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B chiaro, quindi, che lidea di un metodo fisso o di una teoria fissa
della razionalita poggia su una visione troppo ingenua dell’uomo e del suo
ambiente sociale. Per coloro che non wvogliono ignorare il ricco materiale
fornito dalla storia e che non si propongono di impoverirlo per compiacere
ai loro istinti piv bassi, alla loro brama di sicurezza intellettuale nella forma
della chiarezza, della precisione, dell’”obiettivita”, della "verita”, diventera
chiaro che ¢’¢ un solo principio che possa essere difeso in tutte le circostanze
e in tutte le fasi dello sviluppo umano. E’ il principio: qualsiasi cosa puo
andar bene.

Paul K. Feyerabend “CONTRO IL METODO”
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Chapter 1

Introduction

The following pages constitute an attempt to rationalize a three years ef-
fort to find an original point of view on the problem of adsorption and
diffusion in microporous materials. This effort was only partially successful
and many questions regarding the various approaches here exposed remains
unanswered. However some parts of this work remains interesting in my
opinion and could deserve further investigations.

The fundamental topics on which this thesis work focuses, are the pos-
sibility of applying certain reductionistic approaches to the dynamics of
sorbate molecules in zeolites, and similar materials, in order to obtain a
coarse-grained model of it, and the development of tools for better under-
standing some of the fundamental mechanisms of this dynamics, inspired
by the different points of view on the phenomena of interest that a mean-
ingful coarse-graining could bring to light. In the following, the idea of
coarse-graining is intended in a perhaps slightly different way from its most
common use. It is in general related to the reduction of a complex problem
to its really fundamental elements, by discarding all that is not strictly nec-
essary, with the aim of making it easier to handle. But while in the study
of proteins, for example, it refers to the limitation of the degrees of free-
dom of the macromolecule, by considering groups of atoms as single units
interacting via a simplified force field (as in Go models), we deal here with
a coarse-graining of space rather than of molecular structure. In a sense the
molecular structure of the zeolite is coarse-grained in a first step, but this
induces immediately a coarse-graining of the space available to the motion of
sorbed molecules. Once the space is partitioned in a sensible way, dynamics
can be treated on the basis of this discrete space.

Molecular Dynamics (MD) is now widely used to simulate adsorption
and transport phenomena in zeolites [1-3]. It is a powerful tool, and its
application has brought deep insights in the behaviour of molecules under
confinement, shedding light on many interesting phenomena and providing
an explanation to experimental results. However, despite the continuous
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growth of available resources for massive calculation, MD simulations for
large systems and/or long times are still very computationally demanding,
and this justifies an effort to develop coarse-grained methods allowing a
substantial extension of the range of systems that can be simulated.

Examples of coarse-graining in the field of zeolite studies [4] are Configurational-
Bias Monte Carlo methods [5], Kinetic Monte Carlo [6,7] (KMC) techniques,
the hierarchical approach proposed Tunca et al [8], and a lattice-gas Cellular
Automaton (LGCA) developed in our group [9].

In section 2.2 a variant of this LGCA suitable for simulations of mixtures
adsorbed in zeolites is presented, alongside with a still more reductionistic
model of the same kind and a detailed study of the associated time correla-
tion function.

Monte Carlo and Cellular Automata methods require a number of pa-
rameters, which must be properly tuned to reproduce the dynamics of inter-
est. Definition of the sites, of the jumps between them and their probabili-
ties, alongside with a meaningful definition of the time scale are all difficult
issues, requiring usually an ad-hoc determination which is justified mainly
by the agreement of simulation data with experimental or MD global results,
such as diffusivities or adsorption isotherms. In a sense this appears to be a
complex fitting procedure of the reference data where the unknown function
is the algorithm itself with its parameters.

The choice of parameters used in the previous methods is often heuristi-
cally inspired by reasonable assumption regarding the system’s microscopic
nature, the involved interactions among its elements and additional infor-
mation such as mesoscopic experimental data. It would be of course useful
to find a systematic and reliable method to obtain them from some fine-
grained trustworthy method such as Molecular Dynamics, and this is one of
the main issues addressed in this thesis work.

In other words, given a certain knowledge of the system at a microscopic
level, such as a reliable MD force field, is it possible to obtain a natural
coarse-grained model of it? Or on the other hand, having a certain simple
model already heuristically designed for mimicking a given system, is there
a systematic way of making it realistic by tuning its parameters, starting
from microscopic information?

The answer to any such question lies in our ability to recognize the gen-
eral structure and key elements of the energy landscape associated with the
system studied. The idea of studying the energy hypersurface of a micro-
scopic system, which is a function of all its atoms coordinates, has gained
increasing attention in the last decade. It is clear that all the information
needed to understand and predict the system’s behaviour is embedded in
this object. However, while any simulation method performs in the end a
sampling of this hypersurface, a direct exploration of it is not an easy task,
and if the landscape is a rough one, with high barriers, the capability of a
method like MD of sampling a significant part of it may be strongly reduced
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or lost. In section 3.4 some direct analysis techniques are presented, which
allows at least a partial mapping of the relevant critical points of the poten-
tial energy surface, however even knowing a significant part of the energy
landscape web of minima and transition states, appropriate theoretical tools
(such as a proper Transition State Theory, and a reliable way of taking into
account entropic effects) are required if one wants to extract useful infor-
mation from it. Two possible approaches are investigated here: the direct
analysis of the energy landscape is the matter of chapter 3, and an implicit
way of determining its geography, based on MD trajectories analysis, is ex-
posed in chapter 4, alongside with a second-order Markov model developed
on its basis.

The first approach is not particularly useful for the study of systems with
weak intermolecular forces like those mainly considered here, but could be a
valuable tool in the case of strongly interacting systems with high barriers.
However a schematic map of the smooth energy landscapes characterizing
our systems is presented that can help to rationalize other results.

The second approach gave interesting insights and brought to the de-
velopment of a second-order Markov model of the systems studied. The
reasons for using a second-order Markov chain approach rather than a first-
order one, are discussed in sections 3.4 and 4.2. What is interesting to
notice here, is that if a direct coarse-grained markovian model should rely
on transition probabilities between regions in the discretized space, in our
case calculated from MD trajectories, a second-order model is based on the
transition probabilities between first-order transitions. In other words while
in the case of a first-order Markov chain a possible system’s story is a suc-
cession of positions in the discretized space, in the model described here it
is considered as a succession of discrete events.

Once the event-event transition matrix is calculated from MD simulation
data, it can be studied in itself via standard algebraic analysis, but a different
point of view could also be interesting: as any other matrix, it can be seen
as a network. In this case it represents a directed weighted network where
each node correspond to a discrete event. A given pair of nodes a and b, is
connected by a link a — b if the probability that the event b follows event a
is non-null, with a weight proportional to this probability.

The reason for such a change of viewpoint is the expectation that the
structure of this network of events depends on the underlying dynamics and
could expose some interesting features of it, giving a hint of the basic mech-
anisms of diffusion, and of the way they change with different conditions,
such as temperature, adsorbate density, its size, shape and electronic struc-
ture. However the particular kind of network we obtain i.e. both directed
and weighted, has not to date received much attention in the impressively
active field of network theory. Some of the basic concepts used in network
analysis do not have a definite, useful formulation for this class, or are not
considered in most of available network analysis packages. Moreover the
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1.1. Zeolites 10

kind of system represented by our graph is very different from those usually
considered in applications of network theory, so that even those measures
that have been defined for directed weighted networks are often not suitable
for our purposes. The ideas underlying this network theory approach to the
event-event matrix are reported in chapter 5, together with the difficulties
met and some related open questions.

1.1 Zeolites

The various ideas presented in this thesis, were all tested and tailored on
a reference system: a portion of a zeolite ITQ-29 crystal (often referred
to as ZK-4 in literature) hosting molecules of some adsorbate species. Zeo-
lites are aluminosilicates displaying unique characteristics, on which depends
their extraordinary variate and extensive utilization in many technological
processes. This is the reason of the huge amount of experimental and theo-
retical studies focusing on these materials in the last decades. What makes

Figure 1.1: Micro-crystals of zeolite LTA. The small openings of pores are
recognizable on the surface.

zeolites unique is the structure of their crystal lattice, showing nanometric
pores and canals, capable of hosting a variety of small molecules, which are
allowed to move inside the material. The strict confinement experienced by
guest molecules, adsorbed on the impressively extended inner surface of the
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1.1. Zeolites 11

zeolite affects strongly their behaviour, and is responsible for the catalytic
properties of the material, as well as their capability of selectively trapping
molecules, depending on their size, shape and polarity.

For this reasons zeolites are widely employed in petroleum industry as
catalysts and molecular sieves; as ion traps; as dessicants, for their ability
to absorb large amounts of water (the release of water under heating is
the origin of the name zeolite, meaning ’boiling stone’); and in many other
applications.
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Figure 1.2: The structure of zeolite ITQ-29 with the a—cage highlighted.
(Courtesy of IZA [10])

Our focus was on ITQ-29, an all-silica zeolite of Linde type A (LTA),
that is a cubic symmetry one, with neither aluminium nor extra-framework
cations. Usually, for zeolites with small Si-Al ratio, cations are present to
counter balance the positive charge defect of the lattice due to aluminium.
Cubic symmetry and the absence of cations simplify the treatment of this
system, but they are not essential in any way for the validity of the following
discussion. In Fig. 1.2 a unit cell of I'TQ-29 is shown, with the main pore,
called a-cage, highlighted. This is the space where molecules resides, while
the space inside the truncated octahedra (sodalite-cages) on its vertices, is
not reachable due to the narrow openings. The a-cage is roughly 12.5 A
in length, and the octagonal windows, connecting it to the six neighboring
cages, have a diameter of 4.8 A.
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Chapter 2

Cellular Automata models of
diffusion in zeolites

2.1 Brief overview on Cellular Automata

A Cellular Automaton (CA) [11,12] is a n-dimensional lattice of cells, each
characterized by its state, with an associated evolution rule. This acts at
discrete times on the whole space to generate a new configuration of it,
depending only on the configuration at the previous time.

A Cellular Automaton is formally defined as a quadruple (d,T',J, f)
where:

-d is a natural number representing the automaton space dimensionality

-I" is a finite set called state space

-J is a finite subset of the integer numbers set Z¢, and is called neigh-
borhood index. Being |J| the number of elements in the subset, the cells
belonging to the neighborhood of a given cell i are 1+ ji, 1+ jo,... 14 j|

-f is a function f : ' Ul — T". Being n;(t) the state of the i — th cell at
time t the evolution rule of the cellular automaton is

ni(t +1) = f(nigg, (8), nigjo (1), - - nigjy (1)) (2.1)

In general a classical CA is:

-discrete, in time and space, which consists of an array of individual cells

-omogeneous, as it shows the same structure in the whole space and each
cell has the same neighborhood

-parallel; as the states of every cell are updated simultaneously at each
time step (this is valid at least inside each partition in a hierarchic automa-
ton)

-local, as the evolution of each cell depends only on the state of its neigh-
borhood (which can contain or not contain the cell itself)

There are several possible variations to the basic scheme previously de-
scribed, such as:
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2.2. A parallelizable Block Cellular Automaton for the study of diffusion
of binary mixtures containing COs in microporous materials. 14

-asynchronous automata, in which the evolution of some cells is randomly
retarded for one or more time steps, and non-homogeneous automata. These
can be inhomogeneous in time, obeying a certain evolution rule for some
time steps and then switching to another one, or in space, obeying different
rules in different regions of their space, possibly with different neighborhood
definitions.

-hierarchical automata, with structured cells, each characterized by a
state vector rather than a scalar state; and partitioned automata for which
only some components of the state vector are relevant to the evolution rule.

-probabilistic automata, for which evolution from a given state may re-
sults in many different outcomes each with its own probability of realization.
These are obviously very useful for thermodynamic studies.

The cellular automaton described in the next section is a hierarchical,
probabilistic CA with a Margolous partition scheme.

2.2 A parallelizable Block Cellular Automaton for
the study of diffusion of binary mixtures con-
taining CO, in microporous materials.

The present section is an adaption of a paper appeared in The Journal of
Chemical Physics [13]. Copiright 2011, American Institute of Physics

We applied a method based on a Block Cellular Automaton algorithm
to the study of diffusion of various binary mixtures adsorbed in a model
microporous material like zeolite ITQ-29. Our aim was to test the capa-
bility of our model to cope with systems in which more than one species is
present, using a set of parameters based on heuristic considerations on the
Molecular Dynamics results present in literature. A rigorous methodology
for the assignment of suitable adsorption energies and diffusion activation
barriers for our CA has not been developed yet, nonetheless the results were
quite interesting at this stage and we obtained a good qualitative agreement
with MD data in literature. The mixtures we investigated contain COa,
which causes the so called segregation-effect, a strong suppression of self-
diffusivity of co-adsorbed species. This effect gives rise to relevant problems
in the application of some well established and robust methods while our
model proved to be able to reproduce both the common features and the
segregation anomaly in the trends of diffusion.

