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Preface 

Since long time agricultural activities have promoted positive changes in crop yield and animal 

production, thus satisfying the continuous increase of food demand as well as the improvement 

of co-operation and trade exchanges. However, in order to reach these aims, modern agriculture 

has been more and more often characterized by the use of practices and methods that are widely 

considered harmful for environment. More in detail, the widely application of deep tillage, 

pesticide, fertilization and many other agricultural practices that are commonly used under 

intensive agriculture have contributed, among other, also at increasing the greenhouse gas 

concentration in atmosphere that is widely accepted to be the main cause of global warming. 

 

Agricultural sector, however, can also reduce or absorb these emissions, thus contributing to 

reduce global warming and its associated impacts. Agriculture can play a very important role in 

greenhouse gas mitigation through the increase of C-sequestration in soil or plant compartment 

(e.g. within branches and roots). On these premises, the chapters within this thesis were focused 

at illustrating as one of the most important agricultural systems more suitable for this aim are 

fruit orchards. 

 

In particular the work reported into the chapters of this thesis has been carried out with the aim 

to evaluate the role of the most spread Mediterranean orchard: olive orchard. Each of the three 

chapter helps bridge our current knowledge gaps about the climate change mitigation capacity 

provided by olive orchard, changes in C-dynamics depending on climate conditions and 

agricultural practices, and the current status of tools able to predict C-fluxes from this long term 

agro ecosystem. 

 

This research was carried out with the aim to improve the know-how about the functional role of 

olive orchards in climate change mitigation. Despite our research provided proofs about the 

climate change mitigation capacity that this system can provide both currently and in the next 

decades, many challenges still lie ahead. Therefore, more detailed micrometeorological and 

GHG emissions analysis should be conducted over this ecosystem. I hope that results provided 

by this thesis can be a little step to develop or improve new ways and strategies to cope with 

climate change through the managing of these long-term agro ecosystems. 
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Abstract 

The contribution that olive orchards can provide in climate mitigation should be more deeply 

analyzed given that these systems can stock large amount of C in woody compartments and soils. 

These systems could play a fundamental role especially over Mediterranean basin that is one of 

the most sensitive areas to climate change and where they are widely cultivated. However some 

issues are still open: what do we really know about the C-sequestration capacity provided by 

these systems? Can these really contribute to climate change mitigation both for current and 

future periods? In order to solve these questions, a mid-term study (3 years) was carried out at 

Follonica (Tuscany, central Italy), where an eddy covariance tower was installed over a typical 

rainfed olive orchard. Data from eddy covariance were then used for calibrating and validating 

two different models able at simulating C-exchange and biomass production from this system. 

Our work firstly allowed to assess the C-fluxes dynamics from this system and their relation with 

the main meteorological parameters and agricultural practices, thus indicating the magnitude of 

C-sequestration capacity offered by a typical Mediterranean olive orchard; as second the 

implementation of new tools that can be used for assessing the efficiency of mitigation strategies 

or to predict changes in mitigation capacity that these systems will probably encounter over the 

next decades. 
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Abstract 

This chapter gives a general overview about the relationship between agriculture and climate change. 

Here were indicated the observed and expected climate changes as well as the double role that 

agricultural systems play in climate change. Main policies and strategies adopted to reduce these changes 

were also briefly described. Finally, the role of long-term agro ecosystems in climate mitigation has been 

questioned, focusing the attention especially on the olive orchards. 

 

Keywords: Climate change, agriculture, policies, mitigation, long-term agro-ecosystems 
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Chapter 1. 

General Background 

1.1.  Climate change and Agriculture 

In the last decades a greater and greater scientific consensus proved that climate change and 

global warming are a real threat and that they were mostly originated by human-activities. Proofs 

of changes in climate trends have been provided by several scientific authorities and particularly 

from IPCC, a scientific intergovernmental body of the United Nations that produces reports 

aimed at supporting the United Nations Framework Convention on Climate Change (UNFCCC). 

The latest observations of the atmosphere and surface provided by WGI of AR5-IPCC (IPCC, 

2013) indicate that in the last century (1901-2012) almost the entire globe has experienced 

surface warming (IPCC, 2013). In particular, the global surface temperature (lands and oceans) 

calculated over the period 1880-2012 showed a warming of 0.85°C (IPCC, 2013). Moreover, it is 

virtually certain that since 1950 both maximum and minimum averages temperatures are 

increased. Concerning hydrological cycle and especially precipitation regimes, despite data 

quality cannot guarantee high levels of confidence, precipitation has been estimated to be 

increased over northern areas from the beginning of the century. IPCC 2013 also reported that 

the numbers of cold days and night is decreased while those of warm days and night is increased. 

Furthermore, heavy precipitation events are increased over several worldwide region, especially 

Europe and North America (high confidence). Even drought and dryness periods are probably 

increased since 1970 (low confidence). 

Looking at future climate projections for the end of the 21st century with respect to a baseline 

period of 1986–2005, climate trends are expected to worsening significantly with a general 

strongest warming comprises between 0.3 and 4.8 °C depending on the concentration-driven 

RCPs applied (IPCC, 2013). Focusing on Europe, Kjellström et al. (2011) indicated that the 

strongest warming will be observed during summer especially over Southern Europe, whilst it 

will be expected in wintertime in Northern Europe. They also indicated a precipitation increase 

in Northern Europe and a strong decrease in Southern Europe. Concerning extremes, Lenderink 

and Van Meijgaard, (2008) indicated a very likely increase in heat waves, droughts and heavy 

precipitation events over the whole Europe. These changes in climate are expected to be 

particularly detrimental for agriculture. Agricultural sector, indeed, is characterized by a 

complex two-way relationship with climate. From one hand, crop growth is highly sensitive to 

change in temperature and precipitations since these factors can cause modification in phenology 
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that can bring at decrease of crop yield and increases in cultivation cost (Chmielewski et al., 

2004; Seguin et al., 2007; Olesen et al., 2011; Brilli et al., 2014). By contrast, agriculture 

contributes to global warming through the emissions of greenhouse gases (GHGs) that are 

originated by the most common agricultural activities such as fertilization, mechanical 

harvesting, tillage, etc. (Paustian et al., 2004; Smith et al., 2007; IPCC, 2007; Fisher et al., 2012; 

Bennetzen et al., 2012). Currently, agriculture contributes to 14% of all anthropogenic GHG 

emissions and to 58% of the world's anthropogenic non-carbon dioxide (CO2) GHG emissions 

(Denman et al., 2007; Beach et al., 2008).  

 

1.2.  European context: Instruments and Strategies  

In the last years several policies and agricultural strategies have been developed with the aim to 

reduce crop yield losses or limiting the GHG emissions. Despite these measures should be 

quickly implemented and applied, just few countries have currently developed large-scale 

programmes to cope with climate change and its associated impacts on crop systems Europe, 

however, is currently the global area where these programmes were more widely developed and 

applied (e.g. European Climate Change Programme (ECCP), European Union Emissions Trading 

System (EU ETS), Renewable Energy Directive, the “20-20-20” Policy, among others). 

These programmes in agree with the appointed organisms (e.g. IPCC) have indicated as the best 

way to cope with climate change those measures for "adaptation" and "mitigation". The first are 

strategies aimed at reducing economic losses due to crop yield decrease and the high costs of 

management inputs as fertilizer or irrigation (Smith and Olesen, 2010). These strategies, usually 

adopted by farmers, mainly consist of changes in cultivar types, sowing date, management, etc. 

(Bindi and Olesen, 2011). Differently the latter are strategies aimed at reducing GHG emissions 

from agriculture and, at the same time, at stabilizing the GHG already present in atmosphere, 

thus minimizing the vulnerability of physical and biophysical systems. 

Mitigation strategies are referred both to forestry that agriculture and are mainly based on three 

aims: i) enhancing removals by increasing of reforestation and carbon sequestration from forest 

and agricultural soils; ii) reducing emissions by increasing efficiency energy and change in land 

management; iii) avoiding or displacing emissions through bioenergy production. These aims 

can be achieved through the application of several practices aimed at increasing C in soil or 

reducing N emissions (i.e. minimum or no tillage, fertilizer application reduction, energy 

consumption reduction, grass cover, etc.). 
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1.3.  Long term agro-ecosystems: role in climate change mitigation 

According to Dickie et al. (2014), mitigation potential estimated for agricultural sector can vary 

from 5.4 to 6.3 Gt CO2eq. This magnitude is mainly due to a combination of three important 

factors: emissions reduction, sequestration of carbon in agricultural systems, and major shifts in 

consumption patterns. Estimates provided by Dickie et al. (2014) indicate that agricultural sector 

may result roughly GHG neutral. However, whilst the mitigative potential of several crop 

systems has been analysed, just few studies were focused at evaluating the role of long term 

agro-ecosystem. The contribution that these systems can provide in mitigation should not be 

neglected since they can stock large amount of C in woody compartments and soils. Moreover, 

the cultivation of these systems is widespread over the most sensitive areas to climate change 

such as Mediterranean basin. Despite according to IPCC, (2013) “tree cover and biomass in long 

term agro ecosystem (e.g. fruit orchard or savanna) has increased over the past century” 

(Angassa and Oba, 2008; Witt et al., 2009; Lunt et al., 2010; Rohde and Hoffman, 2012), thus 

enhancing carbon storage per hectare (Hughes et al., 2006; Liao et al., 2006; Throop and Archer, 

2008; Boutton et al., 2009), there is still an open issue: how much do we really know about the 

mitigation capacity provided by these systems?  

In order to solve this question, it is needed to know the prevailing ecological usage of the term 

"savanna". Savannas systems are complex ecosystems usually structured in two different layers 

(grass and trees) in which contrasting plant life forms co-dominate (Scholes and Archer, 1997). 

These systems are widely extensive especially over tropical and temperate regions where they 

result to be very economically important since involved in fruit production. They are usually 

assessed and categorized based on several parameters such as stature, canopy cover, and 

arrangement of woody elements (Sarmiento, 1984; Johnson and Tothill, 1985; Cole, 1986; 

Burgess, 1995). According to several studies (Archer et al., 1988; Menaut et al., 1990; Tongway 

and Ludwig, 1990; San Jose et al., 1991; Montania, 1992) these systems are classified within 

specific ecoregions: tropical and subtropical savannas; temperate savannas; Mediterranean 

savannas; flooded savannas and montane savannas.  

Around Mediterranean basin, where climate change is expected to be detrimental for agriculture, 

the most typical tree species into Mediterranean savanna are oaks and olive trees. In particular 

these latter can be considered the most important fruit tree around the basin. This specie has high 

agronomic and economic value besides at providing a multitude of ecosystem services.  
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Based on these premises the main aim of this work was assessing the role that a typical 

Mediterranean olive orchard can play in climate change mitigation. This aim was reached 

through a mid-term study (3 years) carried out at Follonica (Tuscany, central Italy), in which 

eddy covariance measurements allowed the assessment of the C-sequestration capacity as well as 

the evaluation of C-fluxes dynamics in respect of the main meteorological variables or 

management practices. 

Processed eddy covariance data were additionally used to calibrate and validate two different 

models which resulted to be able at simulating gross primary production (GPP) and the net 

ecosystem exchange (NEE) of our test site. Doing so, we implemented new tools able to predict 

changes in mitigation capacity that savanna systems such as olive orchard will encounter in the 

next decades, or at developing and evaluating new mitigation strategies based on the changed 

climatic conditions. 
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Chapter 2 

Materials and methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

Chapter 2 is divided into 3 sections: section 2.1 explores the fruit tree species (i.e. Olea Europaea, L.) 

that has been studied. This section discusses about taxonomic framework and the characteristics of the 

specie, phenology, eco-physiology and C-fluxes, as well as the economic importance both at local and 

worldwide. Section 2.2 describes the eddy covariance method. The major part of information presented in 

this section make reference to the book “Eddy Covariance Method for Scientific, Industrial, Agricultural 

and Regulatory Applications” by George Burba. This section is intended to provide the physical and 

mathematical principles, the major sources of errors and data processing of the eddy covariance method. 

Finally, section 2.3 explores mathematical models, especially more deeply analysing those remote sensing 

and biogeochemical models that were used in this thesis. 

 

Keywords: Olive trees, mathematical models, C-fix model, Daycent. 
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Chapter 2.  

Materials and methods  

2.1. Olive tree 

2.1.1. Taxonomic framework 

The olive tree (Olea europaea L.) is a fruit tree belonged to Oleaceae family. Some authors 

insert Oleaceae family within the Scrophulariales order (12 families and more than 12000 

species), while others authors insert it in an itself order, called Oleales. Although Oleaceae 

family have a regular tetramera corolla and only two stamens, these latter should be considered 

modifications occurred from the reduction of the typical flower (which has a pentamer corolla ), 

therefore it would not have to be inserted in another taxon nor considered more archaic than the 

rest of the order. The Oleaceae family is composed of 24 genera, consisting of approximately 

600 species. Among these, more than half belong to Jasminum genus, very important as it 

includes species of considerable economic importance such as Olea europea. The family consists 

of trees and shrubs, characterized by mostly opposite leaves , simple or compound (Grossoni, 

1997). Flowers are usually complete, commonly grouped into inflorescences. Corolla consists of 

4 petals. The form of fruit is variable, ranging from "Samara" (i.e. Fraxinus L.) to "capsule" 

(Syringa L.), or "berry" (Ligustrum L.), until most-known "drupe" (Phillyrea L. and Olea L.). 

 

2.1.2. Geographical range 

Olive tree is a typical Mediterranean specie which extends from the Iberian Peninsula to 

Anatolia, including coastal areas of Italy and North Africa. Although olive trees cultivation is 

currently widespread around the whole Mediterranean basin, the original area of this specie can 

be considered the Caucasus (Syria and Palestine), where the first farming communities began a 

systematic selection of different varieties. The olive trees cultivation was for long time exclusive 

of Mediterranean countries due to the favourable climate conditions. In the last years, however, 

olive tree cultivation has been spread in many other countries with similar climate conditions 

such as California, Australia, Argentina and South Africa. Olive trees systems are placed on the 

marginal land that are unsuitable for intensive cultivation due to soil type, topography, lack of 

water for irrigation, etc., therefore the major part of the traditional orchards are formed by widely 

spaced trees. The very old origin of this specie in conjunction with the longevity of individual 

trees and the continuative use of vegetative propagation, allowed the development of a wide 

numbers of cultivars. According to Connor et al. (2005), whilst in Spain, Greece, and Tunisia, a 
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small numbers of cultivars dominate intensive production areas, in Italy there is more variation 

between the several cultivation areas. In Italy, the cultivation area of olive tree correspond to 

Lauretum. The specie prefers temperate climates, ranging from areas characterized by warm and 

dry summers (evergreen sclerophyllous Mediterranean) to cooler areas until 500-600 m above 

sea level, while, on the contrary it avoids foggy areas with cold temperatures in winter. The best 

areas for growth is central and southern Italy, including islands and other areas where climate is 

tempered by the presence of large bodies of water such as lakes (i.e. Lombardy and Veneto).  

 

2.1.3. Botanic description 

Olive tree under free growth conditions can reach 10 meters in height, but it does not exceeds 4-

5 meters. It is a long-lived plant that, under favourable conditions, can live more than thousand 

years. The canopy have a rounded shape (oval, enlarged, lax) but it can change based on pruning 

and variety. Trunk is irregular and twisted, with the presence of ribs or cords, tending to divide 

itself forming some cavity. The wood is hard and heavy. The bark is characterized by a grey-ash 

colour that does not change along the entire life. Olive tree can easily regenerate itself from the 

stump thanks to several globular structures (i.e. spheroblasts or ovules) that yearly provide many 

basal shoots. Leaves are simple, elliptical, leathery and shortly “petiolate” with the entire margin. 

They are green at the top of the page with the other side silvery-grey. This latter can vary 

depending on species and age. Flowers are hermaphrodite, with a small persistent calyx for 4 

deciduous teeth and a tubular corolla with 4 lobes long white 1 cm. Flowers are usually 

inflorescences (10-15) that are produced from the axils of the leaves of the branches of the 

previous year. Flowering duration is different for individual trees (i.e. 10 days) and orchards (i.e. 

from 20 to 30 days). Pollen production lasts for about 5 days while individual stigmas remain 

receptive for about 2 days. Wind is the main driver of pollen production. This eco-physiological 

process is very delicate since it is hindered by strong or hot winds, intense rainfall and high 

temperatures. Orchards with an average pollen production are able to guarantee the reproductive  

success. By contrast, the reproductive success for individual trees is strictly connected to the 

number of flower and pollen produced. 

 

2.1.4. Phenology 

Olive tree is a day-neutral plant. Fruit production begins when the specie has 3/4 years, whilst 

the full production after 8 years. Complete maturity is reached after about 20 years. Production 
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of nodes, the expansion of leaves and the thickening of stems (i.e. vegetative growth) occur at 

any time during the year. Vegetative growth is constrained by specific meteorological parameters 

such as solar radiation, low temperature in winter, and water availability during summer. Typical 

Mediterranean orchards (i.e. rainfed orchards) show two different peaks of vegetative growth, in 

spring and autumn, respectively (Connor, 2005). The phenological cycle of olive tree consists of 

several stages characterized by different level of sensitive to climatic conditions. During winter, 

the vernalization process (or dormancy) happens when trees are exposed to cooler temperatures 

(<7ºC). This process leads to the second phase of the reproductive process (i.e. the initiation of 

induced buds). The length of this phase depends on meteorological conditions (i.e. length of cold 

time). Then, the vegetative growth starts in February/March, when the lateral and apical buds 

begin to grow and stretch, showing the issuance of new vegetation that is clearly recognizable by 

the colour of the new buds. During this period the vegetative growth is mainly driven by the 

increase of temperature. Vegetative growth is characterized by the growth of shoots and buds. 

This physiological phase ends around the middle of the Spring, when both shoots and buds reach 

their final dimensions. The growth of fruits and seeds can lead to the floral induction inhibition, 

thus contributing to the alternate bearing. This characteristic is particularly clear observing the 

pattern of biennial flowering and yield. More specifically, years with intense fruiting are usually 

followed by years with restricted flowering. Although this pattern is very common in almost all 

fruit trees, olive tree is the fruit tree mostly representative, however (Rallo, 1998). Floral 

induction occurs in mid-summer (7 to 8 weeks after full bloom) around the time of pit hardening 

(endocarp hardening). The bloom is characterized by a very high number of flowers. Flowers 

dropping is considerable and it takes the name of "colatura". The transition from flower to fruit is 

defined as Fruit Set and usually occurs at the end of June. At this stage corolla enlarges and dries 

out, persisting until the enlarged ovary causes the detachment. During this phase many factors 

such as the sudden lowering and remarkable of the temperature, water stress and warm winds 

can have a negative impact on the percentage of Fruit Set. During the next 4/5 months, olives 

develop and grown. This long period, which consists of 3 distinguishable sub-phases, ends 

around November when the fruit has reached the final dimensions. The first sub-step is 

characterized by the increase (until 20%) of the drupes. Then the hardening of the heart is 

observed in conjunction with a decrease of fruits growth. The drupes reach the 50% of their final 

dimensions while the core becomes hard. This sub-step lasts until the end of August. Finally, 

fruits growth vary based on the climate elapse. In rainfed orchards the olives growth and oil 



 

Brilli Lorenzo. Olive tree system in Mediterranean basin: a mid-term survey on C sequestration dynamics and 

modelling. PhD Thesis Agrometeorology and Ecophysiology. University of Sassari, Italy, 2014. 
20 

content are mainly driven by summer rains, especially those between August and September. 

Drought conditions can lead to small fruit size and low oil yield. On the contrary, autumnal 

rainfalls increase the size of the olives, but do not influence the olive oil yield. The olives 

ripening takes place between October and December, depending to the variety and geographical 

location. Ripening phase is characterized by the change of colour of the olives. This change is 

gradual, from green to straw yellow, up to purplish red. It usually includes at least 50% of the 

surface of the drupe. This period takes the name of veraison and it is characterized by a strong 

scalar component both among different varieties and intra-variety. Olives range from 1 to 6 

grams and their size, shape and colour vary based on the different varieties. During veraison the 

olive oil content increases while the pulp becomes more soft. Olives reach the complete maturity 

before the plant ends its growing cycle. 

 

2.1.5. Ecophysiology 

Crop growth and productivity are mostly determined by intrinsic characteristics of the specie and 

climatic conditions of the site. Crop growth, however, is also determined by soil characteristics 

(physical-chemical structure, morphology, texture, etc.) and management (tillages, fertilization, 

pruning, etc.). The interactions involving the relation plant-environment are very complex. These 

interactions affect the plants at physiological and biochemical level, causing different response in 

terms of development and productivity. Understanding these interactions in olive trees is 

complex due to physiological characteristics of this specie since it has characterized by a 

particular reproductive cycle and alternate bearing (Fiorino, 2001). Olive tree is a typically 

thermophile species with strong xerophil characters. The spontaneous subspecies of olive tree 

(wild olive tree) is found in degraded spots, scrublands and rocky vegetation, coastlines, etc. The 

specie is characterized by high grazing resistance, taking on a bushy habit with dense and thorny 

branching. Olive tree has a remarkable ability to re-grow vigorous suckers from the stump after 

fires, while is sensitive to low temperatures. The specie suffers shading. When it is found under 

shadow conditions produces few branches, little canopy and low flowering. The climatic factor 

determining for olive trees distribution is temperature. The first signs of suffering are clear at 

temperatures of 3-4 ° C, below these temperatures the tips of the shoots wither. The cold 

sensitivity increases from the stump to branches. Frosts can cause the death of the entire tree, but 

the most critical damages appear when temperatures are stable for longer time below -5/6 ° C. 

According to long term studies carried out in California by Hartmann’s group (Denney and 
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McEachern, 1983) the optimum temperature regime for olive tree flowering is in a range from 2 

to 4ºC (minima) and from 15.5 to 19ºC (maximum). Water stress is the main parameter affecting 

production, especially in warm environments such as many areas of Mediterranean. In particular 

flowering and fruit growth are the most critical periods during the whole vegetative cycle. In 

these stages  water stress (both lower or stronger) reduces the percentage of fruit set, leading to a 

fruit drop and causing the ripening during summer with a consequent low percentage of olive oil 

production. Olive tree, however, even in dry areas can provide a minimal level of production. 

