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ABSTRACT  

 

TDP-43 pathology is a disease hallmark that characterizes both sporadic and 

familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar 

degeneration (FTLD-TDP). TDP-43 has been implicated in transcription, RNA 

metabolism and transport, and different TDP-43 post-translational modifications, 

spanning from phosphorylation to acetylation, can regulate its activity. In the 

present PhD thesis we provide evidences that TDP-43 interacts with histone 

deacetylase 1 (HDAC1), both in vivo and in vitro. By biochemical assays, 

performed in SH-SY5Y cells, we demonstrated that HDAC1, as well as HDAC6, can 

modify TDP-43 acetylation, that occurs mainly on amino acid residues K142 and 

K192, located in the RRM1 and RRM2 domains, necessary for the interaction . 

Interestingly, HDAC1 overexpression modulates TDP-43 transcriptional activity 

on CHOP promoter, but not TDP43 splicing activity on polymerase delta 

interacting protein 3 [POLDIP3] gene. Finally, both in cell culture and in 

Drosophila, HDCA1 reduced level (genomic inactivation or siRNA) or treatment 

with pan-HDAC inhibitors, reduce WT or pathological mutant TDP-43 toxicity, 

suggesting TDP-43 acetylation as a new potential therapeutic target. 

. 
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INTRODUCTION  
 

 

1. Amyotrophic Lateral Sclerosis (ALS) 

1.1 Epidemiology 

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterised by 

progressive muscular paralysis reflecting degeneration of motor neurones in the primary 

motor cortex, brainstem and spinal cord.  

The word "Amyotrophy" refers to the atrophy of muscle fibres, which are denervated as 

their corresponding anterior horn cells degenerate, leading to weakness of affected 

muscles and visible fasciculations; on the other hand "Lateral sclerosis" refers to 

hardening of the anterior and lateral corticospinal tracts, as motor neurons in these areas 

degenerate and are replaced by gliosis1. The death of motor neurons is associated with 

the activation of astrocytes, microglia and intracellular accumulation of ubiquitinated 

skein-like inclusions in the axons and cell bodies of the remaining atrophic motor 

neurons2. This leads to generalised fasciculations, muscle weakness, speech and 

swallowing disabilities, muscle atrophy, progressive paralysis and, ultimately, death 

caused by respiratory failure.  

The crude prevalence of ALS is estimated at 4–6/100,000 population. The prevalence of 

ALS increases with age, reaching a peak in the 60–75 years old age-group at 33/100,000 

for men and 14/100,000 for women3,4. The incidence rate of ALS is 1–3/100,000 person 

year and increases with age. A peak incidence rate of 10.5 and 7.4/100,000, in males and 

females, respectively, is observed in the 55–75 years old age-group; these values are 

three times higher in Sardinian population5. In fact Sardinia, the second largest 

Mediterranean island, represents a genetic isolation characterized by a higher frequency 

of ALS cases, in particular associated with TARDBP A382T mutation6,7 

ALS is a multifactorial pathology caused by both genetic and environmental factors. 

Degeneration of motor neurons is driven by the alteration of molecular processes 

responsible for the maturation and transport of RNA and proteins, mitochondrial and 
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axonal dysfunction, lack of fundamental growth factors underlying normal neuronal 

trophic development and alteration of calcium and glutamate loading processes. 

 

1.2.Genetic factors 

The idea of the involvement of genetic factors in the development of the disease has 

ancient origins, in fact pathological cases with family history and inheritance have been 

observed as early as 18508. Although most cases are classified as sporadic ALS (sALS), 

about 10% some cases of ALS are inherited, and therefore classified as familial cases 

(fALS), with multiple autosomal dominant and recessive forms. The sporadic and familial 

ALS shares clinical and neuropathological manifestations, and both types of patients, 

show a certain degree of heterogeneity regarding the symptoms, age of onset and 

duration of the disease. All the genes found mutated in fALS cases were found mutated in 

sALS2,9. Since fALS and sALS are clinically indistinguishable, with the exception of the time 

of the onset of the disease, that is found to be earlier in cases of family ALS1, several 

studies have been carried out in order to understand the role of genes associated with 

fALS in sporadic cases. 

 

Figure 1. Known genetic causes in familial and sporadic ALS. Most ALS cases are sporadic (sALS) and only 

10% are inherited, called familial (fALS). (A) 20% of fALS are caused by mutations in SOD1, which is the first 

known ALS-linked gene, identified in 1993
1
. 

 

Over the years, a number of investigations have been carried out, leading to the 

identification of a large number of genetic factors associated with ALS (Table 1), which are 

categorized according to the risk of developing the disease in two large groups: 

• causative genes associated with high risk of ALS outbreaks, such as SOD1, FUS, 
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TARDBP, C9ORF72, UBQLN2, which are by no chance the ones that are most 

frequently mutated in pathologic subjects; 

• low-risk sALS, so-called susceptibility factors such as NEFH11 (Table 1); 

Up to now, about 20 genes explain most of the cases of familial sALS, but only a minority, 

about 10%, of sporadic cases of illness12,13. 

LOCUS GENE, PROTEIN Disease Mechamism ONS

ET 

AD/AR 

ALS 1 SOD1, Cu/Zn SOD1 Oxidative stress A AD/AR 

ALS 2 ALS2, Alsin Endosomal trafficking J AR 

ALS 3 ? -- A AD 

ALS 4 SETX, Senataxin RNA metabolism J AD 

ALS 5 SPG11, Spatacsin DNA damage repair 

and axon growth 

J AR 

ALS 6 FUS, Fused in sarcoma RNA metabolism, 

DNA repair 

J/A AD/AR 

ALS 7 ? -- A AD/AR 

ALS 8 VAPB, Vescicle-associated membrane Endoplasmatic 

reticulum stress 

A AD 

ALS 9 ANG, Angiogenin RNA metabolism A AD 

ALS 10 TARDBP, TAR DNA-binding protein RNA metabolism A AD 

ALS 11 Phosphoinositide-5-phosphatase Endosomal trafficking A AD 

ALS 12 OPTN, Optineurin Autophagy A AD/AR 

ALS 13 ATXN2, Ataxin 2 RNA metabolism A AD 

ALS 14 VCP, valosin-containing protein Autophagy A AD/AR 

ALS 15 UBQLN2, Ubiquilin 2 UPS 

(ubiquitin-

proteasome system) 

and Autophagy  

J/A X-linked 

ALS 16 SIGMAR1, sigma non-opioid 

intracellular receptor 1 

UPS (ubiquitin-

proteasome system) 

and Autophagy 

J AR 

ALS 17 CHMP2B, Charged multivesicular 

body protein 2B 

Endosomal trafficking A AD 

ALS 18 PFN1, Profilin 1 Cytoskeleton A AD 

ALS 19 ERBB4, Neuregulin-ErbB4 Neuronal 

development 

A AD 

ALS 20 HNRNPA1, heterogeneous nuclear RNA metabolism A AD 
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ribonucleoprotein A1 

ALS 21 MATR3, Matrin 3 RNA metabolism A AD 

ALS 22 TUBA4A, Tubulin a4A Cytoskeleton A AD 

ALS-FTD1 C9orf72, guanine nucleotide 

exchange C9orf72 

RNA metabolism and 

autophagy 

A AD 

ALS-FTD2 CHCHD10, coiled-coil-helix-coiled-

coil-helix domain-containing 10 

Mitochondrial 

maintenance 

A AD 

ALS-FTD3 SQSTM1 , sequestosome 1 Autophagy A AD 

ALS-FTD4 TBK1, serine/threonine-protein 

kinase TBK1 

Autophagy A ? 

Susceptibil

ity factors 

PRPH, peripherin gene Cytoskeleton - - 

Susceptibil

ity factors 

DCTN1, Dynactin Subunit 1 Neuronal 

development , 

Endosomal trafficking 

A AD 

Susceptibil

ity factors 

NEFH, Neurofilament Heavy 

Polypeptide 

Cytoskeleton - - 

 

Table 1.Principal gene locus involved in ALS and relative mutations: Genetic factors at the base of the SLA. 

Abbreviations: AD: dominant autosomal; AR: autosomal recessive; A: adult; J: youthful. (Data extracted from 

OMIM database: http://omim.org/phenotypiSeries/105400). 

Superoxide dismutase 1 (SOD1) is the first ALS-linked gene that was identified in 199314 

and, for almost fifteen years, ALS research has been focused on mutant forms of this 

protein15,16. Since 2008, starting with the discovery of ALS-linked mutations in 

DNA/RNA-binding proteins TDP-43 and FUS, an era of unprecedented genetic discoveries 

in ALS begun.  

Although the genetic cause of most sALS is not known, recent studies have shown that 

mutations causing fALS are also able to cause illness in sporadic cases. In fact, only a small 

part of sALS patients showed that they had de novo mutations in known ALS-causing 

genes17-20. C9ORF72 repeat expansions, which were also found in a substantial fraction 

(~7%) of apparently sporadic ALS patients, most likely are not occurring de novo21,22, but 

rather represent cases with insufficient family history or incomplete penetrance. Taken 

together, ~10% of apparently sporadic ALS cases are caused by known genetic mutations, 

while the aetiology of the rest ~90% sALS remains unknown (figure 1).  

http://omim.org/phenotypiSeries/105400
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The pathological hallmark of ALS is the presence of ubiquitin-positive inclusions, 

consisting of misfolded protein aggregates in affected motor neurons and glial cells of the 

spinal cord and motor cortex. The most frequent protein component of these inclusions, 

in most ALS cases, is TDP-4323,24. Notable exceptions are patients with mutations in SOD1 

and FUS, which lack TDP-43 inclusions, but show misfolded SOD125,26 or FUS27,28 protein 

accumulations. Moreover, patients with C9ORF72 expansions are affected by the most 

complex pathology form, characterized by typical TDP-43 inclusions, atypical TDP-43 

negative inclusions29-31, consisting in abnormal dipeptide proteins32,33, as well as nuclear 

repeat RNA foci29,32,34 (figure 2 and 3). 