Among microporous materials, zeolites constitute a wide class of alumino-
silicates displaying very interesting properties due to their microscopic struc-
ture. In the past decades their massive industrial utilization for many dif-
ferent applications (i.e. catalysis, molecular sieving, mixtures separation,
detergents etc.) has led to a great theoretical and experimental effort in
order to understand the underlying mechanisms of diffusive and reactive

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Universita degli Studi di Sassari



2.2. A parallelizable Block Cellular Automaton for the study of diffusion
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processes taking place inside their porous structure. A wealth of Molec-
ular Dynamics and Monte Carlo techniques have been used, which have
given deep insights into the rich and various behaviors of these materi-
als, with a particular focus on the intra-crystalline diffusion of adsorbate
molecules [1-3]. Even if methods based on MD are invaluable for a detailed
knowledge of the microscopic dynamics of these systems, they have severe
restrictions both on the time and spatial extension of the simulations. In an
ordinary MD experiment one cannot usually expect to study the evolution
of systems containing more than about some thousands of atoms and for
times longer than tens of nanoseconds, being thus unable to detect a wide
range of behaviors, including for instance long range correlation effects on
diffusion or the effect of concentration and temperature gradients. It would
be in turn very interesting to understand this kind of properties for both
practical and theoretical reasons. A possible solution to the aforementioned
limitations is that of a strongly coarse-grained approach to the problem.
This was the idea underlying the previous work of Demontis et al. [14-18]
where a new Cellular Automaton model was presented. By neglecting most
of the microscopic details of the zeolite-adsorbate system and retaining just
the essential degrees of freedom needed in order to reproduce in a reliable
way the main features of the diffusion processes of interest, this new model
gave a good qualitative and quantitative agreement with the data obtained
by other authors using MD, but with a strong reduction of CPU time. This
means that by giving up to explore the microscopically detailed dynamics
of the system, and by exploiting input data coming from other methods,
the CA model is able to extend largely the time and spatial horizons of
simulation. In the present work we present a slightly modified version of
the algorithm proposed in [9,14-18] and the extension of its application to
the study of mixtures diffusion, a possibility that was not already tested,
as in our previous works only pure species were considered. The results ob-
tained studying three different mixtures in zeolite ITQ-29 are compared to
those present in literature in order to test the reliability of our model and its
ability to qualitatively reproduce, at this stage of development, data from
well established and more sophisticated methods in three different systems
displaying a non-trivial behavior.

2.2.1 The model

Our model consists of a probabilistic, hierarchic Block Cellular Automaton
(BCA). The BCA space is a cubic-symmetry lattice of cells, each represent-
ing an a-cage of zeolite ITQ-29. Each cell is structured as an array of Nyt
sites which correspond, at least to a first approximation, to the preferential
adsorption sites for guest molecules inside the a-cage. There are two differ-
ent types of site: Ngy exit-sites and NV;, inner-sites for each cell, which, in
the aforementioned approximation, can be seen as corresponding to regions
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more and, respectively, less close to the windows connecting the a-cages.
The state of each site, is determined by a collection of Ny, boolean variables
sX1 ., sNep, Nyp is the number of guest species present in the system and
a value of 1 for s*» means that the given site is occupied by a molecule of
the n' species. An exclusion principle holds such that each site can host a
maximum of 1 molecule at any given time, so that

Y s¥=o0vi1 (2.2)
X

Let us indicate as ¢ any of the Ny sites within each cell. Indicating as
SX (r,t) the number of molecules of species X in the cell with position r at

time ¢,
Niot

S¥(rt) = s (x,1), (2.3)
=1

where s:X(r,t) is the X-species occupancy of the i-th site of cell r at time ¢,

we define the total occupancy of a cell as the sum S(r,t) = > S¥(r,t).
All the cells are structurally equivalent so that the grid is homogeneous,
and each cell can communicate only with its 2m (in this work, m = 3) first-
neighbouring cells through a set, {e}, of 2m+ 1 direction listed in Table 2.1.
In the present work inner-sites inside each cage are left indistinguishable,
while exit-sites are oriented in space in order to link neighbouring cells ac-
cording to the set {e}. In our model, a molecule can leave a cell, say r, to
enter a neighbouring cell, say r + e,, only by jumping from the particular
exit-site of cell r indicated as (r,e;) to the exit-site (r + e,,e_,) of cell
r + e,. Therefore, while the inner-sites can be identified by the coordinates
r of the corresponding cell only, every exit-site needs also the specification
of one of the 2m (in this work, 6) possible orientations specified in Table 2.1.

2.2.2 Block-partitioning scheme

The Automaton acts according to a Margolus block-partition [17, 19, 20].
Each block results from the alternative grouping of sites according to a def-
inite rule. Several types of blocks can be defined depending on the number,
the type and the connections of the sites they include, which can belong
to one or more different cells. The set of all the blocks of the same type
represents a partition of the whole lattice. A fundamental feature of the
blocks is that blocks belonging to the same partition do mot communicate
with each other. In other words, every block is treated as a closed system.
Let’s indicate as B a particular block in the system. containing a number
Np of sites generally indicated as Ii,...,Ing. The state of the block B at
time ¢ is defined once the states s¥ (B, ¢) of each site within it are defined.
In the present work we consider two types of blocks. The first type is equiv-
alent to a cell, and contains therefore all the Ny sites (inner plus exit)
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Figure 2.1: (Left)A bidimensional section of a possible configuration of BCA
s shown: squares encase blocks of the ‘cage’ type while small rectangles en-
case blocks of the ‘window’ type. The empty circles represent empty sites
while red and green circles represent sites occupied by molecules of two dif-
ferent species respectively. (Right) The two Margolus partitions (in red) of
the space of BCA. In the upper part of the figure the cage-blocks partition
is shown, which covers the whole automaton space, while the window-blocks
partition is shown in the lower part.

belonging to it. We refer to these blocks as cage-type blocks, as they rep-
resents a-cages of the zeolite. We emphasize that, since the cells do not
overlap and each cell communicates directly with its 6 neighbours with no
intermediation of any extra-site besides their respective exit-sites, the first
partition (containing all the blocks of the first type) covers the entire lattice.
Given the exclusion condition in Eq. (2.2) one has that the total occupancy
of a cage-type block cannot be greater than Ng.

The second Margolus partition is the set of all the exit-sites of the system.
Every block of the second type contains a pair of communicating exit sites.
The type-2 blocks, can be classified in three categories depending on their
orientation: an z-block is a block in the x direction, i.e. it includes the exit-
sites (r,e;) and (r + e,,e_;) (see Table 2.1). The same scheme is valid for
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e; u u, u )
ey A 0 0 1
ey 0 A 0 2
e, 0 0 A 3
e, —X 0 0 4
e, 0 —-X 0 5
e, O 0 =X 6
0

0 0 7,..., Nt

Table 2.1: The set of direction vectors for the lattice considered in the present
work. ug, uy, and u, are the three cartesian unit vectors, and X is meant as
the lattice spacing. In the fifth column, the sites within each cell, i, assigned
to each direction are listed.

directions y and z. We refer to these blocks as window-type blocks and the
corresponding partition is the collection of all the windows of the lattice,
which partly overlaps with the first partition. From the exclusion condition
it results that the occupancy of a window-type block cannot be greater than
2. A schematic representation of the network and its partitions is reported
in fig. 2.1

2.2.3 Interactions besides mutual exclusion.

Formally, besides mutual exclusion, interactions among the guest molecules
within each cell of the automaton can be defined as follows: if we indicate
as ngf the number of molecules of species X in the a-type sites of a cell, i.e.

Niot

X _ § : X X _ X
Nex = Si Nin = Si (24)
=1 =7

then the energy of a molecule of species X residing in a given site is

EX =¢X By =eX + (X — 1)¢%, (2.5)

ex?

for an exit and an inner site, respectively. In Eq. (2.5), ¢X < 0 is the
(invariant) adsorption energy binding a molecule of the species X to a site
of type a, and ¢~ is the molecule-molecule interaction energy within the
inner sites (notice that the former equations are not general, but refer to
the specifical choice we made in this work (see Section.III), for a general
discussion on guest-guest interaction parameters in CA models of zeolites
see [9]).

According to Eq. (2.5), only molecules in the inner sites can interact
with each other, which is a reasonable approximation since in the particular
zeolite framework investigated here (LTA-type), the interactions with the
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host medium, for molecules close to the window connecting adjacent cages,
can be considered more important than the interaction with the molecules
located in the inner part of the cage.

Such an assumption is very convenient for optimization reasons, since the
blocks of the window-type block partition can be considered as independent
one of each other and therefore treated all simultaneously.

We can thus define the Hamiltonian of the system as the sum of the
Hamiltonians of all the cells in the system, ) H(r,t), where

H _ X X X X X ¢~
(I‘, t) - ZX: Neg (I‘, t)gex + Ex:nin(rv t) |:€in + (nin - 1)7 ) (26)

where we remark that X runs over the values Xi,..., Xy, .

An additional migration barrier, efj(- = ej)»g > 0, can be introduced be-
tween two sites, ¢ and 7, within the same block, which only affects the model
kinetics and not the system Hamiltonian.

2.2.4 Evolution rule.

The Automaton acts on each partition separately, starting from one of them
chosen randomly at each time-step. In both partitions we have a syn-
chronous updating of the state of each block indipendently from the state of
others. The cage-blocks partition updating accounts for intra-cage dynam-
ics of the host molecules, while within the windows-block partition we are
considering inter-cage jumps. The evolution rule mimics the self-diffusion
process as a series of activated Arrhenius-jump moves, with activation free
energy —EX. Within each block all the molecules are invoked in a random
sequence. Once a molecule succeeds in freeing itself from the binding site it
can move towards any other site within its block. The move will be success-
ful if the target site is free and if another activation barrier efj(-
This barrier is related with the steric hindrance encountered by the molecule
as it moves from site 7 to site 7 and with the distance between them. Once
all the blocks in the partition have been updated, the algorithm switch to
the other one. This is globally an Arrhenius-jump Monte Carlo scheme tak-
ing place for each molecule in every block (see fig. 2.2). Subdivision of the
Automaton space in two Margolus blocks is necessary in order to ensure
parallelizability of the algorithm. This choice marks the difference between
our Cellular Automaton model and other Monte Carlo methods [4, 21, 22].
Using the Margolus approach ensures the evolution of every partition being
in principle completely synchronous, as each single block belonging to it can
be assigned to a different processor, if one wishes so, given that, with the
above described partitioning scheme, no molecule can jump from one block
to the other. Inside each singular block of the partition the algorithm is of
course sequential.

1S overcome.
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Figure 2.2: The simulation algorithm for a single time step. The scheme
followed is the same for both the updating of the partition of the ‘cage’-type
(red arrows) and of the ‘window’-type (blue arrows) blocks. The scheme
represents the sequential implementation of the evolution rule used in the
present work. However each block can evolve independently from the others.
A parallelization of the algorithm is thus straightforward.
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It should be pointed out that although the described algorithm is in-
tended to study both statical and dynamical properties, it is unable (unlike
classic and parallel kMC methods [7,23-25] ) to generate an autonomous
physically meaningful time scale [26,27]. Nonetheless it gives rise to a pre-
cise dynamical hierarchy among the various processes taking place, which is
enough in order to reproduce, for instance, the different diffusive behavior
of adsorbed species.

Attention should be paid in interpreting the elements of the model we
described. Regarding the relationship between adsorption sites in the real
zeolite and what we called sites in our automaton model for instance, we no-
tice that the spatial localization of a region of a zeolite pore where interaction
with a certain molecule is favorable (adsorption site) is not always well de-
fined. In case of large rigid molecules (such as benzene) or if the zeolite shows
cations inside the cavities where adsorption takes place, we can speak of real
adsorption sites, but in case of small adsorbed molecules and/or all-silica
zeolites the situation is less defined and the energetic landscape experienced
by the molecules is smooth enough as to allow them to spend much of their
time outside relative potential minima, being thus largely delocalized, even
at room temperature [28]. Thus in our BCA model, sites should be inter-
preted as collectors of points in the phase space of an adsorbed molecule
rather than as localized adsorption sites. The common feature characteriz-
ing the ensemble of situations symbolically represented by each site is the
likelihood for a molecule within it to jump towards a certain window or not.
In particular, inner-sites don’t allow host molecules to reach any window,
while each exit-site is connected to a particular window.

Some remarks are due concerning the achievement of equilibrium in our
model. It is Markovian and it surely satisfies the balance condition as the
Arrhenius Jump algorithm on which it is based ensures the Boltzmann dis-
tribution to be invariant under application of the evolution rule. It is ergodic
also — apart from the extreme case of complete saturation of the whole lat-
tice — as there are no traps in the space of configurations of the system, and
nothing prevents it from visiting all of its possible states within a sufficiently
long time. Following a weaker interpretation of Deem et al. [29] we believe
that this suffices for our model to be a reliable one. Indeed according to
these authors regularity rather than ergodicity should be satisfied. However
this constraint is required only in order to avoid loops in the Markov Chain,
as these can prevent a system from reaching equilibrium even when it is
ergodic. Given the structure of the algorithm, we exclude the possibility
that a similar behavior can arise in our model and assume ergodicity to
be a sufficient condition. Furthermore if one looks at the BCA timesteps
as cluster-moves even detailed balance is satisfied, given that every single
molecule move is reversible and exactly the same series of moves of a certain
timestep t can be performed in the reverse order at ¢ + 1. This is because
even if the algorithm is sequential, in the sense that no molecule is selected
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for a jump twice before all other molecules have been selected, the order of
interrogations is random (if interrogations were performed in the same order
at every timestep as in usual sequential algorithms, Detailed Balance would
be obviously violated [30]).

