprehensive analysis of LRRK2 enzymatic activity and its 

neurotoxic effects will help us to identify new therapeutic strategies for PD. 
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The methods used to shed light on LRRK2 biochemical and cellular 

mechanisms are presented in chapter 2, whereas the results are shown in 

chapter 3. The final discussion is provided in chapter 4 and the conclusions 

are drawn in chapter 5. 
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3. MATERIALS AND METHODS 
 

3.1 Animals 

All animal experiments were approved by the SCAV (Service de la 

consommation et des affaires vétérinaires) in the Canton de Vaud and 

conducted in strict accordance with the European Union directive 

(2010/63/EU) for the care and use of laboratory animals. Animals were 

maintained in a pathogen-free barrier facility and exposed to a 12h 

light/dark cycle with food and water provided ad libitum. Pregnant female 

Sprague-Dawley rats were obtained from Charles River Laboratories 

(L’Arbresle Cedex, France) and resulting P0-P1 rats were used for 

preparation of post-natal primary cortical cultures. 

3.2 Expression plasmids, proteins and antibodies 

Mammalian expression plasmids containing 3xFLAG-tagged full-length 

human LRRK2 (WT and G2019S) in pcDNA™3.1(-) eukaryotic vector 

were kindly provided by Dr. Christopher Ross (Johns Hopkins University, 

Baltimore, USA) (Smith et al., 2005). MYC-tagged human WT LRRK2 

plasmid was kindly provided by Dr. Ted M. Dawson (Johns Hopkins 

University) (West et al., 2005). As control plasmids, pEGFP-N1 was 

obtained from Clontech (Mountain View, CA, USA) and pcDNA3.1-MYC-

his was obtained from Invitrogen (Basel, Switzerland). LRRKtide peptide 

(RLGRDKYKTLRQIRQ; 97.6% pure by HPLC analysis) was purchased 

from SignalChem (Richmond, Canada). GTP, GppCp, GDP and GDPβS 

at >95% purity by HPLC were purchased from Sigma-Aldrich (Buchs, 

Switzerland). 3xFLAG peptide was purchased from Sigma-Aldrich. The 

following antibodies were employed: mouse monoclonal anti-FLAG-(M2), 

anti-flag-(M2)-peroxidase and anti-β-tubulin (clone TUB 2.1), and rabbit 

polyclonal anti-βIII-tubulin (Sigma-Aldrich); anti-c-MYC (clone 9E10) and 
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anti-c-MYC-peroxidase (Roche Applied Science, Basel, Switzerland); mouse 

monoclonal anti-Hsp90 (BD Biosciences, Allschwil, Switzerland), 

peroxidase-coupled anti-mouse IgG (Jackson ImmunoResearch, Inc., West 

Grove, PA, USA), anti-mouse IgG coupled to AlexaFluor-488 or 

AlexaFluor-546 and anti-rabbit IgG coupled to AlexaFuor-633 (Invitrogen). 

3.3 Oligonucleotides for mutagenesis 

The mutagenic primers were designed with the following charactistics: 

 length between 20 and 40 bases, melting temperature (Tm) of ≥78°C 

and purified by FPLC, 

 minimum GC content of 40% and one or more C or G bases at the 

3’ terminus, 

 desired mutations present in both complementary primers and in the 

middle (with ~10–20 bases of correct sequence on both sides). 

The synthesized primers are listed in Table 2. 

 
Table 2. Primers sequence: mutated codon is underlined, substituted nucleotides are in 
red. 
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3.4 Generation of LRRK2 functional mutants 

Functional missense mutations were introduced in WT 3xFLAG-tagged 

LRRK2 by site-directed mutagenesis using the QuickChange II XL kit 

(Agilent Technologies, La Jolla, CA, USA). Mutations introduced are 

represented in Figure 17. 

 
Figure 17. LRRK2 protein domains and functional mutants. 

Mutagenesis reactions were prepared as indicated in Table 3 A and then 

subjected to the Polymerase Chain Reaction (PCR) program shown Table 3 

B. 

Table 3. Mutagenesis reaction (A) and PCR cycling parameters (B). 

LRRK2 single mutants were generated using WT LRRK2 as DNA 

template, whereas double and triple variants were obtained from G2019S 

LRRK2, R1398L, R1398Q, GS2019S/R1398L and D1994A/R1398L 

variants.  
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The amplification product were subjected to Dpn I digestion (10U of 

enzyme) 1h at 370C, to digest parental DNA. Then, XL10-Gold® 

ultracompetent cells were transformed with 2µl of digested DNA following 

manufacturer’s protocol (Agilent Technologies, La Jolla, CA, USA).  

Finally, DNA was purified using NucleoSpin® Plasmid kit, according to 

manufacturer’s protocol (MACHEREY-NAGEL, Oensingen, Switzerland) 

and desired mutations were confirmed by DNA sequencing.  

3.5 Cell culture and transient transfection 

HEK-293T cells were maintained in Dulbecco’s modified Eagle’s media 

supplemented with 10% fetal bovine serum and 1X penicillin/streptomycin 

at 370C and in a 5% CO2 atmosphere. Cells were transfected with plasmid 

DNAs using X-tremeGENE HP DNA Transfection Reagent (Roche 

Applied Science) according to manufacturer’s recommendations. Cells were 

harvested at 48-72h post-transfection for biochemical assays. 

3.6 Co-immunoprecipitation assay and Western blotting 

For co-immunoprecipitation (Co-IP) assays, HEK-293T cells were 

transiently transfected with 10µg of WT MYC-tagged LRRK2 and 3.3µg of 

flag-tagged LRRK2 in 10cm dishes and harvested after 48h in 1ml of IP 

buffer (10mM Tris-HCl pH 7.5, 150mM NaCl, 1% NP-40, 1X phosphatase 

inhibitor cocktail 2 and 3 [Sigma-Aldrich], 1X Complete Mini protease 

inhibitor cocktail [Roche Applied Sciences]). Cell lysates were rotated at 

4°C for 1h and soluble fractions were obtained by centrifugation at 17,500g 

for 15min at 4°C. Soluble fractions were combined with 50µl Protein G-

Dynabeads (Invitrogen) pre-incubated with anti-MYC (5µg; Roche Applied 

Sciences) antibody and incubated overnight at 4°C. Dynabeads complexes 

were washed five times with IP buffer supplemented with 450mM NaCl 

and twice with IP buffer. Immunoprecipitates (IPs) were eluted by heating 

at 70°C for 10min in Laemmli sample buffer (Bio-Rad AG, Reinach, 
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Switzerland) containing 5% 2-mercaptoethanol. IPs and inputs (1% total 

lysate) were resolved by SDS-PAGE, transferred to Protran nitrocellulose 

(0.2µm; Perkin Elmer, Schwerzenbach, Switzerland), and subjected to 

Western blot analysis with anti-flag-(M2)-peroxidase (1:5,000) and anti-

MYC-peroxidase (1:2,000). Proteins were visualized by enhanced 

chemiluminescence (ECL; GE Healthcare, Glattbrugg, Switzerland) on a 

FujiFilm LAS-4000 Luminescent Image Analysis system. LabImage 1D 

software (Kapelan Bio-Imaging Solutions, Leipzig, Germany) was used for 

quantitation of protein levels by densitometry. 

