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la grande libertá intelletuale accordatami, il prof. Giuseppe Baldovino Suf-
fritti, e il Dott. Federico Pazzona con il quale ho condiviso vari progetti
durante questi tre anni. Un ringraziamento va al dott. Marcello Budroni
per aver introdotto il germe delle reti nel nostro gruppo di ricerca e per utili
discussioni su questo tema.

Un grazie assolutamente particolare lo devo al dott. Andrea Gabrieli
per l’incondizionato, generoso, e spesso salvifico supporto informatico e non
solo.

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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...É chiaro, quindi, che l’idea di un metodo fisso o di una teoria fissa
della razionalità poggia su una visione troppo ingenua dell’uomo e del suo
ambiente sociale. Per coloro che non vogliono ignorare il ricco materiale
fornito dalla storia e che non si propongono di impoverirlo per compiacere
ai loro istinti più bassi, alla loro brama di sicurezza intellettuale nella forma
della chiarezza, della precisione, dell’”obiettività”, della ”verità”, diventerà
chiaro che c’è un solo principio che possa essere difeso in tutte le circostanze
e in tutte le fasi dello sviluppo umano. E’ il principio: qualsiasi cosa può
andar bene.

Paul K. Feyerabend “CONTRO IL METODO”
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Chapter 1

Introduction

The following pages constitute an attempt to rationalize a three years ef-
fort to find an original point of view on the problem of adsorption and
diffusion in microporous materials. This effort was only partially successful
and many questions regarding the various approaches here exposed remains
unanswered. However some parts of this work remains interesting in my
opinion and could deserve further investigations.

The fundamental topics on which this thesis work focuses, are the pos-
sibility of applying certain reductionistic approaches to the dynamics of
sorbate molecules in zeolites, and similar materials, in order to obtain a
coarse-grained model of it, and the development of tools for better under-
standing some of the fundamental mechanisms of this dynamics, inspired
by the different points of view on the phenomena of interest that a mean-
ingful coarse-graining could bring to light. In the following, the idea of
coarse-graining is intended in a perhaps slightly different way from its most
common use. It is in general related to the reduction of a complex problem
to its really fundamental elements, by discarding all that is not strictly nec-
essary, with the aim of making it easier to handle. But while in the study
of proteins, for example, it refers to the limitation of the degrees of free-
dom of the macromolecule, by considering groups of atoms as single units
interacting via a simplified force field (as in Go models), we deal here with
a coarse-graining of space rather than of molecular structure. In a sense the
molecular structure of the zeolite is coarse-grained in a first step, but this
induces immediately a coarse-graining of the space available to the motion of
sorbed molecules. Once the space is partitioned in a sensible way, dynamics
can be treated on the basis of this discrete space.

Molecular Dynamics (MD) is now widely used to simulate adsorption
and transport phenomena in zeolites [1–3]. It is a powerful tool, and its
application has brought deep insights in the behaviour of molecules under
confinement, shedding light on many interesting phenomena and providing
an explanation to experimental results. However, despite the continuous
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growth of available resources for massive calculation, MD simulations for
large systems and/or long times are still very computationally demanding,
and this justifies an effort to develop coarse-grained methods allowing a
substantial extension of the range of systems that can be simulated.

Examples of coarse-graining in the field of zeolite studies [4] are Configurational-
Bias Monte Carlo methods [5], Kinetic Monte Carlo [6,7] (KMC) techniques,
the hierarchical approach proposed Tunca et al [8], and a lattice-gas Cellular
Automaton (LGCA) developed in our group [9].

In section 2.2 a variant of this LGCA suitable for simulations of mixtures
adsorbed in zeolites is presented, alongside with a still more reductionistic
model of the same kind and a detailed study of the associated time correla-
tion function.

Monte Carlo and Cellular Automata methods require a number of pa-
rameters, which must be properly tuned to reproduce the dynamics of inter-
est. Definition of the sites, of the jumps between them and their probabili-
ties, alongside with a meaningful definition of the time scale are all difficult
issues, requiring usually an ad-hoc determination which is justified mainly
by the agreement of simulation data with experimental or MD global results,
such as diffusivities or adsorption isotherms. In a sense this appears to be a
complex fitting procedure of the reference data where the unknown function
is the algorithm itself with its parameters.

The choice of parameters used in the previous methods is often heuristi-
cally inspired by reasonable assumption regarding the system’s microscopic
nature, the involved interactions among its elements and additional infor-
mation such as mesoscopic experimental data. It would be of course useful
to find a systematic and reliable method to obtain them from some fine-
grained trustworthy method such as Molecular Dynamics, and this is one of
the main issues addressed in this thesis work.

In other words, given a certain knowledge of the system at a microscopic
level, such as a reliable MD force field, is it possible to obtain a natural
coarse-grained model of it? Or on the other hand, having a certain simple
model already heuristically designed for mimicking a given system, is there
a systematic way of making it realistic by tuning its parameters, starting
from microscopic information?

The answer to any such question lies in our ability to recognize the gen-
eral structure and key elements of the energy landscape associated with the
system studied. The idea of studying the energy hypersurface of a micro-
scopic system, which is a function of all its atoms coordinates, has gained
increasing attention in the last decade. It is clear that all the information
needed to understand and predict the system’s behaviour is embedded in
this object. However, while any simulation method performs in the end a
sampling of this hypersurface, a direct exploration of it is not an easy task,
and if the landscape is a rough one, with high barriers, the capability of a
method like MD of sampling a significant part of it may be strongly reduced
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or lost. In section 3.4 some direct analysis techniques are presented, which
allows at least a partial mapping of the relevant critical points of the poten-
tial energy surface, however even knowing a significant part of the energy
landscape web of minima and transition states, appropriate theoretical tools
(such as a proper Transition State Theory, and a reliable way of taking into
account entropic effects) are required if one wants to extract useful infor-
mation from it. Two possible approaches are investigated here: the direct
analysis of the energy landscape is the matter of chapter 3, and an implicit
way of determining its geography, based on MD trajectories analysis, is ex-
posed in chapter 4, alongside with a second-order Markov model developed
on its basis.

The first approach is not particularly useful for the study of systems with
weak intermolecular forces like those mainly considered here, but could be a
valuable tool in the case of strongly interacting systems with high barriers.
However a schematic map of the smooth energy landscapes characterizing
our systems is presented that can help to rationalize other results.

The second approach gave interesting insights and brought to the de-
velopment of a second-order Markov model of the systems studied. The
reasons for using a second-order Markov chain approach rather than a first-
order one, are discussed in sections 3.4 and 4.2. What is interesting to
notice here, is that if a direct coarse-grained markovian model should rely
on transition probabilities between regions in the discretized space, in our
case calculated from MD trajectories, a second-order model is based on the
transition probabilities between first-order transitions. In other words while
in the case of a first-order Markov chain a possible system’s story is a suc-
cession of positions in the discretized space, in the model described here it
is considered as a succession of discrete events.

Once the event-event transition matrix is calculated from MD simulation
data, it can be studied in itself via standard algebraic analysis, but a different
point of view could also be interesting: as any other matrix, it can be seen
as a network. In this case it represents a directed weighted network where
each node correspond to a discrete event. A given pair of nodes a and b, is
connected by a link a→ b if the probability that the event b follows event a
is non-null, with a weight proportional to this probability.

The reason for such a change of viewpoint is the expectation that the
structure of this network of events depends on the underlying dynamics and
could expose some interesting features of it, giving a hint of the basic mech-
anisms of diffusion, and of the way they change with different conditions,
such as temperature, adsorbate density, its size, shape and electronic struc-
ture. However the particular kind of network we obtain i.e. both directed
and weighted, has not to date received much attention in the impressively
active field of network theory. Some of the basic concepts used in network
analysis do not have a definite, useful formulation for this class, or are not
considered in most of available network analysis packages. Moreover the
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kind of system represented by our graph is very different from those usually
considered in applications of network theory, so that even those measures
that have been defined for directed weighted networks are often not suitable
for our purposes. The ideas underlying this network theory approach to the
event-event matrix are reported in chapter 5, together with the difficulties
met and some related open questions.

1.1 Zeolites

The various ideas presented in this thesis, were all tested and tailored on
a reference system: a portion of a zeolite ITQ-29 crystal (often referred
to as ZK-4 in literature) hosting molecules of some adsorbate species. Zeo-
lites are aluminosilicates displaying unique characteristics, on which depends
their extraordinary variate and extensive utilization in many technological
processes. This is the reason of the huge amount of experimental and theo-
retical studies focusing on these materials in the last decades. What makes

Figure 1.1: Micro-crystals of zeolite LTA. The small openings of pores are
recognizable on the surface.

zeolites unique is the structure of their crystal lattice, showing nanometric
pores and canals, capable of hosting a variety of small molecules, which are
allowed to move inside the material. The strict confinement experienced by
guest molecules, adsorbed on the impressively extended inner surface of the
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zeolite affects strongly their behaviour, and is responsible for the catalytic
properties of the material, as well as their capability of selectively trapping
molecules, depending on their size, shape and polarity.

For this reasons zeolites are widely employed in petroleum industry as
catalysts and molecular sieves; as ion traps; as dessicants, for their ability
to absorb large amounts of water (the release of water under heating is
the origin of the name zeolite, meaning ’boiling stone’); and in many other
applications.

Figure 1.2: The structure of zeolite ITQ-29 with the α−cage highlighted.
(Courtesy of IZA [10])

Our focus was on ITQ-29, an all-silica zeolite of Linde type A (LTA),
that is a cubic symmetry one, with neither aluminium nor extra-framework
cations. Usually, for zeolites with small Si-Al ratio, cations are present to
counter balance the positive charge defect of the lattice due to aluminium.
Cubic symmetry and the absence of cations simplify the treatment of this
system, but they are not essential in any way for the validity of the following
discussion. In Fig. 1.2 a unit cell of ITQ-29 is shown, with the main pore,
called α-cage, highlighted. This is the space where molecules resides, while
the space inside the truncated octahedra (sodalite-cages) on its vertices, is
not reachable due to the narrow openings. The α-cage is roughly 12.5 Å
in length, and the octagonal windows, connecting it to the six neighboring
cages, have a diameter of 4.8 Å.
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Chapter 2

Cellular Automata models of
diffusion in zeolites

2.1 Brief overview on Cellular Automata

A Cellular Automaton (CA) [11,12] is a n-dimensional lattice of cells, each
characterized by its state, with an associated evolution rule. This acts at
discrete times on the whole space to generate a new configuration of it,
depending only on the configuration at the previous time.

A Cellular Automaton is formally defined as a quadruple 〈d,Γ, J, f〉
where:

-d is a natural number representing the automaton space dimensionality
-Γ is a finite set called state space
-J is a finite subset of the integer numbers set Zd, and is called neigh-

borhood index. Being |J | the number of elements in the subset, the cells
belonging to the neighborhood of a given cell i are i+ j1, i+ j2, . . . i+ j|j|

-f is a function f : Γ |j| −→ Γ. Being ni(t) the state of the i− th cell at
time t the evolution rule of the cellular automaton is

ni(t+ 1) = f(ni+j1(t), ni+j2(t), . . . ..ni+j|j|(t)) (2.1)

In general a classical CA is:
-discrete, in time and space, which consists of an array of individual cells
-omogeneous, as it shows the same structure in the whole space and each

cell has the same neighborhood
-parallel, as the states of every cell are updated simultaneously at each

time step (this is valid at least inside each partition in a hierarchic automa-
ton)

-local, as the evolution of each cell depends only on the state of its neigh-
borhood (which can contain or not contain the cell itself)

There are several possible variations to the basic scheme previously de-
scribed, such as:
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-asynchronous automata, in which the evolution of some cells is randomly
retarded for one or more time steps, and non-homogeneous automata. These
can be inhomogeneous in time, obeying a certain evolution rule for some
time steps and then switching to another one, or in space, obeying different
rules in different regions of their space, possibly with different neighborhood
definitions.

-hierarchical automata, with structured cells, each characterized by a
state vector rather than a scalar state; and partitioned automata for which
only some components of the state vector are relevant to the evolution rule.

-probabilistic automata, for which evolution from a given state may re-
sults in many different outcomes each with its own probability of realization.
These are obviously very useful for thermodynamic studies.

The cellular automaton described in the next section is a hierarchical,
probabilistic CA with a Margolous partition scheme.

2.2 A parallelizable Block Cellular Automaton for
the study of diffusion of binary mixtures con-
taining CO2 in microporous materials.

The present section is an adaption of a paper appeared in The Journal of
Chemical Physics [13]. Copiright 2011, American Institute of Physics

We applied a method based on a Block Cellular Automaton algorithm
to the study of diffusion of various binary mixtures adsorbed in a model
microporous material like zeolite ITQ-29. Our aim was to test the capa-
bility of our model to cope with systems in which more than one species is
present, using a set of parameters based on heuristic considerations on the
Molecular Dynamics results present in literature. A rigorous methodology
for the assignment of suitable adsorption energies and diffusion activation
barriers for our CA has not been developed yet, nonetheless the results were
quite interesting at this stage and we obtained a good qualitative agreement
with MD data in literature. The mixtures we investigated contain CO2,
which causes the so called segregation-effect, a strong suppression of self-
diffusivity of co-adsorbed species. This effect gives rise to relevant problems
in the application of some well established and robust methods while our
model proved to be able to reproduce both the common features and the
segregation anomaly in the trends of diffusion.

Among microporous materials, zeolites constitute a wide class of alumino-
silicates displaying very interesting properties due to their microscopic struc-
ture. In the past decades their massive industrial utilization for many dif-
ferent applications (i.e. catalysis, molecular sieving, mixtures separation,
detergents etc.) has led to a great theoretical and experimental effort in
order to understand the underlying mechanisms of diffusive and reactive
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processes taking place inside their porous structure. A wealth of Molec-
ular Dynamics and Monte Carlo techniques have been used, which have
given deep insights into the rich and various behaviors of these materi-
als, with a particular focus on the intra-crystalline diffusion of adsorbate
molecules [1–3]. Even if methods based on MD are invaluable for a detailed
knowledge of the microscopic dynamics of these systems, they have severe
restrictions both on the time and spatial extension of the simulations. In an
ordinary MD experiment one cannot usually expect to study the evolution
of systems containing more than about some thousands of atoms and for
times longer than tens of nanoseconds, being thus unable to detect a wide
range of behaviors, including for instance long range correlation effects on
diffusion or the effect of concentration and temperature gradients. It would
be in turn very interesting to understand this kind of properties for both
practical and theoretical reasons. A possible solution to the aforementioned
limitations is that of a strongly coarse-grained approach to the problem.
This was the idea underlying the previous work of Demontis et al. [14–18]
where a new Cellular Automaton model was presented. By neglecting most
of the microscopic details of the zeolite-adsorbate system and retaining just
the essential degrees of freedom needed in order to reproduce in a reliable
way the main features of the diffusion processes of interest, this new model
gave a good qualitative and quantitative agreement with the data obtained
by other authors using MD, but with a strong reduction of CPU time. This
means that by giving up to explore the microscopically detailed dynamics
of the system, and by exploiting input data coming from other methods,
the CA model is able to extend largely the time and spatial horizons of
simulation. In the present work we present a slightly modified version of
the algorithm proposed in [9, 14–18] and the extension of its application to
the study of mixtures diffusion, a possibility that was not already tested,
as in our previous works only pure species were considered. The results ob-
tained studying three different mixtures in zeolite ITQ-29 are compared to
those present in literature in order to test the reliability of our model and its
ability to qualitatively reproduce, at this stage of development, data from
well established and more sophisticated methods in three different systems
displaying a non-trivial behavior.

2.2.1 The model

Our model consists of a probabilistic, hierarchic Block Cellular Automaton
(BCA). The BCA space is a cubic-symmetry lattice of cells, each represent-
ing an α-cage of zeolite ITQ-29. Each cell is structured as an array of Ntot

sites which correspond, at least to a first approximation, to the preferential
adsorption sites for guest molecules inside the α-cage. There are two differ-
ent types of site: Nex exit-sites and Nin inner-sites for each cell, which, in
the aforementioned approximation, can be seen as corresponding to regions

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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more and, respectively, less close to the windows connecting the α-cages.
The state of each site, is determined by a collection of Nsp boolean variables
sX1 , . . . , sNsp . Nsp is the number of guest species present in the system and
a value of 1 for sXn means that the given site is occupied by a molecule of
the nth species. An exclusion principle holds such that each site can host a
maximum of 1 molecule at any given time, so that∑

X

sX = 0 ∨ 1 (2.2)

Let us indicate as i any of the Ntot sites within each cell. Indicating as
SX(r, t) the number of molecules of species X in the cell with position r at
time t,

SX(r, t) =

Ntot∑
i=1

sXi (r, t), (2.3)

where sXi (r, t) is the X-species occupancy of the i-th site of cell r at time t,
we define the total occupancy of a cell as the sum S(r, t) =

∑
X SX(r, t).

All the cells are structurally equivalent so that the grid is homogeneous,
and each cell can communicate only with its 2m (in this work, m = 3) first-
neighbouring cells through a set, {e}, of 2m+1 direction listed in Table 2.1.
In the present work inner-sites inside each cage are left indistinguishable,
while exit-sites are oriented in space in order to link neighbouring cells ac-
cording to the set {e}. In our model, a molecule can leave a cell, say r, to
enter a neighbouring cell, say r + ex, only by jumping from the particular
exit-site of cell r indicated as (r, ex) to the exit-site (r + ex, e−x) of cell
r+ ex. Therefore, while the inner-sites can be identified by the coordinates
r of the corresponding cell only, every exit-site needs also the specification
of one of the 2m (in this work, 6) possible orientations specified in Table 2.1.

2.2.2 Block-partitioning scheme

The Automaton acts according to a Margolus block-partition [17, 19, 20].
Each block results from the alternative grouping of sites according to a def-
inite rule. Several types of blocks can be defined depending on the number,
the type and the connections of the sites they include, which can belong
to one or more different cells. The set of all the blocks of the same type
represents a partition of the whole lattice. A fundamental feature of the
blocks is that blocks belonging to the same partition do not communicate
with each other. In other words, every block is treated as a closed system.
Let’s indicate as B a particular block in the system. containing a number
NB of sites generally indicated as I1, . . . , INB

. The state of the block B at
time t is defined once the states sXI (B, t) of each site within it are defined.
In the present work we consider two types of blocks. The first type is equiv-
alent to a cell, and contains therefore all the Ntot sites (inner plus exit)
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Figure 2.1: (Left)A bidimensional section of a possible configuration of BCA
is shown: squares encase blocks of the ‘cage’ type while small rectangles en-
case blocks of the ‘window’ type. The empty circles represent empty sites
while red and green circles represent sites occupied by molecules of two dif-
ferent species respectively. (Right) The two Margolus partitions (in red) of
the space of BCA. In the upper part of the figure the cage-blocks partition
is shown, which covers the whole automaton space, while the window-blocks
partition is shown in the lower part.

belonging to it. We refer to these blocks as cage-type blocks, as they rep-
resents α-cages of the zeolite. We emphasize that, since the cells do not
overlap and each cell communicates directly with its 6 neighbours with no
intermediation of any extra-site besides their respective exit-sites, the first
partition (containing all the blocks of the first type) covers the entire lattice.
Given the exclusion condition in Eq. (2.2) one has that the total occupancy
of a cage-type block cannot be greater than Ntot.

The second Margolus partition is the set of all the exit-sites of the system.
Every block of the second type contains a pair of communicating exit sites.
The type-2 blocks, can be classified in three categories depending on their
orientation: an x-block is a block in the x direction, i.e. it includes the exit-
sites (r, ex) and (r+ ex, e−x) (see Table 2.1). The same scheme is valid for
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ei ux uy uz i

ex λ 0 0 1
ey 0 λ 0 2
ez 0 0 λ 3
e−x −λ 0 0 4
e−y 0 −λ 0 5
e−z 0 0 −λ 6
e0 0 0 0 7, . . . , Ntot

Table 2.1: The set of direction vectors for the lattice considered in the present
work. ux, uy, and uz are the three cartesian unit vectors, and λ is meant as
the lattice spacing. In the fifth column, the sites within each cell, i, assigned
to each direction are listed.

directions y and z. We refer to these blocks as window-type blocks and the
corresponding partition is the collection of all the windows of the lattice,
which partly overlaps with the first partition. From the exclusion condition
it results that the occupancy of a window-type block cannot be greater than
2. A schematic representation of the network and its partitions is reported
in fig. 2.1

2.2.3 Interactions besides mutual exclusion.

Formally, besides mutual exclusion, interactions among the guest molecules
within each cell of the automaton can be defined as follows: if we indicate
as nXα the number of molecules of species X in the α-type sites of a cell, i.e.

nXex =

6∑
i=1

sXi , nXin =

Ntot∑
i=7

sXi , (2.4)

then the energy of a molecule of species X residing in a given site is

EX
ex = εXex, EX

in = εXin + (nXin − 1)φX , (2.5)

for an exit and an inner site, respectively. In Eq. (2.5), εXα < 0 is the
(invariant) adsorption energy binding a molecule of the species X to a site
of type α, and φX is the molecule-molecule interaction energy within the
inner sites (notice that the former equations are not general, but refer to
the specifical choice we made in this work (see Section.III), for a general
discussion on guest-guest interaction parameters in CA models of zeolites
see [9]).

According to Eq. (2.5), only molecules in the inner sites can interact
with each other, which is a reasonable approximation since in the particular
zeolite framework investigated here (LTA-type), the interactions with the
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host medium, for molecules close to the window connecting adjacent cages,
can be considered more important than the interaction with the molecules
located in the inner part of the cage.

Such an assumption is very convenient for optimization reasons, since the
blocks of the window-type block partition can be considered as independent
one of each other and therefore treated all simultaneously.

We can thus define the Hamiltonian of the system as the sum of the
Hamiltonians of all the cells in the system,

∑
rH(r, t), where

H(r, t) =
∑
X

nXex(r, t)ε
X
ex +

∑
X

nXin(r, t)

[
εXin + (nXin − 1)

φX

2

]
, (2.6)

where we remark that X runs over the values X1, . . . , XNsp .

An additional migration barrier, εXij = εXji ≥ 0, can be introduced be-
tween two sites, i and j, within the same block, which only affects the model
kinetics and not the system Hamiltonian.

2.2.4 Evolution rule.

The Automaton acts on each partition separately, starting from one of them
chosen randomly at each time-step. In both partitions we have a syn-
chronous updating of the state of each block indipendently from the state of
others. The cage-blocks partition updating accounts for intra-cage dynam-
ics of the host molecules, while within the windows-block partition we are
considering inter-cage jumps. The evolution rule mimics the self-diffusion
process as a series of activated Arrhenius-jump moves, with activation free
energy −EX

α . Within each block all the molecules are invoked in a random
sequence. Once a molecule succeeds in freeing itself from the binding site it
can move towards any other site within its block. The move will be success-
ful if the target site is free and if another activation barrier εXij is overcome.
This barrier is related with the steric hindrance encountered by the molecule
as it moves from site i to site j and with the distance between them. Once
all the blocks in the partition have been updated, the algorithm switch to
the other one. This is globally an Arrhenius-jump Monte Carlo scheme tak-
ing place for each molecule in every block (see fig. 2.2). Subdivision of the
Automaton space in two Margolus blocks is necessary in order to ensure
parallelizability of the algorithm. This choice marks the difference between
our Cellular Automaton model and other Monte Carlo methods [4, 21, 22].
Using the Margolus approach ensures the evolution of every partition being
in principle completely synchronous, as each single block belonging to it can
be assigned to a different processor, if one wishes so, given that, with the
above described partitioning scheme, no molecule can jump from one block
to the other. Inside each singular block of the partition the algorithm is of
course sequential.
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Partition selection

Block selection

Particle selection

Random number
extraction

r ≤ exp(βEX
α )

Target site selection

Free target?Switch
partition

Random number
extraction

r ≤ exp(βεXki)

Particle migration
to the target site

All particles
in the block
processed?