ALS-associated genes code for proteins implicated in different cellular processes, and 

various mechanisms have been suggested as major contributors to neurodegeneration in 

fALS and sALS35. 

There are two typical expressions of the onset of the disease: about 70% of patients 

present limb atrophy and muscular weakness at the trunk level at the initial stage of the 

disease , while the rest of the patients exhibit a symptomatology that ,during the first 

stage of the pathology, affects musculature of the tongue and swallowing36. Nearly 85% 

of patients with spinal-onset ALS, however, exhibit bulbar changes with disease 

progression. Approximately 50% of all patients diagnosed with ALS show cognitive and 

language impairment, while 10% of patients have clear signs of Frontotemporal dementia 

(FTD). 

Some chromosomal loci containing ALS-causing genes are inherited as dominant while other as 

recessive autosomal traits, and it can be seen that there are at least 4 chromosome loci 

containing genes predisposing the pathology (Table 1). For the majority of ALS subtypes, the onset 

period is adulthood, with the exception of subtypes ALS2, ALS4, ALS5, whose period of onset is 

strictly juvenile. 

 

1.3 Environmental and lifestyle factors 

Environmental factors may play a decisive role in the onset of ALS disease. Among these 

risk factors the exposure to pesticides, fertilizers and heavy metals (such as selenium and 

mercury) has surely a significant role, especially for some specific occupational classes 
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(farmers, foundry workers)37. Exposure to secondary metabolites of cyanobacteria38, such 

as non-neurotoxic amino acid β-N-methylamino-L-alanine (BMAA), may also have a 

primary role as a possible causative agent of ALS39. Cigarette smoking would appear to be 

an etiologic agent, with a directly proportional association between exposure time and 

exposure intensity40. Exposure to this set of chemical substances would result in cellular 

oxidative stress phenomena, increasing levels of reactive oxygen (ROS) and blood species 

in cerebral tissue, yielding to progressive neurodegeneration41. It also seems that, among 

all environmental factors, alcohol abuse42, excessive physical activity and mechanical 

trauma associated with it43, self-immunity phenomena, as well as latent infections 

mediated by retrovirus and enterovirus44, play a key role in the onset of ALS. In fact, this 

disease, has been reported at a higher frequency among groups of athletes with respect 

to general population, although it is unclear whether physical activity is a risk factor or is 

simply a marker of underlying athletic prowess45. 

 

2. Pathogenic mechanisms in ALS 

ALS is a heterogeneous disease, to which great diversity in genetic and environmental 

causes correspond a complex network of molecular pathogenic mechanisms that haven’t 

been completely understood yet. Nevertheless neuropathological hallmark of disease is 

the aggregation and accumulation of ubiquitinated proteinaceous inclusions in motor 

neurons. 

ALS pathogenic mechanisms, studied in many different experimental models and 

confirmed in ALS patients, outline a complex model in which non-competing mechanisms, 

including not only gene mutations and environmental factors but also impairment of 

protein homeostasis, aberrant RNA metabolism, impaired DNA repair, oxidative stress, 

mitochondrial dysfunction, dysregulation of nucleocytoplasmic and endosomal transport, 

neuroinflammation, excitotoxicity, axonopathy, are likely to converge in various 

unfortunate patterns to mediate selective motor neuron degeneration46 (Figure 2). 
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Figure 2. Molecular mechanisms of motor neuron injury in ALS. ALS is a complex disease involving 

activation of several cellular pathways in motor neurons, and dysregulated interaction with neighbouring 

glial cells
2
. 

 

2.1 Impaired protein homeostasis 

Pathological protein aggregates, identified as compact or skein-like ubiquitinated 

inclusions, are a cardinal feature of ALS48-50. The identification of TDP-43 as the most 

abundant protein constituent of these inclusions, initiated a major shift in our 

understanding of the pathobiology of ALS23. Under normal conditions, TDP-43 is 

predominantly localized in the nucleus, and loss of nuclear TDP-43 staining is seen in 

nearly all cells containing TDP-43-positive cytoplasmic inclusions23. TDP-43 inclusions are 

not restricted to motor neurons, and it seems that cytoplasmic redistribution of TDP-43 is 

an early pathogenic event in ALS. In 2008, when mutations in TARDBP, the gene encoding 

for TDP-43, were discovered in several fALS pedigrees, the evidences for TDP-43 

dysfunction in ALS were consolidated, thus establishing this protein as a crucial player in 

both sporadic and familial disease51. 

Although TDP-43 is the most abundant component of protein inclusions in 97% of ALS 

patients, different aggregates have been identified in various types of ALS, highlighting 
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the heterogeneity of the disease (Figure 3). 

 

 

Figure 3: Pathogenic hallmarks of ALS and the underlying factors and mechanisms.  

(A) In the majority of ALS cases, including all sporadic and most familial cases, the ubiquitinated inclusions 

contain TDP-43. When TDP-43 accumulates in the cytoplasm, it is excluded from the nucleus, where it 

normally resides in healthy cells. (B) In 0.5% of fALS that carry mutations in FUS, the cytoplasmic inclusions 

do not contain TDP-43, but they contain FUS protein. Similar observations to that of TDP-43, with partial 

nuclear clearance of FUS suggest that its neurotoxity may be the result of either loss of function or gain of 

toxicity. (C) In fALS patients with SOD1 mutations, misfolded SOD1 accumulates and becomes toxic to 

neurons. (D) In contrast, patients with hexanucleotide repeat expansions in C9ORF72 show typical TDP-43, 

similar to those found in sALS. (E) In addition to TDP-43 and DPR pathology, C9ORF72 patients accumulate 

nuclear RNA foci that contain sense and antisense hexanucleotide repeats in neuronal and glial cells. Insert 

images reproduced with permission from
1
. 

 

SOD1 inclusions are found in motor neurons of patients with fALS, as well as in mouse 

and cellular models expressing SOD1 mutations52. Monoclonal antibodies that are specific 

for epitopes of misfolded SOD1, very common in inclusions motor neurons of patients 

with SOD1 fALS53, and seem to form similar structures in some patients with sALS54. 

Similarly, cytoplasmic inclusions containing mutant fused in sarcoma (FUS) protein have 

been observed in some patients with FUS-related fALS55,56. Proteins found in aggregates 

in ALS provide several important clues about the disease pathogenesis. Loss of nuclear 
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TDP-43 and/or aggregation of the protein in cytoplasmic inclusions, may be key of 

pathogenic processes in both sALS and fALS. 

Protein misfolding and aggregation, in ALS, indicate both a defect in the activity of protein 

quality control (PQC) system, which includes molecular chaperons that lead protein 

folding and aggregation, and degradation systems (proteasome and autophagy). In fact, 

many ALS causing genes code for proteins that can promote dysfunction of the UPS 

(ubiquitin-proteasome system) such as SOD1, TDP-43 and VAPB, or proteins that are key 

regulators of both autophagy initiation, such as C9orf72 and optineurin, and execution, 

such as SQSTM1 and TBK1. 

 

2.2 Oxidative stress 
Several studies focused their attention on the role of mitochondria in the pathogenesis of 

neurodegenerative diseases such as ALS57. Mitochondrial dysfunctions, such as abnormal 

mitochondria and morphological defects, have been identified in skeletal muscles and 

intramuscular nerves of sALS patients58,59. In these cases, biochemical analysis revealed 

defects in muscular respiratory chain (complexes I and IV)60, which leads to/evolves/ends 

in (occhio a quale scegli per lasciare o togliere in) damage to motorneuron metabolism 

and alteration to mitochondrial membrane pores permeability, and high levels of 

mitochondrial calcium in muscle and spinal cord61. In transgenic mice, the main evidence 

of mitochondrial alteration is the presence of mitochondria with vacuoles. For example, in 

SOD1 G93A mice, there have been observed vacuous originated from the detachment 

between the internal and external mitochondrial membranes, leading to a remarkable 

increase in number and volume as pathology progresses62-64. 

The expression of mutated SOD1 in neuronal cell lines or in primary motor neuron 

cultures, causes depolarization of mitochondria, alteration of calcium homeostasis and 

reduces ATP production, similarly as it happens in SOD1 G93A transgenic mice65-67. 

Mitochondrial alterations may contribute to the generation of oxidative stress conditions, 

as they appear to mediate cell death by releasing calcium into the cytoplasm and by 

weakening the respiratory chain, leading to the release of cytochrome-c and pro-

apoptotic factors that activate the cascade of caspases and trigger apoptosis68,69.  
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Oxygen is essential for life, but paradoxically, as a sub-product of its metabolism produces 

reactive oxygen species (ROS), which causes oxidative stress. Post-mortem analysis on 

brain tissues of patients with neurodegenerative diseases, such as ALS, clearly indicates 

an increase in the ROS index, in brain regions affected by the disease. The role of 

oxidative stress, and consequently of ROS in the onset of ALS, is still being discussed, 

since it is not clear yet whether they are the cause or a consequence of neuronal cell loss. 