Harmful climatic factors are also strong wind , especially when associated with low temperature, 

excessive rainfall and elevated air humidity. This specie does not requires specific soils, 

preferring however loose soil and medium texture, fresh and well drained. Optimal soil 

conditions for growth are also coarse soils or shallow with outcropping rocks. On the contrary, it 

suffers heavy soils and subject to stagnation. The dynamics of roots growth is still little known. 

Olive tree root systems can be extended until the edge of canopy projection. They are also 

superficial, with root length density (RLD, cm/cm-3) that can be less than in herbaceous crops 

and some deciduous orchards (Fereres and Goldhamer, 1990). Roots are mostly shallow and 

temporary. The 70% of roots is found in the first 50-60 cm. Palese et al. (2000) in a study aimed 

at evaluating the seasonal distribution of olive root growth in southern Italy, observed that they 

tend to be concentrated within the wetted volume. Maximum root length density is usually 

observed in winter-spring under rainfed conditions, and during summer under irrigation (Connor, 

2005). Olive tree is also one of the fruit tree species that can better tolerate high level of salinity, 

thus resulting suitable for cultivation close to coastlines. 

 

2.1.6. C-exchanges 

Olive tree is a C3 specie with high rate of photorespiration. The major photosynthesis limitations 

are high temperatures and light intensity as well as high level of CO2 concentration. Concerning 

the plant compartments, leaves are the main element involved in gas exchanges. This is  due to 

the abundance of persistent elements which regulate in- and out-fluxes from leaves. The net 

photosynthesis rate is not much high, reaching the maximum just for short periods and under 

specific physical-chemical conditions (i.e. high organic N content in leaves, optimal temperature, 

high soil water content, etc.). The photosynthetic rate, on average, usually varies with the 

changes of environmental and varietal conditions. The highest photosynthesis values are usually 

recorded during the morning, followed by a gradual decrease during the hottest hours 
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(afternoon). The photosynthetic activity can be observed also within fruits, especially in the early 

stages of development whilst it is reduced during veraison. The assimilation rate changes even 

according to temperature values. It decreases with temperatures higher than 35 °C and lower than 

5-7 °C due to the considerable increase of plant respiration. On the contrary, the specie finds the 

highest assimilation rate in a range between 25 and 28 °C. Although this specie can tolerate high 

level of water stress, it is highly influenced by the levels of light. Therefore, olive tree is very 

vulnerable to photoinhibition when water deficit happens in conjunction with excess of light. 

 

2.1.7. Economy and statistics 

Although olive tree is a typical Mediterranean species and its cultivation has always been 

widespread around the whole basin,  in the last 30 years its cultivation has also been extended in 

others countries such as California, Australia, Argentina and South Africa. The spreading of 

olive tree cultivation in these countries was due to the interaction between favourable climate 

conditions for the growth of the specie with new type of feeding required. Nowadays, the area 

involved in olive tree cultivation consists of about 9 million 200 thousand hectares around the 

world (FAO, 2009) with overwhelmingly development (over 98%) in countries bordering the 

Mediterranean basin. This is confirmed by data from FAOSTAT (FAOSTAT, 2013), which 

indicate that more than 85% of the area cultivated with olive trees and 52% of worldwide 

production comes from 7 Mediterranean countries (i.e. Greece, Italy, Spain, Tunisia, Morocco, 

Syria and Turkey) (Tab. 2.1).  

 

Country Area Harvested (Ha) Production (tonnes) % (Ha) % (tonnes) 

World 9661531.8 18294357.44 100.00 100.00 

Greece 820304.8 1123772 8.49 6.14 

Italy 1173406 1591104 12.15 8.7 

Morocco 615362.6 641002.6 6.37 3.5 

Spain 2412106 3146124 24.97 17.2 

Syria 637039.4 616001.8 6.59 3.37 

Tunisia 1853830 1673430 19.19 9.15 

Turkey 766020 842231.4 7.93 4.6 

Total 8278068.8 9633665.8 85.68 52.66 

 

Table 2.1 - List of the 7 Mediterranean countries with the highest worldwide production. 
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Moreover, according to Vossen, (2007) this area consists of over 700 million olive trees thus 

representing the almost all of global areas where this specie is cultivated. Available data for 2010 

indicate that the EU area involved in olive tree cultivation covers about 5 million hectares and 

the higher concentration is found in Spain (50%), Italy (26%) and Greece (22%). The higher 

production of fruits is mainly observed in southerly regions (Andalusia, Calabria, Apulia, Crete 

and the Peloponnese) due to the high drought tolerance of the specie. Infact the major part of 

olive orchards it's not irrigated (Tab. 2.2). For instance in Spain more than 80% of the production 

is concentrated in Andalusia, a region characterized by a predominance of non-irrigated olive 

trees, although there is an increase of irrigated areas. Its cultivation is usually placed in 

disadvantaged areas (i.e. mountain areas) covering until 88% of the total area of olive groves in 

Portugal, 71% in Greece, 60% in Spain and 51% in Italy. Latest data from FAO confirmed that 

the average production of olive oil in European Union was around 2.2 million tons, representing 

approximately 73% of world production. Spain , Italy and Greece accounted for roughly 97 % of 

the production of olive oil EU, of which 62% from Spain. From the point of view of quality, the 

production of the three types of olive oil (extra virgin, virgin, and lamp) showed differences in 

percentage between Spain and Italy. In particular Spain provided 35%, 32% and 33% of extra 

virgin, virgin oil, and lamp oil respectively, while in Italy the same categories have represented 

respectively 59% , 18% and 24 %. The percentages ranging from one year to another due to 

differences in meteorological conditions. 

 

 
Spain (Ha) * Italy (Ha) ** Greece (Ha) ** 

Not irrigated 1800000 1069444 852204 

Irrigated 700000 280556 307796 

Total area 2500000 1350000 1160000 

 

Table 2.2 - List of irrigated or not irrigated areas over the main European olive oil makers. data 2011*; data 2008 ** 

 

In 2009/10 the global consumption was about 2839000 tons, representing a situation of 

substantial stability among the major consumer areas (E.U and the United States) of which 65% 

(about 1856000 tons) in EU and 9% (about 260000 tons ) in U.S. (AGEA and Italian olive oil 

consortium , 2010). Among the new consumers interesting data come from Australia ( about 

37000 tons) and Russia (about 18000 tons, while within the UE the greater demand come from 

Italy (38 %) Spain (30%) and Greece (12%) (AGEA, 2010). Concerning the international trade 



 

Brilli Lorenzo. Olive tree system in Mediterranean basin: a mid-term survey on C sequestration dynamics and 

modelling. PhD Thesis Agrometeorology and Ecophysiology. University of Sassari, Italy, 2014. 
24 

Italy can be considered both as net importer than exporter of olive products . The foreign trade of 

olive oil is the greatest and it involves importation (over 500000 tons in the last four years) of 

which the main required products are extra virgin and virgin (73%). In 2009 were imported 

517300 tons for a total value of 1.3 billion euro, while exportation involved 336210 tons and 1.2 

billion euro (ISTAT 2010). The main foreign olive oil imported by Italy in the last four years 

was from Spain ( 52%), Greece ( 19%) and Tunisia (20 %). Exports is more or less constant , 

especially in terms of volume and especially thanks to the required of the U.S market . 

Improvements have occurred in Italian exports to France (+10%) and UK (+16% ) (ISTAT 

2010). Concerning Italy in the last forty years the agricultural area covered by olive orchards has 

increased more than 3 times compared to the previous years, especially considering that in 1967 

was less of 3 million of hectares. In Italy the area covered by this cultivation is very wide (18 

regions out of 20), and the only areas in which the specie is not commonly cultivated are 

mountains and Po valley due to winter low temperatures and the presence of fog and rime. 

According to the data released by the Italian Ministry of Agriculture (MIPAAF, 2010), about 18 

million of olive trees are grown in Italy on 1350000 ha of land (about 165 trees/ha). Traditional 

plots are usually small, averaging less than one hectare at national level. Crop production 

average is around 3000 kg/ha or 16 kg/tree and is mainly concentrated in southern regions such 

as Apulia (32.25%), Calabria (30.31%) and Sicily (9.42%) (AGEA, 2010). Concerning Tuscany, 

olive trees occupy an area of 56000 hectares, corresponding to 15 % of the UAA . The major 

part of olive tree cultivation is found in hilly areas (68.3%), extending to the north (Lunigiana 

and Garfagnana) and in central and southern areas (Chianti, Val d’Orcia, Val d'Era, Val di 

Cecina). The remaining fraction (32%) involves mountainous areas (24%) and Maremma plains 

(8%). The world production  for the year 2009 was 2.8 million tons (AGEA and Italian olive oil 

consortium, 2010). 
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2.2. Eddy Covariance Method 

The information presented in this section make reference to the book “Eddy Covariance Method 

for Scientific, Industrial, Agricultural and Regulatory Applications” by George Burba (Burba, 

2013). This section is intended to provide the physical and mathematical principles, the major 

sources of errors and data processing of the eddy covariance method.  

 

2.2.1. State of methodology 

In the last 70 years human activities have strongly contributed to rising atmospheric carbon 

dioxide concentration (CO2). The effect of CO2 increases on terrestrial ecosystems was widely 

studied since the beginning of the century, when Browne and Escombe (1902) performed the 

first plant growth experiments. Following, several instruments were developed and applied to 

understand the influence of CO2 (ambient and elevated) on plant growth. However instruments 

such as Plant Growth Chambers, Leaf Chambers or Greenhouses open-top field Chambers did 

not provide very reliable results. This was due to two main issues: firstly, the alteration of the 

studied environment; secondly, the large number of replicas needed for having a statistically 

reliable measure. These issues were overcame through the development and application of the 

micrometeorological technique Eddy Covariance (E.C). In recent years this technique has 

established itself as an alternative method for the quantitative assessment of C exchanges at 

ecosystem scale (Baldocchi and Meyers, 1988; Baldocchi et al., 1996; Running et al., 1999; 

Canadell et al., 2000; Baldocchi, 2003; Valentini, 2003). It allows continuous measurements 

within the test site and it does not disturb the environment above the canopies. Moreover, it is 

relatively independent from morphology and meteorological conditions (Wesely, 1970). E.C 

allows to measure the turbulent fluxes exchanged between canopy and atmosphere (Stull, 1988). 

This technique takes in account movements of air particles (eddies) which are developed above 

the canopy, in conjunction with the mass of gases transported by the motion itself. The technique 

is based on a simple principles: the net sequestration of carbon dioxide provided by an ecosystem 

is calculated as the difference between the C entering and leaving from the system (Wesely, 

1970). Fluxes can be counted at different time-scale (from half-hour to seasonal) (Stull, 1988). 

The measures obtained can also concern heat and water fluxes, methane and trace gases. The 

technique is also used for calibrating climate models on different spatial-scale (medium and 

global scale) as well as ecological models able to show dynamics of biogeochemical cycles. 

These measures are also used for validating data from remote sensing or aircraft (Stull, 1988). 
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Currently, different methods, approaches, and numerous network (i.e. Fluxnet, Ameriflux, 

CarboEurope, FluxNet Canada, Icos, etc.)  provide information with high accuracy about fluxes 

exchanged between several ecosystems (i.e. forests, long-term agro-ecosystems, crop systems, 

etc.) and atmosphere. Mostly applications have been developed on vegetation, but aerial 

experiences on board modified aircraft (Sky Arrow) and boas (usually limited by rainfall and 

gyroscopic effects) are currently increasing. The two main elements needed for the E.C 

technique application are the three-dimensional ultrasonic anemometer and the infra-red gas 

analyser (IRGA). The first detects the wind speed in its three spatial components (x, y, z), while 

the second measures the concentration of carbon dioxide and water vapor in the atmosphere. 

They work at high frequency, usually comprised between 10 and 20 Hz. Simultaneously to 

fluxes measures, ancillary measurements should be collected. In particular these measures 

concern net and global radiation, the air and soil temperature, precipitation amount and humidity. 

These data are necessary for understanding the response of fluxes based on meteorological 

parameters  but also for improving data elaboration (i.e. gap-filling and flux partitioning). 

Although the E.C. methodology is difficult to unify, in the last years many efforts have been 

done to consolidate the terminology and provide a general standardization of processing steps 

(Lee et al., 2004). However, since the experimental sites are usually focused on different 

purposes,  different treatments are often required. 

 

2.2.2. Physical and mathematical principles 

The air flux can be imagined as an horizontal flow consisting of several rotating eddies having 3-

D components and vertical movement. The eddies responsible for the transport of most of the 

flux depend on their proximity to the ground. Smaller eddies can be more probably observed 

close to the ground and they are characterized by fast rotation as well as by higher frequency 

movements of air. On the contrary larger eddies can be more easily observed away from the 

ground. They are slower and characterized by lower frequency movements of air the movements 

of eddies can take from few seconds (or less) until some hours. The Eddy Covariance technique 

is mainly based on the theory of fluid dynamics, which was applied to the atmosphere by 

Reynolds (Reynolds, 1886) for the first time. Reynolds has correlated the atmospheric turbulence 

theory with principles and laws of fluid dynamics, high-lightening how the turbulent fluxes, in 

addition to the momentum (vector quantity which is able to measure the body's capacity to 

change the movement of other bodies in which it dynamically interacts), carries the heat and 
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other scalar quantities. The equation of conservation of a scalar is the theoretical basis of the 

Eddy Covariance's technique.  

 

Eq 1. Equation of a scalar conservation. I: temporal variation of the concentration of a C scalar at a given point in 

space ; II: local advection ; III: average horizontal and vertical divergence (or convergence) of turbulent flux; IV: 

molecular diffusion ; V: processes of formation (or destruction ) of the molecules related to the considered scalar. 

 

This mathematical formula can be used for an infinitesimal air volume in which “C” is the 

mixing ratio of a generic scalar, whilst “u”, “v” and “w” correspond to the three components of 

the wind velocity. The term “D” represents the molecular diffusion process while “Sc” 

summarizes the processes of formation/destruction of scalar molecules. Vertical bar on the 

different variables indicates their average over time, while the peak on the variables in III 

denotes the instantaneous fluctuation of the value from the mean.  

The average value obtained between the instantaneous fluctuations of two variables represents 

the statistics covariance. The covariance between the three wind speed components and the 

scalar concentration represents the turbulent flux along the three spatial directions (x , y and z). 

The technique is based on the principle that the vertical flux of an entity on a surface turbulence 

layer is directly proportional to the covariance of the vertical velocity and to the concentration of 

that entity. Therefore it allows to measure the sensitivity of the eco-systemic processes which 

regulate the absorption of carbon dioxide and water vapour at short (hourly based ) and long-

term (seasonal or annual ) (Lee et al., 2004). In a more simple way, flux can be defined as an 

amount of a particle that passes through a closed surface (i.e. a Gaussian) per unit of time 

(Wyngaard, 1990). In very simple terms, flux describes how much of an entity moves through a 

unit area per unit time (Swinbank, 1951). 

 

Flux is dependent on:  

1) the number of particles which cross an area  

2) the size of the crossed area  

3) the time they take to cross this area. 
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As reported in the figure 2.1, flux can be imagined as a stream consisting of several eddies, each 

one consisting of three spatial components (x, y, z), including the air vertical movement (Kaimal 

and Finnigan, 1994). 

 

 

 

Figure 2.1. – Simple graphical representation of turbulent flux in a forest ecosystem. 

 

For improving  the understanding about how the vertical flux can be derived from the covariance 

between the vertical wind velocity and the concentration of the entity of interest, a simple 

example was reported: in a time "x", three molecules of CO2 receive a boost upwards while in 

the next moment only two molecules of CO2 go down, the net flux at that time correspond to one 

molecule of CO2 directed upwards (Baldocchi, 2005). Therefore eddy covariance is based on 

assessment of the vertical wind flux by measuring the number of molecules in motion and how 

fast they continuously ascend and descend. Very sophisticated instruments are necessary to 

measure the turbulent flux, since the molecular fluctuations occur very quickly. Moreover the 

variations of molecular concentration, air density and temperature are very small, so needing of 

very quick and specify calculations.  
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In turbulent flow, vertical flux can be presented as: 

 

Eq. 2. Vertical flux in turbulent flow. Flux is equal to a mean product of air density (ρα), vertical wind speed (W), 

and the dry mole fraction (S) of the gas of interest. The dry mole fraction is often called the mixing ratio. 

 

Reynolds decomposition can be used to indicate means and deviations from the previous 

equation (Eq.2). Air density has represented as a sum of a mean over some time and an 

instantaneous deviation from this mean. A similar procedure can be reported also for vertical 

wind speed and dry mole fraction of the entity of interest. 

 

 

 

Eq. 3. Reynolds decomposition of the vertical flux in turbulent flow. 

 

In the third step the flux equation is simplified as showed below: 

 

 

 

Eq. 4. Simplified equation of Reynolds decomposition of the vertical flux in turbulent flow. 

 

Two important assumptions have to be made in the conventional eddy covariance method (Lee et 

al., 2004). First, the air density fluctuations that in case of strong winds may be non-negligible in 

comparison with the gas flux, in the major part of the cases (i.e. over reasonably flat and vast 

spaces such as fields or plains) they can be assumed to be negligible. Secondly, the mean vertical 

flux is assumed to be negligible for horizontal homogeneous terrain, so that no flow diversions 

or conversions occur (Massman and Lee, 2002). By assuming to be negligible both flux 

diversion and conversions, the flux becomes equal to the product of the mean air density and the 

mean covariance between instantaneous deviations in vertical wind speed and mixing ratio, and 

the classical equation for eddy flux is: 

 

Eq. 5. Classical formula for the eddy flux of virtually any gas of interest, such as CO2, CH4, N2O, O3, etc.. 
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Besides the turbulent flux, there are other fundamental formulas which allow to better 

understand the fluxes dynamics on ecosystems. In particular they concern: sensible heat, water 

vapour and latent heat (Eq. 6-7-8). Sensible heat flux is equal to the mean air density multiplied 

by the covariance between deviations in instantaneous vertical wind speed and temperature. 

Including the specific heat term within the equation, it is possible the conversion to energy units. 

 

 

 

Eq. 6. Sensible heat flux 

 

Depending on the units of fast water vapor content do exist several representation of water vapor 

equation. Water vapor is a fundamental parameter for the calculation of turbulent fluxes and it is 

often computed in energy units (W m
-2

). 

 

 

 

Equazione 7. Traditional water vapor flux. 

 

Latent heat flux describes the energy used in the process of evaporation, transpiration, or 

evapotranspiration and therefore its values can be converted into other commonly used units 

such as mm d
-1

, inches ha
-1

, kg m
-2

 h
-1

, etc.. 

 

 

Eq. 8. Latent heat flux 

 

2.2.3. Flux footprint 

Flux footprint is defined as the area mainly covered by the instrument on the tower. More in 

detail, it is referred to the area upwind from the tower where the major part of the fluxes 

generated are recorded by the instruments (Fig. 2.2). The concept of flux footprint is essential for 

proper planning and execution of an eddy covariance experiment. The mostly contribution does 

not come from extremes (i.e. underneath the tower or many kilometres away), but rather from 
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somewhere in between. The right distance to calculate the main area providing the most part of 

the contributions has to take in account the dependence of the flux footprint on  

a) measurement height, 

 b) surface roughness,  

c) thermal stability. 

 

 

 

 

Figure 2.2. – Graphical representation of flux footprint. Modified from Burba et al. 2013. 

 

 

Measurement height 

Footprint strongly increases: 

 at 1.5 m over 80% of the ET came from within 80 m upwind  

 at 4.5 m over 80% of the ET came from within 450 m upwind  

Footprint near the station may also be strongly affected:  

 at 1.5 m, the area 5 m around the instrument did not affect ET  

 at 4.5 m, the area 32 m around the instrument did not affect ET  
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Surface roughness 

Footprint decreases with increased roughness:  

 at a sensor height of 1.5 m:  

 for rough surface over 80% of the ET came from within 80 m upwind  

 for smooth surface 80% of ET came from about 250 m upwind  

Footprint near the station is also affected by roughness:  

 for rough surface, area 5 m around the instrument did not affect ET  

 for smooth surface, area 10 m around the instrument did not affect ET  

 

Thermal stability 

Thermal stability can increase the footprint size several times: 

 For a measurement height of 1.5 m and a canopy height of 0.6 m:  

 in very unstable conditions, most of the footprint is within 50 m  

 in neutral conditions, it is within 250 m  

 in very stable conditions, footprint is within 500 m  

 

Flux data under very stable conditions need to be corrected or discarded due to insufficient fetch. 

Flux data at very unstable conditions may need to be corrected or discarded due to the fact that 

large portion of the flux may come from the disturbed area around the instrument tower.  

 

a. Flux footprint depends on:  

- Measurement height  

- Surface roughness  

- Thermal stability  

b. Size of footprint increases with:  

- Increased measurement height  

- Decreased surface roughness  

- Change in stability from unstable to stable  

c. Area near instrument tower mostly contribute if:  

- Measurement height is low  

- Surface roughness is high  

- Conditions are very unstable  



 

Brilli Lorenzo. Olive tree system in Mediterranean basin: a mid-term survey on C sequestration dynamics and 

modelling. PhD Thesis Agrometeorology and Ecophysiology. University of Sassari, Italy, 2014. 
33 

Models able to calculate the flux footprint require specific parameters (i.e. type of instruments, 

height of the tower (m)of the canopy and eddy tower, wind speed, etc.). these parameters are 

needed for assessing the area where fluxes are originated and the contribution produced by this 

area compared to the total footprint. Under normal conditions the contribution of normalized 

cumulative flux is calculated in terms of percentage according to Eq. 9 (Swuepp et al., 1990). 