All blocks
in the partition

processed?

Figure 2.2: The simulation algorithm for a single time step. The scheme
followed is the same for both the updating of the partition of the ‘cage’-type
(red arrows) and of the ‘window’-type (blue arrows) blocks. The scheme
represents the sequential implementation of the evolution rule used in the
present work. However each block can evolve independently from the others.
A parallelization of the algorithm is thus straightforward.
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It should be pointed out that although the described algorithm is in-
tended to study both statical and dynamical properties, it is unable (unlike
classic and parallel kMC methods [7, 23–25] ) to generate an autonomous
physically meaningful time scale [26, 27]. Nonetheless it gives rise to a pre-
cise dynamical hierarchy among the various processes taking place, which is
enough in order to reproduce, for instance, the different diffusive behavior
of adsorbed species.

Attention should be paid in interpreting the elements of the model we
described. Regarding the relationship between adsorption sites in the real
zeolite and what we called sites in our automaton model for instance, we no-
tice that the spatial localization of a region of a zeolite pore where interaction
with a certain molecule is favorable (adsorption site) is not always well de-
fined. In case of large rigid molecules (such as benzene) or if the zeolite shows
cations inside the cavities where adsorption takes place, we can speak of real
adsorption sites, but in case of small adsorbed molecules and/or all-silica
zeolites the situation is less defined and the energetic landscape experienced
by the molecules is smooth enough as to allow them to spend much of their
time outside relative potential minima, being thus largely delocalized, even
at room temperature [28]. Thus in our BCA model, sites should be inter-
preted as collectors of points in the phase space of an adsorbed molecule
rather than as localized adsorption sites. The common feature characteriz-
ing the ensemble of situations symbolically represented by each site is the
likelihood for a molecule within it to jump towards a certain window or not.
In particular, inner-sites don’t allow host molecules to reach any window,
while each exit-site is connected to a particular window.

Some remarks are due concerning the achievement of equilibrium in our
model. It is Markovian and it surely satisfies the balance condition as the
Arrhenius Jump algorithm on which it is based ensures the Boltzmann dis-
tribution to be invariant under application of the evolution rule. It is ergodic
also — apart from the extreme case of complete saturation of the whole lat-
tice — as there are no traps in the space of configurations of the system, and
nothing prevents it from visiting all of its possible states within a sufficiently
long time. Following a weaker interpretation of Deem et al. [29] we believe
that this suffices for our model to be a reliable one. Indeed according to
these authors regularity rather than ergodicity should be satisfied. However
this constraint is required only in order to avoid loops in the Markov Chain,
as these can prevent a system from reaching equilibrium even when it is
ergodic. Given the structure of the algorithm, we exclude the possibility
that a similar behavior can arise in our model and assume ergodicity to
be a sufficient condition. Furthermore if one looks at the BCA timesteps
as cluster-moves even detailed balance is satisfied, given that every single
molecule move is reversible and exactly the same series of moves of a certain
timestep t can be performed in the reverse order at t + 1. This is because
even if the algorithm is sequential, in the sense that no molecule is selected

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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for a jump twice before all other molecules have been selected, the order of
interrogations is random (if interrogations were performed in the same order
at every timestep as in usual sequential algorithms, Detailed Balance would
be obviously violated [30]).

2.2.5 Simulations

We studied three different binary gas mixtures — CO2/CH4, CO2/N2, and
CH4/N2 respectively — adsorbed in zeolite ITQ-29. The first two mixtures
exhibit what is called segregation effect [31, 32]. This effect is due to the
presence of CO2 and can be related to its strong tendency to reside within
windows connecting the α-cages of zeolite ITQ-29 as shown in MD simula-
tions by Krishna et al. [31,32]. This fact explains the strong suppression of
diffusion observed for the species co-adsorbed with CO2 as the former expe-
riences a kind of segregation within the inner part of micropores due to the
crowding of CO2 molecules at the windows. As an example, self-diffusion for
CH4, when CO2 is present in equimolar mixture, is one order of magnitude
smaller than that of pure CH4 at the same overall concentration.

The energetic parameters EX
α for our calculations were chosen on a

heuristic basis. Following our idea of qualitatively reproducing the funda-
mental behavior of mixtures in zeolites — even in a non-trivial case like that
of segregation-effect — we assumed the values reported in Tab. 2.2. These
represent our mean free-energies guessing for molecules in the two possible
situations we are considering in our hierarchical automaton, namely occu-
pation of inner- and exit-sites. Our line of reasoning followed indications
regarding the order of magnitude of typical values for small molecules in ze-
olites found in literature [28,37]. We further made few simple assumptions on
the basis of the evidence for preferential adsorption between the inner part
of the α-cage and regions closer to the windows. These are based on adsorp-
tion isotherms and self-diffusivity vs. adsorbate loading plots calculated by
means of GCMC [31]. Even if a systematic method for calculating these pa-
rameters starting from first principles could be desirable, we have found that
the heuristic values used in this work suffice to reproduce the fundamental
self-diffusivity trend as obtained from MD calculations present in literature.
Similar considerations led to the non-zero choice for the mean field inter-
molecular interaction for methane in the inner part of a cage φCH4 = 1.1
kJ/mol : we assumed that the spherical form of methane molecules implies a
certain degree of repulsion between them due to sterical hindrance, while the
cylindrical N2 and CO2 molecules should be able to pack in a more efficient
way. Finally the εX ’s (Tab. 2.2) were chosen in order to reproduce further
potential barriers encountered by molecules while moving between the exit
sites across two neighboring cells. In particular we neglected barriers be-
tween inner sites, as to a first approximation these are little influential for
the overall process of diffusion (even if they could be important in order to
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X εXex εXin εX(intercage)

CH4 −3 −13 11

N2 −7.5 −9.5 6

CO2 −17 −12 0

Table 2.2: Guest-host interaction parameters (kJ/mol).

understand correlation effects due to intra-cage migration). For inter-cage
jumps, we assigned the highest barrier value to methane, due to its size,
an intermediate value for N2 and no barrier for CO2 as it tends to adsorb
in the windows thus being able to move between two given supercages by
just escaping the adsorption free energy well, which contain the cage-cage
boundary.

2.2.6 Results

In figs. 2.3, 2.4 and 2.5 we report the plots for the three equimolar mixtures
CO2/CH4, CO2/N2, and CH4/N2, showing the self-diffusivity as a function
of total adsorbate loading 〈n〉 (left) and as a function of the mole fraction
of one component at a fixed overall loading (right). These were obtained
from simulations at 300 K on a cubic lattice with a side lenght of 9 cells with
periodic conditions applied. The self-diffusion coefficients were calculated
from the mean square displacement of tagged molecules using the Einstein
relation

Ds =
1

6
lim
t→∞

d

dt
〈|r(t)− r(0)|2〉 (2.7)

Each cage-block contains 15 sites, which is in agreement — at least in normal
conditions — with the reported maximum loading for methane in α-cages
of ITQ-29 [38].

As a test for the model we compared our results to those obtained by Kr-
ishna et al. from MD simulations and a method based on Maxwell-Stephan
theory of diffusion [31,33–36].

These authors point out that while the MS approach is in good agree-
ment with MD calculations for most mixtures, it fails to reproduce the
self-diffusivity trend in case of mixtures displaying segregation effect.

For a clearer comparison we multiplied our values of Ds by a scaling
factor in order to obtain the best resemblance with the MD curves. The
scaling factor is the same for all three systems. Our results are in good
qualitative agreement with MD, reproducing the overall trend of diffusion
for the three mixtures, and despite our strongly reductionistic approach it
is able to deal with a non trivial behavior like that of segregation, whereas
other methods gives very poor quantitative and qualitative agreement.
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Figure 2.3: (Left) Self-diffusivity (Ds/10
−8m2s−1) of CH4 and CO2 as a

function of the average number of molecules per cage (〈n〉) in equimolar
mixture. Results from our model (bottom) are compared with those obtained
by mean of MD and Maxwell-Stefan theory (MS) by Krishna et al. (top).
(Right) Self-diffusivity (Ds/10

−8m2s−1) of CH4 and CO2 as a function of
the mole fraction of CO2 at 〈n〉 = 5.5. Results from our model (bottom) are
compared with those obtained by mean of MD and Maxwell-Stefan theory
(MS) by Krishna et al. (top).

2.2.7 Conclusions

We tested our Cellular Automaton method in the case of binary mixtures
diffusing in zeolite ITQ-29 and compared the results with MD data, show-
ing its ability to cope with more than one diffusing species giving good
qualitative agreement with this well established and fully microscopically
detailed technique. We stress that these results are based on heuristically
determined parameters aiming mainly to explore the range of possibilities of
the method and, nonetheless, in the case of non-trivial behavior such as the
segregation-effect, we found that the CA gives a better agreement with MD
than the robust and successful MS method used by Krishna and coworkers.
It would be obviously desirable to have a rigorous algorithm for defining the
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Figure 2.4: (Left) Self-diffusivity (Ds/10
−8m2s−1) of CH4 and N2 as a func-

tion of the mole fraction of CH4 at 〈n〉 = 5.5. Results from our model (bot-
tom) are compared with those obtained by means of MD and Maxwell-Stefan
theory (MS) by Krishna et al. (top). (Right) Self-diffusivity (Ds/10

−8m2s−1)
of CH4 and N2 as a function of the average number of molecules per cage
(〈n〉) in equimolar mixture. Results from our model (bottom) are compared
with those obtained by mean of MD and Maxwell-Stefan theory (MS) by
Krishna et al. (top).

right input parameters for the Automaton, extracting them from atomistic
simulation. But even at this stage our tests demonstrate that the model is
able to display a range of interesting behaviors and to capture on a coarse-
grained level the basic mechanisms of diffusion in zeolites. Validation via
comparison with other theoretical approaches is important as this justify
a further effort intended to exploit the intrinsic parallel nature of CAs for
a drastic extension of the space and time scales usually accessible to the
available simulation techniques for diffusion in zeolites. Using parameters
obtained from MD and MC studies as an input, our BCA model is a promis-
ing tool for a future investigation of zeolite and ZIFs membranes and whole
micro-crystal, both in and out of equilibrium.
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Figure 2.5: (Left) Self-diffusivity (Ds/10
−8m2s−1) of CO2 and N2 as a func-

tion of the average number of molecules per cage (〈n〉) in equimolar mixture.
Results from our model (bottom) are compared with those obtained by mean
of MD and Maxwell-Stefan theory (MS) by Krishna et al. (top). (Right)
Self-diffusivity (Ds/10

−8m2s−1) of CO2 and N2 as a function of the mole
fraction of CO2 at 〈n〉 = 5.5. Results from our model (bottom) are compared
with those obtained by means of MD and Maxwell-Stefan theory (MS) by
Krishna et al. (top).

2.3 The Central Cell Model: a mesoscopic hop-
ping model for the study of the displacement
autocorrelation function.

The present section is an adaptation of a paper to which I collaborated, ap-
peared in The Journal of Chemical Physics [40]. Copyright 2011, American
Institute of Physics.

On the mesoscale, the molecular motion in a microporous material can
be represented as a sequence of hops between different pore locations and
from one pore to the other. On the same scale, the memory effects in the mo-
tion of a tagged particle are embedded in the displacement autocorrelation
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function (DACF), the discrete counterpart of the velocity autocorrelation
function (VACF). In this paper a mesoscopic hopping model, based on a
lattice-gas automata dynamics, is presented for the coarse-grained modeling
of the DACF in a microporous material under conditions of thermodynamic
equilibrium. In our model, that we will refer to as Central Cell Model, the
motion of one tagged particle is mimicked through probabilistic hops from
one location to the other in a small lattice of cells where all the other particles
are indistinguishable; the cells closest to the one containing the tagged par-
ticle are simulated explicitly in the canonical ensemble, whereas the border
cells are treated as mean-field cells in the grand-canonical ensemble. In the
present paper numerical simulation of the Central Cell Model are shown to
provide the same results as a traditional lattice-gas simulation. Along with
this a mean-field theory of self-diffusion which incorporates time-correlations
is discussed.

The diffusive motion of molecules in a generic medium is usually affected
by memory effects introduced by their interactions with each other and
with the medium itself. This is especially true when the diffusing molecules
are subjected to the confining action of a microporous material like a zeo-
lite. [2, 41] In particular, the narrow windows of certain microporous mate-
rials can make the guest’s diffusion profile (i.e., diffusivity vs. concentration
at constant temperature) very different from what expected for the motion
in a bulk phase as well as in any less strongly confining material.

Although the discreteness of the network of channels and cages of regu-
lar microporous materials suggests immediately an analogy with lattice-gas
models, there is still no ‘definitive’ coarse-grained, lattice simulation method
for molecules in zeolites which is able to play as a cheaper mesoscale version
of classical Molecular Dynamics (MD). Several approaches are available de-
pending on what specific properties of the host-guest system the simulator
is interested in. As an example, Kinetic Monte Carlo (kMC) simulations
are suitable for all the dynamical properties which do not explicitly involve
correlations among different particles [25,42,43] (e.g. the self diffusion coef-
ficient), whereas thermodynamic models can be successfully adopted for the
study of static equilibrium properties (e.g. adsorption isotherm and local
density distribution).

Due to their intrinsecally synchronous nature, the class of Lattice-Gas
Cellular Automata (LGCA) can be thought of as the ideal candidate for a
mesoscopic simulation of the collective properties. On the other hand, as
a drawback of their synchronicity traditional LGCAs are much more diffi-
cult to handle than standard Monte Carlo (MC) models are. This makes
it a hard task to surely achieve thermodynamic equilibrium,i.e. preserving
both detailed balance and synchronicity, in the presence of explicit particle-
particle interactions. To solve such a conflict, a partitioning technique has
been proposed in our previous work, aimed to couple the LGCA compu-
tational framework with local MC (balanced) moves. [9, 14–18] The idea
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underlying the resulting Partitioning Cellular Automaton (PCA), inspired
by a heterogeneous model for surface diffusion by Chvoj et al. [44], is that
the peculiar cage-to-cage dynamics of molecules under tight confinement is
well-represented in a model lattice with heterogeneous adsorption locations
inside each cage. According to this representation, in each zeolite cage we
distinguish two types of locations: those close to the exit windows, termed
exit sites, and the rest of the cage pictured instead as a set of inner sites.
The exit sites in each cage are then access points to the neighboring cages,
and differ from the inner sites in their statistical weight (i.e. the probability
of being occupied). As recently confirmed by other simulation studies, [45]
splitting the single cells into differently weighted locations provides a quali-
tatively correct mesoscopic representation of the problem (See Fig. 2.6).

Even though more work has still to be done to make cellular automata
the ‘definitive’ environment for meso-simulations in micropores, our PCA
approach captures many important aspects of adsorption and diffusion in
zeolites, such as realistic (i.e. closely resembling those developed in MD
simulations) density distribution, fluctuations, and time-correlations. Con-
cerning the single-particle diffusion process (at arbitrary concentration), the
backscattering effect, [46] a major source of time-correlation causing the self-
diffusivity to be less than what expected, can be properly mimicked in the
PCA approach since it allows the amount of memory lost in each cell during
a single time step to be tuned.

Thus, our PCA can be taken as a starting point for further develop-
ments in many directions. The one explored in this work is the realization
of a further simplified coarse-grained simulation of the hopping process of a
tagged particle in a confined lattice system, where all the other guest par-
ticles are moving as well but they are kept indistinguishable. Our aim is
to reproduce the memory effects affecting the particle motion in the PCA
at the minimum cost possible. The strategy is to make the tagged particle
‘feel’ an environment very close to the one it would have experienced in the
full automaton simulation. Since the model is constructed in such a way
that the host cell of the tagged particle always results to be located exactly
in the middle of the system, we called it Central Cell Model (CCM).

The lengthy PCA simulation of a large system is thus reduced to a
small set of connected cells, a limited neighborhood of whose is simulated
by the lattice-gas evolution rule in the canonical ensemble while the bor-
der cells are treated as mean-field cells. In any case, the CCM approach
cannot be taken as substitutive of a full lattice-gas simulations. Collective
dynamic properties, self-organization, and long-range phenomena arising in
non-equilibrium conditions cannot be simulated directly through a CCM
implementation of a lattice-gas rule. This approach is limited to the re-
production of the correlated motion of a single particle in a lattice-gas at
arbitrary loading (i.e. concentrations of guest particles, also known as cov-
erage), but under conditions of thermodynamic equilibrium, strictly local
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μ chemical potential
β inverse temperature

Kex,Kin,K exit, inner, and total site number per cell

s micro-configuration of indistinguishable
particles in a single cell

nex, nin, n exit sites, inner sites, and total occupancy
of a single cell

n = (nex, nin) meso-configuration of the cell

foex, f
o
in exit and inner site free-energy of adsorption

in a singly-occupied cell (site deepness)
φex(n), φin(n) exit and inner site free-energy contribution

due to the mutual interaction of n particles
F (n), F (s) cell free energy

F o(n), F o(s) cell free energy (non-interacting part)
Φ(n),Φ(s) cell free energy (interacting part)
εki(n,m) kinetic barrier to intercell migration

from an n- into an m-occupied cell

Cab probability of targeting the site b from
departure site a during randomization

pjump acceptance probability for a single
randomization jump

sbκ(n,m) acceptance probability for a jump from a cell
with meso-conf. n into exit site b of a cell
with meso-conf. m

p(n) equilibrium probability of a cell to be
meso-configured as n

Table 2.3: A list of the basic quantities involved in a numerical simulation
with the Central Cell Model.

interactions, and absence of long-range correlations. When one or more
of such conditions are not fulfilled, or if also the collective dynamics pro-
duced by some evolution rule need to be investigated, then a full lattice-gas
simulation will be unavoidable to obtain reliable results. Nevertheless, the
above mentioned conditions are fulfilled in many lattice-gas simulations of
short-range interacting particles, so that for those cases the CCM will be
the quickest way to retrieve the correct self-motion properties. This is of
primary interest when, for example, one wishes to model the entity of mem-
ory effects in the single-particle motion (e.g. to mimic the diffusive behavior
of some reference system in coarse-grained modeling) and therefore needs
to check quickly how a particular setup of the parameters will affect the
resulting diffusion isotherm.

The construction of the CCM version of a lattice-gas rule is a really direct
way to uncover the basic mechanisms by means of which the tagged particle
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preserves memory of its previous moves in time. In fact, it is straightfor-
ward to pass from the numerical CCM to a mean-field representation of the
tagged particle’s diffusion process at arbitrary loading, inclusive of the time-
correlations. In this work, the CCM approach will be used to develop an
approximated theory of self-diffusion for a lattice-gas automaton rule, based
on a mathematical formulation of the displacement autocorrelation function
(DACF), i.e. the key function embedding the memory effects of a generic
diffusion process on the mesoscopic scale. The DACF plays the same role
the velocity autocorrelation function (VACF) plays in atomistic simulations,
although being more easily accessible for theoretical analysis. Earlier stud-
ies on LGCA emphasized the central importance of the discrete VACF in
both the formulation of efficient computational schemes for the evaluation
of transport properties, and the understanding of the entire self-diffusion
process. [47–49] In the present case, the analysis of the DACF (we do not
call it VACF since, differently from traditional LGCAs, in our approach no
proper velocity vector is associated with the cell-to-cell migration) will lead
to a closed mathematical formulation for the self-diffusion coefficient.

After a brief resumé of the lattice-gas model, the Central Cell Model will
be presented. Then, we will describe the probabilistic analysis of the DACF
leading to the mean-field formulation of self-diffusivity. Results of numerical
tests will be presented throughout the paper, and discussed in a separated
section.

2.3.1 Local randomization and propagation.

Here we will briefly outline the basic operations of the original automaton
model. The interested reader can find a very detailed description in a previ-
ous work on this subject. [16,18] The basic quantities that will be explicitly
used in a simulation with the Central Cell Model are listed in Table 2.3.

In our approach, particles move within a three-dimensional network of
structured points called cells. A single cell and a small cluster of connected
cells of the automaton are sketched in Fig. 2.6a and 2.6b respectively. The
total number of particles in the system, N , and the temperature, T (and so
the inverse temperature, β = (kBT )

−1 with kB the Boltzmann’s constant),
are held fixed. The concentration 〈n〉 of the diffusing species in the lattice,
termed loading, is the average number of particles per cell and is obtained
just by dividing N by the total number of cells. Every cell is a discrete
representation of a zeolite cage. It is made of Kex exit sites and Kin inner
sites, and every site can be free or singly occupied, thus giving a saturation
occupancy of K = Kex + Kin. As can be seen from Fig. 2.6b, every pair
of neighboring cages are interfaced by a pair of connected exit sites. The
system evolves in discrete time steps. Guest molecular species are repre-
sented via point particles whose migration mechanism at each iteration is
performed in two substeps: a randomization changes the configuration of
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Figure 2.6: A three-dimensional sketch of (a) a single cell, and (b) a small
cluster of connected cells of the automaton. Every cell is representative of a
single zeolite cage. When looking at the single cell, (a), small spheres repre-
sent the exit sites, i.e. the locations closest to the cage-to-cage connections
in a real zeolite (e.g. an LTA zeolite), whereas the big sphere, named inner
site, represents the set of all the remaining locations.

guest particles on every cell according to a probabilistic scheme, and a prop-
agation allows the particles in the exit sites to attempt to move into the
respective neighboring cages.

The actual micro-configuration of (indistinguishable) particles in each
cell has a primary importance, and is denoted as

s = {s1, s2, . . . , sK} , (2.8)

where the first Kex and the next Kin entries are respectively the occupancies
of the exit and of the inner sites (i.e. si = 1 if the i-th site of the cell is
occupied, and 0 if empty). The cell occupancies are defined as the exit site,
the inner site, and the total cell occupancies:

nex =

Kex∑
i=1

si, nin =
K∑

i=Kex+1

si, n = nex + nin. (2.9)

Exit and inner site cell occupancies makes a meso-configuration of the cell,
termed n = (nex, nin).

The static properties of each cell are determined by the adsorption (neg-
ative) free energy associated to every site, foex and foin (also referred to as
exit- and inner-site deepness), the actual cell occupancy n (i.e. the total
number of particles in the cell), and an occupancy-dependent interaction
term for every type of site, φex(n), and φin(n). These parameters define the
cell free energy function:

F (n) = F o(n) + Φ(n), (2.10)

with

F o(n) = nexf
o
ex + ninf

o
in, (2.11)
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Figure 2.7: The interaction parameter, φ(n) (in kJ mol−1, defined in Sec-
tion 2.3.1), for 0 ≤ n ≤ K − 1, and the parameter k(n) (defined in Sec-
tion 2.3.3) for the numerical tests we performed in this work. In all the
simulations, Kex = Kin = 6.

and

Φ(n) = nexφex(n) + ninφin(n). (2.12)

In the numerical simulation we performed as a test for the model, our choice
for the interaction parameters was φex(n) = φin(n) = φ(n), with a smoothly
increasing repulsive effect as the occupancy increases. (see Fig. 2.7). We set
the number of exit and inner sites as Kex = Kin = 6.

Fixed adsorption free-energy foex and foin take alternatively the values
−50 and −40 kJ mol−1 in the various simulations.

2.3.2 Randomization.

The randomization can be performed in two ways. The memoryless random-
ization changes probabilistically the actual configuration of every cell while
preserving its occupancy according to the probability distribution P (nex|n)
defined as

P (nex|n) =
(
Kex

nex

)(
Kin

n− nex

)
e−βF (nex,n−nex). (2.13)

which is exactly the probability of an n-occupied cell to have nex particles
in the exit sites (and consequently nin = n − nex in the inner sites). Such
a choice causes no memory of the previous configuration(s) to be conserved
(apart from the cell occupancy n, which is conserved).