2.2.5 Simulations

We studied three different binary gas mixtures — COq/CHy, CO2/Ng, and
CH,4 /Ny respectively — adsorbed in zeolite ITQ-29. The first two mixtures
exhibit what is called segregation effect [31,32]. This effect is due to the
presence of CO4y and can be related to its strong tendency to reside within
windows connecting the a-cages of zeolite ITQ-29 as shown in MD simula-
tions by Krishna et al. [31,32]. This fact explains the strong suppression of
diffusion observed for the species co-adsorbed with CO4 as the former expe-
riences a kind of segregation within the inner part of micropores due to the
crowding of CO3 molecules at the windows. As an example, self-diffusion for
CHy, when COs is present in equimolar mixture, is one order of magnitude
smaller than that of pure CHy at the same overall concentration.

The energetic parameters EX for our calculations were chosen on a
heuristic basis. Following our idea of qualitatively reproducing the funda-
mental behavior of mixtures in zeolites — even in a non-trivial case like that
of segregation-effect — we assumed the values reported in Tab. 2.2. These
represent our mean free-energies guessing for molecules in the two possible
situations we are considering in our hierarchical automaton, namely occu-
pation of inner- and exit-sites. Our line of reasoning followed indications
regarding the order of magnitude of typical values for small molecules in ze-
olites found in literature [28,37]. We further made few simple assumptions on
the basis of the evidence for preferential adsorption between the inner part
of the a-cage and regions closer to the windows. These are based on adsorp-
tion isotherms and self-diffusivity vs. adsorbate loading plots calculated by
means of GCMC [31]. Even if a systematic method for calculating these pa-
rameters starting from first principles could be desirable, we have found that
the heuristic values used in this work suffice to reproduce the fundamental
self-diffusivity trend as obtained from MD calculations present in literature.
Similar considerations led to the non-zero choice for the mean field inter-
molecular interaction for methane in the inner part of a cage ¢CH+ = 1.1
kJ/mol : we assumed that the spherical form of methane molecules implies a
certain degree of repulsion between them due to sterical hindrance, while the
cylindrical Ny and CO2 molecules should be able to pack in a more efficient
way. Finally the ¢X’s (Tab. 2.2) were chosen in order to reproduce further
potential barriers encountered by molecules while moving between the exit
sites across two neighboring cells. In particular we neglected barriers be-
tween inner sites, as to a first approximation these are little influential for
the overall process of diffusion (even if they could be important in order to
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X eX | &f | ¥ (intercage)
CHy | -3 —13 11
No | =7.5| =95 6
COy | —17 | —12 0

Table 2.2: Guest-host interaction parameters (kJ/mol).

understand correlation effects due to intra-cage migration). For inter-cage
jumps, we assigned the highest barrier value to methane, due to its size,
an intermediate value for No and no barrier for CO5 as it tends to adsorb
in the windows thus being able to move between two given supercages by
just escaping the adsorption free energy well, which contain the cage-cage
boundary.

2.2.6 Results

In figs. 2.3, 2.4 and 2.5 we report the plots for the three equimolar mixtures
CO2/CHy, CO2/Ng, and CH4/Ng, showing the self-diffusivity as a function
of total adsorbate loading (n) (left) and as a function of the mole fraction
of one component at a fixed overall loading (right). These were obtained
from simulations at 300 K on a cubic lattice with a side lenght of 9 cells with
periodic conditions applied. The self-diffusion coefficients were calculated
from the mean square displacement of tagged molecules using the Einstein

relation
1

D= ¢ Jim S r(t) ~ r(O)) (2.7)
Each cage-block contains 15 sites, which is in agreement — at least in normal
conditions — with the reported maximum loading for methane in «a-cages
of ITQ-29 [38].

As a test for the model we compared our results to those obtained by Kr-
ishna et al. from MD simulations and a method based on Maxwell-Stephan
theory of diffusion [31,33-36].

These authors point out that while the MS approach is in good agree-
ment with MD calculations for most mixtures, it fails to reproduce the
self-diffusivity trend in case of mixtures displaying segregation effect.

For a clearer comparison we multiplied our values of Ds by a scaling
factor in order to obtain the best resemblance with the MD curves. The
scaling factor is the same for all three systems. Our results are in good
qualitative agreement with MD, reproducing the overall trend of diffusion
for the three mixtures, and despite our strongly reductionistic approach it
is able to deal with a non trivial behavior like that of segregation, whereas
other methods gives very poor quantitative and qualitative agreement.
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Figure 2.3: (Left) Self-diffusivity (Ds/1078m?s~') of CHy and COs as a
function of the average number of molecules per cage ((n)) in equimolar
mizture. Results from our model (bottom) are compared with those obtained
by mean of MD and Maxwell-Stefan theory (MS) by Krishna et al. (top).
(Right) Self-diffusivity (Ds/10~8m?s™1) of CHy and COy as a function of
the mole fraction of COy at (n) = 5.5. Results from our model (bottom) are
compared with those obtained by mean of MD and Mazwell-Stefan theory
(MS) by Krishna et al. (top).

2.2.7 Conclusions

We tested our Cellular Automaton method in the case of binary mixtures
diffusing in zeolite I'TQ-29 and compared the results with MD data, show-
ing its ability to cope with more than one diffusing species giving good
qualitative agreement with this well established and fully microscopically
detailed technique. We stress that these results are based on heuristically
determined parameters aiming mainly to explore the range of possibilities of
the method and, nonetheless, in the case of non-trivial behavior such as the
segregation-effect, we found that the CA gives a better agreement with MD
than the robust and successful MS method used by Krishna and coworkers.
It would be obviously desirable to have a rigorous algorithm for defining the
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Figure 2.4: (Left) Self-diffusivity (Ds/10~8m?s~!) of CHy and Ny as a func-
tion of the mole fraction of CHy at (n) = 5.5. Results from our model (bot-
tom) are compared with those obtained by means of MD and Mazwell-Stefan
theory (MS) by Krishna et al. (top). (Right) Self-diffusivity (Ds/10~8m?s~1)
of CHy and No as a function of the average number of molecules per cage
((n)) in equimolar mizture. Results from our model (bottom) are compared
with those obtained by mean of MD and Mazwell-Stefan theory (MS) by
Krishna et al. (top).

right input parameters for the Automaton, extracting them from atomistic
simulation. But even at this stage our tests demonstrate that the model is
able to display a range of interesting behaviors and to capture on a coarse-
grained level the basic mechanisms of diffusion in zeolites. Validation via
comparison with other theoretical approaches is important as this justify
a further effort intended to exploit the intrinsic parallel nature of CAs for
a drastic extension of the space and time scales usually accessible to the
available simulation techniques for diffusion in zeolites. Using parameters
obtained from MD and MC studies as an input, our BCA model is a promis-
ing tool for a future investigation of zeolite and ZIFs membranes and whole
micro-crystal, both in and out of equilibrium.
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Figure 2.5: (Left) Self-diffusivity (Ds/1078m?s!) of COy and Ny as a func-
tion of the average number of molecules per cage ((n)) in equimolar mizture.
Results from our model (bottom) are compared with those obtained by mean
of MD and Mazwell-Stefan theory (MS) by Krishna et al. (top). (Right)
Self-diffusivity (Ds/1078m?s~1) of COy and Ny as a function of the mole
fraction of COy at (n) = 5.5. Results from our model (bottom) are compared
with those obtained by means of MD and Mazwell-Stefan theory (MS) by
Krishna et al. (top).

2.3 The Central Cell Model: a mesoscopic hop-
ping model for the study of the displacement
autocorrelation function.

The present section is an adaptation of a paper to which I collaborated, ap-
peared in The Journal of Chemical Physics [40]. Copyright 2011, American
Institute of Physics.

On the mesoscale, the molecular motion in a microporous material can
be represented as a sequence of hops between different pore locations and
from one pore to the other. On the same scale, the memory effects in the mo-
tion of a tagged particle are embedded in the displacement autocorrelation
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function (DACF), the discrete counterpart of the velocity autocorrelation
function (VACF). In this paper a mesoscopic hopping model, based on a
lattice-gas automata dynamics, is presented for the coarse-grained modeling
of the DACF in a microporous material under conditions of thermodynamic
equilibrium. In our model, that we will refer to as Central Cell Model, the
motion of one tagged particle is mimicked through probabilistic hops from
one location to the other in a small lattice of cells where all the other particles
are indistinguishable; the cells closest to the one containing the tagged par-
ticle are simulated explicitly in the canonical ensemble, whereas the border
cells are treated as mean-field cells in the grand-canonical ensemble. In the
present paper numerical simulation of the Central Cell Model are shown to
provide the same results as a traditional lattice-gas simulation. Along with
this a mean-field theory of self-diffusion which incorporates time-correlations
is discussed.

The diffusive motion of molecules in a generic medium is usually affected
by memory effects introduced by their interactions with each other and
with the medium itself. This is especially true when the diffusing molecules
are subjected to the confining action of a microporous material like a zeo-
lite. [2,41] In particular, the narrow windows of certain microporous mate-
rials can make the guest’s diffusion profile (i.e., diffusivity vs. concentration
at constant temperature) very different from what expected for the motion
in a bulk phase as well as in any less strongly confining material.

Although the discreteness of the network of channels and cages of regu-
lar microporous materials suggests immediately an analogy with lattice-gas
models, there is still no ‘definitive’ coarse-grained, lattice simulation method
for molecules in zeolites which is able to play as a cheaper mesoscale version
of classical Molecular Dynamics (MD). Several approaches are available de-
pending on what specific properties of the host-guest system the simulator
is interested in. As an example, Kinetic Monte Carlo (kMC) simulations
are suitable for all the dynamical properties which do not explicitly involve
correlations among different particles [25,42,43] (e.g. the self diffusion coef-
ficient), whereas thermodynamic models can be successfully adopted for the
study of static equilibrium properties (e.g. adsorption isotherm and local
density distribution).

Due to their intrinsecally synchronous nature, the class of Lattice-Gas
Cellular Automata (LGCA) can be thought of as the ideal candidate for a
mesoscopic simulation of the collective properties. On the other hand, as
a drawback of their synchronicity traditional LGCAs are much more diffi-
cult to handle than standard Monte Carlo (MC) models are. This makes
it a hard task to surely achieve thermodynamic equilibrium,i.e. preserving
both detailed balance and synchronicity, in the presence of explicit particle-
particle interactions. To solve such a conflict, a partitioning technique has
been proposed in our previous work, aimed to couple the LGCA compu-
tational framework with local MC (balanced) moves. [9,14-18] The idea
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underlying the resulting Partitioning Cellular Automaton (PCA), inspired
by a heterogeneous model for surface diffusion by Chvoj et al. [44], is that
the peculiar cage-to-cage dynamics of molecules under tight confinement is
well-represented in a model lattice with heterogeneous adsorption locations
inside each cage. According to this representation, in each zeolite cage we
distinguish two types of locations: those close to the exit windows, termed
exrit sites, and the rest of the cage pictured instead as a set of inner sites.
The exit sites in each cage are then access points to the neighboring cages,
and differ from the inner sites in their statistical weight (i.e. the probability
of being occupied). As recently confirmed by other simulation studies, [45]
splitting the single cells into differently weighted locations provides a quali-
tatively correct mesoscopic representation of the problem (See Fig. 2.6).

Even though more work has still to be done to make cellular automata
the ‘definitive’ environment for meso-simulations in micropores, our PCA
approach captures many important aspects of adsorption and diffusion in
zeolites, such as realistic (i.e. closely resembling those developed in MD
simulations) density distribution, fluctuations, and time-correlations. Con-
cerning the single-particle diffusion process (at arbitrary concentration), the
backscattering effect, [46] a major source of time-correlation causing the self-
diffusivity to be less than what expected, can be properly mimicked in the
PCA approach since it allows the amount of memory lost in each cell during
a single time step to be tuned.

Thus, our PCA can be taken as a starting point for further develop-
ments in many directions. The one explored in this work is the realization
of a further simplified coarse-grained simulation of the hopping process of a
tagged particle in a confined lattice system, where all the other guest par-
ticles are moving as well but they are kept indistinguishable. Our aim is
to reproduce the memory effects affecting the particle motion in the PCA
at the minimum cost possible. The strategy is to make the tagged particle
‘feel’ an environment very close to the one it would have experienced in the
full automaton simulation. Since the model is constructed in such a way
that the host cell of the tagged particle always results to be located exactly
in the middle of the system, we called it Central Cell Model (CCM).