 

 

Eq. 9. Normalized cumulative flux 

 

 

2.2.4. Processing eddy covariance 

Processing of eddy covariance data can change depending on the methodology adopted by 

researchers. Methodology can change according to the site-specific design as well the sampling 

conditions. The major steps include the conversion of the signals from voltages to physical units, 

despiking, the application of calibration coefficients if needed, rotation of coordinates, correction 

for time delay, de-trending (if needed), average of fast data over 0.5 to 4 hour periods, the 

application of frequency response, sonic and density corrections, the quality control, filling of 

missing periods and integration of long-term flux data. Below are reported three main methods to 

assess the quality of dataset: 

 

 Raw data assessment 

 Stationary test 

 Test on turbulence and its characteristics 

 

Concerning the validation of eddy data, one of the main methods to evaluate their reliability is 

building of site-study energy balance. In Fig. 2.3 a simple scheme of energy balance has been 

reported. 
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Figure 2.3 – Simple scheme of energy balance 

 

The energy balance is represented by the follow equation: 

 

 

 

Rn: net radiation; L: latent heat; H: sensible heat; G: ground heat or the storage of energy.  

 

Validation using study-site energy balance is simple but functional. Sum of all these components 

must be equal to 0 to have a perfect closure of the balance. If this happens, all energy transfers 

have been correctly measured (Rosset et al.,1997). Although a good measure of latent heat 

doesn't mean a correct measure of CO2 fluxes, correct values observed in latent heat can be taken 

as a positive-check about the probably good quality of C fluxes. However, by using eddy 

covariance the closure of energy balance may be incomplete due to the presence of secondary 

fluxes which can't be measured with this technique. The optimal closure of the energy balance is 

represented by the following equation: 
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Eddy covariance instruments measure fluxes over the canopy. During periods without 

atmospheric turbulence (e.g. night-time) these fluxes accumulate under canopies, reducing data 

reliability. The total contribution of these measures is fundamental to improve the evaluation of 

NEE in a certain ecosystem. 

 

2.2.5. Gap-filling and flux-partitioning 

A better understanding of ecosystem dynamics can be reached by separating the net ecosystem 

exchange (NEE) as the gross primary production (GPP) and ecosystem respiration (Reco) 

through an algorithm to partition the flow (flux partitioning). This method allows to improve the 

knowledge on the assimilators or breathings processes that are often poorly represented (Falge et 

al., 2002a; Reichstein et al., 2002b). Flux partitioning also improve the understanding of inter-

annual variability of NEE and its dependence by climate or other parameters (Valentini et al., 

2000). Before the application of the flux partitioning algorithm, a previous step is necessary. 

This step, called gap-filling, consists of filling the data gaps that occur in adverse weather 

conditions or in the event of failure to tools to estimate the long-term budgets. 

These processes were following briefly described. 

 

a. Gap-filling  

The gap-filling method is built on the co-variation of the fluxes with meteorological variables 

(air temperature, radiation and vapour of pressure deficit, VPD) and the temporal auto-

correlation of the fluxes. On the basis of the gap type (i.e. length of the period, available 

meteorological parameters, etc.), missing data are substituted by values obtained on the basis of 

data measured in similar meteorological conditions within a time window of ± 7-14 days. 

Otherwise, missing data can be exchanged with values obtained on the basis of data measured in 

the same time of the day. 

 

b. Flux partitioning 

Flux partitioning algorithm allows to estimate Reco and Gross Primary Productivity (GPP) from 

NEE according to the definition equation: 

 

 

Eq. 9. Net ecosystem exchange 
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Different methods to separate the net ecosystem exchange (NEE) into its major components (i.e. 

GPP and Reco) have been developed. The algorithms can use (filtered) night-time data for the 

estimation of ecosystem respiration, daytime data or both day- and night-time data, using light-

response curves.  

The most applied algorithm has been described by Reichstein et al. 2005 and consist of a 

regression model. Flux-partitioning uses raw data (not gap-filled) to derive Reco from the 

relation between temperature and nocturnal NEE, which represents the solely the respiratory 

process. The method proposed by Reichstein et al. (2005) refers to that developed by Lloyd and 

Taylor, (1994) (Eq. 11): 

 

 

Eq. 11. Ecosystem respiration equation from the method proposed by Lloyd and Taylor, (1994); T: air temperature; 

T0: is a constant 46.02; E0: the activation energy (it determines the temperature sensitivity and is a free 

parameter); Tref: set to 10°C.  

 

Since Reco is a parameter that temporally varies in an ecosystem, Reichstein et al. (2005) used 

the nonlinear regression model by Lloyd and Taylor (1994) fixing all parameters with the only 

exception of 'Reco,ref'. They estimated this parameter just once using the long-term temperature 

sensitivity and another by the short-term temperature sensitivity. Thus, the 'Reco,ref' estimates 

were assigned to that point in time. Finally the 'Reco,ref' parameters were estimated for each 

period and linearly interpolated between the estimates, resulting as a dense time series of 

parameters. Consequently, for each point in time, Reichstein et al. (2005) provided Reco 

estimates according to the following equation: 

 

 

Eq. 12. Ecosystem respiration equation from the method proposed by Reichstein et al. (2005); T: air temperature; 

T0: is kept constant at 46.02 as in Lloyd & Taylor (1994);E0: the activation energy (it determines the temperature 

sensitivity and is a free parameter); Tref: is set to 10°C as in the original model; (T): time-dependent parameters 

and variables. 
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2.3. Simulation models 

Simulation is defined as the process able to imitate instantaneous or long-term processes of a 

system. Simulation can provide useful information concerning the assessment of the system’s 

characteristics, the main elements that can affect it, and elements needed for its development. 

The ability to reproduce a certain system or process allows comparisons with similar systems, 

resulting in benefits such as an optimal parameterization, critical issues and possibility to predict 

future performances. Simulations can provide advantages such as possibility to test things or 

strategies before to apply them, time reduction, understanding of systems dynamics, exploration 

of new policies and managements, diagnostic, etc.. However simulations have two main 

problems: the first one is due to the cost for building or implementing the tools, the second is the 

difficulty to understand and interpret results obtained. In the last 30 years, crop simulation 

models are became fundamental tools for scientific research and planning of agro-systems. The 

spreading of these tools is due to their easy application in several environment and under 

different conditions (i.e. management, climate, variety) compared to those in which they have 

been developed. In addition, while ground based measurements are limited at small spatial and 

temporal scales (e.g. gas concentration) due to snapshots of state variables, the models can offer 

full spatial and temporal coverage (Del Grosso et al., 2008). In this work were used two different 

kind of models. The first one is a remote sensing model called C-fix that was described and 

applied in paper 2. The second is a biogeochemical model called Daycent, described and applied 

in paper 3. 

 

a. Remote sensing models:  

Remote sensing is a technology that involves specific electromagnetic sensors usually installed 

over satellite or aircraft to measure and monitor changes in the earth's surface and atmosphere 

(Showengerdt, 2006). In recent years remote sensing models have been widely applied to assess 

crop growth and yield estimation, thus resulting as the best source of data for large scale 

applications and study. This methodology is mainly based on satellite images which give a series 

of numbers resulting as the amount of the energy reflected from the earth's surface in different 

wavelength bands. Among the different bands, the major part of information concerning 

vegetation growth and physiological conditions can be found into the infrared bands, that are not 

visible to the human eye. Infact the majority of approaches using remote sensing for monitoring 

and managing both natural and crop systems involves dissimilarity in reflectance properties 
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between visible and NIR wavelengths (Knipling, 1970; Bauer, 1975). Green leaves show lower 

values for reflectance and transmittance within visible regions of the spectrum (i.e., 400 to 700 

nm) but higher in the near-infrared regions (NIR, 700 to 1300 nm) (Bouman, 1992). One of the 

main advantages using satellite images is the possibility to observe many times changes in 

surface conditions. For instance, given that a satellite regularly passes over the same land, it 

become possible to continuously catch new data about land use as well as monitoring 

physiological conditions over the year. Remotely-sensed images are also usually combined with 

ground observations to obtain a complete picture of changes. For instance one of the most simple 

method for extracting the green plant quantity signal is the vegetation indices (VGT). This 

indices are computed as differences, ratios, or linear combinations of reflected light in visible 

and NIR wavebands (Tucker, 1979; Jackson, 1983). Vegetation indices such as the ratio 

vegetation index (RVI _ NIR/Red) and normalized difference vegetation index NDVI _ (NIR _ 

Red)/(NIR 1 Red) are optimal for investigating biomass measures through the season since they 

are well correlated with green biomass and leaf area index of crop canopies (Pinter et al., 2003).  

 

b. Biogeochemical models:  

Biogeochemical or biogeochemistry (BGC) models are able to reproduce several ecosystemic 

processes concerning both plant physiology that entity exchanges. These models therefore can 

explain vegetation phases such as growth, competition, senescence and mortality but also 

processes related to natural energy and matter exchanges (i.e. H2O, C, N) between vegetation, 

soil and the atmosphere. The major part of these models is mainly based on climate conditions, 

soil characteristics, nutrient and water supply. Although these tools can represent whole systems 

and their interaction with other components (i.e. biosphere, atmosphere, hydrosphere), they can 

be divided according to specific characteristics to deal with soil processes, agricultural crops or 

forestry only. They can be used also to simulate external effects such as the impact of current 

and future climate change on crop growth, the effect of different management on soil carbon and 

water balances, and many others. These tools can represent the behaviour of plant growth 

functions and exchange processes through mathematical equations. The main physiological 

processes (e.g. crop growth) are usually correlated with the most important meteorological 

parameters such as temperature, radiation and rainfall (water and nutrient supply). BGC models 

can vary also depending on their scale of investigation. For instance some models can be applied 

to a single plant or vegetation type while other can be used over large areas if representative of 
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specific plant types. In the second case, biogeochemical models tend to classify certain 

functional types as homogeneous (grass, trees, savanna, shrub, crop, etc.). Each of these types is 

calibrated according to empirical conditions. In the last years BGC models have been used by 

many researchers to assess the impact of climate change on crop systems as well as the effect of 

mitigation and adaptation strategies with the aim to reach the goal of Kyoto protocol. Starting 

with global studies carried out by entity such as IPCC until smaller examples of regional studies 

of climate change on vegetation, hydrology, agricultural production, and economic development, 

these models are currently widely used and applied. The main elements of strength in BGC 

models are the reliable representation of vegetation with relative processes, the high flexibility in 

temporal scale and coverage, ranging from days to millennia, the flexibility in spatial coverage 

(from single plants to global) and the ability to explain links between biophysical conditions and 

human activities, especially crops and forestry (Hermann Lotze−Campen, 2008, 2010). On the 

other hand, these models also show weakness due to their high complexity, limitation of data 

availability and request of many inputs , numerous empirical formulations, difficulty for 

uncertain analysis and the limited coverage of anthropogenic processes (Hermann 

Lotze−Campen, 2008, 2010). 

 

2.3.1. C-Fix  

C-Fix is a generally applicable model, conceptually easy and able to use inputs averaged over 

different time periods (most commonly ten-day to monthly). It is a Monteith type parametric 

model driven by temperature, radiation and fraction of Absorbed Photosynthetically Active 

Radiation (fAPAR). A first description of the model was given by Veroustraete et al. (1994, 

1996). The model is quantified through its generalized relationship with NOAA/AVHRR data 

processed as well as vegetation (VGT) index. The most common index used for a long time in 

remote sensing is the vegetation index called Normalised Difference Vegetation Index (NDVI). 

This index is defined as the ratio between the difference and the sum of the reflectance in the red 

and infrared-wavelength bands (Maselli et al., 2009) (Eq. 13). 

 

 

 

Eq. 13. Normalised Difference Vegetation Index (NDVI)  
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The NDVI is a dimensionless index, with a value ranging between −1 and 1. The index is mainly 

influenced by the reflective characteristics of the vegetation such as pigmentation of the leaves, 

LAI, gap fraction and the BRDF or bi-directional reflectance distribution function, while is 

insensitive for variations in short-wave radiation (Veroustraete et al., 2002). NDVI values can be 

converted into fAPAR values by the generalized equation of Myneni and Williams (1994). The 

equation described by Myneni and Williams has indicated a linear relationship for a large set of 

different vegetation-soil-atmosphere observation conditions (Eq. 14). 

 

 

 

Eq. 14. fAPAR values by the generalized equation of Myneni and Williams (1994).  

 

Where α and β are empirical constants equal to 0.8642 and −0.0814 according to Myneni and 

Williams (1994). This relationship is independent of the vegetation cover heterogeneity of the 

pixel and background effects, but it can vary according to the ‘greenness’ represented by the 

NDVI canopy, however. The fAPAR obtained by remote sensing is combined with field based 

estimates of incoming solar radiation and air temperature. Successively, all these elements are 

jointly used to simulate total photosynthesis and, in turn, the net carbon accumulation. This latter 

is calculated by subtracting respiratory fluxes from autotrophic and heterotrophic (Maselli et al., 

2009). This methodology allowed estimates of specific ecosystemic parameters such as GPP, 

NPP and NEP. In particular for forest ecosystems, the GPP has usually been computed over 

monthly scale as gC m-
2
 according to the following equation (Eq. 15): 

 

 

 

Eq. 15. Gross primary production. ε: radiation use efficiency (g C MJ−
1
(APAR)); Tcori: temperature correction 

factor of the month (different for plain and mountain forests); fAPARi: fraction of the photosynthetic active 

radiation absorbed by the forest during the month, derived from NDVI; Radi: incoming photosynthetically active 

radiation of the month (MJ m−
2
); i: referred to day i.  

 

With specific regard to Mediterranean ecosystems, Maselli et al. (2009) have modified the C-Fix 

model by integrating an additional water stress index called 'Cws', that limits photosynthesis in 

http://www.sciencedirect.com/science/article/pii/S0034425702000433#BIB19
http://www.sciencedirect.com/science/article/pii/S0034425702000433#BIB19
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case of short-term water stress. This index can vary between 0.5 and 1, depending on if short-

term water shortage reduces photosynthesis to half of its potential value or there is no water 

shortage and photosynthesis reduction (Maselli et al., 2009). In addition, the new C-Fix version 

has also concerned the use of new temperature correction factors for MODIS (remote sensing) 

which have substituted the original factors proposed by Veroustraete et al. (2002).  

The new equation representing the computation of GPP was reported below: 

 

 

 

Eq. 16. Equation representing the computation of GPP; ε: is the maximum radiation use efficiency (from 1.4 to 1.2 g 

C/MJ APAR since the MODIS temperature correction factors are about 15% higher than the corresponding C-Fix 

factors) (Chiesi et al., 2011); Tcori: is the MODIS temperature correction factor for evergreen broadleaves; Cwsi is 

the water stress factor for Mediterranean trees fAPARi is the fraction of absorbed PAR, and Radi is the solar 

incident PAR, referred to day; i: all referred to day i 

 

2.3.2. Daycent  

Daycent (Parton et al., 1998; Kelly et al., 2000; Del Grosso et al., 2001) is a biogeochemical 

model used to simulate C and nutrients fluxes in crop field, grassland, forest, and savanna 

ecosystems. Daycent was built from the monthly version of Century and it works at daily time 

step. It can simulate fluxes of carbon, nutrients, and trace gases among the atmosphere, soil, and 

plants as well as specific events (i.e. fires, grazing) and management practices (i.e. fertilization, 

tillage, pruning, etc.). It was worldwide applied to simulate the impacts of climate and land use 

change on several ecosystems such as crop systems, grassland, and forestry.  

It is also currently used by USDA (United States Department of Agriculture) to estimate soil 

N2O emissions from agricultural lands for the annual GHGs inventory. The ability of that model 

to work at daily time step allows a greater accuracy in the most important plant-soil processes, 

resulting in higher care to fluxes. The complexity of the model strictly depend on data 

availability, purpose and scale of application, and many other considerations. Although Daycent 

represents most of the main processes responsible of C and N fluxes, not everyone are 

mechanistically represented. For instance the model does not simulate N gas diffusion from soil 

nor O2 diffusion into soil, which are both fundamental parameters to drive nitrification and 

denitrification rates. The model does account for the impacts of gas diffusion by calculating a 

relative gas diffusion index which, in turn, influences emissions of the different N gas species 
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(NOx, N2O, N2).  Concerning plant growth rates, nutrient availability has considered by the 

model as the main control. Photosynthesis process is not simulated but it considers the impacts 

of radiation based on day length calculated as function of latitude and day, and cloud cover, that 

is inferred by comparing diurnal maximum and minimum temperatures. Daycent requires some 

specific inputs such as soil texture, current and historical land use, daily maximum/minimum 

temperature and precipitation data, which have to be provided to run the model. Daycent 

includes specific sub-models (Fig. 2.4): 

a. plant productivity (green),  

b. decomposition of dead plant material and SOM (yellow),  

c. soil water and temperature dynamics (red),  

d. nitrogen (N) gas fluxes (blue).  

 

 

 

Figure 2.4. – Conceptual diagram of the Daycent ecosystem model, Del Grosso et al. (2008). 
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At the beginning of simulation process it should be needed model's spin up in order to generate 

stable values of soil carbon. Since initial values for C and nutrient are usually unknown for each 

single pool (i.e. active, passive, stable), spin up allows to reach an equilibrium in soil C and N 

dynamics. More specifically, Daycent model needs at least 2000 years of simulation. Model 

outputs could be improved if historical land use (base simulation) for model spin up is applied. 

Daycent model inputs can be divided into 4 categories: 

 

Weather Information (.WTH): Daycent can run using a simple weather file consisting in 

max/min temperature (°C) and precipitation (cm) or by adding 3 extra drivers such as solar 

radiation (langleys d
-1

) wind speed (mph) and relative humidity (%). When model runs at site 

scale the weather data should be provided by a weather station close to the study area, on the 

contrary when it runs at regional or larger scales, data sets such as DAYMET (Thornton et al. 

1997, 2000; Thornton and Running, 1999; http://www.daymet.org) can be used. 

 

Site Information (.IN): Soil properties are fundamental when model runs at site level data since 

they influence plant growth, water, nutrient flows, and decomposition processes. In particular 

soil layer thickness and number of layers to bedrock or water table. Required soil properties for 

each layer include texture, bulk density, wilting point, field capacity, the extent to which water 

content can drop below the wilting point, root fraction, organic matter fraction, saturated 

hydraulic conductivity (Ksat), and pH. Soil texture, depth to bedrock, and pH are typically 

available for experimental plots and can also be derived from soil map units. Field capacity and 

wilting point, as well as Ksat, can be derived based on soil texture. The site latitude is used in the 

plant growth submodel to calculate solar radiation, and how many elements, in addition to C, are 

simulated. The N cycle, N and P, or N, P, and S, can be chosen as output data. Changes in some 

environmental conditions can be simulated through time especially concerning the increase or 

decrease of ambient CO2 levels, daily temperature and precipitation values, soil pH, and soil 

temperature by specified amounts over a specified time period. The model can also simulate 14C 

or 13C labelling, incubation experiments, and microcosms (e.g. buried litter bag experiments). 

 

Crop Information (.100): Daycent has been parameterized for the major U.S crops (corn, 

soybean, wheat, hay, sorghum, cotton) as well as other important crops (barley, potato, millet, 

http://www.daymet.org/
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tomato, sweet corn, etc.). The model also includes parameterizations to represent grassland, 

forest, and savanna biomes (e.g., tallgrass, shortgrass, boreal forest, arid shrubland, tropical 

savanna, etc.). In case of crop or mix vegetation that are not represented in the crop library, a 

modification of an already existing parameterization that most closely resembles the new crop of 

interest can be done. In this case it is suggested to collect data needed for the new crop 

parameterization such as: portions of carbon allocated, death rates, lignin portions of plant 

components, maximum growth rate, growth response to temperature, harvest index, soil 

temperature and degree days. Crops need of some phenological parameters such as knowing if 

the crop is perennial or an annual or if the beginning and end of the growing season are specified 

or generated by the model, the begins of growth for perennials or germination for annuals , and 

the day when harvest or senescence occurs at the end of the growing season. Alternatively, the 

beginning of the growing season can be made a function of soil temperature and the end of the 

growing season a function of accumulated growing degree days. For instance, the amount of 

degree days and harvesting time can be used for flowering (beginning of anthesis). 

 

Management Information (.100): Daycent provides several common management options 

(tillage, irrigation, fertilization, planting, harvesting, burning, grazing, etc.) besides the 

availability of automatic fertilization and irrigation options. The model affords to indicate the 

calendar day on which the management or disturbance event occurs which usually influence the 

controlling soil parameters , vegetation, litter pools, and the magnitude of impact on the different 

pools (SOM, SOC). 

 

Generally, a simulation model can be well applied across different eco-systems without changing 

many parameters with the only exception of those relating to weather, soils, vegetation, and land 

management. However, a tuning can contribute to improve the representation of a specific eco-

system under particular conditions, avoiding poor performances of the model especially for some 

site/treatment combinations. A good calibration consists in a change of parameters to improve 

model fitting, specifying how much and how model performances have been improved.  This can 

be done by the identification of the most sensitive parameters, which can be found through a sort 

of sensitive analysis or basing on the already provided information for the site. These analysis 

are necessary to understand how a value of a specific parameter should change across sites.  
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The improvement of a model make sense just if parameters changed take a biological sense. 

Daycent consists of more than 1000 parameters but just a small subset of these is necessary for 

calibration. After the first run of the model an assessment of model outputs should be needed. 

More specifically it should be done by following a specific order: soil water content, crop yields 

and plant growth rates, soil organic carbon levels, and N loss vectors (Fig. 2.5).  

 

 

 

Figure 2.5. – Conceptual diagram of the check of Daycent outputs. 

 

Del Grosso et al. (2008) suggest that the previous indicated check should be done because the 

soil water content is the primary control on most of the key processes represented in the model. 

By contrast plant growth rates and crop yields can be successively verified because yield data 

can be affected also by other variables of interest. In the same way a check of SOC levels 

appears fundamental since SOC integrates within the model many processes (e.g. NPP, 

decomposition) that are sensitive to environmental conditions and management. Lastly, N flows 

should be verified. Different uses of statistics methods such as R
2
, RMSE, MBE, mean error, etc. 



 

Brilli Lorenzo. Olive tree system in Mediterranean basin: a mid-term survey on C sequestration dynamics and 

modelling. PhD Thesis Agrometeorology and Ecophysiology. University of Sassari, Italy, 2014. 
46 

must be considered as necessary for evaluating model performances. Firsts analysis about the 

reliability of the model can be done following two ways: i) comparison between model outputs 

with field data; ii) comparison between the same outputs from different models. Generally 

speaking, model assessment strictly depends on the variable of interest, the scale of measured 

data, and the intended model application. For instance, according to Del Grosso et al. (2008), 

differences in SOM correctly simulated under different treatments are more important than 

finding absolute SOC values. 