In the jump randomization scheme instead all the n particles are invoked
in a random sequence, and every particle is asked to perform a jump towards
a randomly selected target site within the same cell. Therefore, the cell
configuration is changed here in n steps instead of one (as it was for the
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memoryless scheme). To illustrate the algorithm, let us take a single cell and
store the identities of the n particles inside of it in the vector I = (I1, . . . , In).
Let us then randomize the entries of I, thus obtaining the random sequence
of identities IR = (IR1 , . . . , I

R
n ). At this point, the following chain of jump

events is realized:

s(0) → s(1) → s(2) → · · · → s(n), (2.14)

where by definition s(0) := s is the first configuration of the chain, and s(k)

is the actual micro-configuration when the particle of identity IRk is invoked.
Let us consider a transition s(k) → s(k+1) where s(k) and s(k+1) are two
consecutive configurations in the chain (2.14). In this transition, the k-th
particle in the random sequence of particles jumps from its departure site,
say a, to the target site b chosen with a probability Cab. The probability of
such a jump to happen is then

pjump(s
(k) → s(k+1)) =Cabs

(k)
b γeβf

o
a

×eβ{Φ(s(k))−max[Φ(s(k)),Φ(s(k+1))]}, (2.15)

where s
(k)
b is the non-occupancy of the target site b in the actual micro-

configuration s(k), i.e. s
(k)
b = 1−s(k)b , and γ is a normalization constant aimed

to further control the particles’ mobility during randomization (this will af-
fect correlations as well). In our simulations, we put γ = exp{−βmax(foex, f

o
in)}.

Such an algorithm preserves some memory of the previous configuration,
since in the case of half/high cell occupancy n, the (locally) sequential jump
criterion constrains the configuration not to vary too much in the chain
shown in (2.14).

A few words about the choice for Cab. In order to preserve detailed bal-
ance, it preferably should be symmetric, that is forward and reverse jumps
should be chosen with the same probability. It is interesting to introduce
several kinds of constraints (without violating symmetry) in the configura-
tion path during randomization, to study their effects on correlations, and
to check to which extent they can be predicted by a mean-field theory of
diffusion. As an example we could decide, during randomization, to allow
every particle to target any site with the same probability 1/K, this giving
a C matrix with all entries like

C ′ab =
1

K
, a, b ∈ [1,K], (2.16)

or we could choose all targetings from an exit site towards a different exit
site to be rejected. This would force the particles to spend some time in the
inner site before changing direction of intercell migration. It would result in
a C matrix like

C ′′ab =

{
0, if a, b ∈ [1,Kex] and a 	= b
1

K
, otherwise

(2.17)
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2.3. The Central Cell Model: a mesoscopic hopping model for the study of
the displacement autocorrelation function. 34

In the present work we will refer to the case of C = C ′ in Eq. (2.16) as
‘allowed ex-ex jumps’, and to the case of C = C ′′ in Eq. (2.17) as ‘forbidden
ex-ex jumps’.

2.3.3 Propagation.

Once randomization changed the internal configuration of every cell inde-
pendently one of the other (while preserving the cell occupancies), the prop-
agation operation allow the cells to exchange the particles in their exit sites
with their respective neighbors. In order to keep working with locally bal-
anced Monte Carlo moves the propagation must be applied to every pair
of communicating cells. Since some pairs can overlap, not all the pairs can
be invoked at the same time. This is because of local interactions among
the host-molecules of a given cell giving rise to different intercell migration
barriers, depending on the loading of both departure and target cell. There-
fore, either they have to be invoked in a random sequence, or they can be
grouped into partitions, each containing the maximum possible number of
non-overlapping pairs. Such a partitioning scheme, [16] originally known as
Margolus’ Neighborhood [19, 20] allows no conflict to arise during such a
substep.

At every pair, the two cells communicate through two adjacent exit sites,
say a and b. Provided a particle to be in a and site b to be empty, a jump
from a to b is accepted with a probability κ(n,m) where the departure and
destination cell are meso-configured respectively as n and m:

κ(n,m) =
γeβf

o
exe−βεki(n,m)

1 + eβΔΦ(n,m)
, (2.18)

where n = nex + nin and m = mex +min are the actual occupancies of the
departure and the target cell respectively, the quantity

ΔΦ(n,m) =Φ(nex − 1, nin) + Φ(mex + 1,min)

−Φ(nex, nin)− Φ(mex,min) (2.19)

is the difference in interaction free-energy between the outcoming and the
incoming configuration of the pair of cells, and εki(n,m) is the kinetic barrier
to intercell migration, given as the intersection energy, for 0 ≤ x ≤ 1,
between the two harmonics

Edep(x) = 1
2k(n− 1)x2 (2.20)

for the departure cell, and

Earr(x) = 1
2k(m)(x− 1)2 (2.21)

for the arrival cell. [17] The trend assigned to the parameter k(n) in the
numerical simulation performed in this work is quadratically increasing at
the highest loading, as shown in Fig. 2.7.
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2.3.4 Jumps and time-correlations.

Numerical simulations [18] have shown that correlation effects can be mod-
eled (or excluded, if wanted) in our PCA. While every application of the
memoryless randomization described in Sec. 2.3.1 pushes each cell straight-
forwardly towards a condition of local equilibrium, via an abrupt collective
move, the configuration changes occurring by means of the jump random-
ization are much less marked, and slow down strongly the evolution towards
equilibrium. This is because the output configurations available in the jump
randomization are much less than in the memoryless randomization, thus
causing memory effects to show up spontaneously as the system evolves in
time.

Let us illustrate this in more details. The definition of configuration,
s, given in Eq. (2.8) in Section 2.3.1 contains no information regarding the
identity of the guest particles. In words, such a kind of identity-less config-
uration will be referred to as ‘s-configuration’.

Particles identities will be taken into account by the following σ-configuration
instead:

σ(r) = {σiI}, i = 1, . . . ,K and I = 1, . . . , N (2.22)

where N is the number of guests, and σiI has value 1 if the I-th guest
of the system is located at the i-th site of cell r, and 0 otherwise. We
will consider now a single, closed cell with configuration σ just before a
randomization operation. Thememoryless randomization will determine the
output configuration by choosing it out of the whole set of Ωσ = K!/(K−n)!
possible arrangements of distinguishable particles in the cell. The jump
randomization instead constrains the configuration path from σ to σR within
a set of necessarily similar configurations, so that the number of possible
output configurations, say Ωjump

σ , results smaller than Ωσ with a discrepancy
increasing as the cell occupancy increases. Such a discrepancy is the very
origin of the memory effects in the self-diffusivity in the automaton [18]
as well as in a host-guest system in general. Ideally, one should perform
an infinite number of jump randomization cycles per time step in order to
suppress it.

An analysis of the migration mechanism in the automaton will help a
deeper understanding of the correlations introduced by the jump random-
ization. A low-cost study of correlations in the motion of a tagged particle
induced by the local environment is the task of the Central Cell Model that
we are about to introduce in Sec. 2.3.5 for the case of a discrete jump model.

2.3.5 The Central Cell Model.

In the model we present here, the lattice is constituted by (see Fig. 2.8)

(i) A central cell.
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Figure 2.8: The lattice space of the Central Cell Model. The central cell (in
green), hosting the tagged particle, and the cells in the core shells (violet) are
simulated through the prescribed lattice-gas rule in the canonical ensemble.
The external cells (gray), instead, are mean-field. They maintain the whole
system at thermodynamic equilibrium and work as a reservoir of particles
coming in/out of the border core cells. Broken cell-to-cell boundaries are
meant as cell-to-cell links. Figs. (a), (b), and (c) differ in the number of
core shells, which is Lsh = 0 in (a), Lsh = 1 in (b), and Lsh = 2 in (c).

(ii) A finite number, N sh, of cells surrounding the central one, organized
into Lsh shells. Central cell and surrounding shells constitute the core
of the system.

(iii) A casing of Nmf border mean-field cells enclosing the core. Mean-field
cells are small grand-canonical systems, working for the core cells as a
reservoir of particles and keeping the whole system in equilibrium at
the desired value of chemical potential.

The cell-to-cell connections are established as follows: every cell in the
core is connected with all the available first-neighboring cells in the system,
so that if we consider a cubical arrangement of cells (so as to mimic the LTA
zeolite topology, as an example) every of the core cells is then connected to
six first-neighbors. Core cells need not to be connected with each other only:

cells at the borders of the core happen to have one or more mean-field
cells in their neighboring list. Every of the mean-field cells instead are
supposed to be connected with one cell at the border of the core only. No
connection is assumed to exist between mean-field cells.

Since the mean-field cells exchange particles with an ideal reservoir, a
chemical potential, μ, has to be selected first. This gives access to the
absolute probability, p(n), of a meso-configuration n defined as

p(n) = [Ξ(μ)]−1
(
Kex

nex

)(
Kin

nin

)
eβμne−βF (n), (2.23)
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where the normalization factor Ξ(μ) is the grand-canonical partition func-
tion of a single cell:

Ξ(μ) =
∑
n

(
Kex

nex

)(
Kin

nin

)
eβμne−βF (n). (2.24)

Occupancies nex, nin and n in Eqs. (2.23) and (2.24) are meant as the oc-
cupancies of the exit sites, the inner sites, and the whole cell respectively
when the meso-configuration is n. Such a notation will be used throughout
the whole paper.

The average occupancy (often referred to as the loading) is then 〈n〉 =∑
n np(n).

The probability distribution in Eq. (2.23) will be used to update the state
of the mean-field cells at each time iteration.

Generating the initial configuration. The initial configuration is con-
structed by randomly assigning each cell a meso-configuration according to
the distribution p(n) (see Eq. (2.23)). Such a meso-configuration is then
converted into a micro-configuration s of indistinguishable particles, ran-
domly chosen out of those satisfying the meso-configuration itself. Whereas
not needed by the other cells, the central cell must contain at least one par-
ticle, that will be ‘tagged’ thus allowing us to follow its dynamical path.

Time evolution.

Once the initial configuration of the system is ready, the system evolves in
discrete time steps, t0, t0 + τ, t0 + 2τ, . . . , each of physical duration τ (see
our previous work [16] for a discussion about the time step). At each time
step (say, t):

(i) A jump randomization is performed at each cell.

(ii) The pairs of connected cells are chosen in a random sequence, and
a propagation operation is performed at every pair. Until now, the
whole lattice has preserved its total number of particles.

(iii) The move performed by the tagged particle is stored. If it has left the
central cell, then the system has to be re-centered so that the newly
occupied cell becomes the central cell. Such an operation is performed
by simply transforming the coordinates of all the cells. If the tagged
particle made a cell-to-cell jump, then the coordinates of the cells are
transformed as follows:

r(t+ τ) = r(t)− δr(t), (2.25)
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where δr(t) is the distance vector between the arrival and the depar-
ture cell. Due to this operation, the mean-field cells happening to
fall outside of the lattice space are destroyed, whereas those resulting
not configured at all will be assigned a new configuration in the next
operation.

(iv) The mean-field cells are randomly assigned a new micro-configuration
according to the same procedure of generation of the initial one (ap-
plied to the mean-field cells only though).

The update strategy described above is sketched in Fig. 2.9. In Fig. 2.10
we compare the self-diffusivity resulting from a simulation of the canonical
9× 9× 9 lattice-gas with the one computed from a CCM simulation on an
increasing number Lsh of shells around the central cell.

We can see clearly that increasing Lsh improves the matching between
the two types of simulations, and that two shells are enough to obtain a
reasonable agreement.

2.3.6 Analysis of the self-diffusion process: the displacement
autocorrelation function

The mean-field analysis is carried on in terms of the possible jump sequences
a tagged guest can perform during the diffusion process, treated as a Markov
chain, where jumps are meant as site-to-site migrations and can be catego-
rized into (i) jumps within the same cell, and (ii) jumps between neighboring
cells.

e0 = (0, 0, 0)
e1 = (λ, 0, 0) e2 = (0, λ, 0) e3 = (0, 0, λ)
e4 = (−λ, 0, 0) e5 = (0,−λ, 0) e6 = (0, 0,−λ)

Table 2.4: The set of direction vectors (cubic lattice).

Each jump category has a certain probability to occur which is dependent
on the actual position of the guest itself and of the surrounding particles.
Due to the complexity of such a multi-body problem, a mean-field approach
must be used to derive readable equations linking correlations in the self-
motion to some macroscopic quantities (e.g. densities, total transfer rates,
etc.).

A dynamical quantity of major importance in the analysis of the diffusion
process in a mesoscopic lattice is the instantaneous cell-to-cell displacement,
δr(t), of the tagged guest at time t, introduced in Eq. (2.25). The instan-
taneous displacement can take values in the set of lattice vectors {ej}, with
j = 0, . . . ,Kex, listed in Table 2.4 for the case (considered in this work) of
a cubic lattice.
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Figure 2.9: A schematic representation of the update strategy when the
particle leaves the central cell to move in the right neighboring cell (a,b). In
(c) the mean-field cells at the very left are destroyed. Then (d) the core cells
at the very left become mean-field, whereas the mean-field cells at the right
retain their actual configurations and enter the new core. Finally (e) new
mean-field cells are created from scratch at the very right to complete the
mean-field casing, the proper cell-to-cell connections are established (f), and
the system is ready to undergo the next randomization-propagation cycle (g).

The displacement autocorrelation function (DACF), given by 〈δr(zτ) ·
δr(0)〉 (where z ≥ 0 is an integer and τ is the duration of a time step),
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Figure 2.10: The self-diffusivity, Ds, resulting from numerical simulations
(in the canonical ensemble) of the traditional lattice-gas automaton model
for a closed test system of 9 × 9 × 9 cells, in comparison with the results
of (grand-canonical) simulations of the Central Cell Model with increasing
number of shells Lsh. In the first row, the inner sites have been set as
deeper than the exit sites, and vice-versa in the second row. Ex-ex jumps
are allowed.

correlates in time the cell-to-cell displacements. It is related to the self-
diffusivity via the Green-Kubo formula: [18]

Ds =
1

2dτ

[
〈δr(0) · δr(0)〉+ 2

∞∑
z=1

〈δr(zτ) · δr(0)〉
]
. (2.26)

where d = 3 is the number of dimensions of a cubic lattice. The peculiarity
of the DACF in a regular lattice is that it is strictly connected to the jump
probability. It is the aim of this Section to reconstruct the terms appearing
in Eq. (2.26) starting from the list of the possible movements of the tagged
particle.

Contribution at the initial time.

First of all the contribution at t = 0

Dmf
0 =

1

2dτ
〈δr(0) · δr(0)〉 , (2.27)

that is the uncorrelated diffusivity, proportional to the DACF at time zero,
turns out to be also proportional to the escape probability of the guest from
the host cell. The escape event will be indicated with the symbol ♦. In terms
of the randomization-propagation dynamics, such an event can be rewritten
as:
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♦ The guest reaches any of the Kex exit sites of the current cell during
randomization, and then the propagation step lets it migrate to the
corresponding neighboring cell during propagation.

Since at the initial time δr(0) · δr(0) equals λ2 if the guest migrates to a
neighboring cell and 0 otherwise, then Eq. (2.27) can be rewritten as

Dmf
0 =

1

2d

λ2

τ
p(♦), (2.28)

where p(♦) = λ−2 〈δr(0) · δr(0)〉. is the escape probability.

Contribution after one iteration: a probabilistic interpretation of
the normalized DACF.

Now, let us suppose that at time zero the particle escaped its host cell along a
generic non-null direction ej picked out of the set of direction vectors, listed
in Table 2.4 for a cubic lattice. This is the starting point for the listing of all
the subsequent events along with their respective probabilities, represented
as a Markov Chain. In this approach the choice of a (hyper)cubic topology
turns out to be the most convenient, since δr(t′)·δr(t) is non-zero if and only
if the displacements at the times t and t′ are parallel and non-null. More
specifically, it is positive if the displacement direction are the same, and it
is negative if they are equal but opposite. Therefore the normalized DACF,
〈δr(zτ) · δr(0)〉/〈δr(0) · δr(0)〉, represents the conditional probability of a
guest to migrate at time zτ in the same direction of displacement at time 0,
given that at time 0 the displacement was not null, minus the conditional
probability of a migration in the opposite direction.

We will proceed now with the listing of the basic in-cage and cage-to-
cage jump events at the time t = τ , given a successful propagation at the
previous time. Every event will be associated a symbol, ς, taking values in
the following set

S = {⇒,→,⇐,←,, �,©} , (2.29)

meaning respectively, for a given direction of motion (say the x axis), (⇒)
successful and (→) unsuccessful step forward, (⇐) successful and (←) un-
successful step backwards, () successful and (�) unsuccessful step out of
the direction of motion, © no attempt of leaving the cell.

The main approximation in the mean-field analysis is a factorization of
the joint probability, p(♦, ς), of an escape event (♦) followed by the event ς
at the next time step:

p(♦, ς) = p(♦)p(ς|♦) (2.30)

For the sake of clarity, in the list that follows we will give a short descrip-
tion of the events mentioned in Eq. (2.29). Those events are also sketched
in Fig. 2.11.
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⇒ A step forward. The randomization moves the particle from the exit
site into the opposite one. After this, the propagation is successful
and the particle migrates in the corresponding neighboring cell. This
happens with conditional probability p(⇒ |♦).

⇐ A backscattering event. At the end of randomization the particle find
itself in the same exit site it entered by the event ♦. The propagation is
successful and the particle jumps back into the cell it occupied before
event ♦. (Conditional probability: p(⇐ |♦)).

 A change of direction. The particle performs a migration jump whose
direction is not parallel to the direction of the jump performed during
the event ♦. (Conditional probability: p( |♦)).

© The guest reaches an inner site of the current cell during randomiza-
tion. (Conditional probability: p(©|♦)).

Single arrows, i.e. →, ←, and �, differ from ⇒, ⇐, and  respectively in the
fact that the propagation event is unsuccessful. Let us now introduce the
quantity χ(ς|♦), returning a value 1 if the cell-to-cell displacement at time
t (represented by the symbol ς) has equal sign of the displacement at time
0, a value −1 if the sign is opposite, and 0 in all other cases:

χ(ς|♦) =
⎧⎨
⎩

1, if ς =⇒
−1, if ς =⇐
0, otherwise

(2.31)

Therefore, since the process is Markovian one can define

〈δr(τ) · δr(0)〉 = λ2p(♦)
∑
ς∈S

χ(ς|♦)p(ς|♦) (2.32)

where the set S has been defined in Eq. (2.29), which returns

〈δr(τ) · δr(0)〉 =λ2p(♦) [p(⇒ |♦)− p(⇐ |♦)] . (2.33)

Contribution after several iterations.

Since we are assuming the migration process to be Markovian, the condi-
tional migration probabilities for t = 2τ will depend only on the outcome
at time t′ = τ . Relations between the conditional probabilities after two
steps and those after one step are listed in Table 2.5. It should be noted
that a guest starting from an inner site or from an exit site not pointing
towards the direction ej nor −ej will have equal probability to reach those
sites during randomization.

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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t = 0

event ♦:

−−−−−−−−−−−−−−
t = τ

event ⇒:

event →:

event ⇐:

event ←:

event :

event �:

event ©:

Figure 2.11: A graphical 2-d representation of the main events contributing
to the diffusive motion of a single particle in the automaton. The events pic-
tured here for times t = τ are assumed to echange their role in time with the
event for t = 0 according to a Markov chain. For each event, the black 3-d
sphere represent the actual position of a tagged particle (other guest particles
eventually present are omitted), while the empty circles represent its possi-
ble(s) position(s) at the immediately preceding timestep. Red and blue arrows
represent respectively the possible randomization and propagation outcomes.
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p(ς| ⇒)
p(⇒ | ⇒) = p(⇒ |♦) p(→ | ⇒) = p(→ |♦)
p(⇐ | ⇒) = p(⇐ |♦) p(← | ⇒) = p(← |♦)
p( | ⇒) = p( |♦) p(� | ⇒) = p(� |♦)
p(©| ⇒) = p(©|♦)

p(ς| →)
p(⇒ | →) = p(⇐ |♦) p(→ | →) = p(← |♦)
p(⇐ | →) = p(⇒ |♦) p(← | →) = p(→ |♦)
p( | →) = p( |♦) p(� | →) = p(� |♦)
p(©| →) = p(©|♦)

p(ς| ⇐)
p(⇒ | ⇐) = p(⇐ |♦) p(→ | ⇐) = p(← |♦)
p(⇐ | ⇐) = p(⇒ |♦) p(← | ⇐) = p(→ |♦)
p( | ⇐) = p( |♦) p(� | ⇐) = p(� |♦)
p(©| ⇐) = p(©|♦)

p(ς| ←)
p(⇒ | ←) = p(⇒ |♦) p(→ | ←) = p(→ |♦)
p(⇐ | ←) = p(⇐ |♦) p(← | ←) = p(← |♦)
p( | ←) = p( |♦) p(� | ←) = p(� |♦)
p(©| ←) = p(©|♦)

p(ς| )
p(⇒ | ) = p(⇒ | �) p(→ | ) = p(→ | �)
p(⇐ | ) = p(⇐ | �) p(← | ) = p(← | �)
p( | ) = p( | �) p(� | ) = p(� | �)
p(©| ) = p(©| �)

p(ς| �)
p(⇒ | �) = p(⇐ | �) p(→ | �) = p(← | �)

p(ς|©)
p(⇒ |©) = p(⇐ |©) p(→ |©) = p(← |©)

Table 2.5: Possible guest jumps after two time steps for the case where during the jump
randomization each guest can select any of the K sites in the cell as target sites.

This means that when the starting position is ©, or �, or , the net
average displacement is null. Therefore, only the moves ⇒,→,⇐,← do
contribute in the general formula for the mean-field DACF:

〈δr(zτ) · δr(0)〉 =λ2p(♦)
∑
ς1∈S

· · ·
∑
ςz∈S

χ(ςz|♦)p(ς1|♦)

×
z−1∏
j=1

p(ςj+1|ςj), z ≥ 1 (2.34)

Therefore, general mean-field expressions can be formulated for both the
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DACF and the self-diffusivity, Eq. (2.26):

〈δr(zτ) · δr(0)〉 = λ2p(♦)
[
p(⇒ |♦)− p(⇐ |♦)

]{
p(⇒ |♦)− p(⇐ |♦)−

[
p(→ |♦)− p(← |♦)

]}z−1
.

(2.35)

Dmf
s =

λ2

dτ
p(♦)

⎧⎨
⎩1

2
+

p(⇒ |♦)− p(⇐ |♦)
1 + p(→ |♦)− p(← |♦)−

[
p(⇒ |♦)− p(⇐ |♦)

]
⎫⎬
⎭ .

(2.36)

Eq. (2.36) is a quite general approximated equation. The terms in it can
be obtained straight from a numerical simulation of the Central Cell Model.
One can proceed as follows: for evaluating p(♦) it is enough to store the
number of cell-to-cell jumps, N♦, of the tagged particle, and then dividing
it by the number of time iterations (say, Nτ ):

pnum(♦) =
N♦
Nτ

, (2.37)

where the subscript ‘num’ denotes that the quantity has been evaluated from
a numerical simulation.

For evaluating the conditional probability, it will be enough to store the
jump direction every time the tagged particle performs a cell-to-cell jump.
At the next time

(i) if the particle performs another jump in the same direction as before,
the quantity N⇒ is increased by one,

(ii) if the particle fails a jump attempt towards the same direction as
before, the quantity N→ is increased by one,

(iii) if the particle performs a jump towards the opposite direction, then
the quantity N⇐ is increased by one,

(iv) if the particle fails a jump attempt towards the opposite direction,
then the quantity N← is increased by one.

Then the conditional probabilities are obtained as

pnum(ς|♦) = Nς

N♦
, ς ∈ {⇒,→,⇐,←} (2.38)

Results of the numerical mean-field evaluation of Eq. (2.36) will be compared
with the self-diffusivity obtained by explicit calculation of the DACF from
the output of the simulations in the Results and Discussion section.
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2.3.7 Mean-field DACF: Theoretical prediction of self-diffusivity.

In this Section we derive an approximate mean-field expression for the
DACF.We will first apply the general mean-field DACF formula in Eq. (2.35)
to the limiting case of infinite dilution. Then, we will propose further ap-
proximations to apply Eqs. (2.35) and (2.36) to the case of diffusion at
arbitrary loading.