To assess the steady-state protein levels of LRRK2 mutants, HEK-293T 

cells  were transfected with 3µg of flag-tagged LRRK2 (in 35mm dishes) 

and lysed in buffer A (1X PBS pH 7.5, 1% Triton X-100, 1X phosphatase 

inhibitor cocktail 2 and 3 [Sigma Aldrich], 1X Complete Mini Protease 

inhibitor cocktail [Roche Applied Science]) by rotating for 1h at 4°C. 

Clarified lysates were obtained by centrifugation at 17,500g for 15min at 

4°C. The detergent-soluble supernatant fraction was quantified by BCA 

assay (Pierce Biotechnology, Rockford, IL, USA) and proteins (30µg) were 

resolved by SDS-PAGE and subjected to Western blot analysis with anti-

flag-(M2)-peroxidase (1:5,000), mouse anti-β-tubulin (1:4,000) and 

peroxidase-coupled anti-mouse (1:40,000) antibodies. 

3.7 Hsp90 binding 

For assess Hsp90 binding HEK-293T cells were transiently transfected 

with 10µg of FLAG-tagged LRRK2 DNAs and lysated in IP buffer, as 

already described for the Co-IP experiments. Soluble fractions were 

combined with 50µl of Protein G-Dynabeads (Invitrogen) pre-incubated 

with mouse anti-FLAG (5µg; Sigma-Aldrich) antibody. Beads were washed 

three times with IP buffer supplemented with 450mM NaCl and twice with 

IP buffer. IPs were eluted as indicated in the previous paragraph, then IPs 

and lysates were resolved by SDS-PAGE and analyzed by western blot 
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using anti-flag-(M2)-peroxidase (1:5,000 for lysates and 1:20,000 for IPs), 

mouse monoclonal anti-Hsp90 (1:4,000 for lysates and 1:2,000 for IPs) and 

peroxidase-coupled anti-mouse (1:40,000) antibodies. 

3.8 Immunocytochemistry and confocal microscopy 

HEK-293T cells were seeded in 35mm dishes on glass coverslips coated 

with poly-D-lysine (20ng/ml; BD Biosciences) and mouse laminin 

(33µg/ml; Invitrogen) at a density of 80,000 cells/dish. Then, they were 

transfected with 2µg of FLAG-tagged LRRK2 plasmids. At 48h post-

transfection, cells were fixed in 4% paraformaldehyde (PFA) and processed 

for immunocytochemistry with mouse anti-FLAG antibody and anti-mouse 

IgG-AlexaFluor-488 antibody, and stained with DAPI. Fluorescent images 

were acquired using a Zeiss LSM 700 inverted confocal microscope (Carl 

Zeiss AG, Feldbach, Switzerland) with a Plan-Apochromat 63x/1.40 oil 

objective in x, y and z planes. Images were subjected to deconvolution 

using HuygensPro software (Scientific Volume Imaging, Hilversum, 

Netherlands). Representative images are taken from a single z-plane at a 

thickness of 0.1µm. 

3.9 Size-exclusion chromatography (SEC) 

After transiently transfection with 10µg of FLAG-LRRK2 plasmids,  HEK-

293T cells were lysed in buffer B (20mM Tris-HCl pH 7.5, 150mM NaCl, 

1mM EDTA, 0.5% Tween 20, 1X phosphatase inhibitor cocktail 2 and 3 

[Sigma Aldrich], 1X Complete Mini Protease inhibitor cocktail [Roche 

Applied Science]). Cleared lysates (1ml) were incubated with anti-FLAG-

M2-agarose beads by rotating overnight at 4°C. Resin complexes were 

washed with different buffers (twice with 20mM Tris-HCl, 500mM NaCl, 

0.5% Tween 20; twice with 20mM Tris-HCl, 300mM NaCl, 0.5% Tween 

20, twice with 20mM Tris-HCl, 150mM NaCl, 0.5% Tween 20, twice with 

20mM Tris-HCl, 150mM  NaCl, 0.1% Tween, and twice with 20mM Tris-
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HCl, 150mM NaCl, 0.02% Tween 20) and LRRK2 proteins were eluted in 

elution buffer (20mM Tris-HCl pH 7.5, 150mM NaCl, 0.02% Tween 20 

and 150µg/ml of 3xFLAG peptide) for 30min at 4°C with shaking. Eluted 

proteins were resolved by SDS-PAGE and stained with Coomassie G-250 

to verify protein purity; LRRK2 content was calculated by densitometry 

using a standard curve with bovine serum albumin (BSA). Purified proteins 

containing equal amount of 3xFLAG-LRRK2 WT and functional mutants 

were injected into a AKTA Purifier FPLC system (GE Healthcare, Italy) 

and separated using a Superose 6 10/300 column (GE Healthcare, Italy), 

after equilibration with buffer C (20mM Tris-HCl pH 7.5, 150mM NaCl 

and 0.07% Tween 20). Pump flow rate was fixed at 0.5ml/min. Elution 

volumes of standards were 7.5ml for Blue Dextran (V0), 12.37ml for 

thyroglobin (669 kDa), 14.21ml for ferritin (440 kDa) and 15.71ml for 

catalase (232 kDa). Each separated fraction obtained by FPLC analysis (1µl) 

was spotted on nitrocellulose membranes, incubated with anti-FLAG-

peroxidase antibody (1:5,000) and subjected to detection with ECL.  

3.10 GTP binding assay 

HEK-293T were transiently transfected with 3µg of FLAG-tagged LRRK2 

plasmids and lysed in buffer A (1X PBS pH-7.5, 1% Triton X-100, 1X 

phosphatase inhibitor cocktail 2 and 3 [Sigma Aldrich], 1X Complete Mini 

Protease inhibitor cocktail [Roche Applied Science]) by rotating for 1h at 

4°C. Soluble fractions were incubated with 25µl of guanosine 5′-

triphosphate-agarose (Sigma-Aldrich) by rotating for 2h at 4°C. Agarose 

beads were washed three times with buffer A and once with 1X PBS. GTP-

bound fractions were eluted in Laemmli buffer containing 5% 2-

mercaptoethanol and heating at 70°C for 10min. GTP-bound fractions and 

inputs lysates (1% total lysate) were resolved by SDS-PAGE and subjected 

to Western blot analysis with anti-FLAG-peroxidase antibody. 
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3.11 GTP hydrolysis assay 

GTP hydrolysis assay was performed by measuring the release of free γ-

phosphate (Pi) from GTP using the high sensitivity colorimetric GTPase 

assay kit (Innova Biosciences, Cambridge, UK). To establish time curves 

for LRRK2 GTPase activity, HEK-293T cells transiently expressing 

FLAG-tagged LRRK2 variants (WT, T1348N and R1398L) were lysed in 

phosphate-free lysis buffer (10mM Tris-HCl pH 7.5, 150mM NaCl, 1% 

NP-40, 1X Complete Mini Protease inhibitor cocktail [Roche Applied 

Science]) as described in the previous paragraph. Following centrifugation 

at 17,500g for 15min, supernatant fractions were subjected to 

immunoprecipitation (IP) with 2.5µg of anti-FLAG antibody pre-incubated 

with 25µl Protein G-Dynabeads (Invitrogen) by rotating at 4°C overnight. 