The lengthy PCA simulation of a large system is thus reduced to a
small set of connected cells, a limited neighborhood of whose is simulated
by the lattice-gas evolution rule in the canonical ensemble while the bor-
der cells are treated as mean-field cells. In any case, the CCM approach
cannot be taken as substitutive of a full lattice-gas simulations. Collective
dynamic properties, self-organization, and long-range phenomena arising in
non-equilibrium conditions cannot be simulated directly through a CCM
implementation of a lattice-gas rule. This approach is limited to the re-
production of the correlated motion of a single particle in a lattice-gas at
arbitrary loading (i.e. concentrations of guest particles, also known as cov-
erage), but under conditions of thermodynamic equilibrium, strictly local
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exit and inner site free-energy contribution
due to the mutual interaction of n particles

F(n), F(s) cell free energy
F°(n), F°(s) cell free energy (non-interacting part)
®(n),P(s) cell free energy (interacting part)
exi(n,m) kinetic barrier to intercell migration
from an n- into an m-occupied cell
Cu probability of targeting the site b from
departure site a during randomization
Pjump acceptance probability for a single
randomization jump
5yk(n,m) acceptance probability for a jump from a cell
with meso-conf. n into exit site b of a cell
with meso-conf. m
p(n) equilibrium probability of a cell to be

meso-configured as n

Table 2.3: A list of the basic quantities involved in a numerical simulation
with the Central Cell Model.

interactions, and absence of long-range correlations. When one or more
of such conditions are not fulfilled, or if also the collective dynamics pro-
duced by some evolution rule need to be investigated, then a full lattice-gas
simulation will be unavoidable to obtain reliable results. Nevertheless, the
above mentioned conditions are fulfilled in many lattice-gas simulations of
short-range interacting particles, so that for those cases the CCM will be
the quickest way to retrieve the correct self-motion properties. This is of
primary interest when, for example, one wishes to model the entity of mem-
ory effects in the single-particle motion (e.g. to mimic the diffusive behavior
of some reference system in coarse-grained modeling) and therefore needs
to check quickly how a particular setup of the parameters will affect the
resulting diffusion isotherm.

The construction of the CCM version of a lattice-gas rule is a really direct
way to uncover the basic mechanisms by means of which the tagged particle
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preserves memory of its previous moves in time. In fact, it is straightfor-
ward to pass from the numerical CCM to a mean-field representation of the
tagged particle’s diffusion process at arbitrary loading, inclusive of the time-
correlations. In this work, the CCM approach will be used to develop an
approximated theory of self-diffusion for a lattice-gas automaton rule, based
on a mathematical formulation of the displacement autocorrelation function
(DACF), i.e. the key function embedding the memory effects of a generic
diffusion process on the mesoscopic scale. The DACF plays the same role
the velocity autocorrelation function (VACF) plays in atomistic simulations,
although being more easily accessible for theoretical analysis. Earlier stud-
ies on LGCA emphasized the central importance of the discrete VACF in
both the formulation of efficient computational schemes for the evaluation
of transport properties, and the understanding of the entire self-diffusion
process. [47-49] In the present case, the analysis of the DACF (we do not
call it VACF since, differently from traditional LGCAs, in our approach no
proper velocity vector is associated with the cell-to-cell migration) will lead
to a closed mathematical formulation for the self-diffusion coefficient.

After a brief resumé of the lattice-gas model, the Central Cell Model will
be presented. Then, we will describe the probabilistic analysis of the DACF
leading to the mean-field formulation of self-diffusivity. Results of numerical
tests will be presented throughout the paper, and discussed in a separated
section.

2.3.1 Local randomization and propagation.

Here we will briefly outline the basic operations of the original automaton
model. The interested reader can find a very detailed description in a previ-
ous work on this subject. [16,18] The basic quantities that will be explicitly
used in a simulation with the Central Cell Model are listed in Table 2.3.

In our approach, particles move within a three-dimensional network of
structured points called cells. A single cell and a small cluster of connected
cells of the automaton are sketched in Fig. 2.6a and 2.6b respectively. The
total number of particles in the system, N, and the temperature, 7' (and so
the inverse temperature, 3 = (kgT)~! with kp the Boltzmann’s constant),
are held fixed. The concentration (n) of the diffusing species in the lattice,
termed loading, is the average number of particles per cell and is obtained
just by dividing N by the total number of cells. Every cell is a discrete
representation of a zeolite cage. It is made of Ky exit sites and Kj, inner
sites, and every site can be free or singly occupied, thus giving a saturation
occupancy of K = Kg 4+ Kiy. As can be seen from Fig. 2.6b, every pair
of neighboring cages are interfaced by a pair of connected exit sites. The
system evolves in discrete time steps. Guest molecular species are repre-
sented via point particles whose migration mechanism at each iteration is
performed in two substeps: a randomization changes the configuration of
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one exit site e miiols Soi

of inner sites

(a) (b)

Figure 2.6: A three-dimensional sketch of (a) a single cell, and (b) a small
cluster of connected cells of the automaton. FEvery cell is representative of a
single zeolite cage. When looking at the single cell, (a), small spheres repre-
sent the exit sites, i.e. the locations closest to the cage-to-cage connections
in a real zeolite (e.g. an LTA zeolite), whereas the big sphere, named inner
site, represents the set of all the remaining locations.

guest particles on every cell according to a probabilistic scheme, and a prop-
agation allows the particles in the exit sites to attempt to move into the
respective neighboring cages.

The actual micro-configuration of (indistinguishable) particles in each
cell has a primary importance, and is denoted as

s={s1,82,...,8K}, (2.8)

where the first Ko, and the next Kj, entries are respectively the occupancies
of the exit and of the inner sites (i.e. s; = 1 if the i-th site of the cell is
occupied, and 0 if empty). The cell occupancies are defined as the exit site,
the inner site, and the total cell occupancies:

Kex K
Nex = § Siy Nin = § Si, N = Nex + Nin- (29)
=1 i=Kex+1

Exit and inner site cell occupancies makes a meso-configuration of the cell,
termed n = (Nex, Nin)-

The static properties of each cell are determined by the adsorption (neg-
ative) free energy associated to every site, fo and f (also referred to as
exit- and inner-site deepness), the actual cell occupancy n (i.e. the total
number of particles in the cell), and an occupancy-dependent interaction
term for every type of site, gex(n), and ¢i,(n). These parameters define the

cell free energy function:
F(n) = F°(n) + ®(n), (2.10)
with

Fo(n) = nexfeox + ninfi?v (211)
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Figure 2.7: The interaction parameter, ¢(n) (in kJ mol™L, defined in Sec-
tion 2.3.1), for 0 < n < K — 1, and the parameter k(n) (defined in Sec-
tion 2.3.3) for the numerical tests we performed in this work. In all the
simulations, Ko = Kin = 6.

and
Q(n) = Nexex (1) + Nin@in(n). (2.12)

In the numerical simulation we performed as a test for the model, our choice
for the interaction parameters was ¢ex(n) = ¢in(n) = ¢(n), with a smoothly
increasing repulsive effect as the occupancy increases. (see Fig. 2.7). We set
the number of exit and inner sites as K., = Kj, = 6.

Fixed adsorption free-energy fJ, and f take alternatively the values
—50 and —40 kJ mol~! in the various simulations.

2.3.2 Randomization.

The randomization can be performed in two ways. The memoryless random-
ization changes probabilistically the actual configuration of every cell while
preserving its occupancy according to the probability distribution P(nex|n)

defined as
Ko\ [ Ki _ _
P(nex|n) = < )< >e BF (nex;n—nex) (2.13)

Tex T — TMex

which is exactly the probability of an n-occupied cell to have nqy particles
in the exit sites (and consequently nj, = n — ne in the inner sites). Such
a choice causes no memory of the previous configuration(s) to be conserved
(apart from the cell occupancy n, which is conserved).

In the jump randomization scheme instead all the n particles are invoked
in a random sequence, and every particle is asked to perform a jump towards
a randomly selected target site within the same cell. Therefore, the cell
configuration is changed here in n steps instead of one (as it was for the

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Universita degli Studi di Sassari



2.3. The Central Cell Model: a mesoscopic hopping model for the study of
the displacement autocorrelation function. 33

memoryless scheme). To illustrate the algorithm, let us take a single cell and
store the identities of the n particles inside of it in the vector I = (I3, ..., ).
Let us then randomize the entries of I, thus obtaining the random sequence
of identities I = (I{*,..., I[*). At this point, the following chain of jump
events is realized:

s© s 6@ g (2.14)

where by definition s(*) := s is the first configuration of the chain, and s(*)
is the actual micro-configuration when the particle of identity [ ,f is invoked.
Let us consider a transition s®) — s+ where s®) and s+ are two
consecutive configurations in the chain (2.14). In this transition, the k-th
particle in the random sequence of particles jumps from its departure site,
say a, to the target site b chosen with a probability C,,. The probability of
such a jump to happen is then

Piump (8®) = sETD) =058 e

s {@EM)—max[@(s®) e (s} (2.15)

(k)

where 5, is the non-occupancy of the target site b in the actual micro-
configuration s*), i.e. Eék) = 1—sék), and - is a normalization constant aimed

to further control the particles’ mobility during randomization (this will af-
fect correlations as well). In our simulations, we put v = exp{—fgmax(f%, f2)}.
Such an algorithm preserves some memory of the previous configuration,
since in the case of half/high cell occupancy n, the (locally) sequential jump
criterion constrains the configuration not to vary too much in the chain
shown in (2.14).

A few words about the choice for Cg,. In order to preserve detailed bal-
ance, it preferably should be symmetric, that is forward and reverse jumps
should be chosen with the same probability. It is interesting to introduce
several kinds of constraints (without violating symmetry) in the configura-
tion path during randomization, to study their effects on correlations, and
to check to which extent they can be predicted by a mean-field theory of
diffusion. As an example we could decide, during randomization, to allow
every particle to target any site with the same probability 1/K, this giving
a C matrix with all entries like

b= abelLK] (2.16)
or we could choose all targetings from an exit site towards a different exit
site to be rejected. This would force the particles to spend some time in the
inner site before changing direction of intercell migration. It would result in
a C' matrix like

1

= 2.1
ab — . otherwise (2.17)

{ 0, ifabe[l,Ke]anda#b
K’
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In the present work we will refer to the case of C = C’ in Eq. (2.16) as
‘allowed ex-ex jumps’, and to the case of C' = C” in Eq. (2.17) as ‘forbidden
ex-ex jumps’.

2.3.3 Propagation.

Once randomization changed the internal configuration of every cell inde-
pendently one of the other (while preserving the cell occupancies), the prop-
agation operation allow the cells to exchange the particles in their exit sites
with their respective neighbors. In order to keep working with locally bal-
anced Monte Carlo moves the propagation must be applied to every pair
of communicating cells. Since some pairs can overlap, not all the pairs can
be invoked at the same time. This is because of local interactions among
the host-molecules of a given cell giving rise to different intercell migration
barriers, depending on the loading of both departure and target cell. There-
fore, either they have to be invoked in a random sequence, or they can be
grouped into partitions, each containing the maximum possible number of
non-overlapping pairs. Such a partitioning scheme, [16] originally known as
Margolus’ Neighborhood [19, 20] allows no conflict to arise during such a
substep.

At every pair, the two cells communicate through two adjacent exit sites,
say a and b. Provided a particle to be in a and site b to be empty, a jump
from a to b is accepted with a probability x(n, m) where the departure and
destination cell are meso-configured respectively as n and m:

fyeﬁfeox efﬁeki (nvm)

k(n,m) = (2.18)

1 + €6A<I>(n,m) ’
where n = neyx + nin and m = Mmeyx + Mmin are the actual occupancies of the
departure and the target cell respectively, the quantity
AP(n,m) =P(nex — 1, nin) + P(mex + 1, min)
_(I)(neXa nin) - q>(meXa min) (2]—9)
is the difference in interaction free-energy between the outcoming and the
incoming configuration of the pair of cells, and €;(n, m) is the kinetic barrier

to intercell migration, given as the intersection energy, for 0 < z < 1,
between the two harmonics

Eaep(x) = 3k(n —1)2? (2.20)
for the departure cell, and
Ear(z) = 3k(m)(z —1)? (2.21)

for the arrival cell. [17] The trend assigned to the parameter k(n) in the
numerical simulation performed in this work is quadratically increasing at
the highest loading, as shown in Fig. 2.7.

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models
Tesi di Dottorato in Scienze e Tecnologie Chimiche - Universita degli Studi di Sassari



2.3. The Central Cell Model: a mesoscopic hopping model for the study of
the displacement autocorrelation function. 35

2.3.4 Jumps and time-correlations.

Numerical simulations [18] have shown that correlation effects can be mod-
eled (or excluded, if wanted) in our PCA. While every application of the
memoryless randomization described in Sec. 2.3.1 pushes each cell straight-
forwardly towards a condition of local equilibrium, via an abrupt collective
move, the configuration changes occurring by means of the jump random-
ization are much less marked, and slow down strongly the evolution towards
equilibrium. This is because the output configurations available in the jump
randomization are much less than in the memoryless randomization, thus
causing memory effects to show up spontaneously as the system evolves in
time.