2.3.8 Exact DACF in the limit of infinite dilution.

When the motion of a lone particle in an empty system is considered, cor-
relations with the motion of other particles are absent and an exact math-
ematical formula for the DACF can be written. In this limit the migration
probability during propagation if the particle stays in an exit site is

Jprop =
1

2
γeβ[f

o
ex−εki(1,0)] (2.39)

and p(♦) is given by

p(♦) = pexJprop, (2.40)

where

pex =
Kexe

−βfo
ex

Kexe−βf
o
ex +Kine

−βfo
in

(2.41)

is the equilibrium probability of the lone particle to occupy an exit site.
The other terms in Eq. (2.35) can be determined by properly weighting
every possible randomization jump. They are listed in Table 2.6 for both
the case of allowed and forbidden ex-ex jumps [i.e., use of {C ′ab} or {C ′′ab}
matrix, Eqs. (2.16) and (2.17), during the randomization procedure].

Allowed ex-ex jumps

p(⇒ |♦) = (1/K)Jex−exJprop
p(→ |♦) = (1/K)Jex−ex (1− Jprop)
p(⇐ |♦) = (1− γex − γin) Jprop
p(← |♦) = (1− γex − γin) (1− Jprop)

Forbidden ex-ex jumps

p(⇐ |♦) = [1− γin] Jprop
p(← |♦) = [1− γin] (1− Jprop)

Table 2.6: Probability values for events of jump starting from initial condition ♦ at
time 0 for the case of jump randomization with allowed (upper part) and forbidden (lower
part) ex-ex jumps, where γex = [(Kex − 1)/K]Jex−ex is the probability of the guest to
jump into an exit site different from the departure one, and γin = (Kin/K)Jex−in is the
probability to jump to an inner site.
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In the infinite dilution limit the quantities Jex−ex and Jex−in mentioned
in the formulas of Table 2.6 have the same value:

Jex−ex = Jex−in = Jex := γeβf
o
ex (2.42)

Since its value depends only on the departure (exit) site, we simply called
it Jex.

lim
〈n〉→0

〈δr(zτ) · δr(0)〉 =− λ2pexJ
2
prop (1− 2Jprop)

z−1

× (1− Jex)
z , (2.43)

for the case of allowed ex-ex jumps, and

lim
〈n〉→0

〈δr(zτ) · δr(0)〉 =− λ2pexJ
2
prop (1− 2Jprop)

z−1

×
(
1− Kin

K
Jex

)z

, (2.44)

for the case of forbidden ex-ex jumps We remark that Eq. (2.43) is indepen-
dent of the number of exit/inner sites in the cell, while Eq. (2.44), where
jumps between different exit sites are forbidden, shows an explicit depen-
dence on the number of sites constituting the cell.

Therefore the accessibility of the adsorption sites plays a fundamental
role in determining the entity of correlations.

2.3.9 Approximated mean-field DACF and self-diffusivity at
arbitrary loading.

At arbitrary loadings the tagged particle is likely to share its host and neigh-
boring cells with other particles. This means that, during randomization,
the variety of sequences in which the particles can be invoked to attempt
a jump have an effect on the probability of the tagged particle to reach an
exit site, as well as they affect the tendency of the cell to keep memory
of its previous configurations from time to time. Since we are interested
in improving our understanding of the self-diffusion process by obtaining a
readable equation,

(i) We will treat as a mean-field the other guests sharing the cell with the
tagged particle. That is, we assume that when the tagged guest is in-
voked to attempt a jump during the randomization process, the other
guests in the cell are distributed according to the equilibrium distri-
bution. This is equivalent to approximating the jump randomization
scheme with a different local operation where, just before the tagged
guest is invoked, all the other guests in the cell undergo a memoryless
randomization (see Sec. 2.3.2). Such an approximation will become
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less accurate the more binding are the sites and the more restricted
the dynamics is, since given these conditions the cell reaches local
equilibrium more slowly.

(ii) We will treat mean-field randomization and propagation separately.
In other words, the probability of jumping towards some direction
will be factorized into probability of reaching some exit site during
randomization and probability of performing a successful propagation,
treated as independent one of the other.

The DACF at t = 0 is not affected by time-correlations and can be well
approximated with

〈δr(0) · δr(0)〉 =λ2 1

〈n〉
∑
n

∑
m

nex

(
1− mex

Kex

)

×p(n) p(m)κ(n,m), (2.45)

where λ is the lattice spacing, and 〈n〉 is the loading (average number of
occupied sites in a cell). The relations among Dmf

0 , 〈δr(0) · δr(0)〉 and p(♦)
are given in Eqs. (2.27) and (2.28).

As we can see in Eqs. (2.35) and (2.36), the probabilities of interest refer
to jumps starting from an exit site position. Thus, when evaluating the
DACF terms for z ≥ 1, one has to consider the conditional probability of
the tagged guest already located in an exit site to stay in a cell with meso-
configuration n, rather than the absolute probability of n itself. Therefore
we introduce gex(n), that can be re-interpreted as the conditional probability
of a cell with an occupied exit site to be meso-configured like n, i.e. to have
nex−1 of the remaining Kex−1 exit site and nin of the Kin inner sites filled.

gex(n) =
nexp(n)∑

n′
n′exp(n

′)
, (2.46)

where the quantity

nex
Kex

p(n) = [Ξ(μ)]−1
(
Kex − 1

nex − 1

)(
Kin

nin

)
eβμne−βF (n) (2.47)

is the total probability of one particular exit site, nex − 1 of the remaining
exit sites, and nin inner sites to be occupied in a cell.

Mean-field jump randomization.

Once defined the probability distribution gex in Eq. (2.46), it is straight-
forward to derive mean-field expressions for the probability that, once the
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tagged particle has targeted another exit site, it reaches it:

Jex−ex =γeβf
o
ex

∑
n

(
1− nex − 1

Kex − 1

)
gex(n), (2.48)

This is the average acceptance of an exit-to-exit jump during randomization.
Similarly, the average acceptance of an exit-to-inner jump is

Jex−in =γeβf
o
ex

∑
n

(
1− nin

Kin

)
gex(n)e

βΦ(n)

× e−βmax[Φ(nα−1,nν+1),Φ(n)] (2.49)

where γ has been defined when illustrating Eq. (4.4).

Mean-field propagation.

The mean-field propagation probability, that is the probability that during
propagation a guest located in an exit site effectively migrates into the cor-
responding neighboring cell (this is sometimes referred to as transmission
coefficient), can be formulated as

Jprop =
∑
n

∑
m

(
1− mex

Kex

)
gex(n)p(m)κ(n,m) (2.50)

Mean-field jump probabilities.

We are now ready to write down mean-field expressions for the conditional
probabilities included in Eqs. (2.35) and (2.36), for both the case of allowed
and forbidden ex-ex jumps. These are listed in Table 2.6. Including them
into Eqs. (2.35) and (2.36) gives:

〈δr(zτ) · δr(0)〉 = −2dτDmf
0 Jprop (1− 2Jprop)

z−1
[
1− Kex

K
Jex−ex − Kin

K
Jex−in

]z
(2.51)

Dmf
s = Dmf

0

⎧⎪⎪⎨
⎪⎪⎩1− 2Jprop

1− Kex

K
Jex−ex − Kin

K
Jex−in

1− (1− 2Jprop)

[
1− Kex

K
Jex−ex − Kin

K
Jex−in

]
⎫⎪⎪⎬
⎪⎪⎭ ,

(2.52)

for allowed ex-ex jumps, and

〈δr(zτ) · δr(0)〉 = −2dτDmf
0 Jprop (1− 2Jprop)

z−1
[
1− Kin

K
Jex−in

]z
(2.53)
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Dmf
s = Dmf

0

⎧⎪⎪⎨
⎪⎪⎩1− 2Jprop

1− Kin

K
Jex−in

1− (1− 2Jprop)

[
1− Kin

K
Jex−in

]
⎫⎪⎪⎬
⎪⎪⎭ , (2.54)

for forbidden ex-ex jumps. The series

∞∑
z=1

AzBz−1 =
A

1−AB
(2.55)

has been used to perform the summation of the correlated part.

Unlike the more general mean-field formulas in Eqs. (2.35) and (2.36),
the various quantities in Eqs. (2.51) to (2.54) do not depend on whether the
ex-ex jumps are allowed or forbidden in the randomization algorithm. As
can be seen, forbidding the ex-ex jumps has the only effect of dropping the
term −Kex

K Jex−ex out of the mean-field formulas.

Although the formulas above lead to a qualitatively correct represen-
tation of correlations, they do not always match quantitatively with the
results of numerical simulations. Nevertheless, the obtained discrepancies
are of great help in understanding the correlation mechanism, as we will
discuss in Sec. 2.3.10.

2.3.10 Discussion of the mean-field results

In Figure 2.12 we plot the results of numerical simulations of the Central Cell
Model applied in the cases where the deepest sites are the inner or exit ones
respectively, each studied with two different levels of time-correlation entity.
The values calculated explicitly from the numerical simulations through the
Green-Kubo formula, Eq. (2.26), are reported as black squares, whereas gen-
eral mean-field values and mean-field theoretical predictions are reported as
blue circles and solid lines respectively.

As expected, the self-diffusion coefficient when the inner sites are the
deepest ones increases from low to intermediate loadings as a consequence
of the increasing probability of the tagged particle to occupy an exit site
(thus being able to attempt a cage-to-cage jump), and starts decreasing at
higher loadings when the exit sites tend to be saturated so that each pair
of adjacent exit sites of communicating cells is more likely to be saturated,
this leading the cells to exchange no particles. When the exit sites are
the deepest ones instead, the pairs of exit sites tend to be saturated from
the beginning (i.e. at low loadings), this leading to the expected decreasing
diffusivity.

The escape probability, and thus Dmf
0 , does not vary depending on

whether or not the ex-ex jumps are allowed (see Figs. 2.12a and d). This
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2.3. The Central Cell Model: a mesoscopic hopping model for the study of
the displacement autocorrelation function. 51

is because there are no correlations to be taken into account. As a conse-
quence, both the general mean-field equation (2.36) and the more specific
one obtained through the DACF value in Eq. (2.45) perfectly match with
the explicit numerical value of Dmf

0 .

The functions constituting the specific mean-field equations, Figs. 2.12b
and f, give some insights about the migration probability of the individual
processes. The way the average jump acceptances Jex−ex, Jex−in, and Jprop
behave w.r.t. loading is the basis of the mean-field treatise of correlations.
They are strictly connected to the choice of the difference between the site
adsorption free-energies foex and foin. As we described above, when the inner
sites are the deepest ones the exit sites are poorly occupied. The accep-
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Figure 2.12: Comparison between diffusivity obtained from numerical sim-
ulations of the Central Cell Model and from the mean-field theory. Black
squares are obtained from the trajectory data outcoming from numerical
simulations through the Green-Kubo formula, Eq. (2.26). Blue circles are
obtained by applying on the same trajectory data the more general mean-
field approximation, Eq. (2.36). Solid lines are theoretical prediction values
obtained from the more specific mean-field approximations in Eqs. (2.52)
and (2.54). In the first row, Figs. (a), (b), (c), and (d) the inner sites
are 10 kJ mol−1 deeper than the exit sites, and vice-versa for the second
row, Figs. (e), (f), (g), and (h). In the first column, Figs. (a) and (e), the
zero-time diffusivity, Eq. (2.27) is shown. In the second column, Figs. (b)
and (f), the trends of the macroscopic quantities Jex−ex, Jex−in, and Jprop
constituting the theoretical mean-field approximation are shown. In the third
and the fourth columns, respectively Figs. (c), (g) and (d), (h) the case of
allowed and forbidden ex-ex jumps are considered.

tance of ex-in jumps, Jex−in, starts to decrease from low loadings whereas
the acceptance of (allowed) ex-ex jump, Jex−ex, is almost unity and does not
decrease significantly as long as the inner sites are not close to saturation,
around 〈n〉 ≈ Kin. The behavior of Jprop is similar to Jex−ex: it remains
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almost constant (about 1/2) until the loading becomes high enough so that
the exit sites start being filled. Inverting the site depths foex and foin exactly
inverts the respective behaviors.

The average jump acceptances are combined together by Eqs. (2.52)
and (2.54) to give approximated values for the correlated self diffusivity
Dmf

s (see solid lines in Figs. 2.12c, d, g, and h). Although the theoretical
prediction are qualitatively correct, they are close to the simulation values es-
pecially at low loadings, while usually they fail at higher loadings. The more
general (numerical) diffusivity equation (2.36) gives a better appoximation
than the theoretical prediction. This is because the numerical evaluation of
Dmf

s through Eq. (2.36) does not suffer from the separation of mean-field
randomization and propagation operations, which was the leading assump-
tion when we derived the theoretical diffusivity formulas in Section 2.3.9.
However, the general diffusivity equation becomes less accurate in situations
where the memory of the previous local configurations is lost slowly, as for
the case shown in Fig. 2.12d. When discussing about the amount of memory
locally lost during each randomization step, it is interesting to find out the
main sources of correlations, and to identify which of the cases above is the
most memory-preserving.

Memory preserved in exit and inner sites. Since the cell-to-cell migra-
tions occur via the exit sites, and their connectivity from one cell to the
other determines the topology of the whole grid of cells, all events involving
them will introduce more correlation than the events occurring in the inner
sites, which instead are structureless so that they can be considered as the
less memory-preserving part of the cell.

Memory-preserving backscattering. When a tagged guest migrates from
cell to cell during propagation, the probabilities related to every next move
do depend on the configuration of both cells before the propagation occurred.
In other words, the assumption in Eq. (2.30) is strong and this is especially
true when correlation effects are particularly evident, such as in the case
of forbidden ex-ex jumps shown in Fig. 2.12d. In that case, (i) forbidding
the ex-ex jumps gives the backscattering contribution a major role in the
production of correlations (this because the randomization will produce only
very small changes in the local configuration), and (ii) cage-to-cage jumps
are infrequent because foin < foex, so that the configuration of the exit sites
tends not to change significantly from step to step. Due to these two facts,
a backscattering particle which has left the cell r at time t and backscatters
into it at time t+ τ is very likely to find r just little changed or no changed
at all. If the exit sites are the deepest instead, even though ex-ex jumps
are forbidden one has that propagation events are more likely to occur at
low-intermediate loadings than what expected when the inner sites were the
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deepest. This causes the memory-preserving attitude of the exit sites to be
less marked when the migration events are frequent. Therefore, as it can
be seen from Fig. 2.12, the d case (deepest inner sites and forbidden ex-ex
jumps) is the more affected by time-correlations in the self-diffusion process.
The approximation in Eq. (2.30) becomes then less accurate, whereas in all
the other cases it is acceptable.

2.3.11 Conclusions

In this work we laid down the basis of a simple computational framework,
the Central Cell Model (CCM), aimed to be specific for the study of the
motion on the mesoscopic scale of a single particle in a system of connected
cavities in the presence of other diffusants, in conditions of thermodynamic
equilibrium. Our model is local and discrete in both space and time, and in
the numerical applications we have shown here it has been constructed start-
ing from the algorithm of a lattice-gas model for diffusion in microporous
material. We have shown that, although being not possible for the CCM to
sample all the information obtainable by a full lattice-gas, a CCM simulation
provides an accurate reproduction of the memory effects in the self-diffusion
(and thus, of the diffusion isotherm) at a minimum computational cost.

The way the CCM is constructed suggested how to carry on a mean-
field study of the self-diffusion process produced by the particular evolution
rule adopted. This has led to two approximated mathematical expressions
for self-diffusion. The first one, more general, can be applied with data
coming straight from the CCM simulation. The second one, more case-
specific and derived by assuming fast local equilibration, is theoretical and
yelds a more accurate approximation the weaker the correlations and the
lower the loadings are. Interpretation of the discrepancies between the self-
diffusivity trends obtained from the numerical simulations and their two
different mean-field approximations helped to understand how, and how
strongly, memory effects can emerge depending on the very general features
of the model parametrization.

The obtained results suggest the CCM approach to be suitable for other
theoretical studies, e.g. the time-correlations in the local density, [50,51] as
well as for direct applications in the field of the molecular coarse-graining.
For example, the CCM approach could be further extended to the sampling
of both the adsorption and the self-diffusion isotherm through a single sim-
ulation when the lattice-gas rule includes an explicit cell-to-cell interaction
potential which makes (in principle) impossible do derive the equilibrium
probability distribution of states a priori. This could be done by perform-
ing a grand-canonical Monte Carlo on the border cells while keeping the core
evolving with the prescribed dynamic lattice-gas rule in the canonical en-
semble. Also, an even more intriguing extention of the CCM approach could
be made in the field of hybrid MC-MD schemes aimed to realistically mimic

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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the bulk effects in the motion of a tagged guest in an atomistic simulation.
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Chapter 3

Microscopic systems and
Energy Landscapes

3.1 Potential and Free Energy Surfaces

A very interesting and profound point of view on atomic and molecular
systems is that offered by looking at their associated potential energy surface
(PES). The geography of these multidimensional energy landscape contains,
in principle, all the relevant information relative to the system [52, 53]. In
order to be able to say something on the thermodynamics and kinetics, one
has to develop tools to find and envision the significant feature of this object,
and to interpret them in a suitable theoretical framework, so as to build a
bridge between the landscape and the experimental observables.

The PES is in general a very complex multidimensional object (for a
system consisting of N atoms it depends in general on 3N coordinates),
and the complete knowledge of its structure is impossible apart from very
simple systems. A first step in the exploration can be made by reducing the
number of degrees of freedom which we want to consider. A typical example
is given by the construction of the Ramachandran plot, which consist of
the projection of the energy landscape of a small peptide on a plane, by
considering only two collective degrees of freedom, namely a pair [φ, ψ] of
dihedral angles. Although the PES is a function of the three-dimensional
coordinates of all the atoms except one (because in general we are only
interested to the potential energy associated to a given configuration of the
molecule, regardless of the position in space of its center of mass), it turns
out that considering the possible states as defined by couples of values of
ψ and φ, gives a satisfactory description of the molecule’s behaviour at a
greatly reduced cost. This is a typical way of coarse-graining used in the
study of great molecules such as peptides.

Whenever we project out some degree of freedom from our description of
a system, and start to ignore a part of it, entropy starts to play its role. So

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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free energy is needed if one wants to treat properly most aspects of equilib-
rium and dynamics. Nonetheless it is still possible to build a coarse-grained
PES, by considering at each point of the reduced space of configurations
the potential energy of the minimum energy configuration corresponding to
the collective coordinates defining that point. If we want a more reliable
description of the system we should use the free energy, taking into account
the whole space of configurations compatible with the independent collective
coordinates specified. We can thus build a free energy surface (FES), which
is not uniquely defined for a system, but depends on the particular coarse-
graining choice applied. In the reminder we refer to the energy landscape
as a synonimous of PES unless otherwise specified.

Not all features of the energy landscape are equally relevant for pre-
dicting the behaviour of a system: if one is interested to the equilibrium
thermodynamics it is in general enough to sample the minima of the PES,
while for the study of kinetics at least first order saddle points must also
be considered. The depth of the minima and approximate shape of their
attraction basins, i.e. the subset of points for which a direct minimization
leads to a given minimum, determine the equilibrium distribution. A system
will in general spend most of its time in the lower regions of the PES. In
the limit of 0K it will be confined to the global minimum (unless a too fast
cooling traps it in some local minima), and as the temperature rises it is
allowed to explore larger and larger portions of the PES, until, as T→ ∞ it
can be found everywhere in the configuration space with equal probability.
A first survey of the energy landscape should in general consist of a sampling
of the relevant minima, possibly starting from the global one and going up
depending on the temperature of interest. At temperatures different from
0K not only the depth of minima determine their associated population, but
also the width of their attraction basins, on which the configurational en-
tropy depends. Once a relevant portion of the minima is known the saddle
points connecting them are needed for a definition of the kinetics. While
higher order saddle points are rarely of interest, first order ones represents
the transition states, determining the rates at which the system moves from
one attraction basin to the other.

Unfortunately the number of minima grows more than exponentially as
the number of atoms in the system, or the relevant degrees of freedom grows,
and the growth of the number of saddle points is even faster. So a method
for directly exploring the energy landscape, aiming to predict something of
the system on the basis of this underlying structure, must be able to find its
way in a maze of uninteresting local minima and saddles of various order.

We will see different methods for performing this search in the next
sections and chapters.

However all of the simulation methods in computational chemistry can
be seen as implicit PES sampling techniques.
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3.2 Disconnectivity Graphs and archetypal Energy
Landscapes

A useful way of schematically representing energy landscapes is offered by
disconnectivity graphs (DS) [52,73]. Usually there is a huge number of direct
minimization attraction basins (one for each minimum), but the direct min-
imization map of the EL to all of its minima is in general overwhelmingly
rich and in most cases it is more useful to consider grouping schemes giving
super-basins, i.e. groups of basins separated by low barriers, which gives a
much more clear representation of the relevant features of the landscape,
and are a first step in the direction of a coarse-grained treatment of the
system. There are two principal ways of mapping the EL to a collection of
super-basins, depending of the problem of interest: a microcanonical map-
ping, based on the absolute height of the barriers separating minima, and
a canonical mapping, based on the relative height of the barriers. Given a
certain threshold value (an absolute energy for the canonical map or a small
multiple of kT for the microcanonical map), all basins separated by barriers
lower than this threshold are lumped together. In canonical mapping two
minima are considered as belonging to the same super-basin if the height
of the TS connecting them, with respect to the deepest one, is lower than
the chosen threshold. By iterating this lumping procedure several times, at
different threshold values, a DS is built in the following way. We consider as

Figure 3.1: Three examples of paradigmatic disconnectivity graphs.

an example a microcanonical mapping: starting from an energy E −→ ∞
we have a single super-basin comprising the whole configuration space of
the system; by moving down in energy, the space starts to break in various
distinct, non communicating super-basins, until, when E −→ 0, we obtain
the direct minimization map again. We can keep track of the way in which
greater super-basins split to smaller ones as energy (or temperature) is low-
ered, by drawing a graph in which basins in the PES are represented as points
arranged in layers, each corresponding to the mapping at a different energy
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(or temperature), and connecting with arrows the parent super-basins to its
children. What we obtain in this way is a disconnectivity graph, which is
probably the best way we have to visually represent the multidimensional
energy landscape and grasp an immediate idea of its structure, hierarchy
and connectivity. By analyzing the appearance of these microcanonical DS
it is easy to recognize some recurrent model in their global look, each corre-
sponding to an archetypal energy landscape class. The first DS in fig. 3.1,
resembling in some way a willow-tree, is representative of a typical rough en-
ergy landscape, with very high barriers connecting deep minima. This kind
of EL is characteristic of glass forming systems, because every minimum is
a kinetic trap, and finding the global minimum is very hard, so that the
system is most of the time found in a metastable state different from the
global minimum at low temperatures, unless a very slow cooling allows it
to find the bottom. The second DS is similar in some way (we can call it a
banyan-tree), as it has many low lying minima, all on a similar energy level,
separated by high barriers, but in this case every branch keeps on branching
at all levels, giving a hierarchy of basins and barriers. This is in general the
worse scenario for finding the global minimum. The third DS, resembling
a palm-tree, is typical of good ’structure-seeker’ systems, such as proteins
and regular crystals. It corresponds to a funnel-shaped energy landscape in
which shallow minima lie on the slopes of the global minimum super-basin,
so that, wherever the system starts from, it is naturally and rapidly led to
the global minimum. The funneled EL of proteins is now widely recognized
as the solution to the Levinthal paradox, which points to the fact that in a
’golf-course’ model of the PES, where all minima, irrespective of their depth,
have the same basin width and their barriers all lie at the same level, the
time a protein, with the enormous number of minima on its PES, would
take to find its native, biologically active state, would be many times the
age of the universe. The fact that proteins fold on the scale of ms-μs can be
explained by the ’focusing’ nature of the underlying energy landscape.