As control for protein contamination, mock-transfected HEK-293T cell 

lysates were subjected to IP with anti-FLAG antibody. Dynabeads were 

washed five times with lysis buffer supplemented with 450mM NaCl and 

once with 0.5M Tris-HCl pH 7.5, then resuspended in 100µl of 0.5M Tris-

HCl pH 7.5, and finally subjected to GTP hydrolysis assays in 96-well 

plates in assay buffer containing 0.25mM GTP. Reactions were incubated 

for 30, 60, 90 and 120min at room temperature according to manufacturer’s 

recommendations. Assay samples were measured for absorbance at 635nm 

and Pi concentration was determined from standard curves. The control 

absorbance value for the mock IP FLAG sample was deducted from the 

absorbance values obtained for each LRRK2 sample. FLAG IP samples 

(5µl total) were subjected to Western blotting with anti-FLAG-peroxidase 

antibody to confirm LRRK2 immunopurification. The levels of each IP 

LRRK2 variant was quantified by densitometry and used to normalize 

LRRK2-mediated Pi release in each experiment. Data was expressed as a 

percent of Pi release due to WT LRRK2 after 30min. Subsequent LRRK2 

GTPase assays were conducted as described above with incubation for 
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120min at room temperature with GTPase activity (Pi release) expressed as 

a percent of WT LRRK2.  

3.12 In vitro kinase assays 

3.12.1 Autophosphorylation assay 

For LRRK2 autophosphorylation, HEK-293T cells were plated in 10cm 

dishes, transfected with FLAG-tagged LRRK2 DNAs (15µg) then, lysed 

and subjected to IP with anti-FLAG-agarose. LRRK2 proteins were eluted 

with 3xFLAG peptide as described in SEC paragraph. After BSA standard 

curve, equal amount of LRRK2 WT and functional variants was used for 

kinase assay. Autophosphorylation reactions were performed in kinase 

buffer (25mM Tris-HCl pH 7.5, 5mM β-glycerophosphate, 2mM 

dithiothreitol, 0.1mM Na3VO4, 10mM MgCl2) in the presence of [33P]-γ-

ATP (2µCi/reaction; Perkin Elmer, MA, USA) and 5µM cold ATP (Sigma-

Aldrich) at 30°C for 1h in a final volume of 25µl. The assays were 

terminated using 4X Laemmli buffer and by boiling at 95°C for 10 min. 

Autophophorylation reaction samples were resolved on 4-16% SDS-PAGE 

pre-cast gels (Invitrogen) and transferred to PVDF membranes. 

Incorporated radioactivity was detected by autoradiography and the same 

membranes were probed with anti-FLAG antibody (1:50,000) for 1h and 

30min for protein loading control. Relative LRRK2 autophosphorylation 

was determined by densitometric analysis of 33P autoradiograph signals for 

LRRK2 normalized to LRRK2 protein levels. 

3.12.2 LRRKtide phosphorylation assay 

To measure LRRKtide phosphorylation, HEK-293T cells were lysed and 

subjected to IP with anti-FLAG-agarose then, LRRK2 proteins were eluted 

with 3xFLAG peptide and quantified as described above. For treatment 

with GTP, GppCp, GDP and GDPβS, guanine nucleotides (200µM) were 

added to cell lysates immediately prior to incubation with anti-FLAG-
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agarose and followed by rotation overnight at 4°C. For LRRKtide 

phosphorylation assay, LRRKtide peptide (400µM) was added to standard 

kinase reactions, as described above. Reaction samples were terminated by 

addition of 8µl 0.5M EDTA and samples were applied to P81 

phosphocellulose paper (Whatman, Opfikon, Switzerland). P81 squares 

were dried, washed three times with 75mM phosphoric acid (Sigma-

Aldrich) and incorporated 33P into LRRKtide peptide was detected by 

scintillation counting. LRRKtide phosphorylation levels were normalized to 

the levels of LRRK2 protein determined by Western blotting and 

densitometry. 

3.13 Primary neuronal cultures and neurite length assays 

3.13.1 Primary neuronal cultures and transient transfection 

Primary cortical neurons were prepared from Sprague-Dawley P0-P1 rats 

by stereoscopically isolating the cerebral cortices and dissociation by 

digestion in media containing papain (20U/ml, Sigma-Aldrich) and 

mechanical trituration. Cells were plated in 35mm dishes on glass coverslips 

coated with poly-D-lysine (20ng/ml; BD Biosciences) and mouse laminin 

(33µg/ml; Invitrogen) and cultured in Neurobasal media containing B27 

supplement (2% w/v), L-glutamine (500µM) and penicillin/streptomycin 

(100U/ml) (Invitrogen).  

To check LRRK2 expression levels in cortical neurons, cells were 

transfected at DIV3 with 4.5 µg of FLAG-tagged LRRK2 plasmids and 

lysed at DIV7, as already described in the ‘cell colture and transfection’ 

paragraph. 

3.13.2 Neurite length assay 

Primary cortical neurons were co-transfected at DIV3 with FLAG-tagged 

LRRK2 and GFP plasmids at a 10:1 DNA molar ratio (4µg total DNA per 

35mm dish) using Lipofectamine 2000 reagent (Invitrogen). At DIV7, 
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cultures were fixed with 4% PFA and processed for immunocytochemistry 

using mouse anti-FLAG antibody (Sigma-Aldrich), rabbit anti-βIII-tubulin 

(Sigma-Aldrich), anti-mouse IgG-AlexaFluor-546 and anti-rabbit IgG-

AlexaFluor-633 antibodies (Invitrogen). Fluorescent images were acquired 

using an EVOS inverted fluorescence digital microscope (Advanced 

Microscopy Group, Bothell, WA, USA) with a 10X objective. GFP images 

were pseudo-colored with ICA1 in NIH ImageJ software to improve the 

contrast of neuritic processes, and used for neurite length measurements. 

The length of GFP-positive axonal processes from FLAG-positive cortical 

neurons (β III-tubulin-positive) was measured using the line tool function 

of ImageJ software by an investigator blinded to each condition. Only 

neurons that had extended neurites were measured whereas neurons 

without processes were excluded from the analysis. For each experiment, 

axonal processes from 30 GFP-positive neurons randomly sampled across 

five coverslips from at least three independent experiments were measured.  