However, ROS contribution to the events associated with neurodegeneration is evident70. 

Oxidative stress, in addition to mitochondrial damage, may be associated with an 

aberrant chemistry of SOD1. This appears to be a consequence of alterations in the shape 

of the active site that allow copper to interact with atypical substrates. In fact, modified 

SOD1, in contrast to normal activity, can act as peroxidase, resulting both in production of 

hydroxyl radicals and in inactivation of the enzyme itself, or can react with peroxynitrite 

causing tyrosine nitration71. Both peroxynitrite and hydroxyl radicals are strongly reactive 

species and can, therefore, cause oxidative damage to proteins, lipids, and DNA. 

Such damage can cause alteration of protein conformation, destruction of the active site 

of enzymes, and modification of cell membrane properties by oxidation of unsaturated 

fatty acids and introduction of DNA mutations72. While earlier this mechanism was 

referable only to aberrant mutations of SOD1, recent studies investigate the possible 

involvement of FUS and TDP-43: it appears that TDP-43 mutations may be responsible for 

the production of reactive oxygen species and may alter the functioning of the 

mitochondrial respiratory chain73. The sum of these events seems to be directly 

correlated to motorneurons degenerative process in patients with ALS. 

 

2.3 Aberrant RNA metabolism 

Many different RNA-binding proteins (RBPs) have been implicated in human diseases, 

ranging from cancer to neurodegeneration, and alteration of mRNA processing is a key 

event in ALS pathogenesis. There are more than one hundred genes associated with 

ALS74, a handful of which encode proteins that control RNA processing; table 1 reports 

RBPs known to be mutated in ALS patients. 

There are many commonalities among these proteins. TDP-43, hnRNP A1, and hnRNP 
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A2/B1 are structurally similar, as they contain two RNA recognition motifs (RRMs) and a 

Gly-rich C-terminal domain75. FUS, EWSR1 and TAF15, which form the FET family, share a 

similar structure: a zinc finger and RRM domain that facilitates DNA and RNA binding, 

respectively, an N-terminal low complexity, prion-like domain that mediates protein 

interactions and self-assembly76-78, multiple C-terminal Arg-Gly-Gly (RGG) domains that 

facilitate non-specific RNA binding and protein interactions, and an atypical Pro-Tyr 

nuclear localization signal (PY-NLS) that is recognized by transporters that control 

nuclear–cytoplasmic shuttling79. Those proteins are predominantly multifunctional 

nuclear proteins widely expressed in most cell and tissue types, since they are implicated 

in a broad range of cellular processes. 

Whether motorneuron damage is caused by loss of normal nuclear function of TDP-43 

and FUS in RNA processing, or by toxic gains of function, or both is unknown79. TDP-43 

and FUS contain two RNA recognition domains—structures that are common to many 

RNA-interacting proteins, including those that are involved in mRNA transport. TDP-43 

and FUS may form part of such RNA transport complexes and, when mutated, could 

thereby contribute to motor neuron injury through loss of axonal mRNA transport. 

Fibroblast cell lines derived from patients with TARDBP-related ALS, showed the expected 

loss of nuclear expression of TDP-43, together with widespread changes in RNA splicing, 

including changes in transcripts of other RNA-processing genes and genes that have been 

previously implicated in ALS; hence, splicing disruption associated with the loss of nuclear 

TDP-43, is likely to contribute to ALS pathophysiology. Several in vivo models of TDP-43 

dysfunction, including both knockout models and models overexpressing the wild-type 

and mutant forms of the protein, have recently been generated in Mouse, Rat, Drosophila 

melanogaster, Zebrafish and Caenorhabditis elegans80,81. 

A note of caution relating to genetic studies is that, although gene structures are often 

similar between species, intronic sequences show great variability. Given the key role of 

TDP-43 in binding to long intronic sequences, the intraspecies variability in introns may 

hinder accurate modelling of human TDP-43 proteinopathies in other species, including 

rodents82,83. 
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2.4 DNA repair 

Impaired DNA repair was suggested to have a role in ALS pathophysiology since the 

identification of FUS mutations, although the exact role of DNA repair failure in ALS 

remains to be clarified84. Interestingly both FUS and TDP-43 have been shown to be 

recruited by DNA damage; in fact, Wang et al. (2013) demonstrated that FUS is important 

in the mediation of DNA repair and DNA damage response (DDR) in post-mortem 

neurons, thus explaining how FUS mutations can alter the response to DNA damage 

leading to pathogenesis of neurodegenerative diseases84. 

TDP-43, like FUS, plays a role in the prevention and repair of damages associated with 

DNA as well as damages associated with DNA loops, thus helping both DNA stabilization 

and damages related to its transcription. Specifically, TDP-43 is localized in foci before the 

damage of endogenous DNA and its presence increases even more following DNA 

damage, suggesting the existence of some shared functions for FUS and TDP-4385. 

Mutations in NEK1 and C21orf2, which both encode for proteins involved in DNA repair, 

can cause ALS86-88, although the biological pathways associated with their causal role 

needs further confirmation.  

 

2.5 Nucleocytoplasmic and endosomal transport 

Perturbation of nucleocytoplasmic transport has been identified as a central mechanism 

underlying ALS-FTD, particularly those cases caused by mutations in C9ORF72, but is also 

involved in other neurodegenerative diseases as well as normal aging. The observation 

that most cases of ALS are associated with mislocalization of TDP-43 was, in hindsight, the 

first clue that the pathomechanism of ALS might involve an abnormality in nuclear 

transport. The temporal relationship among mislocalization of TDP-43, nuclear transport 

defects, and neurotoxicity in ALS remains unclear. It is possible that a primary defect in 

nuclear transport causes mislocalization and subsequent aggregation of TDP-43. Another 

hypothesis is that accumulation of cytoplasmic aggregates of TDP-43 drive a secondary 

defect in nuclear transport. Despite the accumulation of experimental data indicating 

impairment of nucleocytoplasmic transport through the nuclear pore complex (NPC) in 

disease models, evidence of such defects in patients with ALS and other related diseases 
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is thus far limited to redistribution of NPC components in end-stage disease. In addition, 

the relative pathogenic contribution of nucleocytoplasmic transport deficiency, compared 

to impairments in other cellular processes, has not been fully evaluated. Moreover, the 

relative roles of toxic species causing damage to nucleocytoplasmic transport machinery, 

whether toxic RNA or toxic DPRs, remain unresolved. While challenging, we anticipate 

that these issues will be addressed soon in this rapidly moving field89.  

 

2.6 Neuroinflammation and Excitotoxicity 

Activated microglia and infiltrating lymphocytes indicate an inflammatory component in 

CNS pathology of ALS90. Proinflammatory mediators, including monocyte 

chemoattractant protein 1 and IL‑891, are present in the (cerebrospinal fluid) CSF of 

patients with ALS, and biochemical indices of immune-response activation are present in 

the blood92. Reduced counts of CD4+CD25+ regulatory T (TREG) cells and monocytes 

(CD14+ cells) are detected early in ALS, suggesting recruitment of these cells to the CNS 

early in the neurodegenerative process. TREG cells interact with CNS microglia, 

attenuating neuroinflammation by stimulating secretion of anti-inflammatory cytokines93. 

Consistent with this scenario, double transgenic mice, carrying mSOD1 and lacking CD4, 

develop a more aggressive ALS phenotype, which is reversible by bone marrow 

transplantation94. Neuroinflammation is closely linked to activation of the immune 

response. A recent study identified CD40L — a ligand expressed by T cells that activates 

the immune response when bound by CD40 on antigen-presenting cells — as a promising 

therapeutic target95.  Proinflammatory mediators, including monocyte chemoattractant 

protein 1 and IL‑891, are present in CSF of patients with ALS, and biochemical indices of 

immune-response activation are present in the blood92. Reduced counts of CD4+CD25+ 

regulatory T (TREG) cells and monocytes (CD14+ cells) are detected early in ALS, 

suggesting recruitment of these cells to CNS early in neurodegenerative process. 

Excitotoxicity is a particular neuroinflammation process that is due, at least in part, to the 

excessive activation of glutamate N-methyl-D-Aspartate receptors, which causes an 

increased calcium input through the ionic channel associated with the receptor, thus 

resulting in production of free radicals, such as NO and ROS, which trigger numerous 
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pathways related with the onset of ALS. A body of evidence implicates excitotoxicity as a 

mechanism contributing to motor neuron injury in ALS, although clear evidence that it is a 

primary disease mechanism is lacking. In some patients with ALS, levels of CSF glutamate 

are elevated96, and the expression and activity of EAAT2 are reduced in pathologically 

affected areas of the CNS97-99, although whether if this is a cause or a consequence of 

neuronal loss is unclear100. Electrophysiological studies in humans have shown 

hyperexcitability of the motor system in presymptomatic101 or early stages102 of ALS. 

Evidence suggests that the calcium permeability of AMPA receptors in the spinal ventral 

horn may be dysregulated by abnormal editing of the GluR2 AMPA receptor subunit103. In 

addition, a recently identified ALS-linked gene encodes d‑amino acid oxidase (DAO). This 

enzyme is responsible for the oxidative deamination of d‑amino acids, one of which — d-

Serine — is an activator and co-agonist of N‑methyl‑d-Aspartate (NMDA) receptors104. 

Mutations in DAO could potentially contribute to excitotoxic motor neuron injury. 