Let us illustrate this in more details. The definition of configuration,
s, given in Eq. (2.8) in Section 2.3.1 contains no information regarding the
identity of the guest particles. In words, such a kind of identity-less config-
uration will be referred to as ‘s-configuration’.

Particles identities will be taken into account by the following o-configuration
instead:

o(r)={o;}, i=1,...,Kand I =1,...,N (2.22)

where N is the number of guests, and o,; has value 1 if the I-th guest
of the system is located at the i-th site of cell r, and 0 otherwise. We
will consider now a single, closed cell with configuration o just before a
randomization operation. The memoryless randomization will determine the
output configuration by choosing it out of the whole set of Q, = K!/(K —n)!
possible arrangements of distinguishable particles in the cell. The jump
randomization instead constrains the configuration path from o to o within
a set of necessarily similar configurations, so that the number of possible
output configurations, say 5P, results smaller than €, with a discrepancy
increasing as the cell occupancy increases. Such a discrepancy is the very
origin of the memory effects in the self-diffusivity in the automaton [18§]
as well as in a host-guest system in general. Ideally, one should perform
an infinite number of jump randomization cycles per time step in order to
suppress it.

An analysis of the migration mechanism in the automaton will help a
deeper understanding of the correlations introduced by the jump random-
ization. A low-cost study of correlations in the motion of a tagged particle
induced by the local environment is the task of the Central Cell Model that
we are about to introduce in Sec. 2.3.5 for the case of a discrete jump model.

2.3.5 The Central Cell Model.

In the model we present here, the lattice is constituted by (see Fig. 2.8)
(i) A central cell.
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+

(a) (b) (c)

Figure 2.8:  The lattice space of the Central Cell Model. The central cell (in
green), hosting the tagged particle, and the cells in the core shells (violet) are
simulated through the prescribed lattice-gas rule in the canonical ensemble.
The external cells (gray), instead, are mean-field. They maintain the whole
system at thermodynamic equilibrium and work as a reservoir of particles
coming in/out of the border core cells. Broken cell-to-cell boundaries are
meant as cell-to-cell links. Figs. (a), (b), and (c) differ in the number of
core shells, which is L’ = 0 in (a), " =1 in (b), and I’" =2 in (c).

(ii) A finite number, N*", of cells surrounding the central one, organized
into L*" shells. Central cell and surrounding shells constitute the core
of the system.

(iii) A casing of N™ border mean-field cells enclosing the core. Mean-field
cells are small grand-canonical systems, working for the core cells as a
reservoir of particles and keeping the whole system in equilibrium at
the desired value of chemical potential.

The cell-to-cell connections are established as follows: every cell in the
core is connected with all the available first-neighboring cells in the system,
so that if we consider a cubical arrangement of cells (so as to mimic the LTA
zeolite topology, as an example) every of the core cells is then connected to
six first-neighbors. Core cells need not to be connected with each other only:

cells at the borders of the core happen to have one or more mean-field
cells in their neighboring list. Every of the mean-field cells instead are
supposed to be connected with one cell at the border of the core only. No
connection is assumed to exist between mean-field cells.

Since the mean-field cells exchange particles with an ideal reservoir, a
chemical potential, p, has to be selected first. This gives access to the
absolute probability, p(n), of a meso-configuration n defined as

pla) =2l (1) (o )eme e, (2.23)

Tex Nin
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where the normalization factor Z(u) is the grand-canonical partition func-
tion of a single cell:

—_ Kex Kin n_— n
=(w) :Z <n )(n )e'B“ e AF®), (2.24)

Occupancies nex, nin and n in Egs. (2.23) and (2.24) are meant as the oc-
cupancies of the exit sites, the inner sites, and the whole cell respectively
when the meso-configuration is n. Such a notation will be used throughout
the whole paper.

The average occupancy (often referred to as the loading) is then (n) =
S np(n).
The probability distribution in Eq. (2.23) will be used to update the state
of the mean-field cells at each time iteration.

Generating the initial configuration. The initial configuration is con-
structed by randomly assigning each cell a meso-configuration according to
the distribution p(n) (see Eq. (2.23)). Such a meso-configuration is then
converted into a micro-configuration s of indistinguishable particles, ran-
domly chosen out of those satisfying the meso-configuration itself. Whereas
not needed by the other cells, the central cell must contain at least one par-
ticle, that will be ‘tagged’ thus allowing us to follow its dynamical path.

Time evolution.

Once the initial configuration of the system is ready, the system evolves in
discrete time steps, to,to + 7,to + 27,..., each of physical duration 7 (see
our previous work [16] for a discussion about the time step). At each time

step (say, t):
(i) A jump randomization is performed at each cell.

(ii) The pairs of connected cells are chosen in a random sequence, and
a propagation operation is performed at every pair. Until now, the
whole lattice has preserved its total number of particles.

(iii) The move performed by the tagged particle is stored. If it has left the
central cell, then the system has to be re-centered so that the newly
occupied cell becomes the central cell. Such an operation is performed
by simply transforming the coordinates of all the cells. If the tagged
particle made a cell-to-cell jump, then the coordinates of the cells are
transformed as follows:

r(t+7) =r(t) —or(t), (2.25)
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where 0r(t) is the distance vector between the arrival and the depar-
ture cell. Due to this operation, the mean-field cells happening to
fall outside of the lattice space are destroyed, whereas those resulting
not configured at all will be assigned a new configuration in the next
operation.

(iv) The mean-field cells are randomly assigned a new micro-configuration
according to the same procedure of generation of the initial one (ap-
plied to the mean-field cells only though).

The update strategy described above is sketched in Fig. 2.9. In Fig. 2.10
we compare the self-diffusivity resulting from a simulation of the canonical
9 x 9 x 9 lattice-gas with the one computed from a CCM simulation on an
increasing number LS of shells around the central cell.

We can see clearly that increasing L*" improves the matching between
the two types of simulations, and that two shells are enough to obtain a
reasonable agreement.

2.3.6 Analysis of the self-diffusion process: the displacement
autocorrelation function

The mean-field analysis is carried on in terms of the possible jump sequences
a tagged guest can perform during the diffusion process, treated as a Markov
chain, where jumps are meant as site-to-site migrations and can be catego-
rized into (i) jumps within the same cell, and (ii) jumps between neighboring
cells.

€0 = (01 Oa 0)
=(X,0,0) e=(0,1,0) e3=(0,0,)
€4 = (_)‘7 0, 0) €5 = (07 =, 0) €6 = (Oa 0, _)‘)

Table 2.4: The set of direction vectors (cubic lattice).

Each jump category has a certain probability to occur which is dependent
on the actual position of the guest itself and of the surrounding particles.
Due to the complexity of such a multi-body problem, a mean-field approach
must be used to derive readable equations linking correlations in the self-
motion to some macroscopic quantities (e.g. densities, total transfer rates,
etc.).

A dynamical quantity of major importance in the analysis of the diffusion
process in a mesoscopic lattice is the instantaneous cell-to-cell displacement,
or(t), of the tagged guest at time ¢, introduced in Eq. (2.25). The instan-
taneous displacement can take values in the set of lattice vectors {e;}, with
j=0,...,Ke, listed in Table 2.4 for the case (considered in this work) of
a cubic lattice.
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Figure 2.9: A schematic representation of the update strategy when the
particle leaves the central cell to move in the right neighboring cell (a,b). In
(c) the mean-field cells at the very left are destroyed. Then (d) the core cells
at the very left become mean-field, whereas the mean-field cells at the right
retain their actual configurations and enter the new core. Finally (e) new
mean-field cells are created from scratch at the very right to complete the
mean-field casing, the proper cell-to-cell connections are established (f), and
the system is ready to undergo the next randomization-propagation cycle (g).

The displacement autocorrelation function (DACF), given by (dr(z7) -
or(0)) (where z > 0 is an integer and 7 is the duration of a time step),
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Figure 2.10: The self-diffusivity, Dy, resulting from numerical simulations
(in the canonical ensemble) of the traditional lattice-gas automaton model
for a closed test system of 9 x 9 x 9 cells, in comparison with the results
of (grand-canonical) simulations of the Central Cell Model with increasing
number of shells L. In the first row, the inner sites have been set as
deeper than the exit sites, and vice-versa in the second row. FEx-ex jumps
are allowed.

correlates in time the cell-to-cell displacements. It is related to the self-
diffusivity via the Green-Kubo formula: [18]

D, = i (61(0) - 60(0)) + 23 (Fe(er) - Gr(0))| . (2.26)

z=1

where d = 3 is the number of dimensions of a cubic lattice. The peculiarity
of the DACF in a regular lattice is that it is strictly connected to the jump
probability. It is the aim of this Section to reconstruct the terms appearing
in Eq. (2.26) starting from the list of the possible movements of the tagged
particle.

Contribution at the initial time.

First of all the contribution at t =0

1
Dyt = —— (6r(0) - 61(0)), 2.27
B = o (6r(0) - r(0)) (2.27)
that is the uncorrelated diffusivity, proportional to the DACF at time zero,
turns out to be also proportional to the escape probability of the guest from
the host cell. The escape event will be indicated with the symbol ¢. In terms
of the randomization-propagation dynamics, such an event can be rewritten
as:
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¢ The guest reaches any of the Koy exit sites of the current cell during
randomization, and then the propagation step lets it migrate to the
corresponding neighboring cell during propagation.

Since at the initial time 6r(0) - 0r(0) equals A? if the guest migrates to a
neighboring cell and 0 otherwise, then Eq. (2.27) can be rewritten as

ae 1A?
Dy =ﬁ7p(<>), (2.28)

where p(Q) = A=2 (0r(0) - 6r(0)). is the escape probability.

Contribution after one iteration: a probabilistic interpretation of
the normalized DACF.

Now, let us suppose that at time zero the particle escaped its host cell along a
generic non-null direction e; picked out of the set of direction vectors, listed
in Table 2.4 for a cubic lattice. This is the starting point for the listing of all
the subsequent events along with their respective probabilities, represented
as a Markov Chain. In this approach the choice of a (hyper)cubic topology
turns out to be the most convenient, since dr(¢’)-dr(t) is non-zero if and only
if the displacements at the times ¢ and ¢ are parallel and non-null. More
specifically, it is positive if the displacement direction are the same, and it
is negative if they are equal but opposite. Therefore the normalized DACF,
(0r(z7) - 0r(0))/(6r(0) - dr(0)), represents the conditional probability of a
guest to migrate at time z7 in the same direction of displacement at time 0,
given that at time 0 the displacement was not null, minus the conditional
probability of a migration in the opposite direction.

We will proceed now with the listing of the basic in-cage and cage-to-
cage jump events at the time ¢ = 7, given a successful propagation at the
previous time. Every event will be associated a symbol, ¢, taking values in
the following set

S={=-,<<0,1,0}, (2.29)

meaning respectively, for a given direction of motion (say the z axis), (=)
successful and (—) unsuccessful step forward, (<) successful and (+) un-
successful step backwards, ({}) successful and (J) unsuccessful step out of
the direction of motion, () no attempt of leaving the cell.

The main approximation in the mean-field analysis is a factorization of
the joint probability, p(0, <), of an escape event () followed by the event ¢
at the next time step:

p(0,¢) = p(0)p(s[0) (2.30)

For the sake of clarity, in the list that follows we will give a short descrip-
tion of the events mentioned in Eq. (2.29). Those events are also sketched
in Fig. 2.11.
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= A step forward. The randomization moves the particle from the exit
site into the opposite one. After this, the propagation is successful
and the particle migrates in the corresponding neighboring cell. This
happens with conditional probability p(= |0).

< A backscattering event. At the end of randomization the particle find
itself in the same exit site it entered by the event . The propagation is
successful and the particle jumps back into the cell it occupied before
event ¢. (Conditional probability: p(<= [0)).

{ A change of direction. The particle performs a migration jump whose
direction is not parallel to the direction of the jump performed during
the event ¢. (Conditional probability: p({ [0)).

(O The guest reaches an inner site of the current cell during randomiza-
tion. (Conditional probability: p(O]0)).

Single arrows, i.e. —, <, and J, differ from =, <=, and {} respectively in the
fact that the propagation event is unsuccessful. Let us now introduce the
quantity x(s|¢), returning a value 1 if the cell-to-cell displacement at time
t (represented by the symbol ¢) has equal sign of the displacement at time
0, a value —1 if the sign is opposite, and 0 in all other cases:

1, if ¢ ==
X([6l0) =9 -1, ifc=« (2.31)
0, otherwise

Therefore, since the process is Markovian one can define

(dr(7) - 0x(0)) = A?p(0) Y x(<[0)p(<]0) (2.32)

seS

where the set S has been defined in Eq. (2.29), which returns

(dr(7) - (0)) =N°p(0) [p(= [0) — p(«= [0)]. (2.33)

Contribution after several iterations.