3.14 Statistical analysis  

Data was analyzed by one-way ANOVA with Newman-Keuls multiple 

comparison test or Bonferroni post-test. P<0.05 was considered significant. 

Fitting curves of SEC fractions were obtained by Gaussian regression fit 

analysis. 
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4. RESULTS 
 

4.1 Generation of LRRK2 functional mutants   

To study the interplay between LRRK2 GTPase and kinase domains, a 

library of 3xFLAG-LRRK2 functional mutants was created. All developed 

mutations are located within LRRK2 ROC and kinase domains and have 

been generated by the substitution of amino acids analogous to well 

conserved residues in members of the Ras and Raf families (Ito et al., 2007) 

(Figure 18). The effects of these functional mutations in Ras and Raf 

proteins are known, but they have not yet been completely explored in 

LRRK2. 

In summary, the LRRK2 mutant library includes: 

 P-loop variants with decreased (K1347A, T1348N, 

G2019S/T1348N) (West et al., 2007) or unclear (T1343G) GTP 

binding; 

 Switch II variants with predicted altered GTP hydrolysis (R1398L, 

R1398L/T1343V, R1398Q/T1343G) (Ito et al., 2007; Stafa et al., 

2012; Xiong et al., 2012);  

 Kinase-dead mutants (K1906M, D1994A, D1994N, 

G2019S/K1906M, G2019S/D1994A and G2019S/D1994N) and a 

kinase-enhanced variant (G2019S) (Smith et al., 2006; West et al., 

2007; Jaleel et al., 2007; Greggio et al., 2006); 

 Double mutants including substitutions into both ROC and kinase 

domains (D1994A/R1398L and G2019S/R1398L) to explore the 

interplay between GTP hydrolysis and kinase activity; 

 Triple mutants including substitutions in both ROC and kinase 

domains (D1994A/R1398L/T1343V and 
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G2019S/R1398L/T1343V) to explore the interplay between ROC 

and kinase domains. 

Before conducting assays to measure LRRK2 GTPase and kinase activities, 

the steady-state level of each mutant has been evaluated in HEK-293FT 

cells transiently transfected with each DNA construct (Figure 18). Most of 

the functional mutants show equal steady-state levels compared to WT 

LRRK2 apart from K1347A and T1348N, which exhibit significantly lower 

expression levels than WT. This data suggests that impairment of GTP 

binding might have effects upon protein translation or stability. 

 
Figure 18. Western blotting showing LRRK2 functional mutants steady-state level (A). 
Quantification of LRRK2 expression levels after densitometric analysis and 
normalization to β tubulin signal (B). 
 



64 
 

Alice Biosa – Exploring the contribution of LRRK2 GTPase activity to kinase activity and 
cellular phenotypes of Parkinson’s disease-associated LRRK2 – Ph.D. Thesis in Neurosciences 
(XXV cycle) – University of Sassari 

4.2 LRRK2 ROC domain properties 

After having verified the steady-state levels of LRRK2 variants, GTP 

binding and hydrolysis capacities have been assayed using well established 

methods (West et al., 2007; Stafa et al., 2012; Xiong et al., 2012).  

GTP binding experiments were conducted in HEK-293FT cells by using a 

GTP-agarose resin to pull-down LRRK2 variants and to quantify the ratio 

between the LRRK2 GTP-bound fraction and relative input (i.e. LRRK2 

expression in total lysate).  

K1347A, T1348N and G2019S/T1348N P-loop mutants significantly 

impair GTP binding, as previously reported (West et al., 2007) (Figure 19 A 

and B). Single and double switch II region variants (i.e. R1398L, R1398Q, 

R1398L/T1343V and R1398Q/T1343G) present normal GTP binding 

(Figure 19). Kinase hyperactive mutants  (i.e. G2019S and 

G2019S/R1398L) and kinase-dead variants (i.e. K1906M, D1994A and 

D1994N) do not show any difference in GTP binding compare to WT, 

suggesting that GTP binding is independent from kinase function (Figure 

19). Surprisingly, kinase-dead D1994A/R1398L and 

D1994A/R1398L/T1343V mutants exhibit a markedly reduced GTP 

binding compared to WT, although single kinase-inactive variants do not 

have a significantly impaired GTP binding (Figure 19). 

Before exploring the effects of ROC and kinase domain mutations on GTP 

hydrolysis, the time-enzymatic activity curve has been studied using WT, 

T1348N (as negative control) and R1398L (as positive control) mutants. 

WT and R1398L exhibit a time-dependent increase in their enzymatic 

activity. Among all tested time points, a period of 120 minutes allowed us 

to obtain the larger difference between WT- and T1348N-induced γ-

phosphate (Pi) release from GTP (Figure 20 A).  
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Figure 19. Western blotting showing LRRK2 GTP-bound fractions (upper panel) and 
input levels (lower panel). On the right, densitometric analysis of GTP binding capacity 
expressed as percentage of WT LRRK2. 

Then, GTP hydrolysis capacity has been explored in all functional mutants. 

K1347A, T1348N and G2019S/T1348N show impaired GTP hydrolysis, 

which is consistent with their reduced GTP binding. The R1398L switch II 

region mutant exhibits an enhanced GTPase activity compared to WT, as 

reported previously (Stafa et al., 2012); while the R1398L/T1343V double 

mutant shows reduced GTP hydrolysis (GTP-locked variant) (Figure 20 B). 

Kinase function does not seem to influence GTP hydrolysis, in fact kinase-

dead (i.e. K1906M, D1994A and D1994N) and kinase hyperactive (i.e. 

G2019S) mutants exhibit a normal GTPase function, compared to WT 

(Figure 20 B).  

G2019S/R1398L variant exhibits the same enhanced GTP hydrolysis as the 

R1398L mutant alone, while G2019S/R1398L/T1343V loses 

R1398L/T1343V GTP locked properties (Figure 20 B). Kinase-dead 

D1994A/R1398L and D1994A/R1398L/T1343V mutants have a markedly 

reduced GTPase activity, consistent with their impaired GTP binding, 

making a comparison among WT, D1994A/R1398L and 

D1994A/R1398L/T1343V GTPase activities using this data difficult 

(Figure 20 B). In summary, single kinase domain mutations (i.e. K1906M, 
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D1994A, D1994N and G2019S) do not alter LRRK2 GTPase activity. 

Unexpectedly, increased kinase activity (i.e. G2019S mutation) enhances 

R1398L/T1343V GTP hydrolysis capacity up to the level of WT LRRK2.  

 
Figure 20. Time-GTPase activity curve (A) and LRRK2 GTP hydrolysis assay (B). 

4.3 LRRK2 kinase activity is dependent on ROC domain 

To explore the contribution of the LRRK2 ROC domain to kinase activity, 

in vitro radioactive autophosphorylation and LRRKtide-phosphorylation 

assays were performed on immunopurified LRRK2 protein.  