Excitotoxicity in ALS pathology leads to many events, including altered 

electrophysiological properties and increased sensitivity of motor neurons to 

excitotoxicity105, altered AMPA receptor subunit expression, reduced expression and 

activity of EAAT2106, increased glutamate efflux from spinal cord nerve terminals107, a 

reduction in motor neuron inhibitory–excitatory synaptic ratio108, and loss of regulation 

by astrocytes of the expression of GluR2 by neighboring motor neurons109. Ameliorating 

excitotoxicity is the only strategy that has, so far, slowed disease progression in ALS. 

Riluzole, which has several effects, including inhibition of presynaptic glutamate 

release110, causes a modest increase in survival111. 

 

3. Structure and function of TDP-43 

3.1 TDP-43 genetics 

TDP-43 or TARDBP (TAR-DNA Binding Protein-43) is a 43 kDa ribonucleoprotein, originally 

identified as transcriptional repressor of the HIV-1 TAR-DNA. The gene coding for TDP-43 

protein, consisting of 414 amino acids, is located along the short arm of chromosome 1 

and consists of 6 exons (exon 1 is represented by a non-coding sequence). TDP-43 shares 



INTRODUCTION 
 

16 

 

 
 

 Simona Sanna: “Epigenetics and neurodegeneration: physiological relevance of TDP-43/HDAC1 interaction”. 
Ph.D. Course in Life Sciences and Biotechnologies – University of Sassari. 

 

  

with the heterogeneous ribonucleoprotein family a series of key protein domains 

essential for its activity: 

● A Nuclear Localization Signal (NLS) domain at the N-terminal; 

● Two domains "RRM1 and RRM2" (RNA-recognition motifs): recognition of DNA 

and RNA; 

● A Nuclear Exportation Signal (NES) within the RRM2 domain; 

● The "Glycine-rich region" located at the C-terminal end: Glycine-rich domain for 

interaction with other proteins and to promote the exon skipping of some pre-

mRNAs 112,113 (figure 4). 

 

 

Figure 4: Graphic representation of TDP-43 functional domains of the protein. TDP-43 have structural 

similarities with both harboring a Prion-like domain, RNA recognition motif(s) and nuclear localization 

signal
3
. 

 

TDP-43 has a predominantly nuclear localization and, as FUS, is involved in the regulation 

of many biological processes. In fact, TDP-43 is a DNA/RNA binding protein that 

participates in transcription regulation by promoting binding DNA transcription factors, is 

involved in the alternative splicing process, in biogenesis and maturation of microRNAs, 

and in transport and localization of some pre-mRNAs115. Additionally, TDP-43 is 

particularly important in regulating axonal transport and cytoskeletal integrity. Mutants 

and aberrant protein forms are therefore associated with a wide range of cellular toxicity 

phenomena116. Since 2006, studies on the composition of protein aggregates in neuronal 

brain cells of patients with neurodegenerative diseases such as ALS have shown that TDP-
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43 protein is the major constituent of such inclusions23. As for FUS, more than 40 

mutations were identified in TARDBP gene, and TARDBP pathogenic variants prevalence 

is: 

● 1.6% in all individuals with ALS (fALS and sALS) 

● 3.4%, but ranges from 0% to 12% across studies117,118 in fALS; 

● 1.1% but ranges from 0% to 5% across studies in sALS119,120. 

Most mutations fall within exon 6, that codes for the rich glycine region at the C-terminal 

end of the protein, and are inherited as dominant autosomal traits (Table 2). 

 

Allelic Variant Genotype-Phenotype 
Correlations 

Notes Ref. 

GLY298SER Earlier age of onset (mean 
50.7 years) and the most 
rapid rate of progression of 
disease (mean 27 months) 

This mutation was identified in Chinese 
family 

110
 

ALA315THR Llater age at onset (mean 
66 years) and much longer 
survival (mean 110 months) 

The mutation occurs in a highly conserved 
residue 

106
 

MET337VAL Intermediate in their 
average ages at onset and 
survival times 

Methionine at this position is invariant in 
human, orangutan, mouse, opossum, 
chicken, frog, and zebrafish 

47
 

GLY348CYS Intermediate in their 
average ages at onset and 
survival times 

This mutant, which introduce a cysteine to 
the C-terminal hnRNP interaction region, 
was predicted to increase the propensity for 
aggregation through the formation of 
intermolecular disulfide bridges 

109
 

ALA382THR Intermediate in their 
average ages at onset and 
survival times 

This mutant is very common in Sardinia due 
to a founder effect. It accounts for 80% of 
familial ALS and 9% of simplex cases 

111,112
 

ASP169GLY Increases the hydrophobic 
interactions in the RRM1 
core, thus enhancing the 
thermal stability of the 
RRM1 domain 

This mutant is more susceptible to 
production of the pathogenic C-terminal 
fragment TDP-35 

113
 

LYS263GLU The stability of the protein 
complex is less than that of 
the wild-type protein, 
indicating a reduced affinity 
for long nucleic acids 

This mutant shown to increase thermal 
stability by up to 3 °C in the apo state, 
which was unexpected due to its location 
outside of the RRM2 structure 

114
 

 

Table 2. Principal mutations of TDP-43 protein. TDP-43 has several pathological mutations, represented in 

small part in this table, mostly located in the domain rich in wiccans, although there are many discreetly 

discovered findings that resurface in the RRM1 and RRM2 domains, mainly due to lysine. 
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The pathological manifestation, in type 10 ALS patients, is characterized by a great 

heterogeneity in terms of age of onset, aggressiveness of the phenotype and geographical 

location. In fact, some pathological mutants are characteristic of delimited geographical 

areas: a clear example is represented by the mutant TDP-43 A382T (defined as the 

"Sardinian variant"), which accounts for approximately 30% of total ALS cases in 

Sardinia121,122.  

 

3.2 TDP-43 protein aggregation 

As described in paragraph 3.1, TDP-43 is present in the protein aggregates of almost all cases of 

ALS. Pathologic TDP-43 is hyperphosphorylated, ubiquitinated and undergoes an abnormal 

proteolytic process, from which a 25KDa carboxy terminal fragment is generated, resulting in 

function loss. Neo-formed fragments are transported from nucleus to cytoplasm of neuronal and 

glial cells, where they tend to aggregate and precipitate123. Immunoprecipitation and 

immunoblotting experiments demonstrated how the cytoplasmic inclusions are subjected to 

ubiquitination and phosphorylation processes. The ubiquitination of misfolded proteins that 

aggregate in the cytoplasm and nucleus of neuronal cells, seems to be one of the key phenomena 

involved in the pathogenesis of neurodegenerative diseases and proteinopathies: in fact this 

phenomenon is appreciable in the most advanced stages of the disease. The formation of 

cytoplasmic inclusion bodies, therefore, would appear to be due to the presence of aberrant 

mutations to the functional protein in wild-type form
12

. 

 

3.3 TDP-43 as transcriptional modulator 

TDP-43 was originally identified as a transcriptional repressor that binds to TAR DNA of 

human immunodeficiency virus type 1 (HIV-1) 124. Consistent with its role in transcription, 

TDP-43 was found, in human brain and in cell culture systems, to associate with 

euchromatin and to bind the promoter of mouse acrv1 gene, coding for SP-10 protein, 

which is required for spermatogenesis, acting as transcriptional repressor125. Recent 

evidences indicate that TDP-43 acts as a repressor of Acrv1 gene in spermatocytes and 

post-translational modifications, most likely ubiquitination, induce conformational 

change, leading to release of repression in round spermatids126. A second example that 
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illustrates TDP-43 activity as a transcriptional repressor in vivo came from a recent report 

that identified rat and human VPS4B gene (vacuolar protein sorting 4 homolog B) as a 

TDP-43 target in brain, via direct binding to a TG-rich region in the promoter127. Moreover 

TDP-43 is associated with proteins involved in transcription, including methyl CpG-binding 

protein 2 (MeCP2)128. Beside this role as transcriptional repressor, TDP-43 has been 

indicated also as transcriptional activator, by luciferase assay or mRNA level 

determination for Bim promoter129, NFB responsive elements130, p53 binding elements131 

and CHOP promoter132. 

  

3.4 TDP-43 as modulator of RNA metabolism  

Splicing process is strictly regulated and is essential for an appropriate gene expression. It 

is not surprising, therefore, that dysfunctional spliceosome is closely linked to 

neurodegeneration. For example, when TDP-43 is removed from mouse embryonic stem 

cells, multiple cryptic exon have been coupled. This phenomenon has also been observed 

in cells from human patients with ALS and FTD133. 

TDP-43 shows the ability to bind RNA in a very specific way through the presence of two 

RRM motifs within its sequence, preferably UG repeats and UG/GU-rich repeats 

interspersed by other nucleotides, and the acetylation of residues K145 and K192, located 

in these domains, leading to reduced binding activity134,135. These observations were 

subsequently confirmed by CLIP analyses136,137, and a high resolution TDP-43 nuclear 

magnetic resonance structure that binds one of these sequences has been recently 

solved85. It should also be considered that the presence of a potential binding site does 

not always mean that it will play a fundamental role in a particular process138. 

In C. elegans, as well as in cell culture, TDP-43 loss induces the accumulation of double-

stranded RNA (dsRNA) and the abnormal processing of ribosomal RNA. Since it remains to 

be clarified whether these changes in RNA metabolism play a role in ALS/FTD pathology, 

several research groups are currently examining the molecular mechanisms with which 

TDP-43 limits the dsRNA and are trying to determine whether the loss of FUS and MATR3 

or the expression of hexanucleotide C9orf72 has similar effects on RNA metabolism. 
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Another important aspect is represented by cytoplasmic redistribution associated with 

TDP-43 disease, in particular in response to the expression of C9orf72 hexanucleotide 

expansion and the associated production of non-aggregated polypeptides139. 