However in most cases the energy landscape has a mixed overall charac-
ter, it can show more than one well defined funnel, or many branches each
with a given characteristic aspect.

3.3 Canonical Disconnectivity Graphs and kinet-
ics

The microcanonical DS is useful to envision at a glance the shape and to-
pography of potential energy surfaces, while the canonical DS is useful to
describe the kinetics, both qualitatively and quantitatively. We can define
a transition as a motion along a path that crosses a barrier higher than the
thermal energy. Since in a canonical disconnectivity graph states belonging
to the same basin are separated by barriers lower than kT , there are no
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formal transitions between these states, which are in rapid equilibrium. The
canonical DS allows the study of transitions between super-basins rather
than states (or minima), and this level of coarse-graining, explored with
various techniques, will be the focus of the reminder of this thesis.

Figure 3.2: At the temperature corresponding to level 0, all transitions
between nodes under this level are fast, and details of the connectivity of
the nodes should be irrelevant. On the contrary it is necessary to know the
connectivity of upper levels. In general the higher is the least upper join
between two nodes, the slower is the corresponding transition.

Let us consider the canonical DS in fig. 3.2. We number the levels of
the graph relative to the system temperature, which is assigned the index
0. All nodes on the 0-level of the graph represent actual super-basins at
this temperature. These are denoted as B1, B2, A1, etc., and in many cases
are connected to several sub-basins, which in turns are in rapid equilibrium.
The transition rate between the 0-level vertices of the graph is related to
the location of their least upper join on it, which in turn is proportional to
the height of the lowest barrier separating the super-basins. The lower is
the barrier the faster is the transition. As an example, in fig 3.2 a transition
from A1 to A2, having a join at level 1, will in general be faster than a
transition from A1 to B1, having their least upper join at level 2. If the
barrier between two super-basins is high enough we are not interested to
the connectivity among the different basins they contain, and the system is
markovian i.e. equilibrium is reached inside a given super-basin long before
a jump to another super-basin can occur, thus making the system dynamics
uncorrelated. But if this is not the case, the basin connectivity may start
to play a not negligible role. In other words, if the kinetic hierarchy is not
strongly separated, so that rates for transitions within super-basins are not
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well lower than those for transitions between super-basins, we must take into
account entropic effects arising from the inner structure of super-basins, and
the system is not markovian anymore, as thermalization inside a super-basin,
and memory loss, are not ensured before a new transition out of it can occur.
This does affect dynamics, and the path and rate for reaching equilibrium,
but the equilibrium itself is not affected. A complete understanding of a
system showing not strongly separated dynamic hierarchy, requires a basins
connectivity graph beside the DS.

Let us consider a system whose configuration space is divided in n states,
which can be basins or super-basins for example. Its evolution can be de-
scribed by a master equation, which is a gain-loss equation for the probability
of finding the system in a state i. Its basic form is

dpi/dt =
∑
J

[Wijpj(t)−Wjipi(t)] (3.1)

where Wij is the transition probability from state j to state i. Eq. 3.1
can be rewritten in matrix form as

dp(t)/dt = Wp(t) (3.2)

where W is a n× n transition matrix with elements

Wij =Wij − δij(
∑
k

Wki), (3.3)

and p(t) is the n-dimensional probability vector at time t.

The formal solution of Eq. (3.2) is

p(t) = etWp(0). (3.4)

A convenient way of solving this equation is by expanding the probability
vector p(t) in terms of the eigenvectors and eigenvalues of the transition
matrix as

p(t) = peq +
∑
λi<0

Cisie
tλi (3.5)

where Ci = 〈si|p(0)〉 is the projection of the starting probability vector
on the i-th eigenvector si. The previous equation describes the relaxation to
equilibrium in terms of the decay to zero of all components of the probabil-
ity vector on eigenvectors different from s0, which corresponds to the only
non-negative eigenvalue λ0 = 0, which in fact represents the equilibrium
distribution.

As W is not symmetric, it cannot be guaranteed that it has a complete
set of eigenvectors spanning its space, and thus that the eigenexpansion in
Eq. 3.5 is possible. However if the detailed balance condition Wijp

eq
j =
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Wjip
eq
i is satisfied, there is a transformation that transforms W into a real

symmetric matrix V

V = [Peq]−1/2W[Peq]1/2 (3.6)

where Peq is a diagonal matrix with the equilibrium vector peq along its
diagonal. Eigenvalues κi and eigenvectors ui of V can be easily obtained
with standard methods, and given the nature of the transformation the
V and W matrices have the same eigenvalues, and their eigenvectors are
related by

ui = [Peq]−1/2si. (3.7)

Applying the previous transformation to the probability vector p(t) gives
a transformed probability vector q(t) = [Peq]−1/2p(t), which obeys the mas-
ter equation, Eq. 3.2 with the symmetric transition matrix V:

dq(t)/dt = Vq(t). (3.8)

Rewriting the solution in terms of the eigenexpansion as in 3.5 we obtain

q(t) = qeq +
∑
κi<0

C ′iuie
tκi (3.9)

with C ′i = 〈ui|q(0)〉. By solving this equation, and transforming back to
Eq. 3.5 we obtain the time evolution of the original probability vector p(t)
as

p(t) = peq +
∑
κi<0

C ′i[P
eq]1/2uie

tκi (3.10)

where we can equivalently redefine C ′i as Ci = 〈ui|[Peq]−1/2p(0)〉. In
the new form of Eq. 3.5 the coefficients are given by Ci = 〈si|[Peq]−1p(0)〉,
where [Peq]−1 is the normalization factor of the vectors si.

The PES disconnectivity graph contains only information about the
super-basins bottom minima and transition states energies, so in order to
calculate the transition probabilityWij , that is the rate constants kij for the
transition from super-basin j to super-basin i we must adopt some transition
state theory (TST) assumption. A general TST expression for the rate is

kij =Wij =
kT

h

Q†ij
Qj

e−Eij/kT . (3.11)

Depending on the problem at hand and the accuracy required, a stochas-
tic approach such as Kramer’s theory or a more accurate rate theory for-
mulation can be used [54]. It must be noted that in general at non-zero
temperatures entropic effects become fundamental for a correct calculation
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of rates, as well as equilibrium properties. For some examples of the es-
timation of the density of states see the extended harmonic superposition
approach proposed by Strodel et al. [55], the Wang-Landau [56] and the
basin-sampling [57] methods.

3.4 Exploring Energy Landscapes

As already mentioned, every simulation method performs a sampling of the
energy landscape, and by analyzing simulation data it is in some case possi-
ble to map its most relevant regions, and the main paths connecting them.
On the other hand the presence of high barriers may break the ergodicity
of the system on the time scale practically reachable with the simulation
method.

A way of studying high barriers systems, for which a coarse-grained
method cannot be developed on the basis of MD data, is that of sampling
the PES directly, looking for relevant critical points to be used for predicting
the system’s behaviour, or in order to build a suitable KMC model.

Direct study of the PES requires an efficient way of detecting critical
points and their connections. Finding minima is an easy task, starting
from any point, taken from a simulation trajectory or even randomly picked
in the configuration space, and following a way down-hill i.e. minimizing
energy via any of the many minimization methods available (for example the
Newton-Raphson or the limited memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method). Stillinger and Weber [58] proposed a way for detecting
the so called inherent-structure of the PES, by quenching points in a long
MD trajectory, so that mainly minima in the most relevant part of it are
sampled. A more difficult task is that of locating the global minimum, as all
other local minima are potential traps where the system can get stuck. Many
different techniques have been proposed to avoid trapping, like simulated
annealing and basin-hopping [59].

Once a minimum is located, a single-ended search technique [52] can be
used to locate a saddle point leading out of the starting basin. Locating
a first order saddle point, that is a TS, is more problematic than finding
a minimum, as, while following any direction down-hill via the steepest
descent path will most likely directly lead to a minimum, following up-hill
steepest path will in general lead to a maximum. Eigenvector following is
a way to reach a TS starting from a minimum by following the eigenvector
corresponding to the lowest eigenvalue of the Hessian matrix evaluated at
the minimum, that is the ’softest ascent’ path up-hill [60]. Once the new
stationary point is reached, the Hessian matrix is evaluated again, and if it
has a single negative eigenvalue the point is a transition state. By stepping in
the opposite verses on the direction of the eigenvector corresponding to the
negative eigenvalue, and minimizing the energy, the two minima it connects
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are located. At least one of these should be a new stationary point, from
which the search for a TS can start again, and so on, resulting in an iterative
procedure for locating new minima and the connecting transition states.

Another way of exploring the PES, once two or more minima are known,
is by iterating double-ended searches on it via a Discrete Path Sampling
(DPS) procedure [61, 62]. Instead of a starting point from which the al-
gorithm generates a succession of points until an unknown final one, this
approach requires two points (A and B), and aims to find a minimum en-
ergy path connecting them, in the form of a series of transition states and
minima. The algorithm starts with a minimum energy path search via the
doubly nudged elasting band method (DNEB) (see Trygubenko et al. [63]
for more details on this variation of the well known NEB method [64]). The
path found will in general show a maximum energy point, from which a sin-
gle ended TS search is started. The two minima connected by this transition
state (located in the same way as in the single-ended search), may be the two
starting minima or not. In the first case a minimum-saddle-minimum con-
nection has been found, and the algorithm stops. Otherwise the new points
are added to the set of known minima, and new DNEB paths are calculated
connecting A and B via the minima in the set. As the procedure goes on,
the datasets of minima and saddles grows and a Dijkstra algorithm [65] is
used to attempt connections, using as costs the heights of transition states
connecting minima, and their distance in configuration space when the TS
is missing. In this way a minimum energy discrete path is built connecting
A and B, and at the same time a subset of the minima and transition sets of
the PES is unveiled. Successive applications of DPS to pairs of points in the
dataset and a perturbation procedure applied to known minimum energy
paths result in a progressive sampling of the energy landscape minima and
their connections.

3.5 Energy Landscapes for small molecules adsorbed
in zeolites

We studied the energy landscapes of Ar, CH4 and Xe adsporbed in the α-
cage of zeolite ITQ-29 using the OPTIM and PATHSAMPLE free softwares,
developed by the group of prof. David J. Wales at the University of Cam-
bridge [66]. This suites offer many tools for the direct exploration of energy
landscapes, employing the concepts and techniques described in the previous
sections. For these calculations we adopted a drastically simplified model
of the zeolite framework, consisting only of the 48 oxygen atoms of which
the surface of a single α-cage consists. Periodic boundary conditions are
applied, with a simulation box length of 12.3 Å and the atoms positions are
taken from an energy minimized structure and held fixed. We remark that in
all other calculations reported in this thesis work, only interactions between
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3.5. Energy Landscapes for small molecules adsorbed in zeolites 64

ε/kB σ

Ar 95.6 3.17

CH4 115.0 3.47

Xe 136.2 3.45

Table 3.1: Interaction parameters between adsorbed atoms and oxygen atoms
belonging to the zeolite framework. Units are K−1 for ε, and Å for σ.

the sorbate and the oxygen atoms are taken into account, as it is custom-
ary. The large electronic cloud of these atoms shields interactions with Si
atoms, which are thus negligible, at least for small non polar molecules like
those considered here. OPTIM offers a wide choice of force fields for specific
systems and a general Lennard-Jones option for binary systems called LP,
which we used. The force field parameters are reported in tab. 3.1.

More complex molecular systems can be studied by implementing in
OPTIM the AMBER (or CHARMM) package. Unfortunately we had not
the possibility of employing these option, and that is the reason why we only
report here results for two atomic species and a spherically approximated
model of methane. It would be very interesting to apply the method to
structured molecules and to other zeolitic frameworks containing ions, as
these systems may present high barriers, slowing down the dynamics to the
point that in some cases standard MD simulations are not able to sample
the relevant transitions for diffusion. It is in a situation like this that the
energy landscape approach becomes really useful. However for the systems
presented here it gives an idea of the the preferential sites of adsorption,
and can add to the explanation of what is observed in MD simulations. The
microcanonical disconnectivity graphs for Ar, Xe and methane are shown in
fig. 3.3, with a spacing between levels of 115 J/mol. For all three systems,
there are six deepest minima (shown in yellow), simmetrically located in
front of the eight-membered ring windows connecting the various cages.
Eight other deep minima (shown in blue) are located in front of the six-
membered ring windows, in the inner corners of the cage, and a number
of other minima (shown in violet), which are not exhaustively mapped, are
also present. These are 24 in total and are located in pairs in front of the
four-membered windows for Ar, and in groups of three, around the each of
the eight previous intermediate minima, for CH4 and Xe. In the following
chapters, regions surrounding minima of the first kind will be called I-sites,
and regions surrounding minima of the second kind (containing also related
minima of the third kind) will be called II-sites.

As can be seen, the adsorption energies for argon is far less than that of
methane and xenon, and barriers are less pronounced. The highest barriers
for xenon and methane are on the plane of the inter-cage windows, and are of
the order of roughly 1 kJ/mol, while the very low inter-cage barrier for argon
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Figure 3.3: Disconnectivity graphs for Ar (top), CH4 (bottom-left) and Xe
(bottom-right), in the α-cage of zeolite ITQ-29. The energy is given in units
of J/mol and refers only to the zeolite-adsorbate interactions, as interactions
among the zeolite oxygen atoms are set to zero. The level spacing for the
grouping procedure is of 115 J/mol.
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is an order of magnitude smaller. This is the reason why the deepest minima
for this system appear to be grouped in pairs: given the periodic boundary
conditions each minimum in front of an eight-membered window seems to be
connected by a low barrier to the corresponding minimum on the opposite
side of the cage. This seems to suggest that inter-cage motion is faster than
intra-cage motion. Argon shows indeed an higher frequency of inter-cage
migration (see fig. 4.12) compared to Xe and CH4, however entropic effects
should be considered, and these account for the fact that inter-cage jumps
are rare if compared to intra-cage jumps. The sketch of the energy landscape
given here gives a qualitative idea of the sorption sites and of the general dy-
namics, however it is rigorously valid only at 0K. At any finite temperature
entropic effects become important and the shape of attraction basins should
be taken into account, as it can change drastically the thermodynamics and
kinetic; the free energy landscape must thus be considered. Moreover, for all
three systems considered here intra-cage barriers are well below kT at room
temperature, and nonetheless they are not completely negligible for Xe and
CH4, so one should expect a behaviour which cannot be easily described in
terms of jumps between attraction basins of the cage minima. On the other
hand one could consider the whole cage as a single super-basin, and concen-
trate on the inter-cage jumps. This turns out to be a good approximation
when few molecules are present, but for high sorbate density, equilibrium
inside the α-cage after a jump in cannot be assumed before a new jump
occurs. To understand how the energy landscape evolves as the number of
molecules increases we tried to map it as before, but with more than one
molecule present.In these calculations a permutation option was employed,
allowing the permutation of coordinates of selected atoms. In this way the
huge number of degenerate configurations which differs only for the identity
of the atoms can be merged. We allowed the permutation of all atoms apart
from one, aiming to obtain a map of the energy landscape experienced by
one molecule in a zeolite cage with a varying number of other guests. The
energy landscape of Lennard-Jones binary clusters with up to more than
one hundred atoms have been studied and are reported in literature [67,68],
however we were not able to obtain a satisfactory mapping of the PES for
two or more molecules. The number of critical points increases very fast
with the number of molecules, with the appearance of a huge amount of
minima which are very close in energy and configuration geometry, and are
connected by low barriers. This renders very challenging a satisfactory sam-
pling of the relevant parts of the PES, as the algorithm gets lost in every
small region of configuration space, and every search for a transition state
between two minima results in the discovery of new uninteresting minima,
so that the dataset of minima increases too fast if compared to the transi-
tion states dataset, remaining largely disconnected. The very intricate fine
structure of the PES may be explained by the fixed zeolite framework in-
ducing a first general shape on it, which is finely an densely perturbed by
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the presence of other molecules. PATHSAMPLE offers a number of way of
regrouping minima, in order to highlight significant feature of the EL, and
to render the disconnectivity graph easier to analyze. However before such
a regrouping can be performed, a sensible sampling of the PES should be
performed, and this turned out to be impossible in our calculations, because
of the aforementioned proliferation of minima and transition states. It is
possible that a better expertise in running the softwares employed would
allow an efficient EL exploration, overriding uninteresting shallow minima.
This could be the matter of further investigations.

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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Chapter 4

First and second order
markovian models of
dynamics

4.1 PCCA and Markov State Models

Any trajectory obtained from a simulation method, such as Molecular Dy-
namics on which we will focus, constitutes a sample of the underlying en-
ergy landscape, so that the basin structure and kinetic hierarchies can be
reconstructed from its analysis and used to build a coarse-grained model
of the system. In general the aim of such an effort will be that of finding
metastable states, corresponding to super-basins enclosed by high barriers,
and the transition rates among these states.

One way of doing this is that proposed by Noè et al. [69] for building
Markov State Models (MSM) [70,71]. The method starts with a fine-grained
partition of the configuration space of the system into microstates, which
is used to discretize the continuous MD trajectories via a clustering proce-
dure. There are different ways of partitioning the space, which are in general
Voronoi partitions based on different choices of the microstates centers num-
ber and distribution. One can chose a regularly spaced distribution by fixing
a center-center distance, adding a new center whenever a point in the trajec-
tory is further apart than this distance from any other previously determined
center; otherwise new centers can be created every n time steps of the trajec-
tory, with the coordinates of the system at that time. Another system-based
approach, which tends to concentrate microstates centers in the more statis-
tically relevant portions of the configuration space is the k-medoid method.
The continuous trajectory is then mapped to the microstates, by assigning
each point to the microstate whose center is nearest, and, given a certain lag
time τ , the probabilities for transitions among microstates, occurring within
τ , are calculated from the discrete trajectory. Thus the dynamics can be
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4.1. PCCA and Markov State Models 70

reformulated using a discrete time transition matrix T(τ), whose entries Tij
represent the probability of finding the system in state j at time t+ τ given
that it was in state i at time t.

p((k + 1)τ) = p(kτ)T (τ) (4.1)

Equations 3.2 and 4.1 give equivalent results in the case of discrete time
and are related by

T(τ) = eτK (4.2)

where K is the transpose of W. The analysis of the eigenspectrum and
eigenvectors of matrix T(τ) in the light of Perron-Frobenius (P-F) theorem
and its corollaries, is at the basis of the Perron-Cluster Cluster Analysis
method (PCCA) for detection of metastable aggregates of microstates [72].

Let us consider a matrix T(τ), which is a row stochastic matrix i.e. such
that for each of its rows

∑
j Tij = 1. If the matrix is such that there exists a

single m for for which [Tm]ij > 0, it is a primitive matrix, and the Markov
chain it produces is a regular Markov chain. All irreducible, non-negative,
aperiodic matrices are primitive and obey the Perron-Frobenius theorem
like positive matrices do. The theorem states that there is a single domi-
nant real eigenvalue in the eigenspectrum of these matrices, called Perron
root or Perron-Frobenius eigenvalue, λ0, and all other eigenvalues, which can
in general be complex, satisfy |λi| < |λ0|. For stochastic matrices λ0 = 1
and the corresponding left eigenvector is the equilibrium probability distri-
bution u0 = peq, while the right eigenvector is of the form v0 = (1, ....., 1)T .
Another consequence of the theorem is that, while v0 and u0 are are posi-
tive, all other eigenvectors have at least one negative element. Each pair of
these left and right eigenvectors corresponds to a fundamental mode of the
dynamics of the system, and their study reveals the basins and super-basins
hierarchical organization of the underlying energy landscape. An example
may be useful for understanding how this works. Let us consider the two
transition matrices schematically represented in fig. 4.1, in which the value
of entries is represented by the colour gradation. The first matrix is an
uncoupled, reducible one, in which invariant aggregates (i.e. aggregates of
states that do not communicate with the rest of space) are clearly visible as
blocks on the diagonal. There are no transitions among this blocks, so the
matrix can be decomposed into four distinct matrices each having its own
eigenspectrum, eigenvectors and stationary distribution. So the eigenspec-
trum of matrix A, which does not satisfy the conditions of the P-F theorem,
will show four different λi = 1 eigenvalues, and the corresponding eigenvec-
tors are the stationary distributions for each of the invariant aggregates. In
the end this is because we are considering four distinct and entirely inde-
pendent systems as a single one, and the stationary distribution will depend
on the starting conditions.

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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Figure 4.1: Two hypothetical matrices are sketched. The color intensity
roughly represent the average value of entries in the various blocks and out
of them

Let us consider now the second stochastic matrix B, which is in turn
irreducible, thus ergodic, but shows a block structure as well. Intuitively
one would expect in this case a slow transition dynamics among the blocks,
and a fast dynamics inside each of them. The blocks are almost invariant
aggregates [72], that is metastable aggregates of microstates, which we will
call macrostates. One can think of these as super-basins, and of microstates
as basins in the energy landscape picture given in section 3.2. However
it is important to notice that, while properly defined macrostates should
correspond to canonical super-basins at the MD trajectory temperature,
microstates defined in the clustering procedure do not in general correspond
to basins as they were defined in section 3.2.

Matrix A can be seen as a limit case of matrix B, in which the weak
communications among the blocks has ceased completely, leading to four
separated systems. So the eigenspectrum of B resembles that of A, but
this time there is a single dominant eigenvalue, left and right eigenvector,
because the P-F theorem conditions are satisfied, and the system has a single
stationary distribution.

The second, third and fourth eigenvalues are now smaller but they are
still in the vicinity of λ0 = 1, and the four constitute what we call the
Perron-cluster, which is separated from the rest of the eigenspectrum by a
clear gap, proportional to the metastability of the aggregates. Each eigen-
vector corresponds to a fundamental mode of dynamics i.e. its structure
is related to how probability flows between different regions of the config-
uration space, according to their different sign in the eigenvector entries.
Namely, given a certain initial probability distribution p(0), and its compo-
nent Ci = 〈ui|p(0)〉 on the i-th eigenvector, microstates whose correspond-
ing ui entries have negative sign, gain probability at the expenses of those
with positive sign if Ci is positive, and vice versa. This happens with a
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characteristic implied time scale

ti = −τ/lnλi (4.3)

As it is clear from Eq. 4.3 large eigenvalues correspond to slow relaxation
processes towards equilibrium i.e. those related to the flow of probability
among blocks, and the anatomy of this processes is embedded in the sign
structure of their eigenvectors, which reflects how the configuration space
splits into metastable aggregates. PCCA exploits this fact for detecting
kinetically separated super-basins as lumps of microstates.

Once these have been determined they can be tested for use as states
on which a coarse-grained Markov model can be built. Even if a gap in
the eigenspectrum exists and the system exhibits a certain splitting in the
characteristic time scales of its dynamics, markovity for the given lag time
τ is not granted. It could be necessary to increment the lag time for the
MSM to ensure that short time memory effects are avoided. A first hint to
the threshold lag time beyond which markovity should be ensured, is given
by the slope of a plot of ti vs τ . This should reach a plateau, and the proper
value of τ can be chosen in the region where ti is constant, depending on the
time scale of the process that one is interested to study. Even in the plateau
region however markovity is not ensured, and the only way to ascertain
it is to compare the MSM results with those obtained from the original
simulation data (employing the Chapman-Kolmogorov equation or running
a MSM simulation for example).