Daycent has been widely tested on several crop systems, grasslands and forests around the world 

(Morgan et al., 2004; Pepper et al., 2005; Conant et al., 2005). Beginning in 2005, the model was 

used at county scale to estimate N2O emissions from cropped and grazed systems for the 

Inventory of U.S. Greenhouse Gas Emissions and Sinks compiled annually by the EPA (Del 

Grosso et al., 2006, 2010; EPA, 2010). Model’s application was also focused to estimate soil 

greenhouse gas mitigation from cereals cultivation. In particular several studies at the global 

scale on corn, soybean, and wheat have been carried out (Del Grosso et al., 2009). Several 

researchers have also used the model to calculate crop yields and soil greenhouse gas emissions 

for different biofuel cropping systems (Adler et al., 2007; Davis et al., 2010, Robertson et al., 

2010, 2011). To our knowledge, no one study has been carried out over savanna ecosystems. 
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Chapter 3 

 

 

Effects of inter annual and inter-seasonal variability in rainfall regimes on C-

exchanges of a rainfed Olive orchard 

 

 

 

Abstract 

Olive tree is a fundamental cultivation in the Mediterranean basin, where expected changes in 

temperature and rainfall regimes may affect biomass growth and carbon sequestration capacity. Using 

eddy covariance flux measurements made over a typical Mediterranean rainfed olive orchard in Italy, the 

relationships between Net Ecosystem Exchange (NEE) and the main climate variables (rainfall, 

temperature and solar radiation) recorded over three contrasting and extreme years spanning over 90% of 

the long-term rainfall variability, have been investigated. Across those years, the olive orchard resulted 

overall a net carbon sink (3.6 tC ha
–1

 year 
–1

), and annual and seasonal NEE was found to be mostly 

driven by rainfall regimes and their intra-seasonal variability. More specifically, spring-like rainfall was 

the main driver of both spring and summer NEE (r=-0.941; p-value=0.00519). On the contrary, monthly 

scale NEE was not correlated with rainfall (r=-0.286; p-value=0.0908), whilst good correlations were 

observed with air temperature (r=0.473; p-value=0.00355) and solar radiation (r=0.541; p-

value=0.00065). These results indicated that rainfall amounts and timing represent the most important 

driver of carbon storage of rainfed olive trees in Mediterranean environment. Therefore, future expected 

changes in rainfall pattern (i.e. reduction in total annual rainfall, changes in seasonal distribution, etc.) 

may cause losses in the climate mitigation capacity of these ecosystems. 

 

Keywords: Olive orchard, climate variability, NEE, eddy covariance. 

 

Chapter based on: 

Brilli, L., Gioli, B., Toscano, P., Moriondo, M., Zaldei, A., Cantini, C., Bindi, M. 2014. Effects of inter annual and 

inter-seasonal variability in rainfall regimes on C-exchanges of a rainfed Olive orchard. Biogeosciences 

(submitted). 
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3.1. Introduction 

Olive (Olea europaea L.) is among the most ancient cultivated fruit trees in the Mediterranean 

Basin (Connor, 2005). Although its cultivation has been successfully introduced in other 

countries such as California, Australia, Argentina and South Africa (De Graaff and Eppink, 

1999), Mediterranean basin is still the most relevant olive trees cultivated region. This area 

consists of more than 700 million olive trees cultivated on over 9 Mha, representing a large 

fraction of worldwide production (Vossen, 2007). More than 85% of cultivated area and 52% of 

worldwide production come from 7 Mediterranean countries (i.e. Greece, Italy, Morocco, Syria, 

Spain, Tunisia and Turkey) (FAOSTAT, 2013).  

The primary role of olive orchards within Mediterranean basin concerns agriculture and, more in 

detail, the production of olives and olive oil. However, this cropping system can also indirectly 

contribute to increase local economies by providing ecosystem services such as soil preservation, 

environment conservation and climate mitigation (Lomou and Giourga, 2003; Sofo et al., 2005) 

but also through the increase of tourism due to the attraction of typical rural landscapes (e.g. 

Tuscany in Italy, Andalusia in Spain). Currently, the majority of studies carried out on olive trees 

have been focused on agronomic aspects (Castro et al., 2008; Gómez et al., 2009) or economic 

analysis (Iraldo et al., 2013; Palese et al., 2013), whilst just few studies have investigated their 

functional role for ecosystem services (e.g. Lomou and Giourga, 2003; Fleskens et al., 2008). 

Among these ecosystem services, the role that olive orchards can play in climate mitigation has 

often been neglected.  

The lack of knowledge about the C-sequestration capacity provided by this system is mainly due 

to the fact that the majority of the studies was focused on forest ecosystems, that are 

characterized by extended areas with continuous canopy that allow a more straight forward C-

fluxes assessment both from the ground (i.e. eddy covariance, FACE, respiration chambers, etc.) 

and from satellite (i.e. remote sensing). By contrast, orchards have an intrinsic structural 

complexity (different eco-physiological characteristics and agricultural practices) that makes 

measurements more challenging and expensive to obtain.  

However, this system can play a fundamental role in climate mitigation due to their recognized 

long-term carbon storage capacity in soil and woody compartments (Nieto et al., 2010; Brilli et 

al., 2013). This aspect, in conjunction with their widespread cultivation in one of the areas 

mostly exposed to the risk of climate change (IPPC, 2013), may open new ways to achieve the 
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goals fixed by international regulations on greenhouse gas control (e.g. “20-20-20” Policy”; 

Directive 2009/29/EU).  

Despite eco-physiological characteristics and agricultural practices can highly affect C-

sequestration capacity, it is well known that climate conditions are the main driver affecting 

carbon fluxes dynamics and biomass growth. In particular, C-fluxes dynamics are influenced by 

changes in mean climate and climate variability which are noticeable especially over 

Mediterranean area, as confirmed by several studies (Vautard et al., 2007; Haylock et al., 2008; 

Durão et al., 2010; Rodda et al., 2010; Del Rio et al., 2011; IPCC, 2013).  

Looking at future climate projections, predicted changes in temperature and rainfall trends are 

expected to lead more extreme climatic conditions compared to present (Jacob and Podzun, 

2010; Lenderink and Van Meijgaard, 2008; Kjellström et al., 2011; IPCC, 2013). A joint 

occurrence of higher temperatures and drought period is expected to amplify the impacts on 

semi-arid ecosystems. In Mediterranean basin, while temperature and radiation are not usually 

considered as limiting factors for crop growth and development, water availability is widely 

recognized to be the key variable controlling mass exchange and growth (Noy-Meir, 1973; 

Chaves et al., 2002; Kwon et al., 2008; Jia et al., 2014, Medrano et al., 2009). Therefore, changes 

in rainfall patterns may lead to different response in terms of carbon fluxes and stocks.  

Understanding how rainfall can affect C-stocks in Mediterranean olive orchards is crucial since 

the majority of studies was carried out on irrigated fruit systems (Dichio et al., 2005; Testi et al., 

2008; Villalobos et al., 2012; Nardino et al., 2013). This agronomic practice, however, is unusual 

for Mediterranean environment and specifically for olive trees. According to the data provided 

by the 6th General Census of Agriculture (ISTAT, 2010), in Italy only 8.7% of olive trees farms 

are managed with irrigation systems, while the remaining forms of olive orchards (i.e. tiny land 

plots or abandoned systems) do not usually make use of this practice. Therefore, irrigated olive 

orchards may provide C-fluxes that do not reflect the actual contribution offered by the large 

majority of these ecosystems, nor are capable of assessing the ecosystem response to climate 

extremes.  

In this study, we investigated the relation between GPP (Gross Primary Production), NEE (Net 

Ecosystem Exchange) and climate variables in a typical Mediterranean rainfed olive orchard. 

Although the study spans a relatively short period of 3 years (2010-2012), those were very 

contrasting and representative of the long term 30 years climate variability at the study area, 

allowing the investigation of ecosystem response to mean and extreme rainfall patterns 
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characterized by both positive and negative anomalies. Annual, seasonal and monthly rainfall 

interaction with C-balance dynamics was investigated to finally assess the capacity of 

Mediterranean olive orchard to front increasing occurrence of climate extremes and drought. 

 

3.2. Materials and methods 

3.2.1. Study Area 

The study area is located in central Italy (Follonica, 42°56' N, 10°46' E). According to 

Thornthwaite’s classification (Thornthwaite, 1948) the area has a mesothermic climate, with 

high temperatures and prolonged drought periods in summer and mild winters. The coldest 

month is January with a monthly mean temperature of 7.5°C, while the warmest is August 

(30.9°C). The long-term total annual rainfall average (RAIN-LTA) extrapolated by MARS JRC 

(JRC/MARS-Meteorological Data Base–EC-JRC: http://mars.jrc.ec.europa.eu/ ) data set for the 

period 1981-2009 is 626 mm, with rainfall events mainly concentrated in fall and early spring. 

The natural vegetation of the area is typical of the Mediterranean basin. In particular the most 

common herbaceous species are C. dactylon, Trifolium campestre, Medicago polimorfa, Picris 

hieracioides, and Bromus sp., while the major tree species are sclerophyllus holm-oak (Quercus 

ilex L.), cork oak (Quercus suber L.) and olive trees (Olea europaea L.). The study site is an 

adult olive orchard placed at 41 m a.s.l.. The orchard has irregular shape and covers about 6 ha. 

Olive trees have all the same age (20) and plant density (7x5m). Morphology is regular with 

slight slope from north to south. The orchard contains more than 1500 plants of 4-5 meters in 

height, while canopy cover is about 25% (Maselli et al., 2012).  

Soil chemical analysis showed that the orchard consists of clay-loam textural class (40% silt and 

38% clay) with an average pH of 7. In addition, according to the Harmonized World Soil 

Database (HWSD) (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009), the available water capacity of the 

area ranges from 60 to 90 mm/m.  

Agricultural practices consist of inter-row superficial tillage, fertilization about one time per year 

(usually in late winter or early spring) while irrigation is not applied. During the whole study 

period (i.e.3 years from 2010 to 2012), the orchard was ploughed three times at 10 centimetres 

deep using disk-harrowing: the first time in early May 2010, the second in February 2011 and the 

last in late May 2012. Fertilizer was applied at the surface once per year, at the end of February 

(2011) or in May (2010 and 2012). Mechanical harvesting was applied in 2010 and 2012 in 

November, while in 2011 fruits were left on the trees due to the extremely low production. 

http://mars.jrc.ec.europa.eu/
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Weeds beneath the trees, litter and residues due to mechanical harvesting (e.g. leaves, small 

branches, fruits) were incorporated into the soil during tillage. 

 

3.2.2. Eddy covariance data and processing 

The eddy covariance (EC) micrometeorological technique was used to measure fluxes of carbon 

dioxide (CO2), water vapor (H2O), sensible heat (H) and latent heat (LE) between the ecosystem 

and the atmosphere (Baldocchi et al., 1996). The EC tower was installed in March 2010 and 

placed in the central part of the olive orchard.  

The tower was composed of a mobile carriage equipped with a 7 m mast, hosting a Metek USA 1 

triaxial sonic anemometer and a Licor 7500 open path infra-red CO2-H2O analyser. Instruments 

were installed at 7 m above ground and 2 to 3 m above canopy top. A battery power supply was 

used, charged by 3 solar panels with 90 A/h capacity placed 30 m south from the tower to 

maximize solar radiation efficiency. This setup caused some power outages during wintertime. 

Ancillary data included soil temperature profiles from 5 to 20 cm (thermocouples J and T types), 

global and net radiation (CMP3 and NR LITE Kipp & Zonen), air temperature and humidity 

(HMP45 Vaisala), and rainfall (rain gauge Davis 7852), and were stored on half-hourly basis on 

a data logger (Campbell CR10X). Fast eddy covariance sensors (i.e. sonic anemometer and 

CO2/H2O IRGA) were acquired at high frequency (20 Hz) and stored on a handheld low 

consumption computer (Matese et al., 2009).  

Eddy covariance raw data were then analysed and processed. First of all, in order to assess the 

extent of the area surrounding the tower from where the observed fluxes originated, a footprint 

analysis was made using an analytical model (Hsieh et al., 2000), that computed footprint 

distances as a function of wind speed and direction, atmospheric stability, measurement height 

and surface roughness. The area containing 90% of the observed flux, was computed at an 

average of 108 ± 16 m around the observation point, that is almost entirely contained within the 

olive orchard limits, extending 152 ± 26 m in the various directions. Then, the binary files and 

meteorological data collected by E.C. tower were processed using Eddy Pro® Software in 

Express Mode. Processing consisted of several steps such as spectral corrections for flux losses 

(Moncrieff et al., 1997), despiking procedure for detecting and eliminating short-term outranged 

values in the time series and control tests according to Foken et al. (2004).  

The output of Eddy Pro® consisted, among others, of NEE data at half-hour resolution that were 

then used as input for the gap-filling and flux partitioning procedure developed by Reichstein et 
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al. (2005). During the 3 years of experiment some technical issues caused data loss concentrated 

in early 2010 and at the end of 2012. Because of that we did not report those months in which the 

high concentration of missing data did not allow a reliable assessment and gap filling of fluxes.  

3.2.3. Statistical Analysis 

The correlation between NEE and the climatological variables (air temperature, rainfall and solar 

radiation) was first examined at monthly scale. Then, the influence of rainfall on NEE was 

assessed at seasonal scale.  

More specifically, both NEE and rainfall were aggregated over a four-months period based on 

the physiological activity of the vegetation:  

 

I. winter period with low physiological activity of vegetation (i.e. November, December, 

January and February; indicated as WIN);  

 

II. spring period with high physiological activity of vegetation (i.e. March, April, May and 

June; indicated as SPR);  

 

III. summer-fall period with high physiological stress and subsequent vegetation recovery 

(i.e. July, August, September and October; indicated as SUF).  

 

Rainfall was accounted as Δ rainfall (i.e. the difference between the long-term total annual 

rainfall average (1981-2009) and the actual rainfall recorded during the study period, over the 

same sub-period). All inter-relations were assessed using correlation coefficient (r) and p-value 

to assess the goodness of fit metric and its significance. 

 

3.3. Results 

3.3.1. Climate trend 

The rainfall pattern in the study area was obtained for the period 1981-2012 (Fig 3.1). During 

this period rainfall trends showed a wide inter-annual variability (mean= 626 mm; standard 

deviation (δ) = 128.4). In particular, the 3 study years can be considered as highly representative 

of average and extreme rainfall annual pattern. While 2012 is perfectly consistent with the 

RAIN-LTA (anomaly= -0.3%), 2010 and 2011 well represent both the extremes, with a positive 

anomaly of -+27.4% and a negative one of -41.3%, respectively (Fig 3.1).  
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Figure 3.1. - Rainfall variability range for the period 1981-2012. 

 

The first year (2010) was markedly wetter than the others with a total annual rainfall of 797.2 

mm. The seasonal distribution reflected the typical Mediterranean climate, with maximum peaks 

in springtime (May, 96.4 mm) and autumn (November, 189.4 mm) (Tab 3.1). Annual mean 

temperature was only 0.3°C higher than the 30 years average (14.8°C).  

The second year (2011) was the driest of the past 30 years record, with a total annual rainfall of 

only 367.2 mm. Springtime (March, April and May) was dry (95.4 mm), with low rainfall both 

compared to the 30 years average (133.6 mm) and with respect to the previous year (207.2 mm). 

Despite a general scarcity of rainfall over the year, July was characterized by a high and unusual 

amount of rain (51 mm) (Tab 3.1). Annual mean temperature was consistent with 2010 and 0.4 

C° higher than the long-term average.  

The third year (2012) was perfectly consistent with the RAIN-LTA (624 mm). It showed a 

typical Mediterranean seasonal distribution, with highest rainfall in spring (April, 65.8 mm) and 

autumn (November, 174.2 mm). However, whilst spring was consistent with the long-term 

average, summer was extremely dry. In particular, June and July were characterized by total 

absence of rainfalls, while in August a very low amount was observed (3.2 mm). Annual mean 

temperature was about 0.7 °C higher compared to long-term average (Tab 3.1).  
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Rainfall (mm) T.air (°C) Rd (Wm

2
) 

Month LTA 2010 2011 2012 LTA 2010 2011 2012 LTA 2010 2011 2012 

Jan 45.4 86 23.8 20.2 7.3 7.1 8.2 7 76.5 69.7 66 83.7 

Feb 43.6 79.6 35.2 41.4 8.1 9.6 7.9 5.5 114.2 92.9 112.4 125.6 

Mar 49.8 67.2 60.4 17.2 9.8 10.2 9.5 11.6 161.5 134.9 152.5 197.6 

Apr 44.2 43.6 19.8 65.8 12.3 13.1 13.7 13.2 208.3 217.6 216.1 199.2 

May 39.6 96.4 15.2 61 16.2 15.9 17.3 16.6 260.8 214.7 289 253.2 

Jun 28.3 27.8 6 0 20.1 21.3 21.2 22.4 293.1 266 295.2 299.6 

Jul 17.6 9.2 51.6 0 23.3 25.4 22.2 24.9 300.6 290.2 276 290.1 

Aug 28.4 29.2 0.2 3.2 23.4 23.8 22.9 25.7 258.1 248.7 269.6 264.5 

Sep 82.6 10.2 17.8 79.4 20.6 19.5 21.5 20.9 192.1 193.9 203.6 163.6 

Oct 80.5 67.6 34.6 82.4 16.4 15.6 15.8 17.3 127.2 113.6 151.8 124.8 

Nov 95.5 189.8 56.6 174.2 11.5 12.1 12.5 13.6 81.5 63.8 90 73.3 

Dec 70.4 90.6 46 79.2 8.1 8.1 9.9 7.8 63.8 49.8 70.8 61.5 

SUBTOT 

(Mar-Oct) 
371 351.2 205.6 309 17.8 18.1 18 19.1 225.2 210 231.7 224.1 

TOT 626 797.2 367.2 624 14.8 15.1 15.2 15.5 178.1 162.1 182.8 178.1 

 

Table. 3.1 – Monthly meteorological data (i.e. cumulated rainfall, air mean temperature and mean global radiation) 

of the study area. Data were reported both as long-term average (LTA, 1981-2010) that specifically for the three 

years of measurements (2010, 2011 and 2012). 

 

Based on the 4-months sub periods classification, rainfall showed great variability both among 

the 3 years of study and with respect to the RAIN-LTA (Tab 3.2). In 2010 both winter (WIN) 

and spring (SPR) rainfall showed an increase of about 45% compared to the RAIN-LTA, and 

conversely a strong decrease (-44%) during summer-fall (SUF).  

In 2011, winter rainfall showed also a considerable increase (+33%) compared to RAIN-LTA, 

while a strong decrease was observed during spring and summer-fall (-37.4% and -50%, 

respectively). Finally, in 2012 a decrease for all 3 periods (WIN, SPR and SUF) was observed, 

of -35.6%, -11% and -21% compared to RAIN-LTA. 
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Rainfall (mm) Diff.% 

 

WIN SPR SUF WIN SPR SUF 

LTA 255 161.9 209.1 0.0 0.0 0.0 

2010 372.8 235 116.2 46.2 45.1 -44.4 

2011 339.4 101.4 104.2 33.1 -37.4 -50.2 

2012 164.2 144 165 -35.6 -11.1 -21.1 

 

Table. 3.2 – Rainfall amount aggregated over 4-months period for the 3 years of study and LTA. WIN=November, 

December, January, February; SPR= March, April, May, June; SUF= July, August, September, October. 

 

3.3.2. C-fluxes dynamics 

In order to provide a better understanding of assimilatory and respiratory processes observed 

within olive orchard, information about the strength of such processes and the length of the 

vegetative season, the three major ecosystemic components (i.e. NEE, GPP and Reco) were 

cumulated at monthly scale and summarized in Tab.3.3.  

 

 NEE GPP Reco 

Year 2010 2011 2012 2010 2011 2012 2010 2011 2012 

Jan ----- ----- ----- ----- ----- ----- ----- ----- ----- 

Feb ----- -23.55 -29.91 ----- 55.72 34.01 ----- 32.17 4.10 

Mar -32.61 -34.90 -62.28 114.63 80.58 88.75 98.02 45.68 26.47 

Apr -131.54 -16.22 -63.52 144.98 76.43 144.08 13.45 60.21 80.55 

May -111.88 -8.96 -38.26 113.39 118.23 118.05 1.51 109.27 79.78 

Jun -57.11 -36.09 -15.57 154.47 126.89 101.09 97.36 90.80 84.01 

Jul -77.70 3.21 -23.97 187.20 105.94 71.89 109.50 109.15 47.91 

Aug -85.30 -21.51 -1.53 142.36 77.79 48.21 57.06 56.28 46.60 

Sept -97.52 -13.15 -0.60 97.52 55.16 32.35 0.00 42.01 31.75 

Oct -30.32 -2.26 -53.5 95.83 56.27 57.30 62.22 54.01 3.80 

Nov -29.48 9.62 ----- 65.06 50.05 ----- 35.58 59.67 ----- 

Dec -13.34 7.11 ----- 63.54 72.70 ----- 49.21 79.81 ----- 

SUBTOT  

(Mar-Oct) 
-624 -129.9 -259.2 1050.4 697.3 661.7 439.1 567.4 400.9 

TOT -666.8 -136.7 -289.1 1179 875.8 695.7 523.9 739.1 405 

 

Table 3.3. – Monthly cumulated NEE, GPP and Reco during the three years of measurements.  
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Here, we described the cumulate monthly trend of GPP,NEE and Reco thus showing the total 

gross primary production, the carbon sequestration capacity and respiration provided by olive 

orchard during the period 2010-2012. In these years the maximum GPP was observed at different 

times (Tab.3.3). 

In 2010 spring was characterized by high gross primary production (124.3 gC/m
2
 on average), 

with the highest value in April (144.98 gC/m
2
). However, the highest growth was provided by 

summer months that contributed for a total of 484.3 gC/m
2
 (161.34 gC/m

2
 on average). In 

particular, July showed the highest GPP (187.20 gC/m
2
). In 2011 the highest GPP was found in 

June (126.89 gC/m
2
). In particular, the period between late spring and early summer (i.e. May, 

June and July) contributed for 351.06 gC/m
2
 which was about 40% of the total GPP of 2011 

(875.77 gC/m
2
). On the contrary, in 2012 the monthly maximum growth was observed in 

advance compared to the previous years. The highest GPP was found in April (144.08 gC/m
2
). 