 

3.5 Transposable Elements and TDP-43 

The transposable elements (TEs) are highly abundant genetic elements that constitute a 

great part of the eukaryotic genomes. Retrotransposons, which are transposed via an 

RNA intermediate, account for about 40% of the human genome140,141. Although most TE 

copies do not work, a subset has retained the ability to mobilize and even the stationary 

copies can be expressed142. Due to their potential to copy and paste into new genomic 

positions, TEs represent a huge endogenous reservoir of genomic instability and cellular 

toxicity141. The impacts of these genetic parasites are usually stifled by strong cellular 

mechanisms involving small interfering RNAs acting through induced RNA (RISC) to inhibit 

expression of transposon143. Although most surveys naturally focus on germs, where new 

insertions are inheritable and favoured from the evolution of the transposon, somatic 

tissues also have an active effect transposon mute mechanism whose functional meaning 

is less understood. As found in literature, TEs are normally active in brain144-147, and LINE 

and SINE (which are non-LTR retrotransponants) are even more expressed. LTR elements, 

on the other hand, have been associated with several neurodegenerative agents 

disturbances 148-154. With regard to this, it was evaluated by Wang group155 if TDP-43 RNA 

targets include transposon derivatives transcripts. Several recent studies used deep 

sequences for RNA analysis targets that co-purify with immunoprecipitated mouse, rat or 

human TDP-43, and also for profiling gene expression in mouse after TDP-43 abatement 

or excess expression156-159. 

From data in literature, it can be stated that TDP-43 is generally destined to derive from 

TE transcripts, including many short interspersed nuclear elements (SINE), long 

interspersed nuclear elements (LINE) and long terminal repeat elements (LTR) classes as 

some DNA elements. Secondly, the association between TDP-43 and TE-derived RNA 

targets is reduced in patients with FTLD with respect to healthy subjects, consistent with 

the idea that loss of TE control could be a part of the onset of the disease160,161,162. 

file:///C:/Users/simona/Google%20Drive/tesidef/Teshis%20GA.docx%23_3ls5o66


INTRODUCTION 
 

21 

 

 
 

 Simona Sanna: “Epigenetics and neurodegeneration: physiological relevance of TDP-43/HDAC1 interaction”. 
Ph.D. Course in Life Sciences and Biotechnologies – University of Sassari. 

 

  

3.6 The role of TDP-43 in mitochondrial translation 

Several research paper reported that, in ALS patients, TDP-43 co-localizes with various 

neuronal organelles in both human spinal cord and frontal cortex tissue samples, 

oppositely to what physiologically happens in age-matched normal individuals. 

In fact, it was demonstrated that in control cases, both in spinal cord motor neurons and 

in cortical neurons, TDP-43 mainly localizes in nucleus, while both ALS motor neurons and 

FTD cortical neurons showed characteristically higher levels of cytoplasmic TDP-43 

accumulation.  

Notably, cytoplasmic TDP-43 co-localizes with mitochondrial markers in many ALS spinal 

cord motor neurons or FTD cortical neurons, but minimally overlaps with markers of 

Golgi, endoplasmic reticulum, lysosome, autophagosome, endosome or peroxisome. 

Despite its low abundance in cytoplasm, TDP-43 co-localizes with mitochondria in motor 

neurons and cortical neurons in human control samples. Consequent sub-mitochondrial 

fractionation analysis, detected that mitochondrial TDP-43 was exclusively present in the 

inner mitochondrial membrane but not in outer mitochondrial membrane, 

intermembrane-space or matrix. Also Immuno-electron microscopy analysis of isolated 

mitochondria and biopsied human cortex confirmed the principal localization of TDP-43 in 

inner mitochondrial membrane cristae.  

Further studies on TDP-43 localization, showed that disease-associated mutations, such 

as A382T, influenced its mitochondrial localization too. 

It remains to be clarified whether TDP-43 deficiency alone is sufficient to cause neuronal 

loss, or if, with an inactivated nuclear localization signal, it causes a significant co-

localization of this protein with mitochondria, indicating mitochondrial localization as an 

intrinsic property of cytoplasmic TDP-43160. 

Since mitochondrial dysfunction precedes TDP-43-induced neuronal death, and since 

mitochondria are involved in almost all types of cell death, including apoptosis and 

necrosis, it could be of great interest understanding whether mitochondrial dysfunction is 

induced by TDP-43 or not161,162. 
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4 Epigenetics and neurodegeneration 

4.1 Epigenetic modifications 

Epigenetics is defined as the set of potentially inheritable changes in gene expression that 

do not involve modifications in the nucleotide sequence of DNA137,163. The complexity of 

our organism clearly points out the existence in the genome of something more than DNA 

sequence that is capable of determining the great intra-inter-individual variability. The 

latter is also based on epigenetic modifications, which are responsible for the 

maintenance of chromatin stability and which are implicated in a wide range of 

neurodegenerative disorders164. To date, many molecular complexes are known to be 

responsible for chromatin remodelling, DNA-dependent enzymatic modification and DNA-

related histone proteins, as well as substitution of the same histones. Epigenetics is, thus, 

the configuration by which regulation of transcription and, hence, gene expression within 

our cells is realized and, in particular, it explains how genome written modifications are 

read, interpreted and removed, thus contributing to the stability and plasticity of nerve 

cells164 (Figure 5).  

 

 

 

Figure 5: Waddington's vision of an epigenetic landscape. This image shows that DNA provides the stable 

base on which our individual details are written in the form of chemical marks. Most likely, the timing, 

location, and persistency of the marks are some of the variables that will determine how important they will 
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be in impacting such things as development and disease. Much remains to be elucidated, but the 

demonstration that external factors can alter the epigenome suggests that we can manipulate it, hopefully 

for good rather than evil. 

 

Chromatin can be defined as a plastic substrate capable of responding to rapid,short-term 

and long-term changes within cells. Modulation and regulation of gene expression, at 

chromatin level, involve different epigenetic mechanisms, which can remodel or modify 

chromatin template164-166. Chromatin remodelling activities are ATP-dependent and 

increase DNA-binding proteins accessibility to genome by altering DNA–histone 

interaction non-covalently. Chromatin modifying activities are carried out by introducing 

covalent modifications on histone tails, histone core proteins or by DNA methylation. 

Histone modification complexes make post-translational changes of covalent nature at 

the N-terminal end of histone proteins, such as acetylation, methylation, 

phosphorylation, ubiquitation, sumoylation, glycosylation and ribosylation. These post-

translational modifications, as well as the introduction of histone variants, co-operate in 

altering chromatin fiber167,168, changing the degree of chromatinic compaction, which 

closely correlates to transcriptionally active or inactive state169. The histone DNA-code 

interactions control the activation/repression of gene transcription; therefore, in case of 

transcriptional activation, compact and inaccessible DNA is made available to DNA 

binding proteins by chromatin modification170. For example, high levels of histones H3 

and H4 acetylation and H3 methylation on lysine 4 (H3K4me) are generally found in 

promoter regions of transcriptionally active genes, while high levels of H3 methylation on 

lysine 27 (H3K27me) correlates with polycomb-mediated protein transcriptional 

repression171. 

Of course, chromatin organization is designed to ensure that writing, reading and 

preservation of gene information is carried out within a well-defined spatial and temporal 

sequence, both during cell differentiation and during various stages of development164. It 

has long been suggested that histone modification patterns act as "recognition codes" for 

the recruitment of chromatin remodelling complexes and there are several experimental 

evidences that support the existence of the so-called histone code168,172. Histones N-

terminal amino acids, when acetylated, are bound by proteins containing well-
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characterized protein domains, such as bromodomain, found in many chromatin-

associated proteins173,174. In addition, methylated lysine 9 of H3 is a specific recognition 

site for chromodomain, a domain typically involved in the formation of heterochromatin 

and in gene silencing; however, such residue may also be acetylated, and this 

modification is mutually exclusive with methylation175. In addition, H3 acetylation on 

lysine 14 from GCN5 HAT complex, is preceded by phosphorylation of serine 10 on the 

same tail; this suggests the existence of a regulatory cascade that controls the pathway, 

thanks to complexes capable of recognizing specific amino acid residues on the N-

terminal codons171. 

 

4.2 Acetylation and deacetylation 

Lysine acetylation and deacetylation in N-terminal histone tail, play a prominent role in 

regulating neuronal plasticity and transcriptional regulation164,176. The ability to influence 

neuronal vitality by modulating levels and activity of enzymes regulating nuclear 

homeostasis, such as HATs (Histone acetyl transferase) and HDACs (Histone deacetylase), 

has been demonstrated. It is now clear that the pattern of acetylation is strongly 

damaged in case of degeneration of nerve cells. Not unexpectedly one of the major 

causes of dysfunction and toxicity in cells is the imbalance in the presence of HATs and 

HDACs177. Acetyltransferases and deacetylases, combined with large multiproteinic 

complexes, catalyse opposite reactions on protein substrates, including core histones and 

transcription factors; in addition to regulation of transcriptional machinery, HAT-HDAC 

system is also involved in the modulation of replication, in DNA repair and in site-specific 

recombination177. Acetyltransferases and deacetylases, combined with large 

multiproteinic complexes, catalyse opposite reactions on protein substrates including 

core histones and transcription factors; in addition to regulation of transcriptional 

machinery, the HAT-HDAC system is also involved in the modulation of replication, and of 

DNA repair and site-specific recombination177. 