Since we are assuming the migration process to be Markovian, the condi-
tional migration probabilities for ¢ = 27 will depend only on the outcome
at time t = 7. Relations between the conditional probabilities after two
steps and those after one step are listed in Table 2.5. It should be noted
that a guest starting from an inner site or from an exit site not pointing
towards the direction e; nor —e; will have equal probability to reach those
sites during randomization.
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event {J:
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Figure 2.11: A graphical 2-d representation of the main events contributing
to the diffusive motion of a single particle in the automaton. The events pic-
tured here for times t = T are assumed to echange their role in time with the
event for t =0 according to a Markov chain. For each event, the black 3-d
sphere represent the actual position of a tagged particle (other guest particles
eventually present are omitted), while the empty circles represent its possi-
ble(s) position(s) at the immediately preceding timestep. Red and blue arrows
represent respectively the possible randomization and propagation outcomes.
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p(s| =)
p(=1=)=p(=10) p(=[=)=p(=1[0)
p(&=1=)=p(=[0) pl[=)=p([0)
p1=)=pT10) pT[=)=pTI0)

p(Ol =) =p(QOI0)

pls| =)
p(=|=)=p(<=10) p(=]—=)=p(*|0)
p(=|=)=p(=10) pi|—=)=p(=[0)
p(G =) =p1T10) plI=)=pT10)
p(Ol =) =p(OI[0)

Pl <)
p(=1<)=p(=1[0) p(=]<«=)=p([0)
p(=]<)=p(=10) pl[<=)=p(=[0)
p1<=)=pT10) pl|<=)=pTI0)
p(Ol <) =p(QO[0)

pls <)
p(= <) =p(=10) p(=]<)=p(=[0)
p(&= ) =p(=[0) pl [ <) =p(+[0)
p 1<) =pT10) pT[)=pTI0)
p(Ol <) =p(OI[0)

p(s[ D)
p= 1) =p=11) p=10)=p=17)
p(= 1) =p(=11) p [0 =p 17
I =pT1D Q1D =017
p(O1 ) =p(O1D

p(<lT)
p= 1D =p=1D p=1D=p17

p(slO)
p(=10) =p(=10) p(=10) =p|O)

Table 2.5: Possible guest jumps after two time steps for the case where during the jump
randomization each guest can select any of the K sites in the cell as target sites.

This means that when the starting position is O, or J, or {J, the net
average displacement is null. Therefore, only the moves =, —, <, <+ do
contribute in the general formula for the mean-field DACF:

(6r(27) - 0r(0)) =X°p(0) D -+ > x(s:10)p(s1|0)
G1ES €S
z—1

x [[plilsg),  z2>1 (2.34)
j=1

Therefore, general mean-field expressions can be formulated for both the
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DACF and the self-diffusivity, Eq. (2.26):

z—1
(6e(=7) - 68(0)) = Ap(0) [p(= 0) — p(<= [0)] {p@ 10) = (<= 10) = [p(= 10) = p(+ 10)] } .
(2.35)

ﬁp(o) 1—1_ p(:> ‘<>) _p(<: ’<>)
dr 2 +p(—=10) = p(+[0) — {p(:> [0) = p(=10)

(2.36)

mf
D" =

Eq. (2.36) is a quite general approximated equation. The terms in it can
be obtained straight from a numerical simulation of the Central Cell Model.
One can proceed as follows: for evaluating p(¢) it is enough to store the
number of cell-to-cell jumps, Ny, of the tagged particle, and then dividing
it by the number of time iterations (say, N;):

N.
Prun(0) = - (2.37)
where the subscript ‘num’ denotes that the quantity has been evaluated from
a numerical simulation.

For evaluating the conditional probability, it will be enough to store the
jump direction every time the tagged particle performs a cell-to-cell jump.

At the next time

(i) if the particle performs another jump in the same direction as before,
the quantity N is increased by one,

(ii) if the particle fails a jump attempt towards the same direction as
before, the quantity N_, is increased by one,

(iii) if the particle performs a jump towards the opposite direction, then
the quantity N is increased by one,

(iv) if the particle fails a jump attempt towards the opposite direction,
then the quantity N is increased by one.

Then the conditional probabilities are obtained as

N,
pnum(§|<>) = Fi, S e {:>, —, <, <—} (238)
Results of the numerical mean-field evaluation of Eq. (2.36) will be compared
with the self-diffusivity obtained by explicit calculation of the DACF from
the output of the simulations in the Results and Discussion section.
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2.3.7 Mean-field DACF': Theoretical prediction of self-diffusivity.

In this Section we derive an approximate mean-field expression for the
DACF. We will first apply the general mean-field DACF formula in Eq. (2.35)
to the limiting case of infinite dilution. Then, we will propose further ap-
proximations to apply Egs. (2.35) and (2.36) to the case of diffusion at
arbitrary loading.

2.3.8 Exact DACEF in the limit of infinite dilution.

When the motion of a lone particle in an empty system is considered, cor-
relations with the motion of other particles are absent and an exact math-
ematical formula for the DACF can be written. In this limit the migration
probability during propagation if the particle stays in an exit site is

Tprop = %’yeﬁ a0 (2.39)
and p(Q) is given by
P(0) = PexJprop; (2.40)
where
Pex = Kexe 7% (2.41)

Koge— 7% + Kipe—Pla

is the equilibrium probability of the lone particle to occupy an exit site.
The other terms in Eq. (2.35) can be determined by properly weighting
every possible randomization jump. They are listed in Table 2.6 for both
the case of allowed and forbidden ex-ex jumps [i.e., use of {C’,} or {C7,
matrix, Egs. (2.16) and (2.17), during the randomization procedure].

Allowed ex-ex jumps

p(:> ‘O) = (I/K)ch—cxjprop

p(_> ‘O) = (1/K)Jex—ex (]- - Jprop)
p(<: ‘O) = (1 — Vex — 'Yin) Jprop

p(<_ ‘0) - (1 — Tex — %n) (1 - Jprop)
Forbidden ex-ex jumps

p(<: ‘O) = [1 - 'Yin] Jprop

P+ [0) = [1 = yin] (1 = Jprop)

Table 2.6: Probability values for events of jump starting from initial condition ¢ at
time O for the case of jump randomization with allowed (upper part) and forbidden (lower
part) ex-ex jumps, where Yex = [(Kex — 1)/K]Jex—ex is the probability of the guest to
jump into an exit site different from the departure one, and yin = (Kin/K)Jex—in is the
probability to jump to an inner site.
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In the infinite dilution limit the quantities Jox_ex and Jeox_in mentioned
in the formulas of Table 2.6 have the same value:

Jex—ex = Jex—in = Jex 1= 76’8ng (2.42)

Since its value depends only on the departure (exit) site, we simply called
it Jox.

lim (dr(z7) - 0r(0)) = — A pexmop (1 — 2Tprop)*

(n)—0 prop

X (1= Jex)?, (2.43)
for the case of allowed ex-ex jumps, and

lim (0r(z7)-or(0)) = — A2 Pex S (1- 2mep)z_1

(n)—0 Prop

Kin ?
x <1 - KJeX> , (2.44)

for the case of forbidden ex-ex jumps We remark that Eq. (2.43) is indepen-
dent of the number of exit/inner sites in the cell, while Eq. (2.44), where
jumps between different exit sites are forbidden, shows an explicit depen-
dence on the number of sites constituting the cell.

Therefore the accessibility of the adsorption sites plays a fundamental
role in determining the entity of correlations.

2.3.9 Approximated mean-field DACF and self-diffusivity at
arbitrary loading.

At arbitrary loadings the tagged particle is likely to share its host and neigh-
boring cells with other particles. This means that, during randomization,
the variety of sequences in which the particles can be invoked to attempt
a jump have an effect on the probability of the tagged particle to reach an
exit site, as well as they affect the tendency of the cell to keep memory
of its previous configurations from time to time. Since we are interested
in improving our understanding of the self-diffusion process by obtaining a
readable equation,

(i) We will treat as a mean-field the other guests sharing the cell with the
tagged particle. That is, we assume that when the tagged guest is in-
voked to attempt a jump during the randomization process, the other
guests in the cell are distributed according to the equilibrium distri-
bution. This is equivalent to approximating the jump randomization
scheme with a different local operation where, just before the tagged
guest is invoked, all the other guests in the cell undergo a memoryless
randomization (see Sec. 2.3.2). Such an approximation will become
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less accurate the more binding are the sites and the more restricted
the dynamics is, since given these conditions the cell reaches local
equilibrium more slowly.

(ii) We will treat mean-field randomization and propagation separately.
In other words, the probability of jumping towards some direction
will be factorized into probability of reaching some exit site during
randomization and probability of performing a successful propagation,
treated as independent one of the other.

The DACF at t = 0 is not affected by time-correlations and can be well
approximated with

1 Mex
(3 (0) - Gr(0)) =\* > Zn: %: Tlex <1 - Kex>

xp(n) p(m)x(n, m), (2.45)

where A is the lattice spacing, and (n) is the loading (average number of
occupied sites in a cell). The relations among DF, (§r(0) - 6r(0)) and p(O)
are given in Egs. (2.27) and (2.28).

As we can see in Egs. (2.35) and (2.36), the probabilities of interest refer
to jumps starting from an exit site position. Thus, when evaluating the
DACF terms for z > 1, one has to consider the conditional probability of
the tagged guest already located in an exit site to stay in a cell with meso-
configuration n, rather than the absolute probability of n itself. Therefore
we introduce gex(n), that can be re-interpreted as the conditional probability
of a cell with an occupied exit site to be meso-configured like n, i.e. to have
nex — 1 of the remaining K — 1 exit site and ny, of the Kj, inner sites filled.

noxp(n)
gex(n) = ﬁ’ (246)
> nep(n')
where the quantity
Nex _ = 1 (Kex — 1\ (K Bun ,—BF(n)
eptm) = B (T ) () eomne (247

is the total probability of one particular exit site, nex — 1 of the remaining
exit sites, and n;, inner sites to be occupied in a cell.

Mean-field jump randomization.

Once defined the probability distribution gex in Eq. (2.46), it is straight-
forward to derive mean-field expressions for the probability that, once the
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tagged particle has targeted another exit site, it reaches it:

o Nex — 1
Jex—ex :’YGBfeX Z <1 - f;l) geX(n)a (248)
n ex

This is the average acceptance of an exit-to-exit jump during randomization.
Similarly, the average acceptance of an exit-to-inner jump is

oo = 3 (1 ) g e
n

Kin

 e—Bmax[®(na—1n,+1),8(n)] (2.49)

where 7 has been defined when illustrating Eq. (4.4).

Mean-field propagation.

The mean-field propagation probability, that is the probability that during
propagation a guest located in an exit site effectively migrates into the cor-
responding neighboring cell (this is sometimes referred to as transmission
coefficient), can be formulated as

o =33 <1 _

Mean-field jump probabilities.

) golmpmn(nm) (250)

We are now ready to write down mean-field expressions for the conditional
probabilities included in Egs. (2.35) and (2.36), for both the case of allowed
and forbidden ex-ex jumps. These are listed in Table 2.6. Including them
into Egs. (2.35) and (2.36) gives:

Kex Ki ‘
(5r(27) - 61(0)) = —2d7 DY Jprop (1 — 2Jprop)* {1 — S exex = 7 Jex_in]
(2.51)
Kex Kin
1-— 7Jex7ex - 7Jexfin
D™ = Dt 1 = 200 K - K K_ :
1—-(1-2 ro 1*ﬁ ex—ex : ex—in
(1= 2pg) | 1= 5 T = S o
(2.52)

for allowed ex-ex jumps, and

K;

(6r(27) - 61(0)) = —2d7 DG Jprop (1 = 2Jprop) {1 - KJexin] (2.53)
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K;
; . - 7Jex—in
D =Dy S 1 —2Jp00p je , (2.54)
1— (1= 2Jp0p) [1 — I;Jexm]
for forbidden ex-ex jumps. The series
o0
A
AP = 2.55
Samto A 255

has been used to perform the summation of the correlated part.

Unlike the more general mean-field formulas in Egs. (2.35) and (2.36),
the various quantities in Egs. (2.51) to (2.54) do not depend on whether the
ex-ex jumps are allowed or forbidden in the randomization algorithm. As
can be seen, forbidding the ex-ex jumps has the only effect of dropping the
term —Ii?c Jex—ex out of the mean-field formulas.

Although the formulas above lead to a qualitatively correct represen-
tation of correlations, they do not always match quantitatively with the
results of numerical simulations. Nevertheless, the obtained discrepancies
are of great help in understanding the correlation mechanism, as we will
discuss in Sec. 2.3.10.

2.3.10 Discussion of the mean-field results

In Figure 2.12 we plot the results of numerical simulations of the Central Cell
Model applied in the cases where the deepest sites are the inner or exit ones
respectively, each studied with two different levels of time-correlation entity.
The values calculated explicitly from the numerical simulations through the
Green-Kubo formula, Eq. (2.26), are reported as black squares, whereas gen-
eral mean-field values and mean-field theoretical predictions are reported as
blue circles and solid lines respectively.