Data from LRRK2 autophosphorylation assays shows that G2019S is a 

hyperactive kinase and that D1994A and D1994N are kinase-inactive, as 

previously reported in literature (Ito et al., 2007; West et al., 2007) (Figure 

21 A and B). Moreover, G2019S/D1994A, G2019S/D1994N and 

D1994A/R1398L/T1343V mutants are kinase-dead as well, suggesting that 

the D1994A/N mutation markedly impairs G2019S-enhanced kinase 

activity (Figure 21 A and B). It is worth noting that GTP binding-deficient 

mutants (i.e. K1343A and T1348N) are kinase-inactive, as previously 

published (West et al., 2007), suggesting that the P-loop motif is critically 

required for kinase activity (Figure 21 A and B). R1398L (hyperactive 

GTPase) and R1398L/T1343V (GTP-locked variant) possess an impaired 
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kinase activity (Figure 21 A and B), albeit they have opposite effects on 

GTP hydrolysis.  

G2019S/R1398L and G2019S/R1398L/T1343V mutants exhibit enhanced 

kinase activity, similar to G2019S alone, suggesting that addition of 

mutations localized in the switch II region (i.e. R1398L and 

R1398L/T1343V) to the LRRK2 G2019S pathological variant is not able to 

reduce G2019S kinase activity (Figure 21 A and B). 

After having explored LRRK2 autophosphorylation capacity, LRRK2 

kinase activity was studied by using the LRRK2 pseudosubstrate peptide, 

LRRKtide. Data obtained from LRRKtide phosphorylation assays mostly 

conforms to the autophosphorylation results. LRRKtide phosphorylation 

assays show that K1906M and G2019S/K1906M, which were not included 

in the previous assay, are kinase-dead mutants (Figure 21 C).  

Different from the autophosphorylation data, R1398L kinase function is no 

longer significantly impaired. Moreover, like the autophosphorylation 

results, there is no difference among the kinase activity of G2019S, 

G2019S/R1398L and G2019S/R1398L/T1343V mutants, suggesting that 

addition of mutations that modulate GTPase activity is not sufficient to 

influence G2019S kinase activity (Figure 21 C). There are several possible 

reasons to explain this observation. First, it is worth noting that 

G2019S/R1398L/T1343V exhibits normal GTPase activity and has lost the 

GTP-locked properties of the R1398L/T1343V mutant which might 

explain why the addition of the R1398L/T1343V variant in the context of 

LRRK2 G2019S cannot significantly reduce G2019S kinase activity. 

Second, the effects of the G2019S variant upon kinase function might 

override the effects of switch II region mutations on kinase activity. 

In summary, all these results taken together suggest that an intact P-loop 

motif is indispensable for kinase function and that GTP hydrolysis can 

modestly modulate LRRK2 kinase activity. It is important to emphasize 
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that the enhanced kinase function of G2019S is not influenced by GTPase 

activity.  

 
Figure 21. In vitro radioactive kinase autophosphorylation assay (A): Coomassie G-250 
staining of immunopurified LRRK2 (lower panel), immunoblot (middle panel) and 
autoradiogram (upper panel) of autophosphorylated LRRK2, as analyzed by SDS-PAGE 
and western blotting. Graph showing radioactivity incorporated into LRRK2 protein 
(B) and into LRRKtide (C) after normalization to LRRK2 levels.  
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4.4 LRRK2 GTP-dependent kinase activation 

Data from autophosphorylation and LRRKtide-phosphorylation assays 

suggests that: 

 kinase activation is completely dependent on GTP binding capacity; 

 kinase function can be modulated by GTP hydrolysis, except for the 

G2019S variant kinase activity. 

Previous experiments (Taymans et al., 2011) have demonstrated that 

LRRK2 kinase activity can be increased by GTP binding, i.e. by adding 

non-hydrolysable guanosine nucleotides (GppCp and GTPγS) to cell 

extracts prior to LRRK2 immunopurification. Conversely, the contribution 

of GTP hydrolysis to kinase activation has not been explored until now. 

Therefore, to verify the contribution of GTP binding and hydrolysis to 

kinase activity, LRRKtide phosphorylation assays were performed with 

GTP, its non-hydrolysable analog (GppCp), GDP and its non-hydrolysable 

analog (GDPβS), which are considered to have similar GTP/GDP affinity 

constants (Ito et al., 2007; Liu et al., 2010; Taymans et al., 2011). 

The study was based on WT and mutated LRRK2 proteins (T1348N, 

R1398L, R1398L/T1343V and G2019S). WT LRRK2 kinase activity is 

enhanced by both GTP and its non-hydrolysable analog GppCp (Figure 

22); conversely, the T1348N (a GTP binding-deficient) mutant does not 

respond to guanosine nucleotide treatment. Moreover, GTP is able to 

increase LRRK2 kinase activity to a greater extent than GppCp, suggesting 

that also GTP hydrolysis positively modulates kinase function (Figure 22). 

For the R1398L/T1343V variant, GTP and GppCp induce the same 

increase in kinase activity, consistent with its impaired GTP hydrolysis. It 

was further noticed that GDP, but not GDPβS, significantly decreases WT 

and G2019S kinase activity (Figure 22).   
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Autophosphorylation and LRRKtide phosphorylation data indicates that 

GTP binding first is required for kinase function and that, further, GTP 

hydrolysis completes LRRK2 kinase activation. 

 
Figure 22. Effects of guanosine tri- and di-phosphate on LRRK2 kinase activity. 

4.5 LRRK2 dimer formation and protein stability are not 
influenced by GTPase activity 

It was demonstrated that LRRK2 forms homodimers and that this process 

is required for kinase activity, similar to other protein kinases (Berger et al., 

2010; Greggio et al., 2008; Sen et al., 2009). To date, the regulation of 

GTPase activity by dimerization and vice versa have not been demonstrated.  

To understand whether a correlation between GTPase activity and 

dimerization exists, LRRK2 dimer formation of WT, R1398L, 

R1398L/T1343V and R1398Q/T1343G LRRK2 mutants was analyzed by 

FPLC and Co-IP approaches.  

To study homodimers and native complex formation by mutations that 

alter GTPase activity, immunopurified LRRK2 proteins from HEK-293T 

cells were analyzed by size-exclusion chromatography. Data indicates that 

GTPase activity does not influence LRRK2 dimerization; in fact all tested 

LRRK2 variants elute within a relative large range of elution volumes, with 
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a peak centered at ≈13ml (Figure 23 A and B). Moreover, results show that 

LRRK2 native complexes possess a molecular weight within a range of 

440-669 kDa, suggesting that they might include LRRK2 homodimers in 

addition to different LRRK2 interacting partners (i.e. Hsp90, 14-3-3, etc.).  

We used a Co-IP approach to confirm that GTPase activity does not 

influence LRRK2 dimerization. The capacity of immunoprecipitated MYC-

tagged WT LRRK2 to form heterodimers with 3xFLAG-tagged LRRK2 

mutants was assessed and Co-IP data confirmed the FPLC results (Figure 

24 A). Co-IP experiments also indicate that kinase-dead mutants (D1994A 

and G2019S/D1994A) have an impaired capacity to dimerize, as already 

reported (Sen et al., 2009), similar to GTP binding-deficient variants 

(K1347A, T1348N and G2019S/T1348N).  