 

4.2.1 HATs 

HATs are a large family of enzymes that catalyse acetylation reactions involving the 
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addition of acetyl groups derived from the Acetil-CoA. In particular, acetyl-transferase 

histones act on nucleosomal N-terminal tails and, in spite of the name, are also able to 

acetylate transcription factors such as p53, E2F and GATA1177. Acetylation of lysines 

neutralizes the positive charge of their ε-amine groups, thus reducing the affinity of these 

basic proteins to the acid DNA, altering histone core arrangement and relaxation of 

chromatin structure.  

All core histones are subjected to acetylation, but the ones occurring on histones H3 and 

H4 are more characteristic; the main targets of HATs are lysine 9 and 14 on H3 and lysine 

5, 8, 12 and 16 on H4-histone178. Acetylated lysine represent a surface on which many 

proteins with specific domains, such as bromodomain, can bind. Thus, chromatin is made 

more accessible to transcription factors. Acetylation of histones is consequently 

associated with transcriptional activation; on the contrary deacetylation closely correlates 

with gene silencing179. 

 

4.2.2 HDACs: functions, location and classification 

Histone deacetylation is related with the removal of acetyl groups from amino acid 

residues of N-terminal histone tails, leading to an increase in chromatin packaging, 

compatible with gene silencing. 

HDACs play a direct role in regulating transcription by deacetylation and regulation of TFs, 

or by interaction with transcriptional co-repressors. In Homo sapiens, 18 different HDACs 

have been identified, and have been divided into four categories based on their homology 

with yeast HDACs180: class I, class II, class III (sirtuine) and class IV HDACs (Figure 6). 
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Figure 6. Table representing Class I, II and IV HDACs. Class I (HDAC1, 2, 3 and 8), class IIa (HDAC4, 5, 7 and 

9), class IIb (HDAC6 and 10), class III (sirtuin family) and class IV (HDAC11) HDACs with the Drosphila 

counterpart
181,182

. 

 

Cellular localization, as well as site-specific expression, differs between various 

deacetylases. In order to carry out their biological activity, HDACs have to move to 

nucleus, where most of the target substrates are located.  

Nuclear localization is guaranteed by the presence of a Nuclear Location Signal (NLS). 

Some HDACs are only nuclear, while others may be cytosolic, depending on the regulatory 

domains present. In particular, Class I HDACs, and a group of HDACs of class II (IIa), are 

the most expressed in cerebral areas associated with learning and memory183. 

Class I, II and IV HDACs have zinc-dependent active sites, while sirtuins require NAD+ 

(nicotinamide adenin dinucleotide) cofactor to function. However, interaction between 

different classes of HDACs is necessary for their biological activity. All HDACs have a 

catalytic domain consisting in about 390 amino acids with a highly conserved amino acid 

sequence. The active site consists in a slightly curled tubular pocket with a wide 

bottom184. The removal of acetyl group occurs through a charge system, consisting in two 

adjacent histidine residues, two aspartate residues, located about 30 amino acids from 
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the histidines and separated by 6 amino acids, and a tyrosine residue, located 123 amino 

acids downstream of aspartate. A fundamental component of this system is zinc ion, 

retained by its binding site at the bottom of the pocket, although other cofactors are 

required for the activity of HDACs. The conserved tyrosine catalytic residue is substituted 

by a histidine in Class IIa HDACs. This substitution greatly reduces catalytic activity185. 

 

4.2.2.1 Class I HDACs 

Deacetylases belonging to this class are expressed ubiquitously with a predominantly 

nuclear site. They show homology with the transduced yeast regulator RPD3 (Reduced 

Potassium Dependency 3) and are represented by HDACs 1, 2, 3 and 8186. These are 

largely expressed in brain, except for muscular-specific HDAC8, where they interact with 

key proteins that form part of large multi-unit complexes. 

HDAC1 and 2, respectively constituted by 482 and 488 amino acids, exhibit high structural 

and functional similarity with a sequence homology equal to 82%, and participate in the 

formation of large transcriptional repression complexes consisting of SIN3A, NuRD and Co 

-REST187, thus inactivating the expression of neuronal genes in non-nervous tissues188. 

In particular, such complexes act on multiple aspects, such as cell cycle regulation, 

maintenance of pluripotency of stem cells and cell differentiation189. HDAC1 and HDAC2 

are located in nucleus by acting not only on histones, but also on different substrates, 

including MyoD, E2F, p53 transcription factors and retinoblastoma protein. The two 

deacetylases carry out their biological activity only when incorporated into a multiproteic 

complex, which is, in fact, composed of proteins necessary for modulation of their 

deacetylase activity, DNA binding, and recruitment of HDACs on promoter regions. In 

addition, their activity, as well as the formation of repression complexes, is modulated by 

phosphorylation. Precisely, both deacetylases are phosphorylated by casein kinase 2 

(CK2) and, in addition, HDAC1 represents the target of other kinases such as PKA (cAMP-

dependent protein kinase A) and cGMP-dependent G protein kinase177. In resting cells 

HDAC1 and 2 are phosphorylated at low levels; when hyperphosphorylation occurs, there 

is a significant increase in deacetylase activity. Analysis of HDAC1 reveals two crucial sites 

for modulation of deacetylation by phosphorylation, represented by Ser421 and Ser423. 
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When these residues are mutated, the formation of protein complexes is hindered and 

HDAC1 biological activity is reduced190,191. 

In ALS context, HDCA1 has been described as the interaction partner of FUS during DNA 

repair; in addition, ALS-causing FUS mutant displays a reduced binding activity84. 

 

4.2.2.2 Class II HDACs 

Class II HDACs are homologous to yeast histone deacetylase 1 (HDA1), and represent a 

class that is further subdivided in two subclasses: 

• Class IIa HDACs, represented by HDACs 4, 5, 7 and 9; 

• Class IIb HDACs, represented by HDAC 6 and 10. 

The former have, in addition to deacetylase domain, an extended N-terminal regulatory 

domain that regulates nucleotide-cytoplasmic shuttling and DNA-specific binding, while 

the latter have distinct C-terminal domains192. They both show cellular and tissue-specific 

distribution, with a narrower expression pattern than class I HDACs, suggesting their 

possible involvement in cell differentiation and development193, but they are expressed 

abundantly in brain194; in particular, almost all move from nucleus to cytoplasm because 

of the presence of nuclear signal, while cytosolic retention depends on phosphorylation 

and interactions with proteins 14-3-3195. 

HDAC6, in particular, is expressed mainly in cytosol where it acts as an important 

constituent of cytoskeleton deacetylase, the α-tubulin196,197, but other substrates have 

been identified, such as TDP-43198. HDAC6 is the only enzyme with two deacetylase active 

domains organized in tandem and one zinc fingers (HDAC6-USP3 and Brap2-related zinc 

finger motif) domain in the carboxyl terminus. This latter domain is a signal for 

ubiquitination, suggesting, therefore, that this enzyme is particularly prone to 

degradation199. Although it is localized predominately in cytoplasm where, by inducing α-

tubulin deacetylation, regulates cell motility and microtubule-dependent cell adhesion197, 

it was detected also at nuclear level in association with HDAC11. In addition, HDAC6 

presents an activity independent from deacetylase functions200; in fact, by tying the 

ubiquitin, it participates, for example, at the autophagy process regulation and activity of 

HSF1 protein (heat shock factor 1). 
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4.2.2.3 Class III HDACs 

Commonly known as sirtuins, because of its homology with SIR2 regulator identified in 

yeast201, class III HDACs are represented by 7 different NAD+-dependent enzymes 

expressed in the mammalian brain. In particular, SIRT1, 2, 6 and 7 are localized both in 

nucleus and in cytosol, while SIRT3, 4 and 5 exhibit mitochondrial localization202,203. 

Sirtuins catalyse the deacetylation of other targets than histones: for example, SIRT1 acts 

on targets such as TAF68 (TBP-associated factor 68), p53 and p300; SIRT2 has the ability 

to deacetylate α-tubulin exactly as HDAC6204; SIRT3, 4 and 5 determine the global level of 

acetylation in mitochondria by regulating energy metabolism, but also lipid metabolism 

and apoptosis186. 

In particular, many studies highlight the role of sirtuins in the maintenance of genomic 

integrity; in fact deficiency of their deacetylase activity is compatible with alterations in 

gene silencing, increased genomic instability and susceptibility to DNA damage. For 

example, it has been noted that SIRT6-deficient cells, accumulate a large number of 

chromosomal anomalies. Recent studies have also shown that this sirtuin is capable of 

affecting telomeric regions in human cells. Another important sirtuin, SIRT1, deacetylates 

factors associated with DNA repair mechanisms and is recruited on the same sites as a 

result of oxidative stress. Although this recruitment seems to have a protective role in 

genomic instability, it is accompanied by a depression of previously silenced genes, 

suggesting its implication in epigenetic silencing and chromatin modeling205. All sirtuins, 

except SIR2 and 5, have higher levels of expression in foetal brain with respect to adult, 

suggesting the crucial role of these molecules in initial brain development202. 