April, May and June contributed for 363.22 gC/m
2
, more than 50% of the annual olive grove 

GPP (694.14 gC/m
2
).  

Similarly to GPP, during the three study years also the monthly Reco showed the maximum 

values at different times. In 2010 summer was characterized by the highest respiration (88 gC/m
2
 

on average), with the highest value in July (109.5 gC/m
2
). Moreover, summer respiration was on 

average more than twice greater as compared to spring respiration (37.7 gC/m
2
).

 
Also in 2011 

summer months were characterized by high respiration (85 gC/m
2
 on average) while spring 

respiration was twice as much as that of the previous year (71.7 gC/m
2
 on average). In 2011 the 

highest values of Reco were found in May (109.27 gC/m
2
) and July (109.15 gC/m

2
). On the 

contrary, in 2012 spring was characterized by the highest respiration (62.3 gC/m
2
 on average), 

while summer months showed a considerable decrease (59.5 gC/m
2
)
 
compared to the summer 

months of 2010 and 2011 (-32.4% and -30.3%, respectively). The highest values of Reco was 

found in June (84 gC/m
2
).  

The monthly NEE showed the typical trend of the Mediterranean woody vegetation, with the 

maximum physiological activity mainly concentrated in spring and a partial autumnal recovery 

(Tab.3.3). April was the month characterized by the highest NEE in 2010 (-131.54 gC/m
2
) and 

2012 (-63.52 gC/m
2
), while in 2011 it was recorded in March (-34.9 gC/m

2
). (Tab.3.3). Summer 

months were characterized by high C-uptake in 2010 (-73.37 gC/m
2
 on average), while lower 

values were recorded in the following years (-18.13 gC/m
2
 and -13.79 gC/m

2
 for 2011 and 2012, 

respectively). In particular, among the three vegetative seasons analyzed (March-September) 
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only in July 2011 there was a positive value of NEE (3.21 gC/m
2
). The autumnal physiological 

recovery was clear in September 2010 (-97.52 gC/m
2
), while it was less evident in 2011 (-13.15 

gC/m
2
) and almost absent in 2012 (-0.60). 

 

3.3.3. Relationships among NEE and climate conditions 

The monthly correlation between NEE and meteorological variables over 3 years was reported in 

Tab.3.4. In 2010 and 2011 the correlations between NEE and air temperature and between NEE 

and solar radiation were clear but relatively low (Tab.3.4), while NEE and rainfall were almost 

uncorrelated with rainfall. Conversely, in 2012 monthly NEE was significantly correlated with 

some climatological variables. More in detail statistical analysis showed that the correlation 

between NEE and air temperature and between NEE and solar radiation were significant 

(r=0,551; p-value=0.06313) and highly significant (r=0.751; p-value=0.00483), respectively 

(Tab.3.4). Conversely, the correlation between NEE and rainfall was negative, relatively low (r=-

0.479) and not statistically significant (p-value=0.11552),  Then, based on the entire study period 

of 3 years, statistically significant correlations were observed between monthly NEE and air 

temperature (r=0.473; p-value=0.00355) and NEE and solar radiation (r=0.541; p-

value=0.00065). On the contrary, the correlation between NEE and rainfall was very low (r=-

0.286) and only slightly statistically significant (p-value=0.0908) (Tab.3.4). 

 

  
Year 

Stat. Label 2010 2011 2012 2010-11-12 

r 

Air Temp. 0.483 0.383 0.551. 0.473** 

Rainfall -0.109 0.129 -0.479 -0.286. 

Rad 0.443 0.404 0.751** 0.541*** 

p-value 

Air Temp. 0.11153 0.21941 0.06313. 0.00355** 

Rainfall 0.73534 0.68884 0.11552 0.0908. 

Rad 0.149029 0.19259 0.00483** 0.00065*** 

 

Table 3.4. – Correlation between NEE and meteorological variables (air temperature, rainfall and solar radiation) 

at monthly scale over the three years of study. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

 

Furthermore, the relation between NEE and rainfall at seasonal scale was assessed by 

aggregating both parameters over a four-months period (Tab.3.5). It has been observed that when 
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seasonal NEE (spring + summer-fall) were compared with the rainfall of the same four month 

period (spring + summer-fall ) or with the previous four month period (winter+spring), the 

correlations were rather higher, even if these were not statistically significant (r=0.617; p-

value=0.19229 and r=0.645; p-value=0.16688, respectively).  

 

  
2010-2011-2012 

 
Label r p-value 

NEE 

NEE (SMP+SP) vs Rainfall (SMP+SP) -0.617 0.19229 

NEE (SMP+SP) vs Rainfall (SP+WP) -0.645 0.16688 

NEE (SMP+SP) vs Rainfall (SP) -0.941** 0.00519** 

 

Table 3.5. – Correlation between NEE and rainfall aggregated at seasonal scale over the three years of study. 

SMP=July, August, September, October. SP= March, April, May, June. WP=November, December, January, 

February. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

 

Conversely, the seasonal NEE (spring + summer-fall) was found highly significantly correlated 

with the only spring (SPR) rainfall (r=-0.941; p-value=0.00519) (Fig.3.2). 

 

 

 

Figure 3.2 - Correlation between NEE and total amount of rainfall during the growing season (March-October) 

over the 3 years of study. 
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Finally, based on the whole period of growing season (from March to October), the NEE was 

found correlated with rainfall regimes (=0.87, data not shown).  

 

3.4. Discussion 

The 3 years study period can be considered highly representative of the rainfall variability of the 

study area (Fig.3.1). While 2012 was perfectly consistent with the RAIN-LTA (anomaly= -

0.3%), 2010 and 2011 do well represent extremes (anomaly= -41.3% and +27.4%, respectively). 

This peculiar climatic pattern poses great value to the collected dataset, allowing to derive 

relations between NEE and rainfall that can likely well represent the long-term C dynamics in an 

adult Mediterranean olive orchard.  

Across the whole period of study the olive orchard resulted overall a net carbon sink. More 

specifically the NEE measured over three years was on average (i.e. 3.6 tC ha
 –1

 year 
–1

, see 

Tab.3) comparable to several Italian forestry systems. For instance Valentini et al. (2000) 

observed that at Mediterranean latitude the forest carbon accumulation is less than 6 tC ha
 –1

 year 

–1
, whilst Matteucci et al. (2007), reported that the Italian forestry capacity to sequester C is 

about 4 tC ha
 –1

 year 
–1

. Maselli et al. (2008), reported that during the period 1997-2003 the mean 

annual NEE values from eight Italian forest sites belonging to the FLUXNET network ranged on 

average from 2 to 6.5 tC ha
 –1

 year 
–1

. Similarly, Chiesi et al. (2011), showed that the annual NEE 

totals measured by eddy covariance in two Italian forest sites (i.e. a pine wood and an Holm oak 

forest) were 4.4 and 2.4 tC ha
 –1

 year 
–1

, respectively. 

These results confirm the findings by Zanotelli et al. (2013), suggesting that C-fluxes from long 

term agro-ecosystem can be compared to natural forest ecosystems growing in the same biome 

rank. This similarity may be due to the characteristics of orchards that, according to Zanotelli et 

al. (2013), usually reflect those observable in forest but appear smaller in size and density. The 

observed annual NEE was also comparable with other deciduous and evergreen orchards. More 

specifically, some studies (e.g. Liguori et al., 2009; Zanotelli et al., 2013; Nardino et al., 2013) 

observed that NEE can range in these ecosystems from 2 to 12 t(C) ha
–1

 year 
–1

. Such extremely 

large variability reflects the susceptibility of these ecosystems to climatic conditions, among 

other factors such as management, soil structure, and biome characteristics.  

Although NEE was on average comparable to other forestry systems, considerable differences 

were found among the 3 study years. These differences were found strictly correlated with the 

rainfall regimes of the sub-period considered (March-October) (r=0.87, data not shown). More 
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specifically, a higher NEE was found over years characterized by higher amount of rainfall. This 

was consistent with Xu and Baldocchi (2004) that indicated a strong correlation between total 

photosynthesis and total annual rainfall. Similarly, Luo et al. (2007) confirmed that does exist a 

positive relationship between yearly rainfall and NEE.  

According to our results, with the only exclusion of solar radiation in 2012, the NEE measured at 

monthly scale did not show any significant correlation with the selected climate variables 

including rainfall. This absence of correlation at monthly scale between NEE and rainfall is 

explained by the fact that the response of photosynthesis to water availability in a dry tolerant 

specie as olive tree can be longer, depending on water stress level (Pavel and Fereres, 1998). 

Therefore statistical analysis carried out at monthly scale might not be suitable for evaluating the 

influence of rainfall on NEE. On these basis, seasonal dynamics offered a more complete 

overview about the control of rainfall on NEE. Accordingly, seasonal NEEs over three periods of 

4-months based on the physiological activity of the vegetation indicated that spring NEE + 

summer-fall NEE (SPR+SUF) was highly correlated with spring rainfall (r=-0.941; p-

value=0.00519) (Tab.3.5).  

During Spring, NEE was highly negatively correlated with spring rainfall (r=0.95) (Fig.3.2), 

while it was not with the previous season rainfall (i.e. WIN) (r=0.28) (Data not shown). The very 

high correlation found over spring months is consistent with the photosynthetic process that is 

highly sensitive to temperature, light and water availability. Indeed, in this period of the year 

where temperature and light tend to increase, photosynthetic activity is mainly limited by water 

availability. When soil water is found close to the optimum of field capacity the photosynthetic 

activity is high, while it strongly decreases approaching the wilting point. Therefore, a decline in 

rainfall may actually behave as the most limiting condition for plants activity (Schroter et al., 

2005; Resco et al., 2007). Conversely, wintertime rainfall were not correlated with spring NEE. 

This may be explained by the soil characteristics of the study area: while sandy soils quickly 

deplete the available water for plants when evapotranspiration rates are high, the textural class of 

our soil (i.e. clay-loam) may have allowed a considerable water soil recharge through spring 

rainfall. These soil characteristics may have reduced the importance of winter rainfall on water 

soil content and, in turn, their influence on the photosynthetic capacity of vegetation during 

springtime.  

By contrast, statistical analysis showed that during summer-fall, NEE was highly and negatively 

correlated with spring rainfall (r=0.95) (Fig.3.2), while it was not with the same season rainfall 
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(i.e. SUF) (r=0.044) (Data not shown). This result may be due to the combined effect of spring 

rainfall and olive tree physiology. The spring rainfall through the increase of soil water at the 

beginning of the growing season had a large impact on rainfed agro-ecosystems in semi-arid 

regions since it may have contributed to extend the soil water availability also over dry months. 

This is consistent with Scott et al (2012), that indicated as in Mediterranean areas water tends to 

accumulate in soil until energy inputs (radiation and temperature) rise up. Then, the effect of 

spring rainfall on soil water content was reinforced by the particular physiology of olive tree 

that, as indicated by Connor (2005), relies on conservative water use in Spring with the aim of 

reducing the extent and intensity of the summer drought. These results were consistent with 

literature. In a study carried out in a Mediterranean climate (California), Ma et al. (2007) 

observed that spring-time rainfall was the predominant factor driving inter-annual differences in 

NEE over an oak/grass savanna site. Similarly, Kwon et al. (2008) by analyzing a semi-arid 

climate ecosystem observed different responses of NEE across two growing season characterized 

by dissimilar spring rainfall. Moreover, they also suggested that the intra-seasonal variability in 

rainfall can cause clear differences in the patterns and total amount of NEE at different time 

scale. Conversely, the absence of correlation against summer-fall rainfall is probably due to the 

prolonged dry and hot periods that usually characterize the Mediterranean summers. Although 

olive tree can tolerate prolonged dry periods because of typical adjustments that allow higher 

resistance to gas diffusion in the leaf such as the reduction of intercellular volume spaces within 

tissues (Bongi et al., 1987; Gucci, 1998), the combined impacts of these climatic conditions are 

expected to lead water stress. When water stress is particularly severe, it leads to photosynthesis 

and metabolic activity reduction with possible prolonged and permanent damages that, in turn, 

can cause NEE decrease. This condition was clearly observed in September 2012 (Tab.3.3), 

where rainfall events after a very prolonged dry period did not positively contribute to the 

recovery of photosynthesis. This evidence is consistent with Sorrentino, (2001) that found how a 

strong water stress can modify the photosynthesis's biochemistry and reduce the maximum 

photosynthetic capacity, which can be completely re-instated only after the complete rebuilding 

of photosynthetic metabolism. This behaviour was also confirmed by Fereres et al. (1996) that in 

a 22 years old olive orchard observed a stomatal conductance recovery after several weeks from 

the re-hydration of the water potential. According to Pavel and Fereres (1998), this effect is usual 

for olive trees in Mediterranean environments especially during the hotter season, where 

photosynthesis during highest irradiance period is limited by water shortage. The behaviour of 
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olive tree previously reported was consistent with our results, where NEE was observed to be 

very low during the hottest period of 2011 and 2012 and close to zero after prolonged drought 

(e.g. 2012). Moreover, the summer-fall rainfall was also characterized by sporadic and high 

intensity episodes. For instance in July 2011 were recorded two events characterized by rainfall 

higher than 20 mm representing about 40% of the total summer-fall rainfall in that year. 

Similarly in September 2012 were recorded two events characterized by rainfall higher than 25 

mm representing about 65% of the total summer-fall rainfall. The contribution of these extreme 

episodes at recharging the soil water capacity cannot be compared to regular rainfall events. Soil 

infiltration capacity is usually limited, therefore large rainfall events can more easily lead to an 

increase in surface run-off and evaporation from soil, rather than contributing to recharge the 

water table (Nitsch et al., 2008).  

 

3.5. Conclusions 

Understanding the impacts of inter-year and intra-seasonal variability in climate conditions on 

the magnitude and pattern of NEE and GPP provides fundamental information about the 

contribution that olive orchards can give to reach the goals fixed by international regulations on 

greenhouse gas control (e.g. “20-20-20” Policy).  

In this perspective, our study provides evidence that a typical managed olive orchards was a 

carbon sink almost comparable with other Italian forestry ecosystems along the three years of 

study. The magnitude of yearly NEE has been found highly correlated with annual rainfall 

regimes. Moreover, whilst winter rainfall was not correlated with the spring NEE, the spring 

rainfall resulted to be the main driver for spring and summer NEE. 

Finally, our results assess the efficiency in climate mitigation offered by olive orchards through 

direct measurements, also suggesting that these systems might encounter consistent loss in C-

sequestration capacity in the next decades, where a strong decrease in rainfall is expected over 

Mediterranean basin. In particular, applying the relationships between rainfall and NEE found in 

this work on the projected future changes for this region under the SRES scenario A1B 

(Nakicenovic and Swart, 2000; Artale et al., 2010), the expected decrease in rainfall over the 

olive tree growth period (March-October) of 4.5% for the period 2031-2050 may lead to a 12% 

reduction of C-sequestration capacity of olive rainfed ecosystems compared to the current 

period. 
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Chapter 4 

 

 

 

Simulation of olive grove Gross Primary Production by the combination of ground 

and multi-sensor satellite data 

 

 

 

 

 

Abstract 

We developed and tested a methodology to estimate olive (Olea eurcopea L.) Gross Primary Production 

(GPP) combining ground and multi-sensor satellite data. An eddy-covariance station placed in an olive 

grove in central Italy provided carbon and water fluxes over two years (2010-2011), which were used as 

reference to evaluate the performance of a GPP estimation methodology based on a Monteith type model 

(C-Fix) and driven by meteorological and satellite (NDVI) data. The main issues arising in this study 

were: i) how to consider the two main olive grove components, i.e. olive trees and inter-tree ground 

vegetation: this was addressed by the separate simulation of carbon fluxes within the two ecosystem 

layers, followed by their final recombination; ii) how to include management practices, which greatly 

alter carbon exchange on short time scales, in the modelling framework: this was addressed by super-

imposing synthetic NDVI values to take tillage effects into account. In this way, the estimation 

methodology was capable of reproducing daily olive grove GPP with a good overall accuracy (r=0.662 

and RMSE=1.31 g C m
-2

 day
-1

) during the study years.  

 

Keywords: Olive orchard, climate variability, NEE, eddy covariance. 
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4.1. Introduction 

Olive (Olea europaea L.) is one of the most ancient cultivated fruit trees in the Mediterranean 

basin (Zohary and Spiegel-Roy, 1975; Moriondo et al., 2008; Villalobos et al., 2012) where it 

plays a fundamental role by integrating agriculture, environment and landscape into a complex 

system. Although in recent years olive trees have been cultivated successfully in countries such 

as California, Australia, Argentina and South Africa (De Graaff and Eppink, 1999), olive is the 

basic tree cultivation in the Mediterranean basin and dominates its rural landscape (Loumou and 

Giourga, 2003). This region includes about 700 million olive trees over 9 Mha, representing 

about 96% of areas cultivated worldwide (Vossen, 2007).  

In addition to the agronomic and economic value, olive cultivation systems (agro-forestry stands, 

traditional groves and new intensive orchards) provide additional ecosystem services by 

improving soil conservation and allowing high carbon sequestration (Sofo et al., 2005; Loumou 

and Giourga, 2003). This major economic and ecological importance, in one of the areas most 

exposed to the risk of climate change (IPCC, 2007), requires the development of adequate 

monitoring strategies, such as techniques able to monitor olive carbon sequestration. In 

particular, the gross primary production (GPP), defined as the overall carbon fixation rate 

through the process of photosynthesis, is an important variable related to the global carbon cycle 

and climate change research, because approximately half of this amount is incorporated into new 

plant tissues such as leaves, roots and wood, and the other half is released back into the 

atmosphere through autotrophic respiration (Kotchenova et al., 2004). 

To estimate the productivity of ecosystems, one of the most often used techniques is Eddy 

Covariance, which, through the measurement of net ecosystem CO2 exchange, can be used for 

GPP calculation at ecosystem scale. However, eddy covariance systems provide integrated CO2 

flux measurements over limited footprint areas, with sizes and shapes that vary with tower 

height, canopy physical characteristics and wind speed, and therefore do not allow observations 

over large areas (Osmond et al., 2004). 

The lack of spatially extensive flux tower observations over large areas can be overcome through 

the combination of ground and remotely sensed data. Remote sensing provides information on 

photosynthetic processes of plants on several spatial and temporal scales (Veroustraete et al., 

2002; Prince, 1990; Kumar and Monteith, 1981). In the last years the use of remote sensing 

allowed systematic observations to be made of vegetation and relevant ecosystem parameters, 

becoming a fundamental instrument for the characterization of vegetation structure and for 
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estimating GPP on large scale (Keenan et al., 2012; Xiao et al., 2010; Yang et al., 2007; 

Behrenfeld et al., 2001; Running et al., 2000). In particular, many studies have shown that tree 

production can be simulated, with Monteith’s approach, through the combination of estimates of 

the fraction of absorbed photosynthetically active radiation (fAPAR) from remote sensing with 

standard meteorological data (Maselli et al., 2009; Veroustraete et al., 2004). This approach has 

obtained great benefit from the recent availability of MODIS images, which represent the best 

descriptor of vegetation properties with moderate spatial resolution (250 m) and high temporal 

frequency (8-16 days) (Maselli et al., 2013). 

Nonetheless, the application of Monteith’s approach to estimate olive grove GPP involves 

particular complications due to the multi-layer nature of this ecosystem type. Olive groves are 

composed of trees and inter-tree ground vegetation which, showing different eco-physiological 

constraints to the photosynthetic process, must be treated separately in the simulation of 

ecosystem GPP. This paper has built on these premises adopting a multi-step methodology to 

estimate the GPP of olive groves. In particular, a modified version of the parametric, Normalized 

Difference Vegetation Index (NDVI) - driven model C-Fix was applied considering the 

contributions of the two vegetation types (i.e. olive trees and ground vegetation). The modeling 

performances were validated against GPP data derived from eddy covariance measurements 

taken in an olive grove in South Tuscany (Follonica, Central Italy) during the period 2010-2011. 

 

4.2. Materials and Methods 

4.2.1. Study area 

The study was conducted on an olive grove situated in an agricultural area near Follonica (Gr), 

Tuscany (Central Italy, 42°56' N , 10°46' E). In Tuscany olive trees cover an area of 96,828 ha 

with a total production of 117482 t (http://www.istat.it/it/). Around 49,300 grow olives, 

representing 62% of Tuscan farms. Olive trees have a strong effect on the Tuscan landscape and 

land use, occupying about 11% of the regional utilized agricultural area (UAA). Olive tree 

cultivation contributes about 95 M€ to the value of regional agricultural production, which is 

approximately 4% of the total value of agricultural gross domestic product (GDP) (IRPET, 

2011). Olive groves are mostly situated on the plain and in hilly areas. However, given the 

heterogeneity of climatic and soil conditions in Tuscany, the distribution of olive groves varies in 

each administrative province.  
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The experimental site at Follonica (Fig. 4.1) covers an area of about 6 ha, with a southerly 

exposure and lies about 41 meters above sea level.  

 

 

 

Figure 4.1. – MODIS NDVI image of June 2010 showing the position of the study area in Tuscany as well as its 

main features (enlarged box). NDVI window extends over 8-13° East Longitude, 42-45° North Latitude. 

 

It is characterized by a regular morphology and a slight slope from north to south. The olive 

grove dates back to 1993 and contains around 1500 trees of about 4 meters in height. Olive 

canopy cover is about 25%, and inter-tree areas are covered by several herbaceous native species 

(C. dactylon, Trifolium campestre, Medicago polimorfa, Picris hieracioides, Geranium sp., 

Convolvus arvensis, Anagallis arvensis, Calendula arvensis, Rumex acetosella, Eruca sativa, 

Linula viscosa, Ordeum murino, Daucus carota, Bromus sp.). Cropping management follows the 

typical tradition of the area, with no irrigation and superficial plowing (disc harrowing). During 

the study period, the site was plowed twice: the first time in late April 2010, the second in 

February 2011. The site was treated with inorganic fertilizer in spring 2010 and February 2011. 