It was reported that Hsp90 can help to fold and stabilize LRRK2, most 

likely via the kinase domain, and prevents its degradation by the 

proteasome (Jorgensen et al., 2009). Wang et al. (2008) demonstrated that 

the G2385R mutation and deletion of the extreme C-terminus cause an 

increase in Hsp90 binding to LRRK2, which correlates with LRRK2 

instability. Moreover, this interaction is independent from LRRK2 kinase 

activity because both kinase-dead (K1906M) and kinase hyperactive 

(G2019S) mutants are able to bind Hsp90 similar to WT protein.  
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Figure 23. (A) Size-exclusion chromatography elution profiles of immunopurified 
FLAG-tagged LRRK2 variants derived from HEK-293T cells by Western dot-blot 
analysis with anti-FLAG antibody. Indicated are equivalent quantities of 0.5 ml 
fractions. (B) Densitometric analysis of LRRK2 variant elution profiles expressed as the 
relative signal intensity versus fraction number (ml). Table indicates the mean elution 
fraction for each LRRK2 variant and R2 value for each curve fit.  

To determine whether or not LRRK2 GTPase activity influences Hsp90 

binding, we performed Co-IP experiments against endogenous Hsp90 

using 3xFLAG-tagged LRRK2 mutants. Our data shows that altering 

GTPase activity does not influence Hsp90 binding (Figure 24 B). 

Conversely, an intact P-loop motif is critically required for the normal 

association with this chaperone protein (refer to K1347A, T1348N and 

G2019S/T1348N GTP binding-deficient mutants in Figure 24 B).  

In summary, the differences in GTP hydrolysis between R1398L and 

R1398L/T1343V mutants do not seem to be a consequence of changes in 

homo- and hetero-dimerization. On the other hand, our data indicates that 

GTPase activity does not influence native complex formation, 
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heterodimerization and Hsp90 binding of LRRK2. Conversely, all tested 

GTP binding-deficient mutants exhibit reduced protein stability and 

reduced capacity to form heterodimers compared to WT. It is unclear if the 

impairment of GTP binding is responsible for LRRK2 protein instability 

and reduced dimerization or if, vice versa, these mutations are not well 

tolerated by cells and therefore provoke protein degradation, consequently 

resulting in reduced GTP binding and dimerization. 

 
Figure 24. (A) Co-immunoprecipitation analysis of each FLAG-tagged LRRK2 variant 
with MYC-tagged WT LRRK2 from HEK-293T cells: western blotting analysis (on the 
left) and quantification (on the right). (B) Interaction of endogenous Hsp90 with FLAG-
tagged LRRK2 mutants in HEK-293T cells by co-immunoprecipitation assay: western 
blotting analysis (on the left) and quantification (on the right).  

4.6 GTPase activity does not influence LRRK2 cytosolic 
localization 

LRRK2 is a protein that mostly adopts a diffuse cytosolic distribution in 

neurons and other mammalian cells (Biskup et al., 2006; Greggio et al., 

2006). It was demonstrated that the G2019S mutation induces the 

formation of LRRK2-positive intracytoplasmic inclusions because of its 

hyperactive kinase function (Greggio et al., 2006). The contribution of 
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GTPase activity to the formation of protein inclusions has not been 

unexplored.  

For this purpose, the cellular distribution of LRRK2 GTPase domains 

mutants transiently expressed in HEK-293T cells was assessed by 

immunocytochemistry and confocal microscopy. All examined variants 

adopt a diffuse cytosolic distribution similar to WT LRRK2, without strong 

evidence of accumulation of insoluble granules, modified membrane-

association or subcellular compartmentalization (Figure 25). In summary, 

this data shows that LRRK2 cytosolic distribution pattern is independent of 

GTPase activity. 

 
Figure 25. Confocal fluorescence microscopy reveals the diffuse cytoplasmic 
localization of FLAG-tagged human LRRK2 variants transiently expressed in HEK-
293T cells. Staining for LRRK2 (anti-FLAG antibody, red) and nuclei (DAPI, blue) are 
indicated. Scale bar: 10 µm. 

4.7 GTPase activity modulate neuron length 

G2019S hyperactive kinase mutation was reported to be responsible for 

neurite shortening (i.e. inhibition of neurite outgrowth) in cortical neurons 

transiently transfected with LRRK2 variants and GFP (MacLeod et al., 
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2006; Parisiadou  et al., 2009; Stafa et al., 2012; Xiong et al., 2012; Ramsden 

et al., 2011).  

To shed light on the role of GTPase activity on neurite outgrowth, we 

performed experiments to measure neurite length induced by LRRK2 

GTPase domain variants. Before conducting these assays, the protein 

expression level of LRRK2 variants in cortical neurons was assessed 

(Figure 26 A). Surprisingly, all tested kinase-dead mutants (D1994A and 

G2019S/D1994A) exhibit significantly decreased steady-state levels and for 

this reason they were excluded from neurite shortening experiments. 

Conversely, R1398L, G2019S, R1398L/T1343V and G2019S/R1398L 

showed LRRK2 expression levels similar to WT, similar to their steady-

state levels in HEK-293 cells. Moreover, the T1343N GTP binding-

deficient variant and D1994A kinase-dead mutant, but not K1906M, are 

unstable in cortical neurons (Figure 26 B). 

Our data from neurite shortening experiments shows that: 

 LRRK2 itself promotes neurite shortening,  

 G2019S hyperactive kinase mutant is neurotoxic and it provokes a 

~40% of reduction in neurite length compared to WT, as previously 

reported.  

 

Figure 26. Western blotting showing flag-LRRK2 inputs (upper panel) and β tubulin 
signal (lower panel) from lysates of rat primary cortical neurons transfected at DIV 3 and 
lysated at DIV 6 (A and B). 
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Our results also indicate that impaired, but not enhanced, GTPase activity 

promotes neurotoxicity, to a similar extent as the G2019S pathological 

mutant (Figure 27 A and B). On the basis of these pieces of data it was 

supposed that GTPase activity might modulate neurite outgrowth. 

Moreover, enhanced GTPase activity is unable to prevent neurotoxicity 

induced by the G2019S mutant (i.e. G2019S/R1398L mutant), suggesting 

that G2019S hyperphosphorylation activity supersedes the effects of 

increased GTPase activity on neuronal length (Figure 27 A and B). 

Moreover, R1398L/T1343V can only modestly inhibit G2019S-induced 

neurite shortening (i.e. G2019S/R1398L/T1343V), albeit 

G2019S/R1398L/T1343V exhibits GTP hydrolysis and kinase activity 

similar to G2019S alone (Figures 20, 21 A, B and C). It is likely that the 

partial rescue in axon length is due to a non-significant reduction in kinase 

activity of G2019S/R1398L/T1343V compared to G2019S (refer to Figure 

21 C).  

In summary, impaired GTPase activity correlates with neurite shortening. 