 

4.2.2.4 Class IV HDAC 

The only representative of this class, HDAC11, has common traits with class I and II HDACs 

but its function and substrates are still unknown. It can be found mainly in nucleus and it 

is expressed during the development of central nervous system of mammals, including 

oligodendrocytes, and plays a key role in maturation of this cell type206. It is also possible 

that it plays a role in regulating inflammation, through its inhibitory effect on interleukin 

10 expression207,208. 
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4.3 HDACs regulation and deregulation in ALS  

4.3.1 Zn-dependent HDACs in ALS 

The implication of Class I HDACs in the onset of ALS was first shown by Janssen and 

colleagues209, which showed that in affected patients there is an over-regulation of 

HDAC2 in the motor cortex and in the grey matter of the spinal cord209, especially in the 

nuclei of motor neurons. Additionally, HDACs, in particular HDAC6, are increasingly 

implicated in ALS disease.  A recent study reported that FUS and TDP-43 proteins, altered 

in many cases of ALS, interact with each other, forming a ribonucleoprotein complex that 

regulates the expression of HDAC6, by influencing the levels of its mRNA210. In addition, in 

nerve tissue of ALS patients, nucleus and cytoplasm of motor neurons present low levels 

of HDAC11 encoding mRNA209. In neurodegenerative context, HDAC6 plays a significant 

role in α-tubulin post-translational modification, which modifies the properties of 

cytoskeleton; HDACs strictly regulate the acetylation of a preserved lysine residue (K40) 

on α-tubulin protein, to regulate the movement of organelles within cells, mediated by 

motor proteins appearance211; this is especially important for those neurons who have to 

carry a large load for long distances. 

The increase in acetylation levels in α-tubulin, following inhibition of the above-

mentioned deacetylase activity, improves transport in primary neurons, thus preventing 

axonal degeneration212,213. Considering that reduction of acetylation levels in α-tubulin is 

a characteristic pathological marker, an approach based on the use of HDACs inhibitors 

for the treatment of neurodegenerative disorders with neurons with particularly long 

axons, has been attempted. In this respect, ALS is a significant example because axonal 

transport efficiency loss, in both upper and lower motorneurons, is significant in the 

onset of the disease214. A lot of experimental work on the role of α-tubulin acetylation in 

ALS was conducted in SOD1 G93A mice, where it has been observed that HDAC6 genetic 

ablation positively influences acetylated α-tubulin levels in the central and peripheral 

nervous system, and maintains integral axons. Moreover the potential for muscle activity 

and the number of neurons in ventral spinal cord horns are increased, suggesting that 

these events that are associated with increased cell survival215. 

Different studies also suggest that some of these HDACs regulate vitality and mortality of 
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nerve cells; first, HDAC1 assumes neurotoxic and neuroprotective character as it interacts 

with HDAC3 or HDAC9216. In fact, the role of HDAC1 in regulating neuronal vitality is quite 

controversial, since some studies show that such deacetylase is able to protect neurons 

from death, while other studies demonstrate that HDAC1 induces neurodegeneration and 

axonal death217. It, therefore, has a dual role, behaving differently depending on its 

molecular partner. Precisely, neurotoxic effect induced by HDAC1 requires interaction 

with HDAC3, which is toxic to motor neurons. 

HDAC1 interaction with HDAC3 is quite strong both in vivo and in vitro, and HDAC3 

repression suppresses HDAC1-induced neurotoxicity and vice versa. HDAC1 also interacts 

with HDRP, the truncated form of HDAC9, which is underrated in case of neuronal death. 

HDRP-HDAC1 interaction protects neurons from death, because high levels of such 

protein inhibit HDAC1-HDAC3 interaction, thus preventing neurotoxic action of both 

deacetylases216. In this regard, it was assessed the possibility that HDRP protects neurons 

from degeneration by preventing such interaction through the seizure of HDAC1; 

according to this hypothesis, HDAC1-HDAC3 association is strongly reduced when HDRP is 

expressed and, since HDAC3 does not interact directly with HDRP, it may be that the 

reduction in toxicity is due to the binding of the HDAC1. Overall, abovementioned 

considerations suggests that HDAC1 behaves as a kind of molecular switch between death 

and neuronal survival, although it remains to be clarified in which cellular compartment 

occurs the interaction between HDAC1 and HDAC3. HDCA1 has a nuclear localization 

signal and HDAC3 moves from nucleus to cytoplasm within neuron216. Although this may 

suggest a nuclear interaction, some recent studies indicate that in degenerative neurons 

HDAC1 moves to cytoplasm, where its presence is implicated in axonal alteration and 

degeneration of the cell213. In fact, the exposure of neurons to toxic stimuli, such as 

glutamate, promotes the passage of HDAC1 to cytosolic level mediated by CRM-1 nuclear 

receptor, thus inducing an alteration in mitochondrial transport. Specifically, the 

interaction of HDAC1 with cytosolic motor proteins, hinders their interaction with cargo 

proteins, resulting in the onset of swelling that appear as a succession of sagging and 

narrowing along the axon210. Neurofilaments, which represent the only axonal 

cytoskeletal component, are composed of different subunits and three of them are 
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phosphorylated in physiological conditions; phosphorylation levels correlate with the 

rapidity of axonal transport, probably affecting neurofilament-motor protein binding218. 

Conversely, hypoacetylated neurofilaments are more sensitive to calcium-activated 

calcium proteases, such as calpains and caspases, and exhibit greater tendency to 

aggregation219. Some studies show that high glutamate concentrations in neuronal 

cultures weaken transport along neurofilaments, and induce build-up of cytoskeletal and 

organoleptic proteins in localized granules and local destruction of axonal transport220. 

However, it remains to be clarified whether the input of calcium ions and the activity of 

HDAC1 are independent mechanisms associated with early or late axonal damage stages, 

although it has been observed that the passage of HDAC1 into the cytosol requires Ca2+. 

Such translocation is permitted by the presence of a leucine-rich region, similar to nuclear 

signal (NES), which interacts with CRM-1 receptor. The effects of the transport of HDAC1 

into cytosol on the instability of axon are not due to a loss of its nuclear function but it is 

due to the acquisition of a cytosolic function. In fact, the toxic effect of cytosolic HDAC1 is 

due to its ability to bind proteins such as KIF2A, KIF5 and α-tubulin, preventing them from 

forming complexes with cargo proteins such as dynamite210. 

 

4.3.2 NAD+-dependent HDACs in ALS 

Unlike other deacetylases, the activity of sirtuins in the SNC appears neuroprotective. 

Protective agents such as polyphenols, in particular resveratrol, selectively activate both 

SIRT1 and SIRT2221. Cortical neurons of SOD1 G93A transgenic mouse treated with 

resveratrol, appear to survive longer because of the activation of SIRT1 that deacetylates 

the FoxO3a transcription factor, which is responsible for determining cellular destiny in 

stress situations222. SIRT1 then leads to its activation or inhibition, depending on 

deacetylase residue or depending on cellular location of FoxO3a223.  

Moreover SIRT1 and SIRT2 have been described to be misregulated in G93A-SOD1 and 

G86R-SOD1 mice. SIRT1 decreases in the spinal cord, but increases in muscle during the 

progression of the disease, while SIRT2 mRNA expression increases in spinal cord, even if 

protein expression is substantially unchanged in all models examined224. 
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4.4 Role of HDACs in Neuronal Development and Growth 

It has long been known that HDACs are implicated in neurogenesis, a process that 

involves the formation of new neurons from non-mature cellular precursors. In particular, 

cell-specific expression of HDACs in central nervous system, suggests the specific roles in 

neuronal development; for example missing HDAC1-HDAC2 precursors doesn’t allow cells 

to differentiate into mature neurons and are therefore confronted with death226. 

Although HDACs are enzymes generally associated with transcriptional repression, HDAC1 

is also able to act as a positive transcript regulator during the neuronal development of 

the central nervous system of Zebrafish, since genes regulated by such deacetylase 

encode for transcription factors implicated in the promotion of neuronal specification226. 

HDAC3 is involved in the control of gene expression during neuronal development and 

maintenance of neuronal stem status, while HDAC5, as well as other molecules belonging 

to class II HDACs, is involved in differentiation of neurons192. In addition, histone 

deacetylase is involved in neurite formation as well as dendritic and axonal growth; these 

processes are dependent on cytoskeletal rearrangements227 and largely dependent on 

microtubules and actin filaments deacetylation228. HDAC6 controls microtubular dynamics 

to optimize neurite formation through septin, which represents a scaffold that allows 

HDAC6 to perform its activity efficiently229. 

HDACs also play a key role in development of dendrites, as loss of HDAC6 in cerebellar 

and hippocampal neurons reduces both length and dendritic branching, thus highlighting 

its dendritogenic activity. However, this function is independent on its deacetylase 

activity and requires direct interaction with Cdc20-APC complex230. HDAC1, HDAC2 and 

HDAC9 are also implicated in dendritic growth.  

Another role is the regeneration of axons damaged by reorganization of HDACs mediated 

microtubules231,232; the influence of calcium ion induced by active HDAC5 cell damage, 

which reduces tubulin acetylation levels, results in reduced microtubule stability. This is, 

in fact, necessary for the regeneration of axon233. Sirtuins are also implicated in neuronal 

development and in the protection of nerve cells; for example, during the neurite genesis, 

SIRT2 controls tubular acetylation, while SIRT1 plays a key role in stimulation of axonal 

regeneration, probably increasing actin-dependent motility deacetylating cortactin234. 
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In general, gene expression is directly proportional to the level of acetic acid. This 

happens because acetylation pattern regulation is essential to maintain gene 

homeostasis. Thus, until acetylation and deacetylation events mediated by HATs and 

HDACs occur synchronously, modulation of gene expression is performed correctly. 