Using the concepts and techniques described in this section, we tried
to develope a MSM for studying the diffusion of adsorbates in microporous
materials. We have found that a simple MSM is not suitable for this purpose
if one is interested in the intra-cage jumps dynamics alongside with inter-
cage motion, because barriers inside cages are not high enough to induce
a clearly separated dynamic hierarchy. Even if a MSM model based only
on inter-cage jumps could be useful for studying long scale dynamics at low
sorbate density, strong backscattering correlations makes it not suitable in
case of high sorbate density. Moreover we wanted our coarse-graining to act
as a filter for highlighting the relevant events determining diffusion trends,
and for this purpose intra-cage motion is obviously fundamental.
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4.2 A coarse-grained method based on the analy-
sis of short MD trajectories for the simulation
of non-markovian dynamics of sorbates in mi-
croporous materials

We developed a coarse-grained model suitable for the study of adsorbed
molecules in microporous materials. A partition of the inner pores space was
carried out, which allows to formulate the dynamics in terms of jumps be-
tween discrete regions. The probabilities of observing given pairs of succes-
sive jumps were calculated from Molecular Dinamics simulations, performed
on small systems, and used to drive the motion of molecules in a lattice-gas
model. Dynamics is thus reformulated in terms of event-space dynamics
and this allows to treat the system despite its inherent non markovity. De-
spite some strong assumptions enforced in the algorithm, results show that
it can be applied to various spherical molecules adsorbed in the all-silica ze-
olite ITQ-29, estabilishing a suitable direct bridge between MD simulation
results and coarse-grained models.

The first step in our method is the clustering of MD trajectories frames
to obtain a discretized version of the trajectory of adsorbed molecules within
the zeolite. Each pore in the aluminosilicate is partitioned in a number of
regions (or sites) and each point in the original trajectory is mapped to
the proper region according to a distance criterion. The regions correspond
roughly to the main basins in the free energy surface (FES) [73, 74]. This
discrete trajectories in space are then mapped to ’event-space’ trajectories:
given a certain lag time we replace the two discrete positions at the start and
end of each interval with the corresponding discrete displacements. We then
perform a statistical analysis of the trajectories and obtain the transition
probabilities from each discrete event to each other as a transition matrix.
This matrix is at the basis of the evolution rule of the model. Consider-
ing the transitions between events allows one to circumvent the inherent
non-markovity of the space partition, at least to a reasonable degree of ap-
proximation. Simulating the motion of guest molecules as a simple random
walk on the lattice of regions obtained in the first step of coarse-graining
would be inaccurate due to the low barriers in the FES, specially when few
molecules are present. By considering the transitions between events, short
time memory effects are naturally taken into account and this allows one to
treat the dynamics of interest as a simple random walk in the event-space,
driven by an algorithm based on the event-event transition matrix.The tra-
jectory on this space then naturally implies a trajectory in the discretized
physical space. As shown below our method gives self-diffusivities, events
frequencies and occupation probabilities of regions and pores in reasonable
agreement with the MD results for spherical, or roughly spherical, guest
molecules, such as Ar, Kr, Xe and CH4 in zeolite ITQ-29 [75].
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4.2.1 Space partition and the transition matrix

Each α-cage [76] (see fig. 4.2) of the aluminosilicate is represented by 15 sites
in our lattice-gas model, that can host one or more molecule each. These
correspond to different regions of the inner space of the cage: six sites of
kind I, corresponding to regions in front of the 8-membered ring windows
connecting the cages, eight sites of kind II, corresponding to regions in front
of the sodalite 6-membered ring windows, and one site of kind III, corre-
sponding to the center of the cage. There are many possible ways to carry
out the partition, the simplest being a Voronoi tessellation based on some
choice of the regions centers. In order to have a more ’natural’, system-
based partitioning scheme we applied a version of the Perron-Cluster Clus-
ter Analysis (PCCA+) [77] first proposed by Deuflhard et al. [72, 78], that
gives more finely defined regions boundaries, better reflecting the underly-
ing energy landscape. It should be noted that even this approach is to some
degree arbitrary, given the nature of the systems studied, as explained be-
low. The Perron-Cluster Cluster Analysis is based on some corollaries of the
Perron-Frobenius theorem. Given a certain fine-grained partition of space
into microstates, MD trajectories are discretized by mapping each point to
the microstate containing it, and the transition probabilities between pair of
microstates are calculated. If the transition matrix, which is stochastic, is
irreducible and non-negative, it has a single eigenvalue λpf = 1, which is the
Perron-Frobenius eigenvalue. If there are n metastable states in the dynam-
ics, the eigenspectrum of the spectrum will show a ’cluster’ of n − 1 other
eigenvalues close to λpf , and, depending on the difference in time scales, a
gap between this cluster and the rest of the eigenvalues. By analysing the
sign structure of the eigenvectors corresponding to these eigenvalues it is
possible to lump microstates into metastable macrostates. A more detailed
explanation of the principles underlying PCCA+ can be found in Kube et
al. [77]. The procedure does not ensure that the dynamics can be formu-
lated in terms of a Markov chain on these macrostates, and the Markov State
Model (MSM) [69–71] so obtained should be tested by comparing its results
to those of the original MD trajectories. Indeed we have found that for the
systems we studied (i.e. small non-polar molecules in an all-silica LTA zeo-
lite at 300 K), a simple spatial MSM cannot be obtained, at least at the level
of jumps within α-cages, regardless of the lag time used. This is due to the
weak interactions between guest molecules and the cation-free zeolite frame-
work, which imply low barriers to diffusion inside the α-cage, so that the
time scales of jumps within macrostates and jumps in and out of them are
not clearly separated. It must be noted that at low sorbate density a MSM
can be built by considering the whole α-cage as a single macrostate, thus
taking into account only jumps between cages. Even in this case markovity
is lost at high sorbate density, when backscattering effects arise.

In the present study we are interested to the dynamics at the level of
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intra- as well as inter-cage jumps [28] and thus will turn to a second-order
Markov chain approach, as explained below.

We started from a MD trajectory of CH4 in ITQ-29 at loading (average
number of molecules per α-cage) 〈n〉 = 12. As all MD trajectories in this
study this was generated using the LAMMPS package [79, 80]. The zeolite
framework is flexible. The force field parameters used for it were recently
proposed by our group [7], while the parameters for guest CH4 molecules
were taken from Krishna et al. [81]. Lorentz-Berthelot mixing rules were
used for cross interactions. After 106 steps of thermalization at 300 K, the
simulation was run for 5·107 steps of 1 fs in the NVE ensemble, temperature
being held at 300 10 K by the zeolite flexible framework acting as an effective
thermostat. Snapshots were collected each 100 fs. The simulated system
corresponds to a single zeolite crystallographic cell with 96 CH4 molecules
and periodic conditions (PBC) applied at the boundaries, with a simulation
box length of 2.555 nm.

Figure 4.2: The structure of zeolite ITQ-29 with the α−cage highlighted.

A relatively fine-grained clustering procedure was then applied to a col-
lection of single-molecule trajectories, obtained from the original one, in
order to generate discretized trajectories [82]. In this step the inner space
of a single α-cage was partitioned in 480 microstates with a k-medoid al-
gorithm [82]. The microstates-transition matrix was calculated from these
discrete trajectories and it was analyzed by means of PCCA+ [77], to give 15
metastable macrostates as groups of the microstates defined in the previous
step. All these calculations have been carried out using the free software
EMMA [82].

In this way we obtained a space-partition where each macrostate is a
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K Start Target

1 I I
2 II II
3 III III
4 II III
5 III II
6 II II∗

7 I II
8 II I
9 I III
10 III I
11 II II†

12 I I‡

Table 4.1: Event classes observed within a lag time of 100 fs in the MD
trajectories. Event classes are defined by the site kind of the start-site and
target-site.
* the site is adjacent to the start site
† the site is not adjacent to the start site
‡ the site is in the adjacent cage

rough estimate of the energy landscape basins for single molecules, given a
certain loading. Coadsorbed molecules are not taken directly into account
in the analysis but obviously affect the single molecule behaviour. We have
found that at higher loadings macrostates are more clearly defined and this
is the reason why we used simulation data at 〈n〉 = 12 for the definition of
the sites.

We already discussed the difficulties of a simple MSM approach to the
simulation of intra-cage dynamics. Our solution to the this problem was
that of considering events instead of positions: the same space partition
was used to obtain discretized trajectories for all the other systems studied,
and these were then mapped to event-space trajectories. This was done by
substituting each discrete position with the discrete displacement relative
to the previous step. From these trajectories a transition matrix relative to
each loading was obtained. These can be interpreted as second-order Markov
matrices relative to the motion in the discretized space. From now on events
will be called equivalently ’states’, and being in state i, corresponding to a
jump from site a to site b, means that the particle is actually in site b and
was in site a during the previous step.

Given a lag time of 100 fs a finite number of events is observed and
these can be classified in 12 different classes, as summarized in tab. 4.1 and
shown schematically in fig. 4.3. The first three correspond to null-events,
i.e. the particle stays in the same site. All the other classes correspond to
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Figure 4.3: A schematic representation of the 12 classes of events. A
single α−cage is shown plus one I-site belonging to an adjacent cage (top of
the figure). Sites not strictly necessary for the definition of the events were
omitted.

jumps within a single cage (intra-cage jumps), apart from class 12 which
groups jumps taking place between two adjacent 8-membered ring window
sites belonging to different cages (inter-cage jump) [28]. No other inter-cage
class of event was observed within our lag time.

For each class there are many different states, each corresponding to the
particular pair of start- and target-site involved in the jump. Moreover we
defined some additional null-event states in order to keep as much memory
effects in the dynamics as possible. Let us consider a segment of discrete
space trajectory a → b → c → d → d → ..., corresponding to a sequence
ab → bc → cd → dd → d... in the event-space trajectory: the first states
in this last sequence do not imply thermalization in any site, they keep
memory of the previous site visited and allow one to calculate transition
probabilities satisfactorily, reflecting the correlation among jumps; on the
other hand the last step reset in some way the particle’s story, as after the
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null-event any of the possible events starting in d would be equivalent, which
is true only if the particle effectively thermalizes in site d. Supposing that
the cell occupancy is high, we know that, in this particular example, a jump
back to c is instead more likely than any other, and this backscattering
correlation memory effect turns out to last more than our lag time of 100
fs. In order to avoid this sudden ’amnesia’, for each null-event we define a
different state on the basis of the last site visited before the null-event, so
that in our example dd becomes ddc. This enhances the number of states
significantly but drastically improves the reliability of the method. On the
other hand using a longer lag time, in order to lower the correlation effects,
would introduce even more events, and eventually lead to the occurrence
of jumps between non-adjacent cages, thus destroying the locality of the
model.

4.2.2 Evolution rule.

In the algorithm described below, particles move inside and between cells
without direct exclusion interaction, and they only affect each other by
means of the cell occupancy, acting as a sort of mean field. One of the
interesting feature of the method is that, despite this, correlation effects
are taken into account, at least to some degree. This is because of the
way the event-event transition matrices are built, which allows them to
retain a certain amount of the particle’s story memory. We assume that
in a cage containing n particles transitions involving only intra-cage jumps
occur according to the transition matrix calculated from MD trajectories at
loading 〈n〉. A critical point is that of inter-cell jumps, which poses some
non-trivial challenges. In fact if we accept that transitions involving jumps
between two cells with the same occupancy n occur with the probabilities
encoded in the n-th transition matrix (i.e. calculated at loading 〈n〉), what
should we do when jumps between two cells with occupancies n and m
respectively, with n 	= m, are involved? One could try to keep on with
the simple random walk in event-space as for intra-cage jumps, and let, for
instance, the occupancy of the starting cell to decide which is the relevant
transition matrix. But this gives very broad gaussian distributions of the
occupancy probabilities, showing no resemblance with the MD data.

Our solution is based on a simple assumption, namely that we can express
the transition probability Pij(n,m) for the transition from state i to a state
j, where j corresponds to an inter-cage jump from a cell with occupancy n
to a cell with occupancy m, factorizing it as

Pij(n,m) = P ∗ij(n)P
in(m) (4.4)

where P ∗ij(n) may be interpreted as the probability of an attempt to

perform a transition i→ j , which will be successful with probability P in(m),
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which is independent of j and is simply the probability that a cell with
occupancy m accept an incoming particle.

This is of course a strong assumptions as Pij could be not factorizable,
and in any case the choice of P ∗ij and P in is non-trivial and to some degree
arbitrary as we’ll see. The previous relation is interesting as it indicates
a way to separate the respective contributions of the starting and target
cells, so that one can think of a procedure for inter-cage jumps consisting
of a first trial step depending entirely on the starting cell occupancy and a
second step depending only on the target cell occupancy, in which the trial
jump is accepted or rejected. From Eq. (4.4) follows

P ∗ij(n) = Pij(n,m)/P in(m) (4.5)

which allows one to calculate P ∗ij(n) given P
in(m). Our choice was that

of considering a P in(m) as a linearly decreasing function of m

P in(m) = (nmax −m)/nmax (4.6)

where nmax is a tunable parameter and should corresponds roughly to
the maximum number of molecules that a cell can accomodate. This makes
sense intuitively as one expects that the higher is the number of particles in
a given cell the higher is the probability that an incoming particle is rejected:
in fact the target site, in a high occupancy cell, is likely to be occupied itself
and even if the incoming particle has enough energy to displace the other
one, this will have in turn to find room inside the cell, which is harder and
harder as occupancy grows. The functional form in Eq. (4.6) is just one
among many possible ones, and it was chosen as it is simple and gave better
results than all other candidates, nonetheless a further effort to find a better
function could surely improve the method.

Given the previous discussion, the n-th transition matrix needs to be
changed slightly, by substituting entries Pik(n), where k is an inter-cell
jump, with the corresponding P ∗ik(n), obtained via Eqs. (4.5) and (4.6) by
considering the occupation of the target cell to be n. In order to keep outgo-
ing probabilities normalization, for each state i connected with an inter-cell
jump state, we keep all Pij - where j is an intra-cage non-null jump state -
unchanged, and set

Pil = 1−
∑
j =l

Pij (4.7)

where l is the null-event on the target site of i.
The right probability of observing l is preserved by the algorithm as

explained below.
At the begin of each run, particles are distributed randomly on the lattice

sites, regardless of each other’s position. Each particle has then a starting
random state assigned, consistent with the occupancy of its cell.
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At each timestep all particles are considered in random order for update
of their state and position. The proper transition matrix is considered for
each particle, depending on the actual occupancy of the host cell. A random
real number r in 0 < r < 1 is compared to the progressive partial sums s(i) of
transition probabilities from the actual state j to all other reachable states,
until r < s(i), with

s(i) =

i∑
k=1

Pjk (4.8)

then, if the target-position of event i is within the same cell, the new state
is set to i and the new position is set to the target position of i, regardless
of its occupancy. Otherwise, if i is an inter-cage event, another random
number is extracted and compared with P in(m), where m is the actual
occupancy of the target cell. If this step is successful the particle jumps to
the new cell and its new state is set to that corresponding to i at the new
cell’s occupancy. Otherwise the transition is rejected and the particle state
is set to the null-event of the starting site - i.e. the target site of j. The
probability of directly choosing a null-event was previously lowered in order
to enforce normalization (Eq. (4.7)), but with the present rule the overall
probability is actually restored (see fig. 4.4). As the occupancy of cells evolve
the procedure causes the transition matrix relevant to a given particle, to
change very often, and a conversion rule matching corresponding states in
different matrices is needed. For example consider a cell with occupancy n
at time t, and a particle in state i, corresponding to the jump from site a to
site b at loading 〈n〉. If at time t+1 the cell occupancy has become m then,
before attempting any transition, the particle state must be changed to that
corresponding to the jump from a to b at loading m. In doing this one must
take into account the possibility that a particle find itself in a state with no
analogous in the transition matrix corresponding to the new occupancy (as
an example events of class 11 tend to dwindle in number at high loadings).
As null-events are by far the most likely to occur, in this case we choose a
’default’ state for each possible event corresponding to the most probable
null-event for its target site, so that this is surely present in all transition
matrices.

The described model can be thought of as stochastic algorithm leading
to a random walk in the event-space, with a fixed time step (i.e. the lag
time used to define the transitions). The usefulness of this approach is in
its ability to deal with systems showing weak metastability, so that their
dynamics is slow but non truly markovian. All particles in the lattice are
considered, and eventually allowed to move, in a random order at each time
step, but at least in its present version the algorithm is not parallelizable
to give a Cellular Automaton (CA) model, as there is not a suitable way
of partitioning the lattice so that each block can be updated independently
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Figure 4.4: The probabilities of observing each class of events at equilibrium
for Kr at loading 〈n〉 = 6 are shown. Results from the coarse-grained model
are compared with those obtained from MD runs.

of others [9, 19, 20]. This is because of the evolution rule for inter-cage
events, which depends on the total occupancy of the target cell. A different
evolution rule, depending only on the target site of the inter-cage event,
could allow the development of a CA model, and a further study in this
direction is envisioned.

Strict detailed balance cannot be satisfied in the model, as obviously
most of the event-event transitions are not reversible in a single step. Let us
consider as an example the transition i → j, where i is again a jump from
site a to site b and j is a jump from b to c. The reverse transition j → i
cannot occur as the target site of j and the start site of i do not coincide
and going back to a implies some other transition. The shortest route is by
a state c → a if this exist, otherwise a longer detour is needed. What is
important is that a way back exists and this is ensured by the nature of the
transition matrix.

In our case all matrices are irreducible, non-negative (as the elements
represent probabilities), and with at least one positive element on the main
diagonal (as any null-event i allows the transition i → i, because of the
metastability of sites), and this implies that they are primitive (i.e. there
exists a single m such that [Am]ij > 0, where A is the transition matrix).
We remark that all systems for which our approach, as well as a generic
MSM, is meaningful must be at least ergodic, thus irreducible, and must
allow self-loop transitions for null-events, as a meaningful definition of sites
implies at least some degree of metastability.

Primitivity of the transition matrices means that the sampling which
they lead to is regular, a condition which ensure attainment of the station-
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ary distribution. This turns out to be the same equilibrium distribution
generated by MD, for all intra-cage events, as can be seen in fig. 4.4, which
implies that the balance condition is satisfied at the thermodynamic equi-
librium. According to Deem et al. [29] satisfying the balance and regularity
conditions together is enough to ensure the reliability of a model, even if
strict detailed balance is not satisfied.
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Figure 4.5: Self-diffusivity (Ds/10
−8m2s−1) for the four systems studied as

a function of the average number of molecules per cage (〈n〉). Results from
the coarse-grained model are compared with those obtained by means of MD.

The only event class that does not satisfy balance is class 12 which has a
different treatment from all others as explained above. The development of
a proper rule for inter-cage events, satisfying balance and leading to a good
occupancy probability distribution, is currently under study. It should be
noted that, while finding such a rule is obviously desirable in order to put
the model on a really solid basis and improve its performances, the results
shown below are already in reasonable agreement with MD results.
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4.2. A coarse-grained method based on the analysis of short MD
trajectories for the simulation of non-markovian dynamics of sorbates in
microporous materials 83

4.2.3 Results

We applied the method to CH4, Ar, Kr, and Xe adsorbed in zeolite ITQ-29
with loadings ranging in 1 � 〈n〉 � 12. MD simulations were performed with
the same overall parameters described in section I. Force field parameters for
CH4, Ar and Kr are taken from Krishna et al. [81], while the parameters for
Xe are taken from Tunca et al. [83]. All the calculations with our method
were carried out on a cubic lattice consisting of 125 α-cages for 106 time
steps, corresponding to 100 ns, with nmax = 16 for all system. High loading
calculations required only few minutes on a single processor. This means
that the coarse-grained method is more than 104 times faster than MD
performed with the previously described settings on a single processor. The
equilibrium probabilities of observing each class of event at a given loading
are shown in fig. 3, where the results of the simulations are compared with
those obtained from MD runs at the same loading. Only an example is
shown (Kr at 〈n〉 = 6), which is representative of all the systems studied.
All self-diffusivities were calculated by means of the Einstein formula

Ds =
1

6
lim
t→∞

d

dt
〈|r(t)− r(0)|2〉 (4.9)

and are shown in fig. 4.5. In general a reasonable agreement with MD
results is observed, and the overall trends are all reproduced, despite the
less satisfactory results in the case of Xe. In fig. 4.6 occupancy probability
(Feq(n)) distributions are compared with those obtained from MD showing
reasonable agreement expecially at intermediate loadings.

Deviations from MD results may arise from many different factors, the
first being the inherent approximations underlying the transition matrices
definition and evaluation, and the algorithm rules. The state reassignation
step, applied each time the number of molecules in a cell changes, introduces
a certain loss of memory as, in case the original particle state is not one of
those available at the new loading, the particle story is somehow reset. Given
that most of the correlation effects arise from backscattering, at all loadings
apart from very low ones, this will in general causes Ds to be higher than
expected. Another problematic point is the choice of P in(n). Apart from
the balance issue discussed above, considering a linear dependence with the
same value of nmax for all species, as we did, is clearly an oversimplifica-
tion, and finding a more realistic function of occupancy, taking into account
the molecules size and interactions, would surely improve significantly the
results. It should be finally pointed out that, apart from the case of CH4,
for which MD calculations were carried out at all loadings between 1 and
12, available MD data were only for 〈n〉 = 1, 3, 5, 6, 8, 10, 12, so that only
certain occupancies had a corresponding transition matrix. For the other
ones we randomly choose the occupancy to be considered as n+ 1 or n− 1,
thus adding an interpolation error. Moreover for occupancies n > 12 we
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Figure 4.6: Occupancy distributions at various loadings. Results from the
coarse-grained model (lines with points) are compared with those obtained by
means of MD (simple lines).

consider the transition probabilities obtained at 〈n〉 = 12. The occurrence
probability of cells with such occupancies is very low for n � 10, but start
to affect significantly the results for n � 11.

4.2.4 Conclusions

We proposed a coarse-grained method which stems in a straightforward way
from short MD simulations performed on a single zeolite crystallographic
cell, and suitable for the extension of the in-silico study of microporous
systems with adsorbed molecules to greater spatial and time scales. The
application of a simple Markov State Model to these systems is not feasible,
at least at room temperature and for weakly interacting adsorbed molecules,
but by switching our attention from site-site dynamics to event-event dy-
namics a relatively simple algorithm was built which is able to reproduce
intra- and inter-cage molecular motion, accounting for memory effects de-
spite the lack of direct interaction among molecules. The host-guest system
can be seen as a lattice of cells each characterized by its occupancy which
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implies a different resistance to the motion of guests, and a certain tendency
to release/accept traveling molecules. This simple scheme can be applied to
the study of mass transport in microporous materials and could be a can-
didate for simulating out of equilibrium systems such as membranes under
working conditions [84].

4.3 Equilibrium probability distibution of events

We present here the equilibrium probabilities for each class of events, as
obtained from the first left eigenvector of the event transition matrix. The
analysis of these results gives a qualitative interpretation of the overall be-
haviour of the various systems studied

Let us consider figs. 4.7 and 4.8, showing how the equilibrium probability
of each class of events develops with varying 〈n〉 in the case of methane. The
first thing which comes to the eye is the large gap, throughout the whole
range of 〈n〉, between the probabilities of events of class 1-2 and all the other
ones. This will be seen for all other cases reported here, and means that
null-events on adsorption sites are by far dominant in the dynamics. The
3-events on the other hand are not so prominent, because the site III is not
an adsorption site, if not at very high loadings, and represents only a region
of transit in most conditions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12

P
e
q

〈n〉

CH4

1
2
3
4

5
6
7
8

9
10
11
12

Figure 4.7: The equilibrium probability of all event classes for methane at
300K.

The large probability of null-events is to be expected if the coarse-
graining of space is a meaningful one, as one usually wishes to have metastable

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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sites, and this implies a higher probability of residence in one of them, rather
than of jumping from one to the other. In particular we notice that 2-events
dominates over 1-events, and this seems to be at odds with what we saw in
section 3.5: namely that sites of kind I correspond to the six deepest min-
ima in the PES. However we already remarked that at room temperature the
shape and connectivity of attraction basins should be taken into account.
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Figure 4.8: The equilibrium probability of all non null-event classes for
methane at 300K.

In fact the shallow minima found in the energy landscape analysis of sec.
3.5 fall inside the super-basins represented by sites of kind II, and even if
these are not as deep as minima of kind I, they result thus to be larger. The
connection of the shallow minima to minima of kind II is evident in fig. 3.3,
where some of them appear in groups of three as small clumps connected to
the II-minima. So molecules tend to spend most of their time in sites of kind
II. As the loading increases however this sites are progressively saturated,
and molecules populates more and more sites of kind I, and finally sites of
kind III, as is evident from the increasing probability of events 1 and 3 in
figs. 4.7.