Olive production in 2010 and 2011 was 3.1 t ha
-1

 and 4.1 t ha
-1

, respectively. The soil belongs to 

the clay-loam textural class, with 40% silt and 38% clay. Soil texture and depth were obtained 

from the soil map produced by the Tuscany Region (http://sit.lamma.rete.toscana.it/websuoli/).  

http://sit.lamma.rete.toscana.it/websuoli/


 

Brilli Lorenzo. Olive tree system in Mediterranean basin: a mid-term survey on C sequestration dynamics and 

modelling. PhD Thesis Agrometeorology and Ecophysiology. University of Sassari, Italy, 2014. 
67 

According to the classification of Thornthwaite (1948), the climate of the area can be described 

as meso-thermic, between dry sub-humid and semiarid, with the high summer temperatures and 

mild winters that are typical of the Mediterranean climate (Tab. 4.1).  

 

 Monthly mean 

temperature (°C) 
Rainfall (mm) 

Months with mean 

temperature < 0 °C 

30 years average 

(1980 – 2010) 
15.2 626 --- 

2010 16 797 --- 

2011 16.8 367 --- 

 

Table 4.1 – Monthly mean temperature (°C), total rainfall (mm) and months with mean temperature < 0 °C in the 

study area for 30 years average (MARS JRC data set), 2010 and 2011. 

 

Meteorological conditions differed in the two study years as shown in Fig. 4.2. The first year 

(2010) was markedly wetter than the second (2011), with intense rainfall events concentrated in 

spring (i.e. May) and late autumn (i.e. November), as is typical of the Mediterranean climate. 

 

 

 

Figure 4.2 – Thermo-pluviometric diagram for study area. All monthly data derive from eddy covariance station. 
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The second year was much drier, especially in spring (42.8 mm against 170 mm in spring, 2010). 

Moreover, the dry period during the first year continued for about 4 months, whilst in 2011 it 

lasted from April to September with only a short break in July. 

 

4.2.2. Satellite data 

The olive tree canopy cover was estimated through processing of pan-sharpened color IKONOS 

images with high spatial resolution, downloaded from Google Earth. To predict the fraction of 

coverage in the olive grove, a Landsat ETM+ image collected on July 12
th

 2002 was also used. 

This image was selected because it was completely free of atmospheric disturbances such as 

clouds or fog. In addition, the image acquisition time coincided with maximum solar 

illumination, so minimizing the shadows produced by the trees, and increasing maximum 

spectral contrast between tree crowns and understory. MODIS NDVI data with a spatial 

resolution of 250 m were downloaded from USGS (http://earthexplorer.usgs.gov/). The NDVI 

dataset used is composited over 16-day periods. The images covering Central Italy were 

downloaded for the years 2010-2011. 

 

4.2.3. Eddy covariance data 

Eddy covariance measurements at the study site were recorded for almost two years, from 

February 2010 to December 2011. The tower mast was placed 3m above the canopy, in the 

center of the olive grove, and was equipped with a Metek USA 1 triaxial sonic anemometer in 

conjunction with an open path infra-red CO2-H2O analyzer (Licor 7500) (high frequency 

sensors). Ancillary slow sensors included: 2 soil temperature profiles from 5 to 20 cm 

(thermocouples J and T types), global and net radiation (NR LITE Kipp & Zonen CMP3), air 

temperature and humidity (HMP45 Vaisala), rain gauge (Davis 7852). High frequency (20Hz) 

data were stored on a PC, while slow frequency data were stored on a data-logger (CR10, 

Campbell Scientific). Fluxes of sensible heat, latent heat, momentum and CO2 (Net Ecosystem 

Exchange, NEE) were derived at half-hourly time resolution (Aubinet et al., 2000). Density 

corrections were applied according to Webb et al. (1980). Data quality was assessed and quality 

flags created using the methods of Foken and Wichura (1996). Filtering for low turbulence 

conditions was applied by investigating the dependence of friction velocity (u*) with night time 

CO2 flux, and a threshold of 0.17 ms
−1 

was derived. Data were then gap-filled and flux-

partitioned using the methodology of Reichstein et al. (2005), whose final products are 

http://earthexplorer.usgs.gov/
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continuous datasets of NEE, GPP and ecosystem respiration (Reco). This type of flux partitioning 

procedure is based on using night time turbulent flux data to constrain the temperature 

dependence of ecosystem respiration, and then applying such dependence on the whole dataset. 

GPP was then calculated as the difference between NEE and daytime Reco. 

 

4.2.4. Development and validation of olive grove GPP estimation methodology  

As previously mentioned, the olive grove soil was covered, in addition to olive trees, by a 

significant proportion of inter-tree ground vegetation, which contributed to total olive grove 

GPP. Since the two components showed different eco-physiological features, the prediction of 

GPP by a Monteith model was performed separately. More specifically, two versions of C-Fix 

were concurrently applied for olive trees and ground vegetation, which were fed by respective 

fAPAR estimates. MODIS spatial resolution (250m) was not capable of resolving the individual 

trees and directly separating the two components, therefore the image processing required the 

use of a multi-step methodology. The fraction of olive tree canopy above each olive grove in fact 

varied depending on local management practices and the size of the trees. The olive tree NDVI 

was therefore predicted by applying a statistical method based on the extraction of spatially 

variable endmembers (Maselli, 2001). This method required accurate estimates of olive tree 

canopy cover for relatively large areas, which were obtained by the processing of higher spatial 

resolution images. In summary, a map of olive tree cover fraction was produced for the area 

around Follonica by applying the procedure described in Maselli et al. (2012A) to the available 

Landsat ETM+ image. The tree canopy cover estimated automatically for the studied olive grove 

was 24%, in agreement with that obtained by visual interpretation of Ikonos images downloaded 

from Google Earth. This map was then used to obtain olive tree NDVI endmembers from 

MODIS images, which were converted into fAPAR values by the generalized equation of 

Myneni and Williams (1994). The NDVI values of inter-tree ground vegetation were linearly 

extrapolated using the extracted endmembers and the original values of the olive grove, and were 

converted into fAPAR by the same equation. The two fAPAR series were used to drive two 

versions of C-Fix. For olive trees, GPP was predicted by modified C-Fix as (Maselli et al., 

2012A):  

iiiii RadfAPARCwsTcorGPP    

where ε is the maximum radiation use efficiency (1.2 g C/MJ APAR) (Maselli et al., 2012), Tcori 

is the MODIS temperature correction factor for evergreen broadleaves, Cwsi is the water stress 
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factor for Mediterranean trees, fAPARi is the fraction of absorbed PAR, and Radi is the solar 

incident PAR, all referred to day i. All meteorological driving variables (i.e. daily temperatures, 

rainfall and solar radiation) were estimated through the sequential application of the DAYMET 

and MT-Clim procedures, as fully described in Chiesi et al. (2011). For inter-tree ground 

vegetation, GPP was predicted by applying a similar equation but considering different factors 

(Maselli et al., 2012). In particular, ε was set to 1.65 g C/MJ APAR, Tcori was the MODIS 

temperature correction factor for C3 grasses and Cwsi was derived from a water balance 

computed over one month instead of the original two months (Maselli et al., 2013). As fully 

explained in Maselli et al. (2013), these modifications take into account the generally lower 

green biomass of ground vegetation with respect to trees, as well as their different capacity to 

respond to thermal and water limitations. The daily GPP estimates of olive trees and inter-tree 

ground vegetation were finally combined to produce relevant photosynthesis estimates for the 

entire olive grove examined (Fig. 4.3). These estimates were validated by comparison with the 

GPP measurements of the tower using the correlation coefficient (R), the mean bias error (MBE) 

and the root mean square error (RMSE) as accuracy statistics. 

 

 
 

Figure 4.3. - Scheme of the multi-step methodology used to estimate olive grove GPP. 
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4.3. Results  

4.3.1. Estimation of NDVI profiles  

During the two study years the NDVI profile of olive trees and ground vegetation showed 

notable inter- and intra-year variations (Fig. 4.4).  

 

 

 

Figure 4.4. - NDVI profiles of olive trees and ground vegetation during 2010 and 2011. Filled line = olive; dotted 

line = ground vegetation. 

 

The NDVI profile of olive trees was uniformly high, around a value of 0.8. In the first year it 

showed a unique minimum (0.75) in mid-spring and a unique maximum (0.94) in winter, with a 

steady increase that indicated the absence of a long summer dry period or decrease in water soil 

content. In the second year, the NDVI olive profile showed more xerophic features, with a 

primary peak in early summer, a secondary peak in fall, and two minima in winter and summer. 

The NDVI profile of ground vegetation was markedly lower than that of olive trees. In the first 

year the maximum value (0.54) was found in winter, while the minimum value (0.25) was in 

summer. In the second year, the profile showed many intra-year variations, with two minima in 

spring and late summer typical of arid conditions. Generally, NDVI was maximum in late winter 

and minimum in summer. The greatest differences were in late winter and early spring, when the 

index was markedly lower in 2011.  
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4.3.2. Analysis of simulated GPP profiles  

The simulated GPP profiles of olive trees and ground vegetation are reported in Fig. 4.5. The 

olive simulated profile was typical of Mediterranean woody vegetation. The active growing 

phase started in March and reached its peak in late spring/early summer, then it decreased 

progressively, at first due to water stress (i.e. summer months) and then to leaf senescence and 

low temperature (i.e. fall and winter months). The main differences in GPP profiles between the 

two years were recorded during late spring/early summer (14-13 g C m
-2

 d
-1

 in 2010 vs. 8-9 g C 

m
-2

 d
-1

 in 2011). 

The simulated GPP profiles of ground vegetation followed that of olive trees, but with 

significantly lower GPP values (i.e. maximum GPP: 7-8 g C m
-2

 d
-1

 in 2010 vs. 4-5 g C m
-2

 d
-1

 in 

2011). Also for ground vegetation the main differences in simulated GPP between the two years 

were recorded in late spring/early summer. The more extreme meteorological conditions 

recorded in 2011 determined a reduction in annual GPP, which was markedly lower in 2011 

(976.8 gC m
-2

 d
-1

 ) than in 2010 (1227.33 gC m
-2

 d
-1

).  

 

 

 

Figure 4.5 – Daily estimated GPP profiles of olive trees and ground vegetation during 2010 and 2011. Filled line = 

olive; dotted line = ground vegetation. 
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4.3.3. Comparison of observed and simulated olive grove GPP 

During the two study years some problems due to experimental planning and eddy covariance 

instruments did not allow a complete reconstruction of daily GPP data. In particular, the 134 

missing daily GPP data (i.e. 18.35%) were mainly concentrated in early 2010 (10.4%). On the 

remaining days, the eddy covariance tower collected a total of 28624 values of CO2 fluxes (i.e. 

NEE) at half-hourly time resolution.  

Among these 6147 (21.43%) were considered usable for the reconstruction of observed GPP. 

The gap-filling procedure was applied to the low quality dataset, and considered both the co-

variation of fluxes with meteorological variables and the temporal auto-correlation of the fluxes 

(Reichstein et al., 2005). Filled data were conventionally classified into three categories (A, B, 

C) corresponding to best, acceptable and dubious, respectively. According to this quality 

classification for gap-filled values, the majority of these data were classified as best (14.61%) 

(Tab. 4.2).  

 

 2010 2011 2010-2011 

  %  %  % 

Num. tot. val. 13936 (100) 14688 (100) 28624 (100) 

Num. orig. val. 11191 (80.3) 11286 (78.84) 22477 (78.57) 

Num. gaps 2745 (19.7) 3402 (23.16 6147 (21.43) 

Category: A 2532 (18.17) 1623 (11.05) 4155 (14.61) 

Category: B 201 (1.44) 679 (4.62) 880 (3.03) 

Category: C 12 (0.09) 1100 (7.49) 1112 (3.79) 

 

 

Table 4.2 – Number of half-hourly data measured by eddy covariance station in 2010 and 2011. Num. tot. val. 

indicates all the measured data; Num. orig. val. indicates all the measured data used to obtain observed daily GPP 

data; Num. gaps indicates the measured data that cannot be directly used to obtain observed daily GPP data. For 

these half-hourly data GPP data were reconstructed using the gap-filling procedure. The quality classification 

scheme for gap-filled values is: A: best; B: acceptable; C: dubious.  

 

The agreement between the observed and estimated GPP data series was rather good, with the 

exception of two periods in spring 2010 and late-winter early-spring 2011 (Fig. 4.6).  
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Figure 4.6 - Daily values of GPP estimated by C-Fix model (dotted line) and re-constructed from eddy covariance 

measurements (filled line). The two black bars on the x axis indicate the periods likely affected by the tillages. 

 

These periods coincided with those subsequent to tillages. The presence of these periods 

significantly reduced the correlation between measured and estimated GPP (r = 0.462 and RMSE 

= 1.88 g C m
-2

 day
-1

) (Tab. 4.3).  

 

GPP Time Interval R 
RMSE 

(g C m-2 day-1) 

MBE 

(g C m-2 day-1) 

All data Daily 0.462 1.88 0.66 

10-days 0.604 1.51 0.63 

Monthly 0.657 0.66 0.61 

Post-tillage 

removed 

 

Daily 0.662 1.31 0.16 

10-days 0.844 0.83 0.16 

Monthly 0.815 0.81 0.17 

Post-tillage 

simulated  

Daily 0.581 1.45 0.36 

10-days 0.771 0.98 0.34 

Monthly 0.817 0.82 0.33 

 

Table 4.3 – Accuracy of GPP estimates obtained applying C-Fix model for different time intervals (see text for 

details on r, RMSE and MBE).  
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This was confirmed by the comparison of observed and estimated GPP after the removal of data 

subsequent to tillages, i.e. in 2010 32 days from May 6
th

 to June 5
th

; in 2011 69 days from March 

19
th

 to May 26
th

. The different number of daily data removed in the two years was due to the 

season when tillage occurred and the different meteorological conditions recorded in these 

periods (see discussion). After removing these periods the accordance between the two data 

series (observed and estimated) was substantially higher (r = 0.662 and RMSE = 1.31 g C m
-2

 

day
-1

). The two tillages were expected to affect almost exclusively the GPP of the ground 

vegetation layer; in particular, they caused an abrupt reduction of fAPAR consequent to ground 

vegetation removal, followed by a slow recovery during subsequent weeks.  

In an attempt to simulate this effect, the NDVI values of ground vegetation used to drive C-Fix 

were replaced by synthetic values. More precisely, synthetic NDVI drops to 0.15 just after the 

tillage, remains unvaried for about half of the above-mentioned periods and then linearly 

recovers to the original values (Fig. 4.7). This reconstruction significantly improved the 

correlation between observed and estimated GPP (r = 0.582 and RMSE = 1.45 g C m
-2

 day
-1

, 

Tab. 4.3). 

 

 

 

Figure 4.7 – Daily values of GPP estimated by C-Fix model (dotted line) and re-constructed from eddy covariance 

measurements (filled line). The GPP after the two tillages has been estimated by considering simulated ground 

vegetation NDVI values (see text for details).  
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4.4. Discussion  

4.4.1. Flux tower data  

The GPP of the studied olive grove was determined by the seasonal growth of olive trees and 

inter-tree ground vegetation. In particular the intensity of ground vegetation growth varies during 

the growing season. Several studies have indicated a spring peak production mainly caused by 

the behavior of the herbaceous species, where their reproductive phase of growth is much faster 

than the vegetative stage (Cavallero and Ciotti, 1991; Parsons, 1988). The best growing season 

for the majority of herbaceous species in the Mediterranean environment is during spring, while 

they can suffer from water shortage in summer months (De Marco et al., 2008; Xu et al., 2004). 

Both patterns, and particularly the latter, may be influenced by agricultural practices. In the 

current case two main tillages were done in spring 2010 and 2011. Tillage can affect the GPP 

estimates by removing ground vegetation cover, causing reduction in GPP and consequently 

changes in its daily trend. In the first study year (2010) tillage was done in spring (May 5
th

), 

which is usually the period of maximum vegetative activity and greater biomass amount. As a 

consequence, tillage may have caused a removal of herbaceous biomass and consequently a 

strong reduction in ecosystem GPP. On the other hand, tillage was done in a period with high 

temperatures and intense rainfall, which may have ensured an increase in soil water content. In 

the semi-arid climates that characterize most of the Mediterranean basin successful germination 

and subsequent plant establishment is mostly determined by rainfall amount and soil moisture 

availability (Veenendal et al., 1996), while temperature mainly influences the rate at which 

leaves expand and the frequency at which they appear (Peacock, 1976). After these tillages the 

soil was almost bare, but some herbaceous species within the olive grove are characterized by 

fast growth and development. Indeed, direct visual observations showed that two weeks after 

tillage, some plants (especially dicotyledons) started to re-grow from those parts of roots that had 

been pulled out above the soil level, as confirmed by Janicka (2005). In 2011 tillage was done in 

late winter-early spring (March 19
th

) in a period with sparse herbaceous cover and low biomass 

amount. As a consequence, tillage may have removed less herbaceous biomass than in the 

previous year, and consequently a lower reduction in the GPP ecosystem. Visual observations 

showed that the re-growth of the herbaceous cover after tillage was slower in 2011, with a longer 

period of bare soil (about four weeks), probably due to lower temperatures. This condition, 

added to the dryness of the 2011 growing season, may have caused a reduction in soil water 

content and consequently water stress. Several studies have indicated that individual plants are 
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often water-limited during the growing season in regions with dry summers, and water 

competition is frequent between species (Vignolio et al., 2002; Dyer & Rice, 1999). Globally, 

this situation may have slowed down ground vegetation development in the second study year. 

The eddy covariance flux partitioning procedure was likely affected by tillage practices. In fact, 

the procedure is based on both a seasonal long-term window, and a short-term running temporal 

window of 15 days, which is considered representative of the characteristic temporal length scale 

of an ecosystem dynamic (Reichstein et al., 2005). In the case of tillage, as well as other 

management or natural actions that act as a temporal discontinuity by instantaneously changing 

some of the system properties, it is likely that the flux partition procedure may be biased in the 

first period after the discontinuity, while it recovers to proper values after the transient period is 

stabilized. Tillages can affect GPP by removing the vegetation from the soil and, in turn, can also 

result in a reduced carbon sequestration (Baker and Griffis, 2005). In addition, tillage in different 

climatic conditions can influence soil respiration: in periods with high temperatures and high 

water soil content tillage can induce large carbon loss due to increased bacterial growth in the 

short-term (Reicosky, 1997). The higher bacterial activity increases oxidation of soil organic 

matter causing a loss of soil carbon and consequently a higher ecosystem respiration (USDA- 

NRCS, 2004). On the other hand, when tillages are done in periods with low temperature, their 

influence on ecosystem respiration and maximum microbial activity is reduced. In our study, 

tillage events in the warm season may have suddenly removed biomass and increased ecosystem 

respiration, resulting in increased NEE, and this likely induced an under-estimation of flux tower 

GPP until new higher respiration rates were observed over a multiple day time scale.  

 

4.4.2. C-Fix GPP estimated data  

The current application of C-Fix had to overcome particular problems linked to the peculiar 

composition of olive grove ecosystems. These ecosystems, in fact, are composed of a variable 

mixture of olive trees and inter-tree ground vegetation, which obviously show different eco-

physiological properties that must be taken into account in the modeling operation. This issue 

was addressed by the separate application of C-Fix for the tree and herbaceous components, 

which was made possible by the preliminary estimation of olive tree canopy cover based on the 

use of very high spatial resolution satellite data. Two versions of C-Fix were then applied, tuned 

in previous research conducted in the Tuscany region (Maselli et al., 2012A; Maselli et al., 2013; 

Maselli et al., 2009). The whole approach relies on the correct definition of the olive grove 
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fractions covered by tree canopies and inter-tree ground vegetation. This is a non-trivial issue, 

due to the difficulty in obtaining correct area estimates of different cover types from satellite 

imagery (Conese and Maselli, 1992). In the current case, the use of very high spatial resolution 

Ikonos imagery to obtain point cover fraction estimates is complicated by the effects of tree 

shadows, of varying canopy and ground vegetation densities. These problems are exacerbated by 

the use of lower spatial resolution ETM+ images to extend the estimates over larger areas. These 

issues have been addressed by the sequential application of a semi-automatic procedure to 

Ikonos imagery and of locally calibrated regressions to ETM+ images, which should guarantee a 

substantial reduction in bias of the final estimates (Maselli et al., 2012A). This is confirmed by 

the accuracy assessment performed over the studied olive grove, which shows a substantial 

agreement between the olive tree cover fraction estimated automatically and that defined 

visually. The correct estimation of olive tree and ground vegetation cover fractions has allowed 

the prediction of the different temporal NDVI profiles that are necessary to drive relevant C-Fix 

versions. In this regard, the use of the current MODIS NDVI data posed some theoretical and 

practical problems concerning the spatial and temporal resolutions of the investigation. In fact, 

the spatial resolution of these data (250 m) is not sufficient to detect subtle changes in vegetation 

cover due to the application of management practices over small areas (2-3 ha) (Sing, 2011; 

Lamb, 1998; Fitzpatrick et al., 1990). In particular, it is not sufficient to distinguish the different 

NDVI values of inter-tree ground vegetation subsequent to the tillage, especially in 2011, when 

the ground vegetation cover was sparse and low before plowing. As a consequence, this 

limitation could lead to an overestimate of the ground vegetation biomass, increasing the 

ecosystem GPP. Considering all these possible error sources, the C-Fix GPP estimates are in 

reasonable agreement with the GPP data derived from the eddy covariance tower. The results 

obtained indicate that C-Fix can reproduce the observed GPP values fairly well, with the 

exception of the periods following tillage. During the days following plowing in 2010 observed 

GPP significantly goes down, while the estimated GPP increases. Maximum disagreement is 

reached at the end of May, where the model shows the maximum peak of production. The GPP 

data series again shows good agreement at the end of spring, when the observed GPP increases, 

probably due to the reduction of tillage effects. There is a similar trend in 2011, where observed 

GPP decreases during the days following plowing, which was done in late winter. The accuracy 

of the daily GPP values predicted by the model was confirmed by a simulation that considered 

the NDVI values after the tillages (for 15 and 30 days in 2010 and 2011, respectively) to be 



 

Brilli Lorenzo. Olive tree system in Mediterranean basin: a mid-term survey on C sequestration dynamics and 

modelling. PhD Thesis Agrometeorology and Ecophysiology. University of Sassari, Italy, 2014. 
79 

equal to 0.15, followed by a slow recovery. In this way the observed and simulated GPP daily 

values for the two study years are quite well correlated (R=0.581 and RMSE=1.455), and have 

more similar bi-annual totals (1865.06 gC m
-2

 year and 1479.63 gC m
-2

 year). In this regard it 

should be kept in mind that in the post-tillage transient period the model GPP overestimation 

could be partly due to the previously mentioned problems in the correct application of the eddy 

covariance partitioning methods. 