Moreover, by using our genetic approach, it appears unlikely to rescue 

G2019S-induced axonal shortening by increasing GTP hydrolysis. 

Our results are particularly interesting because most of LRRK2 pathological 

mutations cause impairments of GTPase activity. Therefore, in the future, 

it would be worth exploring the effects of modulating GTPase activity in in 

vitro and in vivo systems expressing additional LRRK2 pathological 

mutations. 
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Figure 27. Staining of rat primary cortical neurons with flag-LRRK2, GFP and β III 
tubulin after transfection with flag-LRRK2 mutants and GFP constructs and cell 
fixation (A). Arrows indicate neuronal soma and arrowheads axonal processes. Scal bars: 
400µm. Graph represents axon lengths measured on LRRK2-, GFP-, and β III tubulin-
positive neurons (B). *P<0.05, **P<0.01, ***P<0.001 comparing the axon length of 
each mutant to control, if not differently indicated, and #P<0.05 and ###P<0.001 
comparing the neurite length of each mutant to WT by one-way ANOVA with 
Newman-Keuls post-hoc analysis.  
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5. DISCUSSION 

 
In 2004 it was first observed that several mutations localized to the LRRK2 

gene (locus PARK8) cause familial PD. To predict LRRK2 physio-

pathological functions, sequence homology with well characterized proteins 

was explored.  

LRRK2 protein belongs to the ROCO family, is a bivalent enzyme and 

shares high similarity with Ras and Raf protein families. On the basis of this 

information, researchers hypothesized that LRRK2 might take part in a 

signal transduction mechanism and that its kinase activity might be the 

downstream effect of its GTPase function. Unfortunately, LRRK2 

enzymatic regulation and functions are still unclear. The contribution of 

LRRK2 GTP hydrolysis to kinase activation and PD-associated cellular 

phenotypes are not fully understood. To shed light on these processes, a 

complete library of functional mutations has been created on the basis of 

well characterized equivalent functional variants in related H-Ras GTPase 

and Raf-1 kinase proteins (Ito et al., 2007). 

First, LRRK2 steady-state level assays were performed in HEK-293T cells. 

Our results, according to the literature, indicate that K1347A and T1348N 

are unstable compared to WT LRRK2, suggesting that single mutations in 

the P-loop motif that impair GTP binding are poorly tolerated in HEK-293 

cells.  

Then, LRRK2 GTP binding and hydrolysis were assessed. Among all the 

functional variants, three of them show decreased GTP binding (i.e. 

K1347A, T1348N and G2019S/T1348N), two GTPase-enhanced proteins 

(i.e. R1398L and G2019S/R1398L) and one GTPase-inactive LRRK2 

version (i.e. R1398L/T1343V), independently from GTP binding affinity. 

Moreover, no one mutation in the kinase domain is able to modify 
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enzymatic activities of the ROC domain, leaving unsolved the question 

about the importance of autophosphorylation sites at the ROC domain. 

We can summarize some important differences between LRRK2 and other 

small GTPases: 

 LRRK2 GTP hydrolysis proceeds at lower rate than in other 

proteins, 

 LRRK2 possess an Arg (R) residue instead of a Gln (Q) in the 

DFAGR sequence of the Switch II region, 

 R1398L mutation in LRRK2 is associated with enhanced GTP 

hydrolysis, whereas the equivalent Q61L variant in H-Ras shows 

impaired GTPase activity (GTP-locked version), 

 R1398L/T1343V mutation is the GTP-locked version of LRRK2, 

like the Q61L variant in H-Ras. 

On the basis of this data we supposed that the regulation of LRRK2 GTP 

hydrolysis is distinct from most other small GTPases. Moreover, 

introduction of the R1398Q/T1343G double mutation in the ROC-COR-

kinase fragment of LRRK2 has been associated with a GTPase-enhanced 

protein (Xiong et al., 2010). Conversely, LRRK2 full-length 

R1398Q/T1343G mutant showed GTP hydrolysis activity similar to WT. 

This discrepancy in GTPase activity data can be explained by postulating 

that sequences outside the ROC domain might negatively modulate LRRK2 

GTP hydrolysis, as previously reported (Deng et al., 2008; Li et al., 2007). 

Our data from autophosphorylation and LRRKtide phosphorylation assays 

indicates that: 

 P-loop motif is critically required for LRRK2 kinase activation, in 

fact all GTP binding-deficient mutants are kinase-dead, 

 Switch II region modulates kinase function: even in presence of an 

impaired GTP hydrolysis, LRRK2 can still phosphorylate itself and 

LRRKtide, albeit to a lesser extent. 
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Prior experiments based on cell treatments with non-hydrolysable GTP 

analogs (GTPγS and GppCp) have shown that GTP binding is responsible 

for kinase activation, most probably through an unidentified GTP-binding 

protein (Taymans et al., 2011). Our further experiments using GTP and its 

non-hydrolysable analog, GppCp, confirmed that both GTP binding and 

hydrolysis enhance kinase activity of all LRRK2 mutants except for 

T1348N GTP binding-deficient variant. Moreover, GTPase activity is able 

to further increase the GTP binding-induced kinase activation. Conversely, 

R1398L/T1343V (GTP-locked mutant) loses the GTP hydrolysis-related 

kinase activation.  Therefore, on the basis of these results, we hypothesized 

that a GTP binding-dependent effector first activates kinase function and 

then, LRRK2 GTP hydrolysis allows the complete kinase domain activation 

cycle.  

Some experiments from other groups indicated that LRRK2 cycles from a 

GDP-bound kinase-inactive conformation to a GTP-bound kinase-active 

state (West et al., 2007; Sen et al., 2009). In this scenario, our 

R1398L/T1343V mutant, as well as being a GTPase-inactive protein, 

would have stayed longer in the GTP-bound conformation and possess an 

increased kinase activity compare to WT. Conversely, our 

autophosphorylation and LRRKtide phosphorylation pieces of data were in 

disagreement with this hypothesis, albeit mutations that have been used are 

different. In support of our hypothesis are results coming from LRRK2 

autophosphorylation experiments in the presence of ArfGAP1 (which 

increases LRRK2 GTPase activity) (Stafa et al., 2012). It has been 

demonstrated that ArfGAP1 promotes LRRK2 kinase activation, 

suggesting that either GTP binding or GTP hydrolysis contribute to 

LRRK2 kinase function and that LRRK2 enzymatic regulation is more 

complicated than that of other related G-proteins. 
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To explain enzymatic differences in GTP hydrolysis between R1398L and 

R1398L/T1343V mutants, we explored dimerization and stability 

properties associated with these GTPase variants. FPLC and Co-IP 

approaches showed that: 

 LRRK2 GTPase activity does not have any effect on dimerization, 

 dimer formation cannot explain the differences in GTP hydrolysis 

capacities between R1398L and R1398L/T1343V mutants.  