The lower part of fig. 4.7 is enlarged in fig. 4.8, where the curves for
non null-events can be seen clearly. The dominant non null-events are event
6,7 and 8, corresponding to the motion on the α-cage inner surface. The
fact that the probability of events 7 and 8 coincide at all loadings, confirms
that the balance condition is satisfied at equilibrium, and all other pairs of
events in which one is the opposite of the other show the same behaviour.
Events in and out of site III are very rare.

As can be seen the overall trend for intra-cage non null-events is of
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monotonic decrease, as it can be expected when the number of molecules
increases, crowding the inner space of the α-cage, and rendering motion
more and more difficult. On the other hand we see that the only non-null
event whose probability grows higher with loading is event 12, that is the
inter-cage event.
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Figure 4.9: The equilibrium probability of all event classes for xenon at 300K.
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Figure 4.10: The equilibrium probability of all non null-event classes for
xenon at 300K.
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This is very interesting as it seems to point to the possible explanation of
the Dself trend shown by methane as loading increases. We can reckon that
the maximum in the the plot of Dself vs. 〈n〉 is due to the balance between
the increasing probability of inter-cage jumps, which are rate determining at
low loading, and the decreasing probability of all inter-cage kinds of motion.
A similar behaviour for Dself is in fact seen in the case of xenon and kripton
and from fig. 4.10 it is clear that events probabilities for Xe behave according
to the same overall trend. In the latter case curves are steeper: the increase
of probability for event 12 is still more pronounced and some of the intra-
cage events probabilities fall to zero in the end.
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Figure 4.11: The equilibrium probability of all event classes for argon at
300K.

This seems to be a good hint to the reason for the somehow counter-
intuitive behaviour of CH4, Kr and Xe. But what happens with a species
showing monotonic decrease of self-diffusivity with increasing loading, such
as Ar? In fig. 4.12 we can see an overall similar trend for Ar. However
curves are less steep in this case, and it seems that the increase of loading
has a weaker effect compared to the cases of methane and xenon. This can
be explained with the smaller size of argon, and the fact that xenon, which
is larger than methane, shows the strongest dependence on 〈n〉, corroborates
this idea. It is intuitive to think that adding a small Ar atom has a small
influence, particularly at low loading, on the behaviour of the other guest
molecules, while adding a massive Xe atom has a stronger impact. However
if the probability of intra-cage jumps decreases and that of inter-cage ones
grows as for the other systems examined, why does the plot of argon self-
diffusivity looks completely different? This could be explained considering
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Figure 4.12: The equilibrium probability of all non null-event classes for
argon at 300K.

the relative contribution to diffusion of the various events. As we saw in sec.
3.5, the energy barrier for inter-cage diffusion of argon is one order of mag-
nitude smaller than those of methane and xenon, and in fact smaller than
intra-cage barriers. Even considering entropic effects, we can thus expect
that inter-cage jumps do not play as strong a bottleneck role in diffusion dy-
namics as for the other systems. In fact the equilibrium probability of event
12 for Ar, is lower than those of events 6, 7 and 8, but is by far higher than
in the case of CH4 and Xe. So its increase, beside being less pronounced
than in other systems, has a minor impact on the diffusion dynamics and
the decreasing intra-cage mobility plays the crucial role in determining the
self-diffusivity trend.

A very different case is that of CO2. As we have already seen, and is
evident in fig. 4.13 sites of kind I plays a very different role for this sorbate
species. At low loading molecules spend most of their time in the channels
connecting cages and are progressively forced to populate the inner part
of the cage as 〈n〉 grows. In fact the definition of sites used for the other
systems is not best suited for this case, as we know that the ’channel-site’
comprises part of two sites of type I, belonging to two adjacent cages. So
event 12 is not the jump between two metastable states, but it connects two
parts of what we know to be a single metastable state, whose total residence
probability is the sum of the probabilities of events 1 and 12. A different
partition of space should be used for this system, however we present it here
as an example of how far one can go with an arbitrary choice of macrostates.
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Figure 4.13: The equilibrium probability of all event classes for carbon diox-
ide at 300K.
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Figure 4.14: The equilibrium probability of all non null-event classes for
carbon dioxide at 300K.

The non null-events in fig. 4.14 show a less definite trend if compared to
what we saw before. Most of the events do not show a clear increase or
decrease of their probability, apart from events 7,8 and 12. This can be
related to a general crowding of space, but while event 12 is not in any way
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4.3. Equilibrium probability distibution of events 91

a significant event for diffusion, as we have seen that it take place inside a
single effective macrostate, events 7 and 8 probably determine the monotonic
drop of Ds.
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Figure 4.15: The equilibrium probability of all event classes for methane at
〈n〉 = 1, as a function of temperature.
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Figure 4.16: The equilibrium probability of all non null-event classes for
methane at 〈n〉 = 1, as a function of temperature.
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The last two plots refer to the evolution of the event probabilities with
varying temperature in the case of CH4. In fig. 4.15 we notice how the
probability of residing in site I decreases as the temperature is raised. This
happens as on one hand, for the entropic effect already discussed, molecules
tend to spend their time in sites of type II more and more with increasing T,
and on the other hand because of the steady increase of mobility. As event
1 is a static event, it loses probability to non null-events. The same must
be true of event 2, which is static as well, but the effect is counterbalanced
by the increased probability of occupying II-sites.

All non null-events probabilities, as shown in fig. 4.16, increase mono-
tonically with temperature, and this is reasonable as all kinds of motion are
enhanced by the increasing kinetic energy of molecules. So in this last case
there is a simple, direct relationship between the behaviour of Dself and the
equilibrium population of events.

Before concluding this section it is worth spending two words on site III
and correlated events. As can be seen for all the species considered, event 3 is
practically negligible at low loading, but its probability grows with 〈n〉, and
in particular for 〈n〉 > 10. This is because, as already remarked, site III does
not correspond to a region of preferential adsorption. As we have seen in
sec. 3.5, there is no energy minimum at the center of the cage, nonetheless,
as the number of molecules in the α-cage grows, the adsorption regions on
its surface become progressively saturated, and in the end some molecule is
forced to occupy the center of the cage. The most marked increase of the
probability of event 3 is observed for Xe. It seems that up to ten molecules
can be accomodated on the surface of the α-cage, distributed among sites
of type I and II, but as this threshold is exceeded, this arrangement loses
stability: a molecule can leave a site of kind II, and occupy site III, as it
is evident from the opposite change of the probability of event 2 and 3 in
fig. 4.9. At the same time, events 7 and 8 experience an inversion of their
decreasing probability trend. This could be explained with the vacancy left
by the molecule which now occupies the center of the cage, allowing again
an exchange between sites of kind II and I, which was practically blocked,
because of their saturation, at 〈n〉 = 10. A similar line of reasoning can
be applied to the other cases. These show similar, but progressively weaker
phenomena, in the order CH4 > CO2 > Ar.
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Chapter 5

The event-event transition
matrix as a network

5.1 Network theory

In recent years an impressive amount of work has been devoted to the anal-
ysis of the most diverse problems in terms of graph theory [85]. A graph is
an ordered pair (V,E), where V is a set of vertices, or nodes, and E is a set
of pairs of element of V , called edges or links. These can be unordered or
ordered pairs, and in the last case the graph is a directed graph, or digraph,
in which the link connecting node vi to node vj and that connecting vj to
vi do not coincide. Virtually any system can be represented as a graph, by
mapping the objects of which it consists to the set of nodes of the graph, and
the relations among these objects to the set of edges [86]. When a graph,
which is in itself a perfectly abstract object, represents a real system, or in
general every time we interpret its elements in terms of something else, we
speak of a network. Network theory concerns any attempt to understand
systems and phenomena (and usually complex ones), using graph theory
concepts and machinery. Often the proper description of a real world sys-
tem requires directed graphs and the introduction of weights characterizing
each link. The weight of a link may represent the distance between the nodes
it connects, the strength of their relation or the flow of something between
them. Here we give a brief overview of some of the very basic ’metrics’ of a
network [85,87]:

-degree: the number of links attached to a node vi is the node’s degree ki.
This simple definition is the only possible for undirected networks, while in
the case of a digraph an in-degree kini and an out-degree kouti can be defined
corresponding to the number of links entering the node and the number of
links leaving it, respectively. An overall degree can be defined as the sum
of the two. In the case of an undirected weighted network it is useful to
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define the strength of a node as the sum of the weights of all edges attached
to the node si =

∑k
j=1wij + wji. If the network is a directed one then we

have again sini , souti and a global si, defined in a way analogous to kini , kouti

and ki for unweighted digraphs. One of the most characterizing features of a
network is the distribution F (k) of the degree of its nodes. Regular networks
have ki = k ∀i, as their structure is perfectly homogeneous, while random
graphs (see below) usually show a gaussian or a Poisson distribution, with
a well defined average 〈k〉. However the most interesting networks are those
showing a scale-free degree distribution, obeying a power law relation of the
form F (k) = e−γk, where γ is a small positive real number.

-average path length: the distance between two nodes vi and vj in a
graph is the length of the shortest path connecting them. In an unweighted
graph this is simply the number of links on the path, while for a weighted
graph also weights should be taken properly into account, depending on their
interpretation. The average path length is the average distance between any
two nodes in the graph. A peculiar feature of most real networks is the very
short average distance between nodes, scaling roughly as lnN , where N is
the number of nodes in the graph. A network with this characteristic is a
small world network.

-clustering coefficient : the ratio C of the number of closed triples, that is
triples of nodes each connected to each other, to the number of all possible
triples in the graph (both closed and open, i.e. with only two out of three
possible links), is called clustering coefficient. The ratio of the number of
closed triples to the number of all possible closed triples is called transitivity
ratio. C is a global measure of the degree to which nodes in the graph tend
to form clusters. It is useful to define also a local clustering coefficient Ci

for each node vi. Watts and Strogatz [88] define it as:

Ci =
|ejk : vj , vk ∈ Ni, ejk ∈ E|

εi
(5.1)

where the numerator is the effective number of edges linking nodes in
the neighborhood Ni of vi, and εi is the maximum possible number of links
among nodes in Ni, and we have εi = ki(ki − 1) for directed graphs, and
εi = ki(ki − 1)/2 for undirected ones. The average clustering coefficient
for the whole network will be then the average of Ci over all the nodes of
the graph (and is in general different from the clustering coefficient defined
above).

-centrality measures : there are many different ways of defining the cen-
trality of a node vi in a graph. The degree and the strength are two examples.
It is intuitive to think that a node will be more central, or influential, or
significant, if it is connected to many other nodes. In the case of a weighted
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graph it is seems intuitively more appropriate to consider the strength. How-
ever it should be noted that strength alone is not a very sensible measure, as
we will see below. Two useful definitions are those of betweenness centrality
and closeness centrality, which answers to the questions: ’how much is the
node vi involved in the shortest routes connecting the other nodes?’ and
’how close is the given node to all others?’ respectively. Betweenness is
formally defined as

CB
i =

∑
j =i =l

σjil
σjl

(5.2)

where σjil and σjl are the number of shortest paths connecting vj to vl
via vi, and the total number of shortest paths from vj to vl , respectively.
Closeness is defined as

CC
i =

1∑
j =i dij

(5.3)

where dij is the distance between vi and vj , and
∑

j =i dij is the farness
of node vi.

-modularity : a network may present a modular structure, with groups of
nodes forming tightly bound clusters. Many and/or strong links exist among
members of a cluster while connections to members of other clusters are
sparse. Many different modularity definitions have been given in literature,
aiming to quantify the degree to which a network is split in such clusters,
also called modularity classes.

Many real networks show peculiar features which makes them different
from both regular networks (such as lattices) and random ones, and can be
classified as complex networks. Namely they tend to differ for three main
reasons: they usually show the small world property, tend to have high clus-
tering coefficients and the degree of nodes follows a power law distribution,
i.e. they are scale-free. Small world random graphs [89] can be generated
via the Erdős-Rényi approach, but they do not show neither high cluster-
ing nor power law distribution of k. Generating graphs with all these three
features is not easy, the Watts-Strogatz and the Albert-Barabasi methods,
for instance, give more realistic graphs if compared to those generated by
the Erdős-Rényi algorithm, but they are able to reproduce only two out of
the three aforementioned features: apart from a short average path length,
the first generates graphs with high clustering coefficient but not scale-free
k distribution, while the second gives scale-free graphs, but with low clus-
tering.
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5.2 A network of events

The analysis of the transition matrix described in the previous chapter is not
easy with the algebraic approach described in section 3.3. This is because
it is in general a non-symmetric matrix and it does not satisfy the detailed
balance condition, so that there seem to be no obvious way of transforming
it into a symmetric matrix. Being non-symmetric implies that the existence
of a complete basis of real eigenvectors for it cannot be ensured. The kind of
eigenspectrum analysis described in section 3.3 and 4.1 cannot in general be
applied, at least directly, to it, because part of the eigenvalues are complex,
thus defying the requirements of PCCA, and cannot be related in a mean-
ingful way to the characteristic time scales of the processes taking place in
the system.

The existence of a symmetrizing transformation cannot be excluded,
however at the moment we are not aware of any such operation.

A different, intriguing approach to the event-space transition matrix is
that offered by network theory. In fact any matrix can be translated to a
graph, and vice versa.

In the last years different attempts to apply networks theory tools and
concepts to chemistry have appeared in literature. A great part of them
was devoted to represent and unravel the complex interactions of molecules
involved in genetic expression, metabolic reactions and other biochemical
processes. Some really interesting studies also focused on the same kind of
problems treated in this thesis. Doye et al. [90] analyzed the topology of
the energy landscape of a 14 Lennard-Jones atoms cluster, by representing
it as an undirected, unweighted network, where nodes represent minima,
and their connectivity mirrors the connectivity of minima in the PES. They
also proposed an explanation for the power-law distribution of the degree
in energy landscape networks, based on an Apollonian packing model of the
PES [91].

The network theory approach was used for studying the conformation
space of dipeptides, proteins, water clusters and other systems [92–95],
highlighting the degree, weight and clustering coefficient distibutions for
these systems, and their correlation with the statistical weight of the con-
figurations represented by nodes. Coarse-graining techniques based on the
configuration space network connectivity were also proposed, in which the
metastable aggregates of states can be defined as modularity classes [96], or
according to a random walk based procedure preserving the main spectral
properties of the original network [97].

It should be noted that most of these networks are undirected or un-
weighted. They all represent the connectivity of configurations, or PES
minima, by putting an edge linking any two of them for which a transition
was observed in a MD simulation, or a connecting TS is known to exist, re-
spectively.On the contrary we are going to define a weighted digraph, where
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each node represents an event, as defined in the previous chapter, and each
edge represents a transition between two events.

Figure 5.1: The networks obtained from MD simulations of methane at var-
ious loadings are shown. As all other networks graphic representation, this
figure was generated using Gephi [98]. The algorithm used for displaying the
networks is force atlas.

Given our n× n event matrix A we can build a n nodes graph represen-
tation of it by connecting each pair of nodes i and j if the entry Aij of the
matrix is non null, and attaching to the edge eij a weight wij = Aij .

In this way connections between nodes are non-symmetric and they are
characterized by a weight, representing the probability of transition between
the events represented by the nodes, within the given lag time. This network
is a representation of the dynamics of the system, but what information can
we extract from it and how? It must be made clear here that a definite
answer to this questions won’t be found in these lines. However we will
try to give an overview of the problems faced in the analysis of a weighted
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5.2. A network of events 98

Figure 5.2: The networks obtained from MD simulations of methane at vari-
ous temperatures are shown. The algorithm used for displaying the networks
is again force atlas.

digraph representing events in a molecular system, and of the perspectives
for further investigations.

We remark that this is a preliminary study, aiming to gain confidence
with the matter. As explorative tools we employed the free software GEPHI
[98], mostly intended for graph visualization and simple analysis, and the
TNET [99] package for weighted network analysis using R [100]. We re-
stricted ourselves to the network metric calculations available with these
softwares, as long as they were suitable for our purposes, while more sophis-
ticate calculations are left for further studies.

As a first question, one could ask if there is any immediate overall char-
acteristic of the network which is directly connected to the diffusion trends
observed for the various systems. A number of event networks for methane
are shown in figs. 5.1 and 5.2, corresponding to various loadings and tem-
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peratures respectively. The visualization algorithm employed is called force-
atlas, and arranges nodes so that their distance is proportional to the number
and strength of their links. This can immediately highlights the presence
of highly connected clusters of nodes and how they are related to other
clusters. What can be immediately realized in figs. 5.1 and 5.2 is the pro-
gressive shrinking of the graphs with decreasing loading and with increasing
temperature, respectively. This means that nodes, and thus events, tend
to be more tightly bound at high temperature and low loading. Should we
expect then a corresponding increase of diffusivity in this conditions? If all
events are closer together as the graphical representation vividly suggests,
it seems reasonable to think that the molecular motion is more free and
should give a higher diffusivity. But while this is true for the case of varying
temperature at fixed loading (in this case 〈n〉 = 1), for the case of varying
loading we know that the trend is very different from what fig. 5.1 suggests:
self-diffusivity increases up to 〈n〉 ∼ 9 and then it decreases.

This means that no such simple general relationship as we suggested
before can always be expected, and while it is roughly valid in the case of
varying temperature, in the case of varying loading other characteristic of
the network structure must be considered, if one hopes to relate the observed
behaviour to the network architecture.

K Start Target

1 I I
2 II II
3 III III
4 II III
5 III II
6 II II∗

7 I II
8 II I
9 I III
10 III I
11 II II†

12 I I‡

Table 5.1: Event classes observed within a lag time of 100 fs in MD trajec-
tories of various sorbates inside zeolite ITQ-29. Event classes are defined
by the site kind of the start-site and target-site.
* the site is adjacent to the start site
† the site is not adjacent to the start site
‡ the site is in the adjacent cage

A number of network metrics show the same trend graphically seen in
figs. 5.1 and 5.2. The in-degree and out-degree for the two cases of methane
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are shown in figs. 5.3, 5.4, 5.5 and 5.6.

Both kin and kout increase with temperature and decrease with loading,
in line with what we saw before. This is reasonable, as, when the temper-
ature is raised, progressively more and more events become possible within
the given lag time, and their connections increase in number. At low temper-
ature almost all jumps from a site to another are followed by a long stasis
in the target site, meaning that in the network the direct links between
non-null events are very rare. As the temperature is raised the probabil-
ity of consecutive jumps becomes non negligible and new links appear. On
the contrary, adding molecules in the cage has the effect of lowering both
the number of events and their connectivity, as new guests tend to hinder
mobility.
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Figure 5.3: Average in-degree for all event classes of methane, plotted
against loading.

An important exception to this trend is that of class 12 events (as we will
often refer to it, the table with the definition of all event classes is reproduced
in this section (tab. 5.1).) : for this class kin increases at first, then it
remains more or less constant and then decreases only for 〈n〉 � 10, while
kout is constant up to 〈n〉 = 10 before decreasing. This is worth of attention,
as inter-cage jumps have a prominent role in diffusion of methane. As we
have seen in sec. 4.3, it seems that the non monotonic trend of diffusion for
methane, xenon and kripton can be explained in terms of two contrasting
phenomena connected with increasing loading: an increase of the probability
of performing an inter-cage move, and the dwindling possibilities for intra-
cage motion. It would be interesting to understand how the nodes of kind
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Figure 5.4: Average out-degree for all event classes of methane, plotted
against loading.

12 gain probability, and this is a first observation in this direction: as 〈n〉
increases, it connects to more and more other events. Until now we did not
take into account the weight of links. However the weight plays a crucial role,
as the number of edges entering or leaving a node can in principle remain
unchanged in a network like ours, and weights can make all the difference
as conditions are varied. So we consider the strength (see figs. 5.7 and 5.8),
and notice that in general the overall trend is not so clear as for degrees. In
the case of varying temperature sin of class 2 and 3 slightly decreases, while
for class 1 it remains almost constant. The first fact can be explained with
the overall increase of mobility implying a smaller in-flow for null-events.
Class 2 events suffer the same effect, but they experience at the same time
an increment due to the progressively less attractive nature of sites of type
I (as was explained in discussing the equilibrium probabilities of the various
classes): as the probability of moving from site II to site I decreases, the
flow of probability into event 2 grows, while for events that leave site II it
decreases. The other non-null event classes showing decrease with growing
temperature are indeed those pointing to sites of type I, namely class 8 and
10.

One could be in fact tempted of interpreting degree and strength in terms
of the probability of observing a given event. However it should be stressed
that these are strictly local properties, accounting only for the number of
nodes directly bound to the one under examination and the flow of proba-
bility of its first neighbours toward and out of it, respectively. While these
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Figure 5.5: Average in-degree for all event classes of methane, plotted
against temperature (K).

properties are of course related to the overall probability of observing that
event, they are only a part of the story. A node can have high in-strength
for instance, and nonetheless the probability of observing the corresponding
event can be low, if its neighbours are weakly bound to the rest of the net-
work. This is particularly clear in the case of class 5 events. As can be seen
in figs. 5.7 and 5.8, this class show the highest value of sin, but as it can be
seen in fig. 4.8, it is globally a class of rare events compared to others with
lower sin, and this is due to the ’instability’ of site III at low loading. As 〈n〉
increases the events of class 5 show a drastic drop of sin, because as other
sites become unavailable, site III is ’stabilized’ in the sense that leaving it
become more and more difficult (at the same time the in-strength of events
of class 3 increases).

For the rest we see a somehow more complicated situation in fig. 5.7,
where each class of events seems to have an independent behaviour. How-
ever, at a closer look, certain interesting features emerge. We see again
that the non-null event class showing the strongest general increase, up to
〈n〉 � 10, is class 12. Some pairs of event classes seem to have a specular
plot, in particular class 2 with 1, and 6 with 8. This points to the fact
that the events from which the incoming edges for class 2 and 6 originate,
tend to distribute more of their sout to events targeting sites of type I rather
than II as the loading increases, because of the latter’s saturation. In fact
2- and 6-nodes correspond to II→II events, and lose sin to 1- and 8-nodes,
corresponding to I→I and II→I events, respectively. We remark here that,
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Figure 5.6: Average out-degree for all event classes of methane, plotted
against temperature (K).

given the stochastic nature of the event transition matrix, sout = 1 for all
nodes, and this is why we do not discuss it here. However this fact should be
remembered in order to understand certain facts concerning sin, and the last
observations are based on it: for example, as sin of II→I events increases,
that of II→II (and II→III) events should be expected to decrease, as the
nodes from which their incoming edges come from are the same, namely
those corresponding to events targeting II-sites, whose sout is constant.

Apart from these and other similar observations on particular cases, we
are not able, at present, to say much more on the interpretation of degree
and strength plots, and more reflection on the data presented may be needed
in order to highlight the key for a meaningful and comprehensive explanation
of the role played by these network metrics in the diffusion and adsorption
properties of the systems examined. If such a key exists.

However it can be that, given the aforementioned inherent limitations
in considering degree and strength for themselves, more sophisticate related
metrics are needed. Opsahl et al. [101] proposed a different way of describ-
ing the connectivity of a node, which can account for both the number of
connections and for their weight, at one time. They define this generalized
degree centrality as:

Cwα
D (i) = k

(1−α)
i sαi (5.4)

where α is a positive tunable parameter. When α = 0 we have Cwα
D (i) =

ki, while for for α = 1 obtain Cwα
D (i) = si. By tuning this parameter we
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Figure 5.7: Average in-strength for all event classes of methane, plotted
against loading.

can make Cwα
D (i) act in different ways. For example, given a certain fixed

strength, if 0 < α < 1 the measure increases with the number of links,
while if α > 1 it favours nodes with less connections. In other words it can
be higher for nodes which distribute strength on many links or vice versa.
Different values of α can thus highlight different subtle aspects of a node’s
connectivity, and in particular how strength and degree are interrelated.
This can shed light on interesting behaviours and correlation, and it would
be interesting to investigate a whole range of values of α, to see if more
illuminating tendencies emerge, linking the strictly local connectivity to the
behaviour of the system.