As expected, the self-diffusion coefficient when the inner sites are the
deepest ones increases from low to intermediate loadings as a consequence
of the increasing probability of the tagged particle to occupy an exit site
(thus being able to attempt a cage-to-cage jump), and starts decreasing at
higher loadings when the exit sites tend to be saturated so that each pair
of adjacent exit sites of communicating cells is more likely to be saturated,
this leading the cells to exchange no particles. When the exit sites are
the deepest ones instead, the pairs of exit sites tend to be saturated from
the beginning (i.e. at low loadings), this leading to the expected decreasing
diffusivity.

The escape probability, and thus Dg‘f, does not vary depending on
whether or not the ex-ex jumps are allowed (see Figs. 2.12a and d). This
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is because there are no correlations to be taken into account. As a conse-
quence, both the general mean-field equation (2.36) and the more specific
one obtained through the DACF value in Eq. (2.45) perfectly match with
the explicit numerical value of D{)nf.

The functions constituting the specific mean-field equations, Figs. 2.12b
and f, give some insights about the migration probability of the individual
processes. The way the average jump acceptances Jex—ex; Jex—in, and Jprop
behave w.r.t. loading is the basis of the mean-field treatise of correlations.
They are strictly connected to the choice of the difference between the site
adsorption free-energies fJ and f. As we described above, when the inner
sites are the deepest ones the exit sites are poorly occupied. The accep-

allowed ex-ex jumps forbidden ex-ex jumps
T T T T T 8 T T T T T

1 6 Pt

35

. 0.8 Jox— Jesx— r \‘\ \‘\
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Figure 2.12:  Comparison between diffusivity obtained from numerical sim-
ulations of the Central Cell Model and from the mean-field theory. Black
squares are obtained from the trajectory data outcoming from numerical
simulations through the Green-Kubo formula, Eq. (2.26). Blue circles are
obtained by applying on the same trajectory data the more general mean-
field approzimation, Eq. (2.86). Solid lines are theoretical prediction values
obtained from the more specific mean-field approximations in Eqs. (2.52)
and (2.54). In the first row, Figs. (a), (b), (c), and (d) the inner sites
are 10 kJ mol™! deeper than the exit sites, and vice-versa for the second
row, Figs. (e), (f), (9), and (h). In the first column, Figs. (a) and (e), the
zero-time diffusivity, Eq. (2.27) is shown. In the second column, Figs. (b)
and (f), the trends of the macroscopic quantities Jox—cx, Jex—in, and Jprop
constituting the theoretical mean-field approximation are shown. In the third
and the fourth columns, respectively Figs. (c), (g) and (d), (h) the case of
allowed and forbidden ex-ex jumps are considered.

tance of ex-in jumps, Jox—in, starts to decrease from low loadings whereas
the acceptance of (allowed) ex-ex jump, Jex—ex, is almost unity and does not
decrease significantly as long as the inner sites are not close to saturation,
around (n) ~ Kj,. The behavior of Jyop is similar to Jex—ex: it remains
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almost constant (about 1/2) until the loading becomes high enough so that
the exit sites start being filled. Inverting the site depths fg and f exactly
inverts the respective behaviors.

The average jump acceptances are combined together by Egs. (2.52)
and (2.54) to give approximated values for the correlated self diffusivity
D™ (see solid lines in Figs. 2.12c, d, g, and h). Although the theoretical
prediction are qualitatively correct, they are close to the simulation values es-
pecially at low loadings, while usually they fail at higher loadings. The more
general (numerical) diffusivity equation (2.36) gives a better appoximation
than the theoretical prediction. This is because the numerical evaluation of
D™ through Eq. (2.36) does not suffer from the separation of mean-field
randomization and propagation operations, which was the leading assump-
tion when we derived the theoretical diffusivity formulas in Section 2.3.9.
However, the general diffusivity equation becomes less accurate in situations
where the memory of the previous local configurations is lost slowly, as for
the case shown in Fig. 2.12d. When discussing about the amount of memory
locally lost during each randomization step, it is interesting to find out the
main sources of correlations, and to identify which of the cases above is the
most memory-preserving.

Memory preserved in exit and inner sites. Since the cell-to-cell migra-
tions occur via the exit sites, and their connectivity from one cell to the
other determines the topology of the whole grid of cells, all events involving
them will introduce more correlation than the events occurring in the inner
sites, which instead are structureless so that they can be considered as the
less memory-preserving part of the cell.

Memory-preserving backscattering. When a tagged guest migrates from
cell to cell during propagation, the probabilities related to every next move
do depend on the configuration of both cells before the propagation occurred.
In other words, the assumption in Eq. (2.30) is strong and this is especially
true when correlation effects are particularly evident, such as in the case
of forbidden ex-ex jumps shown in Fig. 2.12d. In that case, (i) forbidding
the ex-ex jumps gives the backscattering contribution a major role in the
production of correlations (this because the randomization will produce only
very small changes in the local configuration), and (ii) cage-to-cage jumps
are infrequent because f2 < f&, so that the configuration of the exit sites
tends not to change significantly from step to step. Due to these two facts,
a backscattering particle which has left the cell r at time ¢ and backscatters
into it at time ¢ + 7 is very likely to find r just little changed or no changed
at all. If the exit sites are the deepest instead, even though ex-ex jumps
are forbidden one has that propagation events are more likely to occur at
low-intermediate loadings than what expected when the inner sites were the
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deepest. This causes the memory-preserving attitude of the exit sites to be
less marked when the migration events are frequent. Therefore, as it can
be seen from Fig. 2.12, the d case (deepest inner sites and forbidden ex-ex
jumps) is the more affected by time-correlations in the self-diffusion process.
The approximation in Eq. (2.30) becomes then less accurate, whereas in all
the other cases it is acceptable.

2.3.11 Conclusions

In this work we laid down the basis of a simple computational framework,
the Central Cell Model (CCM), aimed to be specific for the study of the
motion on the mesoscopic scale of a single particle in a system of connected
cavities in the presence of other diffusants, in conditions of thermodynamic
equilibrium. Our model is local and discrete in both space and time, and in
the numerical applications we have shown here it has been constructed start-
ing from the algorithm of a lattice-gas model for diffusion in microporous
material. We have shown that, although being not possible for the CCM to
sample all the information obtainable by a full lattice-gas, a CCM simulation
provides an accurate reproduction of the memory effects in the self-diffusion
(and thus, of the diffusion isotherm) at a minimum computational cost.

The way the CCM is constructed suggested how to carry on a mean-
field study of the self-diffusion process produced by the particular evolution
rule adopted. This has led to two approximated mathematical expressions
for self-diffusion. The first one, more general, can be applied with data
coming straight from the CCM simulation. The second one, more case-
specific and derived by assuming fast local equilibration, is theoretical and
yelds a more accurate approximation the weaker the correlations and the
lower the loadings are. Interpretation of the discrepancies between the self-
diffusivity trends obtained from the numerical simulations and their two
different mean-field approximations helped to understand how, and how
strongly, memory effects can emerge depending on the very general features
of the model parametrization.

The obtained results suggest the CCM approach to be suitable for other
theoretical studies, e.g. the time-correlations in the local density, [50,51] as
well as for direct applications in the field of the molecular coarse-graining.
For example, the CCM approach could be further extended to the sampling
of both the adsorption and the self-diffusion isotherm through a single sim-
ulation when the lattice-gas rule includes an explicit cell-to-cell interaction
potential which makes (in principle) impossible do derive the equilibrium
probability distribution of states a priori. This could be done by perform-
ing a grand-canonical Monte Carlo on the border cells while keeping the core
evolving with the prescribed dynamic lattice-gas rule in the canonical en-
semble. Also, an even more intriguing extention of the CCM approach could
be made in the field of hybrid MC-MD schemes aimed to realistically mimic
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the bulk effects in the motion of a tagged guest in an atomistic simulation.
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Chapter 3

Microscopic systems and
Energy Landscapes

3.1 Potential and Free Energy Surfaces

A very interesting and profound point of view on atomic and molecular
systems is that offered by looking at their associated potential energy surface
(PES). The geography of these multidimensional energy landscape contains,
in principle, all the relevant information relative to the system [52,53]. In
order to be able to say something on the thermodynamics and kinetics, one
has to develop tools to find and envision the significant feature of this object,
and to interpret them in a suitable theoretical framework, so as to build a
bridge between the landscape and the experimental observables.

The PES is in general a very complex multidimensional object (for a
system consisting of N atoms it depends in general on 3N coordinates),
and the complete knowledge of its structure is impossible apart from very
simple systems. A first step in the exploration can be made by reducing the
number of degrees of freedom which we want to consider. A typical example
is given by the construction of the Ramachandran plot, which consist of
the projection of the energy landscape of a small peptide on a plane, by
considering only two collective degrees of freedom, namely a pair [¢p, 9] of
dihedral angles. Although the PES is a function of the three-dimensional
coordinates of all the atoms except one (because in general we are only
interested to the potential energy associated to a given configuration of the
molecule, regardless of the position in space of its center of mass), it turns
out that considering the possible states as defined by couples of values of
1 and ¢, gives a satisfactory description of the molecule’s behaviour at a
greatly reduced cost. This is a typical way of coarse-graining used in the
study of great molecules such as peptides.

Whenever we project out some degree of freedom from our description of
a system, and start to ignore a part of it, entropy starts to play its role. So
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free energy is needed if one wants to treat properly most aspects of equilib-
rium and dynamics. Nonetheless it is still possible to build a coarse-grained
PES, by considering at each point of the reduced space of configurations
the potential energy of the minimum energy configuration corresponding to
the collective coordinates defining that point. If we want a more reliable
description of the system we should use the free energy, taking into account
the whole space of configurations compatible with the independent collective
coordinates specified. We can thus build a free energy surface (FES), which
is not uniquely defined for a system, but depends on the particular coarse-
graining choice applied. In the reminder we refer to the energy landscape
as a synonimous of PES unless otherwise specified.

Not all features of the energy landscape are equally relevant for pre-
dicting the behaviour of a system: if one is interested to the equilibrium
thermodynamics it is in general enough to sample the minima of the PES,
while for the study of kinetics at least first order saddle points must also
be considered. The depth of the minima and approximate shape of their
attraction basins, i.e. the subset of points for which a direct minimization
leads to a given minimum, determine the equilibrium distribution. A system
will in general spend most of its time in the lower regions of the PES. In
the limit of 0K it will be confined to the global minimum (unless a too fast
cooling traps it in some local minima), and as the temperature rises it is
allowed to explore larger and larger portions of the PES, until, as T— oo it
can be found everywhere in the configuration space with equal probability.
A first survey of the energy landscape should in general consist of a sampling
of the relevant minima, possibly starting from the global one and going up
depending on the temperature of interest. At temperatures different from
0K not only the depth of minima determine their associated population, but
also the width of their attraction basins, on which the configurational en-
tropy depends. Once a relevant portion of the minima is known the saddle
points connecting them are needed for a definition of the kinetics. While
higher order saddle points are rarely of interest, first order ones represents
the transition states, determining the rates at which the system moves from
one attraction basin to the other.

Unfortunately the number of minima grows more than exponentially as
the number of atoms in the system, or the relevant degrees of freedom grows,
and the growth of the number of saddle points is even faster. So a method
for directly exploring the energy landscape, aiming to predict something of
the system on the basis of this underlying structure, must be able to find its
way in a maze of uninteresting local minima and saddles of various order.

We will see different methods for performing this search in the next
sections and chapters.