Moreover, among all tested variants, K1347A, T1348N, D1994A, 

G2019S/T1348N and G2019S/D1994A possess reduced capacity to form 

heterodimers, suggesting that both an intact P-loop motif and kinase 

domain are necessary for dimerization, as previously demonstrated by using 

BLUE Native PAGE and FPLC analyses (Greggio et al., 2007; Sen et al., 

2009).  

Finally, FPLC results show that LRRK2 native complexes have a molecular 

weight (440-669 kDa) that does not correspond to a perfect LRRK2 dimer, 

suggesting that these complexes might include two LRRK2 monomers 

associated with partner proteins (i.e. Hsp90, 14-3-3, etc.).  

Finally, GTP hydrolysis does not influence the association with Hsp90, 

suggesting that R1398L and R1398L/T1343V enzymatic activities are not a 

consequence of important LRRK2 conformational changes, but more likely 

an effect of subtle variations in the ROC domain flexibility, without 

impairment of LRRK2 dimerization, native complex formation and 

stability. To confirm this hypothesis further crystal structure analyses of 

GTPase mutants will be necessary. Conversely, impaired GTP binding 

promotes LRRK2 association with the Hsp90 chaperone protein, 

confirming that this enzymatic activity stabilizes LRRK2 protein structure. 

In the light of this data, it is important to note that both impaired GTP 

binding and protein instability can trigger kinase inactivity and reduced 

dimerization, complicating the interpretation of LRRK2 enzymatic data. 
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So far, two main theories have been postulated about LRRK2 enzymatic 

activity. The first one assumes that LRRK2 enzymatic activity regulation is 

based on a canonical GTP/GDP cycle, like the Ras/Raf pathway.  The 

second hypothesis suggests that LRRK2 protein belongs to a family of 

GAD proteins (Gasper et al., 2009) that dimerize upon GTP binding and 

then stimulates its GTPase and kinase activities but in the absence of GAPs 

and GEFs. In summary, our kinase activity, FPLC and Co-IP pieces of data 

are in disagreement with both theories, in fact: 

 either GTP binding or GTP hydrolysis seem be correlated with 

kinase activation, 

 R1398L (GTPase-enhanced variant, mostly locked in the GDP-

bound conformation) and R1398L/T1343V (GTPase-inactive 

variant, mostly locked in the GTP-bound state) mutants do not have 

different dimerization properties. 

It is also worth noting that the LRRK2 ROC domain cannot directly 

stimulate kinase activity through GTP binding (Taymans et al., 2011), 

suggesting that LRRK2 does not follow a canonical GTP/GDP cycle. 

Moreover, LRRK2 GTPase and kinase activity are enhanced by ArfGAP1 

(GAP protein), which is incompatible with the GAD theory (Stafa et al., 

2012). 

Moreover, GTP hydrolysis does not have any effect on LRRK2 cytosolic 

distribution in HEK-293 cells.  

It was previously reported that decreased, but not enhanced, GTPase 

activity of LRRK2 fragments (i.e. K1343A and T1348N mutations) is 

correlated with toxicity in yeast and neuronal models (Xiong et al., 2010). 

Moreover, in cortical neurons, it was demonstrated that LRRK2 modulates 

axonal length and branching and that enhanced kinase activity of full-length 

LRRK2 is responsible for neurite shortening (Stafa et al., 2012). On the 

basis of this data, we assessed the contribution of GTPase activity of full-
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length LRRK2 on neurite length and we found that reduced, but not 

enhanced, GTP hydrolysis promotes neurite shortening to a similar extent 

as the G2019S pathological mutant. Unfortunately, by using our genetic 

model, increased GTPase activity is not sufficient to rescue G2019S-

induced neurite shortening.  

In summary, it is possible to hypothesize the LRRK2 enzymatic regulation 

model that is shown in Figure 28. According to this theory, LRRK2 can be 

present in different conformations in cells: 

 the monomeric, kinase-inactive GDP-bound state, 

 the dimeric, partial kinase-active GTP-bound intermediate (after 

kinase activation), 

 the stable homodimeric, kinase-active and physiologically-active 

GDP-bound state. 

It is probable that following a specific stimulus and most probably in the 

presence of a still unidentified GEF protein, kinase-inactive LRRK2 

monomers bind GTP. This GTP-bound conformation would provide 

docking sites for a GTP binding-dependent protein that promotes kinase 

activation, allowing LRRK2 to phosphorylate itself and to form an unstable 

dimer, but preventing this protein from efficiently phophorylating its 

biological substrates. For LRRK2 to complete kinase stimulation, GTP 

hydrolysis is also required (most probably in the presence of a GAP), with 

stable dimer formation. Finally, upon GTP conversion to GDP, LRRK2 

becomes an efficient protein kinase that can phosphorylate both itself and 

its physiological substrates. After GTP hydrolysis, LRRK2 rests in a stable 

dimeric state, until specific phosphatases impair LRRK2 dimer stability. 

LRRK2 can bypass its kinase activation by GTP hydrolysis, but the GTP-

bound dimeric intermediate does not exhibit all biological effects of the 

GDP-bound homodimeric conformation (Figure 28).  
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Figure 28. LRRK2 enzymatic activation model. 

Our pieces of data taken together indicate that a functional relationship 

among ROC domain, kinase domain and dimerization exists, albeit all 

molecular details are not well understood. Further studies are required for 

clarifying the molecular pathobiology of LRRK2 protein for the purpose of 

finding new therapeutic strategies for PD. 
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6. CONCLUSIONS 

 

We generated a complete library of LRRK2 functional mutants to explore 

the interplay between GTPase and kinase domains and the contribution of 

LRRK2 GTPase activity to cellular phenotypes. 

Our biochemical data suggests that enzymatic regulation of this protein is 

complicated to understand and we proposed a summary model of LRRK2 

activation that fits well with our findings. According to this theory, LRRK2 

would require GTP binding to phosphorylate itself and dimerize, whereas 

GTP hydrolysis activity modulates its capacity to phosphorylate its 

biological substrates and, consequently, exert its biological function. 

Regarding LRRK2-related neuronal phenotypes, we observed that 

increased GTPase activity is not sufficient to rescue G2019S LRRK2-

induced neurite shortening. If neuronal length reflects cellular toxicity, this 

indicates that increasing GTPase activity may not provide an efficacious 

strategy for reverting neurotoxicity induced by the pathogenic G2019S 

mutation.  

In the future, it will be important to confirm all biochemical and cellular 

findings in in vivo LRRK2 models and to explore the role of GTPase 

activity in neuronal morphology and function by using GTPase-impaired 

pathological LRRK2 mutations (i.e. R1441C, R1441G or Y1699C) linked to 

PD. 

To date, we do not yet understand LRRK2-related PD and until further 

details of LRRK2 pathobiology have been clarified it will be difficult to 

develop new LRRK2-based therapies for treating PD. 
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