Even by considering the degree centrality in this way it remains the
simplest of centrality measures, and it is largely insensible to the global
structure of the network. So what happens when we turn our attention to
other ’long range’ centrality measures, such as betweenness and closeness?
We remark here that this measures are primarily defined for unweighted
networks. Opsahl et al. [101] defined two measures suitable for weighted
graphs, based on a different notion of distance which is intended as the sum
of weights connecting two nodes.

Moreover a parameter α can be again introduced, playing a similar role
to that seen for the degree centrality. This metrics seem to be better suited
for our network, however it must be remarked that, while considering the
weights seems to be in general a better choice if one wants to deal with
weighted graphs, the real meaning of these weights must also be taken into

Alberto M. Pintus - Pros and Cons of three Approaches to the Study of Diffusion in
Zeolites: Cellular Automata, Networks and second-order Markov Models

Tesi di Dottorato in Scienze e Tecnologie Chimiche - Università degli Studi di Sassari
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Figure 5.8: Average in-strength for all event classes of methane, plotted
against temperature (K).

account. Given that ours represent probabilities of moving from one event
to the other, we should define the distance between two nodes as the product
of weights along a path, rather than as their sum. So, for the moment, we
rely on the simple unweighted definitions of closeness and betweenness (eqs.
5.2 and 5.3) to see if they show any interesting behaviour.

In figs. 5.9 and 5.10 the networks for methane, respectively at various
loadings and temperature, are shown in different colors, and the vertical
position of nodes corresponds to their closeness value. The size of nodes is
proportional to their total degree. This is only one of the many possible
ways of displaying the networks, each highlighting the correlations existing
among the various measures, where the latter can be represented by colors,
size or position, depending on what one is interested to see.

What we notice at first sight is an overall similar trend to that already
seen for kin, kout and the global networks appearance in figs. 5.1 and 5.2:
closeness increases on average with T, and decreases with increasing 〈n〉.
Moreover the distribution of CC

i is narrower at high loading and temperature
(apart from the lowest one), and there seem to be lumps of nodes with
similar closeness, separated by more or less clear gaps. What we discover by
analyzing the identity of nodes, is that those with highest closeness are all
related to site III (i.e. having it as target or starting point), which occupies
the center of the α-cage. At intermediate values we find events related to
sites of kind II, while events related to sites of kind I show the lowest values.
This makes sense as we are considering as distance only the number of edges
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Figure 5.9: The networks of methane corresponding to loadings 2, 3, 5, 6, 8,
10 and 12 (each shown in a different colour, and arranged in ascending order
along the horizontal axis). The vertical displacement of nodes is proportional
to their closeness centrality value, while their size is proportional to the total
degree.

separating nodes, and events related to the central III-site are only one or
two edges away from almost all others. However the situation could change
completely by considering the weights.

In figs. 5.9 and 5.10 no evident correlation between the closeness and
the degree of nodes seems to appear. On the contrary, fig. 5.11, showing the
networks corresponding to various 〈n〉, with the size of nodes proportional
to their degree and the vertical coordinate corresponding to their between-
ness, makes evident that the degree of a node is strongly correlated with its
betweenness centrality. In particular, as one would intuitively expect, high
degree nodes tend to have the highest betweenness values. This is because
nodes with many connections are more likely to be found on the shortest
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Figure 5.10: The networks of methane corresponding to T=100K, 150K,
200K, 250K, 300K and 350K at 〈n〉 = 1 (each shown in a different colour,
and arranged in ascending order along the horizontal axis). The vertical dis-
placement of nodes is proportional to their closeness centrality value, while
their size is proportional to the total degree.

paths connecting other nodes. As a final example we present the networks
obtained from simulations of CO2 in fig. 5.12, displayed in a way analo-
gous to figs. 5.9 and 5.10. In this case no overall trend can be recognized
as we did for methane, apart from the progressively lower closeness value
as we move away from events related to site III. This behaviour leave an
open question, as we are not able, at present, to tell if the fact that noth-
ing here seems to have any connection with the diffusivity trend is due to
some true characteristic of this system or to the fact that, as already re-
marked, the partition of space used is not very well suited for the case of
CO2. So it seems that very little can be said at present on the relationship
of betwenness and closeness centrality of the nodes in the networks with the
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Figure 5.11: The networks of methane corresponding to loadings 2, 3, 5,
6, 8, 10 and 12 (each shown in a different colour, and arranged in ascend-
ing order along the horizontal axis). The vertical displacement of nodes is
proportional to their betweenness centrality value, while their size is propor-
tional to the total degree.

behaviour of the systems they represent, if we neglect the role of weights.
However some clues point to the existence of such a relationship, and we
believe that by developing more appropriate metrics for studying weighted
digraphs representing stochastic matrices, the kind of analysis attempted in
this last lines could unveil interesting trends and correlations between the
networks and their associated physical systems.

So far we considered only properties of single nodes. In fig. 5.13 we
report the average Erdos number for the networks of methane, argon and
carbon dioxide, referred to one of the events of class 12. The Erdos num-
ber is a popular measure often used in scientific collaboration networks. It
appeared first in the community of mathematicians, as the number of in-
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Figure 5.12: The networks of carbon dioxide corresponding to loadings
2, 5, 6, 8, 10 and 12 (each shown in a different colour, and arranged in
ascending order along the horizontal axis). The vertical displacement of
nodes is proportional to their closeness centrality value, while their size is
proportional to the total degree.

termediate persons needed to link a scientist to the famous mathematician
Paul Erdos, one of the pioneers of graph theory. He collaborated with an
impressive number of colleagues, and it became customary to assign mathe-
maticians their Erdos number, by looking at the coworkers of their published
papers, and seeing how many steps it takes to reach Paul Erdos. Amazingly
the average number for mathematicians is around 4.5. In our case it rep-
resents the average number of nodes between the inter-cage event and any
other node. As can be seen the number slightly increases in all cases, but
shows a minimum for CH4 at 〈n〉 = 8. This is a very rough measure but
seems nonetheless to point to a particularly favourable condition for reach-
ing inter-cage jumps at that loading, which is in line with the existence of a
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maximum of self-diffusivity in its vicinity.

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

0 2 4 6 8 10 12

E
rd

os
nu

m
be

r

〈n〉

CH4
Ar

CO2

Figure 5.13: Average Erdos number of nodes, relative to one of the nodes
of class 12, for the networks of methane, argon and carbon dioxide, as a
function of loading.

In figs. 5.14, 5.15, 5.16 and 5.17 we report some global properties for
networks of methane, argon and carbon dioxide. The total number of nodes
(fig. 5.14) tends globally to decrease for all three systems, but while this
tendency is weak and discontinuous for Ar and CO2, in the case of CH4 it is
stronger, showing a plateau at low loading, followed by a drop for 〈n〉 � 8.
Similar observations apply to the network connection density (fig. 5.15),
while the modularity (fig. 5.16) and the number of modularity classes (fig.
5.17) show strong increase for methane and again a weaker and discontinuous
increase for the other two cases. This facts are all coherent with what
we have already seen under many aspects: namely that as the density of
molecules increases, the number of possible events dwindles and so does the
probability of directly jumping from one to the other, causing the number of
nodes and the density of connections in the network to decrease. As already
remarked this effect is stronger for larger molecules, such as methane and
xenon, and the effect should be related to the reduced available space for
molecular motion. In the case of CO2 we should also take into account the
fact that this molecule experience a somehow larger α-cage space, because
of its preferential adsorption in the channel regions connecting cages, which
are largely unpopulated for other species. In this way part of the molecules
are removed from the inner part of the cages where other species tend to
crowd, and their volume interactions are thus reduced. The same lines
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5.2. A network of events 111

of reasoning applies to the increase of modularity and modularity classes,
meaning that the dynamics is more and more divided in clusters of strongly
connected events. This clusters emerge and strengthen as molecules get
trapped in sites and jumps to other sites lead progressively more often to
backscattering rather than to thermalization in the new destination.
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Figure 5.14: The number of nodes in the networks of methane, argon and
carbon dioxide, as a function of loading.

At the end of this section we report the plots for in-degree, out-degree
and in-strength for the networks of xenon, argon and carbon dioxide. We do
not embark here on a detailed anlysis of these plot as we did for methane.
The same lines of reasoning as before can in principle be applied, and we
just remark a pair of general facts. The most evident aspect in the following
figures is the close resemblance of those concerning Xe with what we have
seen previously for CH4. As already discussed in sec. 4.3 these two systems
(together with kripton) show a similar general behaviour, with the only
difference that all variations, associated with varying loading, for the Xe
data are more pronounced and result in steeper curves than for CH4. We
explained this fact in terms of the larger size of Xe, and in the following
we see that the same thing happens in all plots for Xe. On the other hand,
both Ar and CO2 show very different plots, with no pronounced trends and
generally flatter curves. The analysis of these data would require a case by
case study, and for the moment we leave it to the curiosity of the reader.

In the end of this provisional survey on the event network, we would
like to suggest what the real interpretation of the various trends observed
could be. At the beginning of this section we considered the possibility
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Figure 5.15: The connection density of the networks of methane, argon and
carbon dioxide, as a function of loading. Given the number of nodes, the
connection density is defined as the ratio of the effective number of edges
present, to the maximum possible number.

that the evolution of the network architecture, under varying conditions,
could reflect in some aspect the mechanisms determining the observed self-
diffusivity trends. Then, given the available metrics and their limitations,
we have seen how our network behaves with varying adsorbed species and
conditions, and how some of its features can be related to the mechanisms
underlying diffusion, and to the equilibrium probabilities of events. However
no evident, global trend of the network seems to relate to the self-diffusivity
trend in the case of varying loading. The only clear fact is that the network
tends to become smaller and less connected as 〈n〉 increases. And while this
makes sense, as we have seen, it seems to contrast with what we know to
be the behaviour of self-diffusivity. The same is not true when we look at
a given system under varying temperature, as in this case everything seems
to be intuitively coherent.

The reason could be that, as the network structure represents the con-
nectivity of events and their causal relationships, we should not expect after
all to find in it a direct reflection of the diffusion overall behaviour. The
problem may arise from the idea that as events connectivity decreases, so
should sites connectivity. But while the two things are of course strongly
related and can show a parallel behaviour, as in the case of varying tem-
perature at low loading, they remain two separate things. So may be that
the only fact that can be inferred from the connectivity of a network like
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Figure 5.16: The modularity value for the networks of methane, argon and
carbon dioxide, as a function of loading.
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Figure 5.17: The number of modularity classes in the networks of methane,
argon and carbon dioxide, as a function of loading.

ours is the rate of diffusion of a perturbation on it. If we consider a certain
event realization at a given instant of time, the network structure tells us
how long it will take for this perturbation to reach all of its part by random-
walking on the graph. If the network is strongly interconnected and has
low modularity, the information flow on it will be fast and uniform, leading
to a rapid restoration of the equilibrium probability of all events. While if
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modularity is high the time for losing memory of the initial event will be
longer. This point of view seems to suggest that the structure of an event
network like this is primarily related to the correlation properties of the un-
derlying dynamics. And in this light it is evident that what we should see
in the progressively sparser and less homogeneous tangles in fig. 5.1, is the
increase of correlation effects in the dynamics of methane molecules as their
density grows. And indeed this is what happens, tempering other effects,
which would otherwise cause a still stronger increase of diffusivity.

On the other hand we remark that the network we described is in some
sense hybrid. A pure event network can be imagined as one built on events
defined only by displacement, while, on the contrary, our events bring also
information concerning the sites involved. Let us consider a simple squared
lattice of regularly spaced points. The events on this symmetric, homo-
geneous lattice can be defined by only considering displacements, and the
connectivity of the resulting event network would be related only to the
nature and strength of displacements correlation. The same can be said of
a system with no fixed underlying framework in space, like a molecule in a
bulk liquid. But given the nature of the zeolite framework, and the inhomo-
geneity of sites, we must make a difference between events corresponding to
the same displacement, but connecting different pairs of sites. This makes
things slightly more complicated and while it is a legitimate way of defin-
ing events, it leads to a network where different aspects of the dynamics
are mixed together. However, once this is made clear, an analysis like that
exposed in the previous paragraphs can proceed and could demonstrate to
give interesting insights in the mechanisms underlying the diffusive process.
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Figure 5.18: Average out-degree for all event classes of argon, plotted
against loading.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

k
o
u
t

〈n〉

Xe

1
2
3
4
5
6
7
8
9

10
11
12

Figure 5.19: Average out-degree for all event classes of xenon, plotted
against loading.
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5.2. A network of events 116

2

4

6

8

10

12

14

0 2 4 6 8 10 12

k
o
u
t

〈n〉

CO2

1
2
3
4

5
6
7
8

9
10
11
12

Figure 5.20: Average out-degree for all event classes of carbon dioxide,
plotted against loading.
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Figure 5.21: Average in-strenth for all event classes of argon, plotted against
loading.
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Figure 5.22: Average in-strength for all event classes of xenon, plotted
against loading.
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Figure 5.23: Average in-strength for all event classes of carbon dioxide,
plotted against loading.
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Figure 5.24: Average in-degree for all event classes of argon, plotted against
loading.
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Figure 5.25: Average in-degree for all event classes of xenon, plotted against
loading.
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Figure 5.26: Average in-degree for all event classes of carbon dioxide, plot-
ted against loading.
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Chapter 6

Conclusions and Future
Perspectives

Many different approaches to the study and simulation of adsorbed molecules
in zeolites were described in these pages, on the general unifying background
of energy landscape theory. Some conclusions on the models proposed have
been already drawn at the end of the relative sections. What we present
in the following is a brief outline of the main common themes, pointing at
further development of these ideas.

Cellular Automata seem to be valuable candidates for simulating large
systems, having their strength in their naturally parallel evolution rules.
This allows a more efficient utilization of computational resources, and can
act as a general framework, where different concepts of computational chem-
istry can find expression. As an example we implemented parts of var-
ious Monte Carlo algorithm in our probabilistic CA models. As already
remarked, a fundamental problem in this field is that of linking the model’s
parameters to the physical reality it aims to represent. This is one of the rea-
sons why we tried to analyze the MD dynamics, taken here as ’reality’, with
the tools described. Obviously a good knowledge of the energy landscape
of the system could give useful information in this sense. However it seems
that this approach is really effective for systems showing high barriers. In
the rather flat energy landscape for methane, argon and xenon, uncovered
by our study, little can be added to what Molecular Dynamics already offers.
This is because small barriers make the kinetic difficult to be treated with
Transition State Theory, and moreover, in this conditions, the shape and ex-
tension of basins play the dominant role. Unfortunately these information
can only be known approximately in this theoretical framework, using for
instance the eigenvalues of the Hessian matrix at a minimum, to estimate
the extension of the corresponding basin. But while in the presence of high
barriers, and large energy gaps between minima, so that the enthalpy is
dominant in determining the free energy, this approximation of the entropic
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effects is fine, in our case entropy plays a leading role and accounting for it
properly could be more difficult. Nonetheless the exploration of the energy
landscape, using tools like OPTIM and PATHSAMPLE, may be fruitful in
different microporous systems, or in the case of strongly interacting adsorbed
species. If we are interested to the motion of zeolite extra-framework cations
for instance, or in the case of a molecule like benzene, which is known to
move very slowly in faujasite type zeolites, enthalpy should dominate the
dynamics, and given that MD is ineffective in such systems, a mapping of
the energy landscape could in principle be a very useful approach for the
study of kinetics, and the formulation of coarse-grained models, including a
sensible definition of parameters for our Cellular Automaton model.

The effort to mould the CA from a realistic casting led to the other two
interrelated approaches reported.

Markov State Models are valuable tools for describing and simulating
processes which are hardly handled by means of simple MD. However, they
appear to be again really promising for systems with higher kinetic barriers
compared to those addressed here. This is because they require a clear
separation in the characteristic time scales of dynamics in order to be really
effective, i.e. markovian.

If the systems studied were not best suited for this way of modeling, this
was the opportunity for an interesting detour, as it led to the reformulation
of the problem in terms of an event-event transition matrix. In the way it
is formulated here, this is little more than a second-order transition matrix,
but by switching to consider it as a first order transition matrix acting in
the event space, we gained an interesting and new point of view, which was
then translated in the language of network theory.

Beside being the basis for the coarse-grained model described in sec. 4.2,
it allowed us to qualitatively account for the diffusivity trend observed for ar-
gon, methane, xenon and kripton, by looking at the equilibrium probability
distribution of events.

With the word equilibrium, referred to the event space, we mean the
situation in which the system is at thermodynamic equilibrium, and we
have no knowledge of its previous history. In other words, the equilibrium
distribution of events gives us the probability of observing an event at any
randomly picked time, at thermodynamic equilibrium. But is it enough to
know this distribution in order to predict the behaviour of the system, or
to explain it? If we know that, at a particular time, a molecule has gone
through a given event, then for a certain time we know that the probability of
performing any other move is related to the first one. The way by which the
molecule loses memory of its starting point in the event space is related to
the displacement autocorrelation function, and this information is embedded
in the structure of the event network defined in sec. 5.2. Diffusion can be
seen as a random walk on the network of events, a byproduct of which is
the random walk in configuration space. And it is intuitively clear that
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the way events are connected should be considered beside their equilibrium
distribution. In fact we implicitly took this into account in sec. 4.2.

Looking at the event network architecture is one way by which we should
be able to infer what the various contributions to the displacement autocor-
relation function are. This could also be done by standard algebraic analysis
of the event transition matrix. However, if we look at its eigenspectrum, we
find that in general not all eigenvalues are real, and this renders this way to
proceed less intuitive and appealing.

Nonetheless, whichever way we look at the problem, it is useful to think
in terms of the spectral analysis of this matrix, as, similarly to what we have
seen for the case of configuration space in sections 3.3 and 4.1, its eigenvec-
tors and eigenvalues must be related to the structure of the processes by
which equilibrium is reached, and their characteristic time scales, respec-
tively. But, given that we are dealing with the event space, the processes
and time scales are those by which autocorrelation effects die out after a
given event.

Apart from this considerations, knowing the probability distribution of
events, and and their connectivity, could suggest an original way for deter-
mining the parameters for a CA model, like the one described in section sec.
2.2. One could think of a fitting procedure based on the information em-
bedded in the network, which optimizes the set of parameters of the model
until the latter generates a dynamics with the same fundamental pattern
of connections. This optimization problem can be cast in various way, and
we attempted a Neural Network (NN) approach to it. This objects are ca-
pable of fitting very complex functions, and are particularly useful when
even a tentative formulation of the analytical functional form of a problem
is impossible. Let us consider the set of unknown parameters of a model,
already properly designed for the problem at hand, and the set of weights
of the event transition network (suitably simplified by means of symmetry
considerations): there should be a way of adjusting the parameters so that
they cause the model to produce a dynamics whose event transition network
fits that obtained from MD.

A suitably trained NN should be able, in principle, to take as input a set
of network weights, and output the set of parameters which, implemented in
the CA, generate an event transition network with the same set of weights.
The training procedure consists of feeding a large number of input and
output set pairs to the NN, so that it ’learns’ how to output the proper set
given an input one. We used sets of weights of the event network, obtained
from CA runs, as input, and tried to train the NN to output the correct
set of parameters used for the simulations. After a successful training, one
can expect that, giving the set of weights of a network, this time obtained
from a Molecular Dynamics run, the Neural Network output the set of right
parameters, causing the CA to properly emulate the system. Unfortunately
we were not able to succesfully train the NN, and so this attempt was left
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hanging, and is briefly reported here just as a suggestion for further studies.
Apart from applying the energy landscape analysis, and techniques based

on the clustering of MD trajectories and PCCA, to other microporous struc-
tures and adsorbate species, which seems a straightforward task, many as-
pects of the idea exposed require further investigation.

Concerning the exploration of energy landscapes, we have seen how, by
iteratively searching minima and transition states, a representative part of
the PES can be uncovered. Beside the Discrete Path Sampling method
succesfully proposed and implemented by Wales and coworkers, other ap-
proaches are reported in literature [103, 104]. In [104], as an example, a
transition network is built on the energy landscape. This is done by ho-
mogeneously distributing points in the relevant part of configuration space,
minimizing their energy before adding more points by interpolation, and,
when a certain number of minima is reached, connecting them by search-
ing minimum energy paths. This gives a weighted transition network, whose
weights are determined by means of Transition State Theory. This and other
techniques rely on algorithms for minimizing energy along paths connecting
minima. However it is well known that at finite temperature the minimum
energy path between two points in configuration space may lose relevance.
This is because other paths starts to be available as temperature grows.
The statistical weight difference among these paths tends to decrease as the
kinetic energy of the system increases and, depending on the system, a huge
number of practically degenerate different routes can render the knowledge
a single minimum energy one irrelevant. Moreover, as temperature increases
a relatively high energy path can take over the leading role, as the entropy
contribution can render its free energy particularly low. Imagine as an ex-
ample a low energy path on the bottom of a narrow valley of the energy
landscape; at 0K it will be dominant, but at finite temperature, another
higher energy path can overwhelm it, if the latter lies on the bottom of a
wider valley, with a larger catchment basin. Discrete Path Sampling and
similar techniques should not suffer much from the first problem, as they ef-
fectively sample a number of paths, properly accounting for degeneracy. The
second problem is more subtle and was independently addressed by Elber
et al [105, 106] and Faccioli et al [107–110], by proposing the minimization
of an action functional of the path, in the spirit of Feynman’s Path Integral
formulation of quantum mechanics.

Various formulations of this stochastic action (also called Onsager-Machlup
action) exist. One of them contains a Hessian term, that is an energy second
derivative term, which account for the curvature of the PES along a path,
and thus allows an estimation of the aforementioned entropic contribution.

To date, techniques based on stochastic actions have been applied to the
study of the single dominant reaction path (DRP [111]) and to the sampling
of paths in its immediate neighborhood [112]. It would be interesting to
see the impact of applying an action minimization algorithm, taking into
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account entropic effects, to a global energy landscape exploration, in the
spirit of the other algorithms seen, which are all based on minimum energy
paths networks. However much of the applicability of this idea depends on
the processor time required by action minimization, which can be expected
to be more computationally expensive than energy minimization.

Finally, concerning the event space approach to the dynamics of diffus-
ing particles, we can only conclude with a series of open questions. First of
all, is it a useful way of formulating the problem? Can it really add to our
understanding, or is it little more than a complicated reformulation of it? Is
the difference a matter of concepts or just of words? And for what attains
the most suitable tools for addressing it, is there a way of simmetrizing the
matrix in order to analyze it in terms of real eigenvalues and eigenvectors?
Is there another suitable analytical way? What is the advantage of looking
at the corresponding graph? What can be the physical interpretation of the
metrics characterizing the network? If the modularity is inversely related to
the forgetfulness of dynamics, is there a way of quantifying this? Is there
a way of reformulating centrality measures, so that they are meaningful
in the context of a stochastic matrix network? How could the problem of
degenerate paths be addressed in the definition of distance and related met-
rics? What is the most useful definition of the clustering coefficient in this
context? How is it related to dynamics? Is there any critical phenomenon
that can be highlighted in the evolution of the network with varying con-
ditions? What correlations among various metrics are meaningful, and in
which sense? Is there a more elegant, useful or meaningful way of defining
such a network? Could it act in any way as a conceptual bridge between
the physical reality of diffusion and a generic coarse-grained model of it?
And if it make sense, is it suitable only for the kind of systems described
here? By a proper definition of the relevant events, could it be sensible
to extend this idea to other processes, such as diffusion in bulk solutions,
where no fixed framework exist? Could it shed any new light on processes
that have already been studied from the viewpoint of configuration space,
such as protein folding and other complex structural transitions?

Only time, reflection and hard work will tell.
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