 

4.5. Conclusions 

Carbon exchange data taken in agro-ecosystems provide the fundamental basis for developing 

and validating simulation models to monitor gross/net primary production over wide areas and 

lengthy time periods (i.e. Joseph et al., 2012; Suyker et al., 2005; Xiao et al., 2004; Gitelson et 

al., 2003; Ruimy et al., 1994). Such models may have a different level of complexity and 

simulate processes such as whole-plant photosynthesis and heterotrophic/autotrophic respiration. 

In this work, we presented a modified version of a simple parametric model, C-Fix, to estimate 

daily GPP of an olive grove by separating the contribution of the autotrophic components 

dominating this ecosystem, i.e. olive trees and ground vegetation. The daily GPP values 

estimated by C-Fix were compared against GPP daily data obtained from eddy covariance flux 

measurements taken for two years in an olive grove located in South Tuscany, Italy.  A major 

issue that was found is related to the discrepancies between estimated and observed flux tower 

daily GPP data for post-tillage periods (i.e. the model overestimates photosynthesis of olive 

trees). Considering the effects of tillage practices on soil and its vegetation, most of these 

discrepancies were accounted for by super-imposing ground vegetation NDVI variations during 

the post-tillage periods. The length of post-tillage periods and the consequent model GPP 

overestimation were strongly linked to weather conditions, which determined the re-growth of 

the herbaceous component. Some of the limitations we encountered, related to the low resolution 

of satellite data that are not capable of separately resolving tree canopies and soil, might be 

overcome with a future availability of high spatial resolution spectral satellite data at low cost. 

Our results confirm that the Monteith type parametric model C-Fix, properly tuned for the two 

components, can be used to simulate total olive grove GPP based on the main driving factors of 

solar radiation, thermal and water stresses and fAPAR. Given the impact that crop management 

(i.e. tillage) may have on the C-cycle and the scarce knowledge on C fluxes dynamics in agro-

ecosystems such as olive groves, studies should be conducted to assess the possibility of further 

http://www.sciencedirect.com/science/article/pii/S0168192305001127#bib41
http://www.sciencedirect.com/science/article/pii/S0168192305001127#bib11
http://www.sciencedirect.com/science/article/pii/S0168192305001127#bib11
http://www.sciencedirect.com/science/article/pii/S0168192305001127#bib27
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improving the model performances. Since management practices may significantly affect the 

carbon balance of olive groves, a management parameterization should be included in any 

ecosystem modeling framework. In particular, studies should be conducted in olive groves 

characterized by the same climatic conditions but different agronomic practices (i.e. tillage types 

and times or no tillage), with the aim of assessing the accuracy of the method under different 

management practices. 
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Chapter 5 

 

 

 

Calibration and validation of biogeochemical model Daycent in a Mediterranean 

olive orchard: assessment of carbon sequestration capacity for current and future 

scenarios 

 

 

 

Abstract 

In this work we calibrated and validated the biogeochemical model Daycent with the aim to estimate the 

C-sequestration capacity of a typical Mediterranean olive orchard. An eddy-covariance station placed into 

the orchard provided the net ecosystem exchange (NEE) data over three years (2010-2012). NEE data 

from the first year of study were used to calibrate the model whilst the two remaining years were used for 

model validation. Daycent resulted to be able at reproducing daily olive orchard NEE with a good 

accuracy (r=0.5 and RMSE=1.93 and r=0.41 and RMSE=0.62 g C m-2 day-1, for calibration and 

validation respectively) during the whole period of study. Once model was calibrated and validated, a 

stochastic weather generator LARS-WG was used to generate 100 years of synthetic weather data under 

the SRES emission scenario A1B for 4 time slices (1981-2010; 2010-2030; 2045-2064; 2080-2099). 

Model prediction indicated that the C-sequestration capacity of the olive orchard is expected to be 

reduced of 14.8, 26.6 and 36.3% for 2011-2030, 2046-2065 and 2080-2099 compared to the baseline 

scenario (1981-2010).  

 

Keywords: Olive orchard, Daycent model, NEE,C-sequestration.  

 

Chapter based on: 

Brilli, L., Lugato, E., Gioli, B., Toscano, P., Moriondo, M., Zaldei, A., Cantini, C., Ferrise, R., Bindi, M. 2015. 

Calibration and validation of biogeochemical model Daycent in a Mediterranean olive orchard: assessment of 

carbon sequestration capacity for current and future scenarios. (Forthcoming). 
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5.1. Introduction 

The role of long term agro ecosystems in C-sequestration should be more deeply investigated 

since it may open new options for greenhouse gas emission reduction and, in turn, climate 

mitigation. These systems, also called savanna systems, are usually characterized by the presence 

of two different vegetation layers, trees and ground vegetation, which interact each other creating 

a biome that is neither grassland nor forest (Scholes and Archer, 2013). Although the term 

savanna indicates a wide range of these systems, the most important savanna systems can be 

considered the fruit orchards. At worldwide scale indeed, these systems are involved in 

agricultural production and they can also provide ecosystemic services such as landscape 

protection, environment conservation and climate mitigation, thus resulting very important from 

an economic point of view (Lomou and Giourga, 2003; Sofo et al., 2005, Brilli et al., 

forthcoming). This kind of cultivation assumes high relevance especially over the Mediterranean 

area, widely recognized as the most traditional fruit-growing area due to historical, 

environmental and evolutionary reasons (Connor, 2005). In this geographical area the most 

representative Mediterranean savanna system can be considered the olive trees system. The 

widespread cultivation of this system indeed characterizes the rural landscape in many countries 

such as Italy, Spain, Greece, etc. (Lomou and Giourga, 2003; Vossen et al. 2007). Despite the 

olive tree cultivation has always been aimed at olives and olive oil production, in the last years 

some studies have argued the importance of these systems also in respect of international 

regulations about greenhouse gas control and the mitigation of climate change. For instance 

Nardino et al. (2013) and Brilli et al. (forthcoming) indicated that, regardless on management 

and climate conditions, the C- sink capacity of olive orchards is on average comparable to Italian 

forestry systems. Furthermore, the magnitude of C-sequestration capacity reported in these 

studies has been clearly associated with water availability. In particular, according to Brilli et al. 

(forthcoming), the C-sequestration capacity of a rainfed olive orchard is strictly connected with 

pattern and timing of precipitation. Looking at the future climate projections, according to recent 

WGI contribution to the AR5-IPCC (IPCC, 2013), Mediterranean area will probably experience 

a general warming that will be associated with a strong reductions in precipitation, with a 

decrease from 25% to 30% by the end of the 21st (Giorgi and Lionello, 2008). On these 

premises, the precipitation decrease in conjunction with the expected changes in frequency and 

pattern of precipitation may reduce the mitigative capacity provided by olive orchards or even 

turning these systems into carbon source. In this context, whilst the contribute that this system 
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play in climate change mitigation is not well studied, the contribute that this system will play in 

the next decades is completely unknown. In particular, the complex structure of this system does 

not allows a simple straight forward C-fluxes assessment from the ground (i.e. eddy covariance, 

FACE, respiration chambers, etc.) nor from satellite (i.e. remote sensing). This condition joint 

with the high costs needed to obtain these measurements has often brought to a lack of 

knowledge about the efficiency offered by this system for greenhouse gas emissions control. On 

these basis, it would be therefore fundamental the implementation or development of tools able 

at reproducing the C-fluxes exchanges from olive orchard that could guarantee the same 

measures but in a more simple and cheaper way. Currently, several mathematical models able to 

predict C-fluxes from agricultural systems were widely developed and applied (e.g. DNDC, 

RothC, ECOSSE, ECOSYS, COMP, etc.). Among all of these models, Daycent (Parton et al., 

1994) was chosen because it was considered as the most suitable to reproduce C-fluxes from 

orchard systems. In particular the "savanna sub-model" contained into Daycent allows for the 

interaction between the grassland/crop and forest subsystems through shading effects and 

nitrogen competition. Based on these premises, the objective of this paper was to calibrate and 

validate Daycent model over olive orchard. In this work, 3 years of Net Ecosystem Exchange 

(NEE) measures from eddy covariance were used to test the model over a typical managed olive 

orchard in Tuscany (central Italy). We first calibrated the model over the first year of study 

(2010), then it was validated over the two remaining years. We addressed the level of expected 

accuracy of the model and its suitability for C-sequestration prediction by means of statistical 

analysis (r, RMSE) carried out on different time intervals. Once the model was validated, a 

weather generator LARS-WG was used to generate 100 years of synthetic weather data under the 

SRES emission scenario A1B for 4 time slices (Baseline 1981-2010; 2011-2030; 2045-2064; 

2080-2099) with the aim to assess the C-sequestration capacity that will be lost from olive 

orchard compared to the baseline. 

 

5.2. Materials and methods 

5.2.1. Study area 

The Study area is located at Follonica (42°56' N , 10°46' E), a small village in Central Italy 

(Tuscany). The local climate is characterized by high temperatures and prolonged periods of 

drought during summer, whilst typically mild wintertime. The lowest monthly mean temperature 

is usually recorded on January (7.5°C), while the highest on August (30.9°C). Precipitations 
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represent the typical Mediterranean trend, with the main peaks recorded in fall and early spring. 

The long-term precipitation average (PP-LTA) calculated over the period 1981-2009 is 626 mm 

(MARS JRC). Test study site is an adult olive extended for about 6 ha and containing more than 

1500 plants of 4-5 meters in height. Trees have same ages (20 years) and plant density (7x5m), 

and their canopies cover about 25% of the whole orchard (Maselli et al., 2012). Soil 

characteristics were obtained through the analysis of 10 soil samples taken in different part of the 

orchard. The sampling was done for four different soil depth are reported in Tab. 5. Results 

showed that orchard mainly consists of clay-sand textural class (50% clay and 30% sand), the 

average pH value is about 7, whilst bulk density (BD) is 1.27 Mg m
-3

 (Tab. 5.1). Moreover, the 

available water capacity of the area ranges from 90 to 120 mm/m (Harmonized World Soil 

Database, FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009). 

 

 
Sand Silt Clay pH BD 

Deep (cm) g/kg
-1

 g/kg
-1

 g/kg
-1

 
 

Mg m
-3

 

0-15 329 ± 22 233 ± 19 438 ± 34 7.2 ± 0.12 1.13 ± 0.11 

15-30 310 ± 28 262 ± 25 428 ± 53 7.1 ± 0.21 1.26 ± 0.15 

30-50 279 ± 19 200 ± 33 521 ± 42 6.8 ± 0.13 1.29 ± 0.14 

50-70 250 ± 18 181 ± 37 569 ± 23 6.5 ± 0.11 1.42 ± 0.18 

 

Table 5.1 - Soil characteristics of test site. Texture, pH and Bulk density were provided for 4 different soil layers. 

 

Agricultural practices reflect the ancient tradition of olive tree cultivation, characterized by inter-

row superficial tillage, fertilization at the beginning of the growing season (early spring), without 

irrigation. During the 3 years of study (from 2010 to 2012) tillage practices have been carried out 

1 time per year using disk-harrowing. Inter-row orchard were ploughed in early May 2010, in 

February 2011 and in late May 2012. Similarly, fertilizer was applied at the end of February 

(2011) or in May (2010 and 2012). Mechanical harvesting was in 2010 and 2012 in November. 

Conversely in 2011, harsh meteorological conditions coupled with alternate bearing have caused 

extremely low production, therefore fruits were left on the trees. All remaining vegetation 

components within the orchard (i.e. weeds, litter, residues due to mechanical harvesting such as 

leaves, small branches, fruits, etc.) were incorporated into the soil during tillage. 
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5.2.2. Eddy Covariance data and processing  

Eddy covariance (EC) is a micrometeorological technique that allow to measure ecosystem 

carbon (CO2) and energy exchange (H2O, H, LE) between the ecosystem and the atmosphere 

(Baldocchi et al., 1996). The EC system consisted of a mobile carriage equipped with a mast and 

it was placed in the central part of the olive orchard to obtain the net CO2 exchange of the entire 

ecosystem. Data were recorded from March 2010 through October 2012. The fast sensors (i.e. a 

Metek USA 1 triaxial sonic anemometer and a Licor 7500 open path infra-red CO2-H2O 

analyzer) were mounted on the mast at a height of 7 m, about 2 m above canopy top. These data 

were acquired at high frequency (20 Hz) and then stored on an handheld low consumption 

computer (Matese et al., 2009). Ancillary data included half-hour mean meteorological 

measurements such as soil temperature profiles from 5 to 20 cm (thermocouples J and T types), 

global and net radiation (CMP3 and NR LITE Kipp & Zonen), air temperature and humidity 

(HMP45 Vaisala), and rainfall (rain gauge Davis 7852). These data were stored on half-hourly 

basis on a data logger (Campbell CR10X). The entire instrumentations was electricity supplied 

through a battery system charged by 3 solar panels with 90 A/h capacity. However, this setup 

caused some power outages especially during wintertime. Eddy covariance raw data were then 

analysed and processed. First step concerned the analysis of footprint through an analytical 

model (Hsieh et al., 2000) that computed footprint distances as a function of several parameters 

(i.e. wind speed and direction, atmospheric stability, measurement height and surface 

roughness). Doing so, we evaluated the extent of the area surrounding the tower where the 

observed fluxes originated from. This methods pointed out that the area containing 90% of the 

observed flux is almost entirely contained within the olive orchard edges. Then, the Eddy Pro® 

Software was used to process binary files and meteorological data collected by E.C. tower for all 

the 3 years of study. Eddy Pro® Software has been run in Express Mode that considered several 

procedures such as spectral corrections to compensate flux underestimations, despiking for 

detecting and eliminating short-term outranged values in the time series and control tests for 

fluxes according to Foken et al. (2004). Final outputs from Eddy Pro® consisted of gap-filled 

NEE data at half-hour resolution. These outputs were then aggregated both on daily and 10-days 

totals. During the 3 years of experiment, data losses were mainly concentrated in early 2010 and 

at the end of 2012. This condition did not allow a reliable assessment for those months in which 

the concentration of missing data was particularly high. 
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5.2.3. Daycent overview  

Daycent (ver. 4.5), the daily time-step version of the biogeochemical Century model (Parton et 

al., 1994), has been designed to simulate soil C dynamics, nutrient flows (N, P, S), and trace gas 

fluxes (CO2, CH4, N2O, NOx, N2) between soil and the atmosphere (Parton et al., 1998, Del 

Grosso et al. 2001a). The main inputs concern site specific soil properties, current and historical 

land use (i.e. vegetation type, management schedules, amount and timing of nutrient 

amendments, etc.), and specific meteorological parameters reported at daily time (i.e. maximum 

and minimum air temperature and precipitation). Daycent includes four major sub-models: a) 

Plant productivity and allocation of net primary production (NPP). It is a function of genetic 

potential, phenology, nutrient availability, abiotic stresses (water and temperature), and solar 

radiation. The NPP is allocated within different plant compartments (i.e. roots, branches, shoots, 

etc.) based on vegetation type, phenology, and water/nutrient stress; b) Decomposition of dead 

plant material (litter) and SOM. They are functions of substrate availability and quality (lignin 

%, C/N ratio) as well as water/temperature stress. The SOM pools are 3 and they are defined as 

active, slow or passive pool depending on their turn over time; c) Soil water and temperature 

dynamic; d) Trace gas fluxes. The latter is driven by soil NH4 and NO3 concentrations, water 

content, temperature, texture, and labile C availability (Parton et al., 2001). Model outputs 

include several daily N-gas flux (N2O, NOx, N2), CO2 flux from heterotrophic soil respiration, 

soil organic C and N, NPP, NEE, H2O and NO3 leaching, and other ecosystem parameters. 

According to Del Grosso et al. (2002, 2005) Daycent model can be considered as a reliable tool 

for simulating crop yield, SOM levels, and trace gas flux for various native and managed 

systems. 

 

5.2.4. Future climate scenarios 

The climatic scenarios for present and future periods were created using the stochastic weather 

generator LARS-WG (Semenov and Barrow, 1997). Once calibrated on a specific site, LARS-

WG is able to generate daily time series of minimum and maximum temperatures, precipitation 

and global radiation with statistical properties similar to those observed at the site (Semenov and 

Doblas-Reyes, 2007). In this study, the latest version of LARS-WG was adopted (Semenov and 

Stratonovitch, 2010). This latter allows the user to generate scenarios of climatic change since it 

incorporates future climate projections from several global simulation models. For this study, 

LARS-WG was used to generate 100 years of synthetic weather data for each of the following 

http://www.sciencedirect.com/science/article/pii/S0921818108002075#bib24
http://www.sciencedirect.com/science/article/pii/S0167198705000358#bib17
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time slices: present period (1981-2010, PP), and 3 future time slices (2010-2030, FP1; 2045-

2064, FP2 and 2080-2099, FP3). Specifically, future climate scenarios were generated using the 

HADCM3 projections (Pope et al., 2000) under the SRES emission scenario A1B (Nakicenovic 

and Swart, 2000). 

 

5.2.5. Daycent calibration and validation  

Daycent was calibrated by matching simulating daily NEE data with corresponding observed 

values from eddy covariance for the entire year 2010. The daily weather data file taken into 

account minimum and maximum air temperature and precipitation, whilst solar radiation, 

relative humidity and wind speed were not used. The soil file was compiled based on field data 

collected within the test site. The schedule files for spin up and test site were built to reflect as 

nearly as possible the historical and current land use, vegetation type and management. Daycent 

was brought to an equilibrium state by simulating almost 2000 year consisting of continuous 

forest (1-1930) followed by low yield wheat (1931-1992). The current land use (1993–2012) was 

built for reflecting olive orchard system (i.e. mixed grass + olive trees). Then, we tuned the 

model as necessary within acceptable ranges to match observed NEE data more closely. The 

parameters changed were described in the tables reported in section 3 (Tab. 5.2 and 5.3), where 

were also indicated the recommended ranges of crop and tree parameters and the selected 

parameters based on matching the NEE for calibration. These key factors were identified as 

critical in explaining global variations in daily NEE. Finally, once the best calibration was found, 

the key parameters remained unchanged and the model was thus validated over the years 2011 

and 2012. 

 

5.2.6. Statistical analysis 

In order to evaluate model performances different statistics were used. In particular, accuracy of 

NEE estimates from the model included correlation coefficients (r) and root mean square error 

(RMSE). According to Del Grosso et al. (2011), for vectors that are highly variable in time such 

as N2O or CO2 emissions and C-fluxes, the model could have some problem to well represent 

the timing at the daily scale, whilst it could represent more correctly treatment impacts at 

seasonal scale. All statistics were therefore applied also at different time intervals (daily, 5-10-

days and monthly). 
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5.3. Results 

5.3.1. Sensitivity analysis 

Sensitivity analysis allowed to determine the key factors controlling C exchange in olive 

orchard. Different series of key factors were identified both for ground vegetation and trees. 

These factors were identified as the mostly critical in explaining variations in daily NEE, while 

the remaining had no great influence on modelled NEE.  

The most sensitive controls were identified as the potential aboveground monthly production, 

temperature effect on growth, C/N ratio under different plant compartments and LAI. The 

optimized values of most parameters were significantly changed from their initial default values 

and adapted based on the different physiological characteristics of both layers.   

The changed values of all sensitive parameters along with their initial values as well as their 

upper and lower limits are given in Tab. 5.2. 

 

ID_Crop Parameter Description Range Selected 

 Mix 

grass 

PRDX (1) 
Coefficient used for calculating potential aboveground 

monthly production as a function of solar radiation 
0.1 - 2.0 0.95 

PPDF (1) 

Optimum temperature for production for 

parameterization of a Poisson Density Function curve 

to simulate temperature effect on growth 

10 - 40 24 

PPDF (2) 

Maximum temperature for production for 

parameterization of a Poisson Density Function curve 

to simulate temperature effect on growth 

20 - 50 40 

PPDF (3) 

Left curve shape for parameterization of a Poisson 

Density. Function curve to simulate temperature effect 

on growth 

0 - 1 0.9 

PPDF (4) 

Right curve shape for parameterization of a Poisson 

Density. Function curve to simulate temperature effect 

on growth 

0 - 10 2.5 

BIOK5 

Level of aboveground standing dead + 10% strucc(1) 

C at which production is reduced to half maximum 

due to physical obstruction by the dead material 

0 - 2000 1 

FRTCINDX 

Plant growth type: 

0= use Great Plains equation; 1= perennial plant; 2= 

annual plant; 3= perennial plant, growing degree day 

0 - 6 1 
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implementation and dynamic carbon allocation; 4= 

non-grain filling annual plant and growing degree day 

implementation, dynamic carbon allocation; 5= grain 

filling annual plant, growing degree day 

implementation, dynamic carbon allocation; 6= grain 

filling annual plant that requires a vernalization period 

(i.e. winter wheat), growing degree day 

implementation, dynamic carbon allocation. 

CLAYPG 
Number of soil layers used to determine water and 

mineral N, P, and S that are available for crop growth. 
1 - 9 4 

 

Table 5.2 - Parameters changed in the file “crop.100” to adjust biomass production for grass layer (Mixed grass 

from crop default file with 50% warm and 50% cool, N fixation). 