However all of the simulation methods in computational chemistry can
be seen as implicit PES sampling techniques.
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3.2 Disconnectivity Graphs and archetypal Energy
Landscapes

A useful way of schematically representing energy landscapes is offered by
disconnectivity graphs (DS) [52,73]. Usually there is a huge number of direct
minimization attraction basins (one for each minimum), but the direct min-
imization map of the EL to all of its minima is in general overwhelmingly
rich and in most cases it is more useful to consider grouping schemes giving
super-basins, i.e. groups of basins separated by low barriers, which gives a
much more clear representation of the relevant features of the landscape,
and are a first step in the direction of a coarse-grained treatment of the
system. There are two principal ways of mapping the EL to a collection of
super-basins, depending of the problem of interest: a microcanonical map-
ping, based on the absolute height of the barriers separating minima, and
a canonical mapping, based on the relative height of the barriers. Given a
certain threshold value (an absolute energy for the canonical map or a small
multiple of kT for the microcanonical map), all basins separated by barriers
lower than this threshold are lumped together. In canonical mapping two
minima are considered as belonging to the same super-basin if the height
of the TS connecting them, with respect to the deepest one, is lower than
the chosen threshold. By iterating this lumping procedure several times, at
different threshold values, a DS is built in the following way. We consider as

PN

willow banyan palm

Figure 3.1:  Three examples of paradigmatic disconnectivity graphs.

an example a microcanonical mapping: starting from an energy F — oo
we have a single super-basin comprising the whole configuration space of
the system; by moving down in energy, the space starts to break in various
distinct, non communicating super-basins, until, when £ — 0, we obtain
the direct minimization map again. We can keep track of the way in which
greater super-basins split to smaller ones as energy (or temperature) is low-
ered, by drawing a graph in which basins in the PES are represented as points
arranged in layers, each corresponding to the mapping at a different energy
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(or temperature), and connecting with arrows the parent super-basins to its
children. What we obtain in this way is a disconnectivity graph, which is
probably the best way we have to visually represent the multidimensional
energy landscape and grasp an immediate idea of its structure, hierarchy
and connectivity. By analyzing the appearance of these microcanonical DS
it is easy to recognize some recurrent model in their global look, each corre-
sponding to an archetypal energy landscape class. The first DS in fig. 3.1,
resembling in some way a willow-tree, is representative of a typical rough en-
ergy landscape, with very high barriers connecting deep minima. This kind
of EL is characteristic of glass forming systems, because every minimum is
a kinetic trap, and finding the global minimum is very hard, so that the
system is most of the time found in a metastable state different from the
global minimum at low temperatures, unless a very slow cooling allows it
to find the bottom. The second DS is similar in some way (we can call it a
banyan-tree), as it has many low lying minima, all on a similar energy level,
separated by high barriers, but in this case every branch keeps on branching
at all levels, giving a hierarchy of basins and barriers. This is in general the
worse scenario for finding the global minimum. The third DS, resembling
a palm-tree, is typical of good ’structure-seeker’ systems, such as proteins
and regular crystals. It corresponds to a funnel-shaped energy landscape in
which shallow minima lie on the slopes of the global minimum super-basin,
so that, wherever the system starts from, it is naturally and rapidly led to
the global minimum. The funneled EL of proteins is now widely recognized
as the solution to the Levinthal paradox, which points to the fact that in a
"golf-course’ model of the PES, where all minima, irrespective of their depth,
have the same basin width and their barriers all lie at the same level, the
time a protein, with the enormous number of minima on its PES, would
take to find its native, biologically active state, would be many times the
age of the universe. The fact that proteins fold on the scale of ms-us can be
explained by the 'focusing’ nature of the underlying energy landscape.

However in most cases the energy landscape has a mixed overall charac-
ter, it can show more than one well defined funnel, or many branches each
with a given characteristic aspect.

3.3 Canonical Disconnectivity Graphs and kinet-
ics

The microcanonical DS is useful to envision at a glance the shape and to-
pography of potential energy surfaces, while the canonical DS is useful to
describe the kinetics, both qualitatively and quantitatively. We can define
a transition as a motion along a path that crosses a barrier higher than the
thermal energy. Since in a canonical disconnectivity graph states belonging
to the same basin are separated by barriers lower than k7', there are no
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formal transitions between these states, which are in rapid equilibrium. The
canonical DS allows the study of transitions between super-basins rather
than states (or minima), and this level of coarse-graining, explored with
various techniques, will be the focus of the reminder of this thesis.

Al @A2 @A3 B1 B2 0

Figure 3.2: At the temperature corresponding to level 0, all transitions
between nodes under this level are fast, and details of the connectivity of
the nodes should be irrelevant. On the contrary it is necessary to know the
connectivity of upper levels. In general the higher is the least upper join
between two nodes, the slower is the corresponding transition.

Let us consider the canonical DS in fig. 3.2. We number the levels of
the graph relative to the system temperature, which is assigned the index
0. All nodes on the 0-level of the graph represent actual super-basins at
this temperature. These are denoted as By, Bs, A1, etc., and in many cases
are connected to several sub-basins, which in turns are in rapid equilibrium.
The transition rate between the 0O-level vertices of the graph is related to
the location of their least upper join on it, which in turn is proportional to
the height of the lowest barrier separating the super-basins. The lower is
the barrier the faster is the transition. As an example, in fig 3.2 a transition
from A; to Ag, having a join at level 1, will in general be faster than a
transition from A; to Bi, having their least upper join at level 2. If the
barrier between two super-basins is high enough we are not interested to
the connectivity among the different basins they contain, and the system is
markovian i.e. equilibrium is reached inside a given super-basin long before
a jump to another super-basin can occur, thus making the system dynamics
uncorrelated. But if this is not the case, the basin connectivity may start
to play a not negligible role. In other words, if the kinetic hierarchy is not
strongly separated, so that rates for transitions within super-basins are not
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well lower than those for transitions between super-basins, we must take into
account entropic effects arising from the inner structure of super-basins, and
the system is not markovian anymore, as thermalization inside a super-basin,
and memory loss, are not ensured before a new transition out of it can occur.
This does affect dynamics, and the path and rate for reaching equilibrium,
but the equilibrium itself is not affected. A complete understanding of a
system showing not strongly separated dynamic hierarchy, requires a basins
connectivity graph beside the DS.

Let us consider a system whose configuration space is divided in n states,
which can be basins or super-basins for example. Its evolution can be de-
scribed by a master equation, which is a gain-loss equation for the probability
of finding the system in a state 4. Its basic form is

dpi/dt = [Wijp;(t) — Wyipi(1)] (3.1)
J
where W;; is the transition probability from state j to state i. Eq. 3.1
can be rewritten in matrix form as

dp(t)/dt = Wp(1) (3.2)

where W is a n X n transition matrix with elements
Wi = Wi; — 5ij(z Whi), (3.3)
k

and p(t) is the n-dimensional probability vector at time ¢.
The formal solution of Eq. (3.2) is

p(t) = e™p(0). (3.4)

A convenient way of solving this equation is by expanding the probability
vector p(t) in terms of the eigenvectors and eigenvalues of the transition
matrix as

p(t) = p“ + Z C;sielt (3.5)
Ai<0

where C; = (s;|p(0)) is the projection of the starting probability vector
on the i-th eigenvector s;. The previous equation describes the relaxation to
equilibrium in terms of the decay to zero of all components of the probabil-
ity vector on eigenvectors different from sy, which corresponds to the only
non-negative eigenvalue A\g = 0, which in fact represents the equilibrium
distribution.

As W is not symmetric, it cannot be guaranteed that it has a complete
set of eigenvectors spanning its space, and thus that the eigenexpansion in
Eq. 3.5 is possible. However if the detailed balance condition I/Vijqu =
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W;ip;? is satisfied, there is a transformation that transforms W into a real
symmetric matrix V

V = [P~ 1/2wW[ped)l/? (3.6)

where P®? is a diagonal matrix with the equilibrium vector p? along its
diagonal. Eigenvalues k; and eigenvectors u; of V can be easily obtained
with standard methods, and given the nature of the transformation the
V and W matrices have the same eigenvalues, and their eigenvectors are
related by

u; = [P 2%s;. (3.7)

Applying the previous transformation to the probability vector p(t) gives
a transformed probability vector q(t) = [P¢]~'/2p(t), which obeys the mas-
ter equation, Eq. 3.2 with the symmetric transition matrix V:

dq(t)/dt = Vq(t). (3.8)

Rewriting the solution in terms of the eigenexpansion as in 3.5 we obtain

at) =q“+ ) Clue'™ (3.9)

k<0

with C! = (u;|q(0)). By solving this equation, and transforming back to
Eq. 3.5 we obtain the time evolution of the original probability vector p(t)
as

p(t) =p“+ Y _ C{[P)/ue'™ (3.10)

k<0

where we can equivalently redefine C! as C; = (w;|[P®]~/2p(0)). In
the new form of Eq. 3.5 the coefficients are given by C; = (s;|[P°Y]~'p(0)),
where [P?]~! is the normalization factor of the vectors s;.

The PES disconnectivity graph contains only information about the
super-basins bottom minima and transition states energies, so in order to
calculate the transition probability W;;, that is the rate constants k;; for the
transition from super-basin j to super-basin ¢ we must adopt some transition
state theory (TST) assumption. A general TST expression for the rate is

FTQY b
ki = Wi = ——=e "49/%, 3.11
s=Wi=" o (3.11)
Depending on the problem at hand and the accuracy required, a stochas-
tic approach such as Kramer’s theory or a more accurate rate theory for-
mulation can be used [54]. It must be noted that in general at non-zero
temperatures entropic effects become fundamental for a correct calculation
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of rates, as well as equilibrium properties. For some examples of the es-
timation of the density of states see the extended harmonic superposition
approach proposed by Strodel et al. [55], the Wang-Landau [56] and the
basin-sampling [57] methods.

3.4 Exploring Energy Landscapes

As already mentioned, every simulation method performs a sampling of the
energy landscape, and by analyzing simulation data it is in some case possi-
ble to map its most relevant regions, and the main paths connecting them.
On the other hand the presence of high barriers may break the ergodicity
of the system on the time scale practically reachable with the simulation
method.

A way of studying high barriers systems, for which a coarse-grained
method cannot be developed on the basis of MD data, is that of sampling
the PES directly, looking for relevant critical points to be used for predicting
the system’s behaviour, or in order to build a suitable KMC model.

Direct study of the PES requires an efficient way of detecting critical
points and their connections. Finding minima is an easy task, starting
from any point, taken from a simulation trajectory or even randomly picked
in the configuration space, and following a way down-hill i.e. minimizing
energy via any of the many minimization methods available (for example the
Newton-Raphson or the limited memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method). Stillinger and Weber [58] proposed a way for detecting
the so called inherent-structure of the PES, by quenching points in a long
MD trajectory, so that mainly minima in the most relevant part of it are
sampled. A more difficult task is that of locating the global minimum, as all
other local minima are potential traps where the system can get stuck. Many
different techniques have been proposed to avoid trapping, like simulated
annealing and basin-hopping [59].

Once a minimum is located, a single-ended search technique [52] can be
used to locate a saddle point leading out of the starting basin. Locating
a first order saddle point, that is a TS, is more problematic than finding
a minimum, as, while following any direction down-hill via the steepest
descent path will most likely directly lead to a minimum, following up-hill
steepest path will in general lead to a maximum. Eigenvector following is
a way to reach a TS starting from a minimum by following the eigenvector
corresponding to the lowest eigenvalue of the Hessian matrix evaluated at
the minimum, that is the ’softest ascent’ path up-hill [60]. Once the new
stationary point is reached, the Hessian matrix is evaluated again, and if it
has a single negative eigenvalue the point is a transition state. By stepping in
the opposite verses on the direction of the eigenvector corresponding to the
negative eigenvalue, and minimizing the energy, the two minima it connects
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are located. At least one of these should be a new stationary point, from
which the search for a T'S can start again, and so on, resulting in an iterative
procedure for locating new minima and the connecting transition states.

Another way of exploring the PES, once two or more minima are known,
is by iterating double-ended searches on it via a Discrete Path Sampling
(DPS) procedure [61,62]. Instead of a starting point from which the al-
gorithm generates a succession of points until an unknown final one, this
approach requires two points (A and B), and aims to find a minimum en-
ergy path connecting them, in the form of a series of transition states and
minima. The algorithm starts with a minimum energy path search via the
doubly nudged elasting band method (DNEB) (see Trygubenko et al. [63]
for more details on this variation of the well known NEB method [64]). The
path found will in general show a maximum energy point, from which a sin-
gle ended TS search is started. The two minima connected by this transition
state (located in the same way as in the single-ended search), may be the two
starting minima or not. In the first case a minimum-saddle-minimum con-
nection has been found, and the algorithm stops. Otherwise the new points
are added to the set of known minima, and new DNEB paths are calculated
connecting A and B via the minima in the set. As the procedure goes on,
the datasets of minima and saddles grows and a Dijkstra algorithm [65] is
used to attempt connections, using as costs the heights of transition states
connecting minima, and their distance in configuration space when the TS
is missing. In this way a minimum energy discrete path is built connecting
A and B, and at the same time a subset of the minima and transition sets of
the PES is unveiled. Successive applications of DPS to pairs of points in the
dataset and a perturbation procedure applied to known minimum energy
paths result in a progressive sampling of the energy landscape minima and
their connections.

3.5 Energy Landscapes for small molecules adsorbed
in zeolites

We studied the energy landscapes of Ar, CH; and Xe adsporbed in the a-
cage of zeolite ITQ-29 using the OPTIM and PATHSAMPLE free softwares,
developed by the group of prof. David J. Wales at the University of Cam-
bridge [66]. This suites offer many tools for the direct exploration of energy
landscapes, employing the concepts and techniques described in the previous
sections. For these calculations we adopted a drastically simplified model
of the zeolite framework, consisting only of the 48 oxygen atoms of which
the surface of a single a-cage consists. Periodic boundary conditions are
applied, with a simulation box length of 12.3 A and the atoms positions are
taken from an energy minimized structure and held fixed. We remark that in
all other calculations reported in this thesis work, only interactions between
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E/kB g

Ar 95.6 | 3.17
CHy | 115.0 | 3.47
Xe | 136.2 | 3.45

Table 3.1: Interaction parameters between adsorbed atoms and oxygen atoms
belonging to the zeolite framework. Units are K~ for e, and A for o.

the sorbate and the oxygen atoms are taken into account, as it is custom-
ary