 

ID_Crop Parameter Description Range Selected 

Olive tree 

DECID 

Type of forest: 

0= continuous; 1= temperate-deciduous; 2= 

drought-deciduous 

0 - 2 0 

PRDX (1) 

Coefficient used for calculating potential 

aboveground monthly production as a 

function of solar radiation 

0.1 - 2.0 0.93 

PPDF (1) 

Optimum temperature for production for 

parameterization of a Poisson Density 

Function curve to 

simulate temperature effect on growth 

10 - 40 30 

PPDF (2) 

Maximum temperature for production for 

parameterization of a Poisson Density 

Function curve to 

simulate temperature effect on growth 

20 - 50 45 

PPDF (3) 

Left curve shape for parameterization of a 

Poisson Density. Function curve to simulate 

temperature effect on growth 

0 - 1 1 

PPDF (4) 

Right curve shape for parameterization of a 

Poisson Density. Function curve to simulate 

temperature effect on growth 

0 - 10 3.9 
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CERFOR(2,1,1) Maximum C/N ratio for leaves 1 - 200 90 

LEAFDR Monthly death rate fraction for leaves (1 - 12) 0 - 1 

Jan= 0.060 

Feb= 0.050 

Mar= 0.070 

Apr= 0.000 

May= 0.070 

Jun= 0.009 

Jul= 0.040 

Aug= 0.085 

Sep= 0.060 

Oct= 0.050 

Nov= 0.040 

Dec= 0.030 

BTOLAI 
Biomass to leaf area index (LAI) conversion 

factor for trees.  

0.01 - 

0.008 
0.007 

KLAI 
Large wood mass (gC/m2) at which half of 

the theoretical maximum maxlai is achieved  
4500 

LAITOP 

Parameter determining relationship between 

LAI and forest production: LAI effect = 1 - 

exp(laitop * LAI) 
 

-0.47 

MAXLAI 
Theoretical maximum leaf area index 

achieved in mature forest 
0 - 50 6 

WDLIG(1) Lignin fraction for leaf component 0 - 1 0.203 

TLAYPG 
Number of soil layers used to determine water 

and mineral N, P, and S available for growth 
1 - 9 3 

 

Table 5.3 - Parameters changed in the file “tree.100” to adjust biomass production for tree layer (Olive tree from 

tree default file based on century data). 

 

 

5.3.2. Calibration and validation  

Calibration was reported at daily time step in Fig. 5.1. Comparison between observed and 

simulated daily NEE showed that the model well represents the general behaviour of the olive 

orchard with the only exception in summer, where NEE is underestimated and the model shows 

little NEE variability compared to observed values.  
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More specifically, during summer the simulated daily NEE (~ -2 gC m
-2

 d
-1

) was, on average, the 

half of the NEE observed (~ -4.5 g C m
-2

 d
-1

). Different NEE was also observed during Spring 

and particular in May, where the daily simulated NEE was on average (~ 12 g C m
-2

 d
-1

) about 2 

times greater than NEE observed (~ 6 gC m
-2

 d
-1

).  

Despite the absolute values simulated by the model over these 2 periods did not match with those 

observed, statistical analysis ( Tab 5.4) confirmed the good agreement between observed and 

modelled NEE trend at daily scale (r= 0.5) along the whole year. 

 

 

 

Figure 5.1 - Model calibration reported at daily time step.  

 

Moreover, the correlation was found higher increasing the time step (i.e. 5, 10 days or monthly). 

However, based on an annual scale, the model resulted to underestimate the NEE. More 

specifically the total annual NEE simulated by the model (-553 gC m
-2

) resulted to be 17% lower 

compared to that observed (-647.2 gC m
-2

) (Tab. 5.5). 

Daycent has been then validated over the two remaining years (2011 and 2012). As shown in 

Fig. 5.2, the NEE trend simulated by the model was found in good agreement with the observed 

NEE.  
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Figure 5.2 - Model validation reported at daily time step. 

 

In particular, with the only exception of the early 2011 where the model overestimated the NEE, 

Daycent seems to well reproduces also emissions peak recorded during winter and summer. 

Similarly as observed during model calibration, the correlation between simulated and observed 

NEE enhances by increasing the time step. By contrast, based on an annual scale the model 

resulted to be perfectly consistent with the NEE observed in 2011 and 2012. More specifically 

the total annual NEE simulated by the model for both years (-157 and -227.6 gC m
-2

) resulted to 

be only 4% higher compared to that observed (-149.3 and -218.3 gC m
-2

) (Tab. 5.5). 

 

NEE Time Interval r 
RMSE 

(g C m
-2

 day
-1

) 

Calibration (2010) 

Daily 0.498 1.931 

5-days 0.623 1.375 

10-days 0.667 1.243 

Monthly 0.765 0.909 

Validation (2011-2012) 

Daily 0.412 0.625 

5-days 0.563 0.690 

10-days 0.634 0.635 

Monthly 0.915 0.399 
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2011 

Daily 0.39 0.844 

5-days 0.541 0.559 

10-days 0.638 0.505 

Monthly 0.823 0.305 

2012 

Daily 0.416 1.013 

5-days 0.579 0.771 

10-days 0.647 0.698 

Monthly 0.888 0.386 

 

 

Table 5.4 - Statistical analysis concerning model calibration and validation carried out at different time step. 

 

Based on the whole period of study, Daycent model resulted to be able to reproduce NEE trend 

with high accuracy. More specifically taking in account the same days during the 3 years of 

study, the simulated NEE resulted to underestimate the observed NEE of only 8%. 

 

 
NEE 

 
Simulated (Daycent) Observed (E.C) Diff (%) Sim/Obs 

2010 -552.97 -647.17 -17.04 

2011 -157.02 -149.31 4.91 

2012 -227.59 -218.35 4.06 

SUM -937.6 -1014.8 -8.24 

 

Table 5.5 - Total annual NEE simulated by Daycent model and observed from Eddy Covariance. Total annual NEE 

was reported considering the same days for observed an simulated. 

 

5.3.3. NEE: future projections 

Once the model has been calibrated and validated, 4 different timeline under A1B scenario were 

used to estimate future NEE from olive orchard (Fig. 5.3). The NEE simulated by the 3 future 

scenarios (2011-2030; 2045-2064 and 2080-2099) was found close to the NEE simulated using 

the baseline (1981-2010), with the maximum sequestration during spring and a little vegetation 

recovery at the end of summer. The major differences were observed during dry period 

(summer). 
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Figure 5.3 - Average daily NEE reported for the 4 different timeline under A1B scenario. 

 

Based on a monthly scale (Fig. 5.4) , the major differences among the baseline and all the three 

future scenarios were more clear compared to the analysis at daily scale.  

 

 

 

Figure 5.4 - Average monthly NEE reported for the 4 different timeline under A1B scenario. 
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The first clear difference was observed in May, where the cumulated NEE observed under the 

baseline and 2011-2030 scenario was similar and it was also lower compared to the other 

scenarios (2045-2064 and 2080-2099) of about 14%. Then, during the hottest period (i.e. July 

and August) the cumulated NEE showed positive values under all the 3 future scenarios with the 

only exception of the baseline, where a slight but continuative C-sequestration was observed. 

The cumulated NEE for the baseline was observed strongly increase again in September (-18.2 

gC m-2) as typical for Mediterranean ecosystem, while it poorly increased for the periods 20011-

2030 (-5.5 gC m-2) and 2045-2064 (-4 gC m-2). The only exception resulted to be the period 

2080-2099, where the typical recovery result to be absent and a continuative C-emission was 

observed (8.2 gC m-2). According to Tab. 5.6, the olive orchard under investigation is expected 

to lose its C-sequestration capacity approaching the end of the century. More specifically based 

on our analysis the C-sequestration capacity of the olive orchard is expected to be reduce of 14.8, 

26.6 and 36.3% for 2011-2030, 2046-2065 and 2080-2099 compared to the baseline scenario 

(1981-2010). 

 

NEE (gC m
-2

) 

Time-Step 
Baseline 

(1981-2010) 

FP1 

(2011-2030) 

FP2 

(2046-2065) 

FP3 

(2080-2099) 

Jan 17.22 15.99 13.37 13.51 

Feb 13.07 11.17 8.43 8.05 

Mar -10.46 -11.30 -15.53 -15.56 

Apr -79.17 -81.62 -88.06 -89.54 

May -143.14 -142.47 -124.60 -126.87 

Jun -27.89 -21.70 -10.22 -4.49 

Jul -2.56 5.14 10.89 14.06 

Aug -1.24 8.16 13.17 13.73 

Sept -18.16 -5.50 -4.05 8.21 

Oct -4.52 -1.09 2.22 5.46 

Nov 22.94 21.73 20.30 19.45 

Dec 23.20 21.93 19.42 19.80 

 
-210.72 -179.54 -154.66 -134.17 

 

Table 5.6 - Monthly NEE simulated by Daycent model for the baseline and the 3 future timeline under A1B scenario 
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5.4. Discussion 

5.4.1. Calibration and validation 

Cultivar-specific plant parameters for olive tree and grass were calibrated across a site specific 

area in Tuscany (Italy). Overall, the modelled NEE agreed well with the observed NEE (Tab. 

5.4). The model, however, appeared to overestimate the range of NEE variation during late 

spring when tillage was done, whilst it seems to underestimate the NEE during dry period. 

These issues were probably due to different causes. During springtime, the NEE overestimation 

was observed especially in April and May. In April the maximal rate of photosynthesis adjusted 

to reflect the general length of the growing season across the year could be resulted higher in 

respect of those observed. This could be explained by the fact that the maximal rate of 

photosynthesis simulated by the model is mainly driven by precipitation and air temperature. In 

this context these two climate parameters recorded over April could have lead the model to 

overestimate the NEE during this period. During May the main issues was probably due to the 

effect of cult.100 file. This file was used to simulate tillage practice that was done at the begin of 

May. This practice was done in a period with high water availability in conjunction with the 

increase of air temperature. This could have enhance soil microbial biomass and its relative 

activity, leading to a quickly vegetation growth and SOM decomposition. This is in agreement 

with Parton et al. (1987) that suggested as soil carbon sequestration in Daycent model is a 

function of plant productivity and SOM decomposition. 

During the hottest period of the year (i.e. July and august) Daycent model does not follow the 

NEE trend, underestimating the observed NEE. More specifically, in these months the simulated 

NEE shows low variability compared to the direct measurement. Doing so, Daycent model does 

not reflect the vegetation activity that, by contrast, it is clearly indicated by the direct 

measurements. This disagreement can be observed in a period where the most limiting factor for 

vegetation activity is water availability. According to some recent studies (Nardino et al., 2013; 

Brilli et al., forthcoming), during the growing season the olive orchard NEE dynamics are mainly 

influenced by the availability of water. On these basis, therefore, the main issues could be due to 

a synergy of input factors that concern both soil characteristics and olive tree physiology.  

Besides to basic soil parameter such as texture, pH and bulk density, Daycent soil file allows to 

indicate also number and depth of soil layers as well as the percentage of roots that are in each of 

those. Similarly, within the tree.100 file it is possible to indicate the number of the soil layers 

that are used to determine the available water and mineral N, P, and S for tree and grass growth. 
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These input parameter are useful to better define the structure of the system, arranging the roots 

in the most superficial layers (i.e. 30 centimetres) and by indicating these layers as the more 

important relating to water availability. Despite these parameters have been chosen through field 

analysis and literature and therefore they can be considered as highly suitable to represent the 

olive orchard ground structure, the model could not reflect the observed NEE since the tree.100 

file parameters does not take in account specific intrinsic olive tree physiological characteristics. 

For instance, olive trees usually rely on conservative water use in Spring thus reducing the extent 

and intensity of the summer drought (Connor, 2005). This behaviour allows a continuative 

photosynthetic activity also during the driest period. This is possible thanks to adjustments that 

are typical of xerofil plants. These specie, indeed, is usually characterized by high resistance to 

gas diffusion in the leaf since they can reduce their intercellular volume spaces within tissues 

(Bongi et al., 1987; Gucci, 1998). Daycent model, therefore, could have several problems at 

reproducing the NEE of those species that are particularly good in water use efficiency. 

Changing the number of soil layers that are used to determine the available water and mineral for 

tree and grass growth model performance improved. This may be due to the increase of the roots 

percentage in soil layers that may have allow an increase of water and mineral supply for tree 

and grass growth.  

 

5.4.2. Future NEE projections 

Once model was calibrated and validated, it was applied to simulate future NEE from the same 

olive orchard. As it was expected, results showed a progressive decrease in NEE approaching the 

end of the century. This is consist with the precipitation and air temperature trend for future 

period. More specifically according to several studies (IPCC, 2013) these trend are expected to 

show air temperature increase and a strong precipitation reduction over Mediterranean basin and, 

consequently, over the study area. Compared to the baseline, the greatest changes in NEE were 

observed in FP2 and FP3 during the whole growing season (Fig 5.4). Both time slices showed a 

similar trend characterized by a slight NEE increase during early spring followed by a reduction 

during May. As previously indicated, since the rate of photosynthesis simulated by the model is 

mainly driven by precipitation and air temperature, an increase in daily air temperature in 

conjunction with precipitation reduction expected for future period may have anticipated the 

period where the maximum physiological activity is usually observed, thus showing an highest 

NEE compared to the baseline during the early Spring. Similarly, the precipitation decrease 
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expected for summer months may have strongly influence the NEE during summer months. This 

was clearly observed over each one of the future scenarios. Indeed, a continuative decrease of 

precipitation coupled with the increase in temperature led to stomatal closure with the 

consequent reduction in C fixation and an increase in ecosystem respiration. 

 

5.5. Conclusions 

The development of tools able to predict C-sequestration capacity and C-fluxes dynamics from 

several ecosystem it is a fundamental field of research to cope with the current issue of climate 

change. Understanding and prediction of these parameters could be fundamental to assess the 

role that specific ecosystems may have in climate mitigation. In this context, our study has been 

focused on the calibration and validation of the biogeochemical model Daycent. This model was 

considered as one of the most suitable to assess the mitigative potential of a complex system 

such as olive orchard. Statistical analysis confirmed that Daycent was able at reproducing daily 

olive orchard NEE with a good accuracy (r=0.5 and RMSE=1.93 and r=0.41 and RMSE=0.62 g 

C m-2 day-1, for calibration and validation respectively) during the whole period of study. These 

results suggested that the model properly tuned for the two components of this system (i.e. tree 

and grass) can be used to simulate NEE dynamics from olive orchard and for estimating the 

influences of agronomic management, soil and climatic on GHG emissions from Mediterranean 

olive orchards. The results also suggested that for the selected future climate scenarios over the 

study area, the C-sequestration capacity of the olive orchard is expected to be reduced of 14.8, 

26.6 and 36.3% for 2011-2030, 2046-2065 and 2080-2099 compared to the baseline scenario 

(1981-2010). Model calibration and validation reported in our study can be considered quite 

good to fully simulate the influence of climate conditions or the effects of tillage and other 

management operations on carbon cycle. However, given the still scarce knowledge on carbon 

fluxes dynamics in agro-ecosystems such as olive orchards, further studies should be conducted 

to assess the possibility of further improving the model performances through tuning or 

algorithms implementation, or with the aim to test the efficiency of new mitigation strategies. 
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Chapter 6.  

General discussion and conclusions 

6.1. Main theme and questions 

The main theme of this work was to assess the role that one of the most important fruit orchards 

(olive orchard) cultivated over Mediterranean area can play in climate mitigation. Starting with 

this aim that is in perfect line with the current issue of climate changes, this work followed a 

research path that has addressed 2 main questions: 

 

1. Which is the current C-sequestration sequestration capacity provided by a typical 

Mediterranean olive orchard? How climate conditions and management can affect the C-

sequestration capacity of this crop system? 

 

2. Can olive orchard system being modelled? Which are the current mathematical tools 

able to reproduce C-dynamics of this system? 

 

This final chapter gives a synthesis of all results reported into the chapters 3, 4 and 5 of this 

thesis, closing with broader thought about the contribute that olive orchard systems may play in 

climate mitigation and, based on our results, on the need of developing or improving mitigation 

strategies concerning this ecosystem to cope with climate change. 

 

6.1.1. Role of olive orchards in C-sequestration capacity and influence of climate conditions and 

management. 

Results reported in this thesis indicated that C-sequestration capacity of our olive orchard test 

was about 3.5 tC/ha yr
-1

 on average, thus resulting almost comparable to forestry systems. This 

result, besides to indicate that this agro-system currently highly contributes to climate mitigation, 

also suggests the needs of a further development of mitigation strategies that take in account this 

agro-ecosystem especially over areas where climate change is particularly detrimental (i.e. 

Mediterranean basin) (Chapter 3). Moreover, during the 3 years of study the inter-year and intra-

seasonal variability in climate conditions were observed to highly affect the magnitude and 

pattern of NEE. More specifically, whilst the magnitude of yearly NEE has been found highly 

correlated with annual rainfall regimes, spring rainfall resulted to be the main driver of NEE both 

for spring and summer (Chapter 3). This may be due to besides soil characteristics of the test 
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site, also for eco-physiology of the specie. Looking at future predictions, these systems might 

encounter consistent loss in C-sequestration capacity due a strong decrease in rainfall expected 

over Mediterranean basin in the next decades.  

In addition to climate conditions, also management practices were observed to strongly influence 

the magnitude and pattern of NEE, particularly affecting the soil C-cycle. More specifically these 

practices through the removal of ground vegetation can cause a reduced carbon sequestration due 

to less quantity vegetation able to fix atmospheric carbon. Moreover, the conjunction between 

tillage practices and climate conditions can also influence soil respiration (Chapter 4). As 

described in section 4.4.1, indeed, "in periods with high temperatures and high water soil 

content, tillage can induce large carbon loss due to increased bacterial growth in the short-term. 

The higher bacterial activity increases oxidation of soil organic matter causing a loss of soil 

carbon and consequently a higher ecosystem respiration. On the other hand, when tillages are 

done in periods with low temperature, their influence on ecosystem respiration and maximum 

microbial activity is reduced".  

 

6.1.2. Current status, calibration, validation and application of the most suitable tool able at 

reproducing C-fluxes from a complex system such as olive orchard. 

Nowadays, development and application of tools able to predict C-fluxes from agricultural or 

natural ecosystem it is a fundamental field of research to cope with the issue of climate change. 

In particular the application of these tools can improve the understanding of the role that these 

systems can play in climate mitigation. These tools may have a different level of complexity and 

simulate processes such as whole-plant photosynthesis and heterotrophic/autotrophic respiration. 

The modified version of a simple parametric model C-Fix allowed to estimate daily GPP by 

separating the contribution of the autotrophic components dominating this ecosystem (trees and 

ground vegetation). Results confirmed that C-fix model was able to reproduce the GPP trend 

from the orchard and that the major discrepancies where observed for post-tillage periods. Being 

a model based on remote sensing, some of the limitations were related to the low resolution of 

satellite data that were not capable of separately resolving tree canopies and soil (Chapter 4).  

By contrast, the calibration and validation of the biogeochemical model Daycent allowed to 

overcome limitations or constraints typical of remote sensing models. More specifically the 

"savanna sub-model" contained into Daycent allowing for the interaction between the 

grassland/crop and forest subsystems through shading effects and nitrogen competition, it 
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allowed to deeply analyse the effect of agricultural practices and climate conditions on the whole 

C-cycle of the orchard as well as the single behaviour of the two autotrophic components (i.e. 

olive trees and grass) (Chapter 5). Statistical analysis confirmed that Daycent was able at 

reproducing daily olive orchard NEE with a good accuracy (r=0.5 and RMSE=1.93 and r=0.41 

and RMSE=0.62 g C m-2 day-1, for calibration and validation respectively). The higher 

suitability of Daycent model compared to C-fix model, also considering the its ability to 

reproduce the soil C dynamics, suggests its use for testing the efficiency of new mitigation 

strategies or with the aim to evaluate predicted changes in mitigation capacity provided by this 

long term agro ecosystems in the next decades. 

 

6.2. Conclusions 

Several worldwide studies have analysed the magnitude that forests can provide in terms of C-

sequestration capacity and, consequently, how these systems can contribute to climate change 

mitigation. By contrast, the role and contribution in climate mitigation played by crop systems 

such as orchards has often been neglected. These systems, indeed, have always been investigated 

for their economic importance (i.e. fruits production), whilst their long term carbon storage 

capacity in soil or woody compartments has not been taken into account.  

The mid-term experiment (3 years) carried out on a typical Mediterranean olive orchard allowed 

a complete overview about the role that this system could play in climate mitigation. More 

specifically by integrating C-fluxes measures with short and long term meteorological analysis 

has been possible to assess the C-sequestration sequestration capacity provided by a typical 

Mediterranean olive orchard as well as evaluating how climate conditions and management can 

affect it. Results indicated that under current climate conditions olive orchard can be considered, 

on average, a carbon sink almost comparable to Italian forestry systems and therefore highly 

suitable for climate mitigation. The influence of climate and management highly affected the 

magnitude and pattern of C-sequestration capacity of the olive orchard. Despite changes in 

magnitude and pattern of C-sequestration were as higher as the time-scale was lower (i.e. from 

half-hour to monthly scale) they strongly affected the yearly C sequestration capacity. This 

aspect, therefore, should be retained fundamental in order to improve or develop new mitigation 

strategies involving olive orchard systems. 

The major issue to obtain a more detailed overview about the role that olive orchard plays in 

climate mitigation is related to time and space limitations. Our work, indeed, was focused on the 
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assessment of the contribution provided from only one olive orchard (i.e. test site) through eddy 

covariance measurements that, as is known, are site-specific measurements challenging and 

expensive to obtain. For overcoming these limitations and obtaining the C-sequestration capacity 

of olive orchards at higher scale (i.e. from regional to global) as well as expected changes in C-

sequestration over the next decades, olive orchard system modelling was retained to be needed. 

On these premises, two different tools were taken into account: the first one was a simple 

parametric model C-Fix that was modified and then applied to estimate daily GPP; the second 

was the biogeochemical model Daycent that was calibrated and validated to estimate daily NEE. 

Our results indicated that both models, once properly tuned, resulted to be suitable tools to assess 

C-fluxes from olive orchard systems.  

This work, by providing a complete overview about the current contribution of C-sequestration 

capacity of a typical Mediterranean olive orchard and on the tools able to reproduce the 

behaviour of this system, it should be retained as an early step to enhance the knowledge about 

the role that olive orchard systems could play in climate mitigation. Moreover, the development 

of new mitigation strategies and climate policies concerning olive orchard systems as well as the 

improvement of those already existing should be increased. This aspect should be taken into 

account especially by those countries that lie over Mediterranean areas and where climate change 

is the main issue for agriculture and environment.  
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