However, transcriptional dysfunction represents a mechanism involved in the death of 

motor neurons235. There are many evidences that deregulation of transcription may be or 

may be not the cause of many neurodegenerative disorders such as ALS, Parkinson's 

Disease, and Alzheimer's. 

Although causal mechanisms and causal relationships are still under study, it has been 

hypothesized that protein inclusions of mutated forms, such as SOD1 and TDP-43, that 

are formed in pathological neurons, can cause toxicity, since sealing surfaces that can 

seize components are essentials for transcriptional machinery. It has been shown that 

inhibition of deacetylase prevents protein aggregation236. In particular, inhibition of 

HDACs in motor neurons cultures protects cells from excitotoxicity, which is a mechanism 

involved in the pathogenesis of ALS237. There are different ways in which changes 

mediated by HDACs are involved in neurodegeneration; in some cases, 

neurodegenerative disorder is caused by a HDAC-dependent transcriptional decreasing of 

a certain protein with consequent loss of function, whereas in other cases mutations are 

identified due to extensive transcriptional deficits along the genome186. In addition, 

HDACs do not only act on histones but also on a wide variety of targets, thus playing a 

wider role in cellular biology. 

 

4.5 HDACs inhibitors 

On the basis of considerations made in previous paragraphs, it is evident that 

pharmacological inhibition of HDACs can be an interesting therapeutic opportunity for 

ALS. 

Various HDACs inhibitors (iHDAC), selective and non, synthetic and natural, used to stop 

proliferation in experimental neoplastic models222, are available. Four large classes of 

inhibitors used in several clinical trials have been identified, some of which have already 

been approved by drug agencies in treating neoplastic diseases: 
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• Short chain fatty acids such as butyrate (NaB), phenylbutyrate (SPB) and valproic 

acid (VPA), 

• Hydroxy acids such as trichostatin A (TSA) obtained from the fermentation of 

Streptomyces and oxamflatin, 

• Ortho-aminoanilines, such as MS-275, 

• Cyclic tetrapeptides, mostly derived from bacteria and fungi, such as trapoxin and 

FK228. 

Most of them act as chelating agents against enzyme active site containing zinc, thus 

acting as competitive inhibitors and blocking the accessibility of acetyl lysates to the 

active site of HDAC. HDACs inhibitors have, in fact, a zinc atom with chelating activity into 

their active site, a linker region that accommodates the entry into the active site and a 

"hood" group, linked to the linker region via a small connection unit, to allow external 

surface interactions238. 

All inhibitors act by inhibiting reversible HDACs, with the exception of trapoxin and 

depudesine, which in fact bind the enzyme at the level of the epoxicone group covalently 

and irreversibly222. 

The non-specificity of such inhibitors is responsible for the contradictory effects found in 

different cell types, since inhibition of HDACs seems to be primarily protective in nerve 

cells and, in turn, deadly in cancer cells. From the beginning, most of the work on these 

small molecules was initially focused on apoptotic and anti-proliferative effects in tumor 

cell lines and it was, in fact, believed that the increase of histone acetylation following 

HDAC inhibition, activated the transcription of pro-apoptotic genes. In fact, it has been 

found that increased acetylation promotes also the expression of survival genes such as 

Bcl-2 and growth factors, thus providing protection to different cell types from neoplastic 

cells such as neurons177. 

Many studies, therefore, show neuroprotective effects induced by inhibitors of HDACs; as 

shown in Figure 7, treatment of neurons with such molecules results in histone 

hyperacetylation, which results in greater opening and accessibility of chromatinic 

conformation, resulting in recruitment of chromatinic remodeling complexes that bind 

acetyltransformed tails through protein domains of specific binding164,166. 
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Figure 7. Effects of HDAC inhibitors: When disabled, HDACs can not mediate chromatin condensation. This 
promotes the transcriptional activation of protective genes. 

 

In the presence of inhibitors of HDACs, an increase in acetylation levels is observed for H3 

and H4 histones and other proteins such as p53193. 

HDACs inhibitors exhibit varying potency and selectivity, and it is possible to diversify 

selectivity by modifying the chelating region. Among non-selective inhibitors, TSA and 

Vorinostat are found to inhibit many zinc-dependent HDACs, including HDAC6, due to the 

ability to cross blood vessel barrier. Fatty acids such as NaB and SBP are able to inhibit 

most class I and II HDACs.  

A fairly known inhibitor, VPA, binds to the active site by inhibiting both class I and IIa 

HDACs, but does not exhibit activity against Class IIb HDACs217, although the susceptibility 

of class II HDACs to that inhibitor is five times lower than that of class I HDACs193. 

However, given the poor selectivity, recent attempts have been made to produce more 

selective inhibitors such as: 

● MS-275, a synthetic benzamide that preferably inhibits HDAC1; 

● romidepsin (FK228), a cyclic tetrapeptide that strongly inhibits HDAC1 and HDAC2; 

● tubacin, which exhibits high selectivity for HDAC6; 

●  suramine and its structural analogues, which show selectivity for human SIRT1 

and SIRT2; 
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●  nicotinamide, precursor of NAD + and selective sirtuins inhibitor. 

 

Many of these compounds were tested in transgenic mouse models SOD1. For example, 

treatment with TSA induces a modest improvement in motor capacity and protection 

against motor neuron and axonal degeneration, muscular atrophy and denervation of 

neuromuscular junction239. VPA treatment, however, does not result in an increase in 

survival or motor performance, but still induces an improvement in the acetylation 

pattern in spinal cord by restoring intracellular levels of CREB factor in motor neuron of 

mice, with pathogenic mice resulting in prevention of neuronal death in case of 

excitotoxicity and hypoxia240. NaB is also capable of extending survival and motor 

capacity in the aforementioned pathological animal models, attributed both to over-

regulation of NF-B factor expression and other proteins involved in cell survival and stress 

response to reduced activation of caspase pathway241. The specific MS-275 inhibitor is 

particularly useful in presence of toxic stimuli leading to axonal damage; it, in fact, 

induces a calcium-dependent exporter of HDAC1, an enzyme that normally has nuclear 

localization. As already mentioned, its presence in cytosol interrupts the interaction of 

cargo and motor proteins resulting in loss of intracellular transport and cell death. MS-

275 then acts by inhibiting the activity of the HDAC1 enzyme210. 

Some inhibitors such as VPA, NaB and SPB have been tested in different clinical trials that 

have demonstrated the ability of these molecules to induce an increase in histone 

acetylation. 

However, there are several known undesirable effects associated with the intake of 

HDACs inhibitors; specifically, fatigue and weakness, gastrointestinal disorders, 

neurocortical manifestations, cardiac disorders, which result in non-specific 

electrocardiogram changes, and, in some studies, there is also a mild and transient 

thrombocytopenia. However, anaemic and neutropenic conditions are uncommon, and 

septic complications rarely occur242. In addition, the efficacy of HDACs inhibitors is closely 

dependent on their in vivo stability and, unfortunately, many of them do not have great 

stability and are therefore easily degraded by first-pass hepatic metabolism243. This is why 

many research fields are involved in identifying more potent and stable inhibitors that can 
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restore and normalize the pattern of acetylation in motor neuronss of patients with ALS. 

 

5. Acetylated TDP-43 inclusions are linked to ALS 

Lysine acetylation has emerged as a major covalent modification controlling diverse 

cellular processes and has been implicated in Alzheimer’s disease (AD) and other 

neurodegenerative disorders244-248. For example, it has been demonstrated that 

acetylation of misfolded tau proteins marks mature neurofibrillary tangles (NFTs) in AD 

and related tauopathies, and represents a disease-specific marker of AD 

pathology241,243,244. In addition to tau, a global proteomics approach identified ~1,750 

proteins that are subjected to lysine acetylation, including a distinct subset of RNA-

binding proteins and associated factors.  

Given the importance of TDP-43 binding with RNA, one of the most studied aspects is 

whether post-translational modifications, such as acetylation, may somehow alter its 

normal function especially in all those molecular pathways that result then later in ALS. It 

has been extensively demonstrated that if such modifications fall on residues contained in 

RNA-binding domains (RRMs), they alter the normal binding to RNA, and also promote 

the accumulation of insoluble TDP-43 aggregates. Further confirmation of how 

acetylation may be a distinctive alteration in ALS typical neurodegeneration processes, 

was obtained by analysing lesions of the spinal cord of ALS patients, where TDP-43 was 

re-used to be largely acetylated, thus providing the presupposition for further study of 

this modification for therapeutic purposes, not only for ALS, but for many other 

proteinopathies associated with TDP-43198. 

It seems that acetylation modifies both function and localization of TDP-43. In fact, TDP-

43 in its WT form, normally located in the nucleus, seems to be subject to acetylation, 

although an higher cytoplasmic acetylation of TDP-43 have been detected, probably due 

to the different conformation of TDP-43 when it has cytoplasmic or nuclear localization, 

and because of different lysine accessibility. In addition, as TDP-43 primary cytoplasmic 

forms are observed in diseased brain and spinal cord, it is hypothesized that this increase 

in cytoplasmic cytotoxicity may be responsible, though only partially, for the formation of 

inclusion in TDP-43 proteinopathies. 
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In support of a pathological role, acetylation at K145 was sufficient to increase the 

pathogenicity of TDP-43 in cells, as demonstrated by both nuclear and cytoplasmic 

aggregation of TDP-43. Furthermore its C-terminus is widely phosphorylated and there is 

a consequent loss of its normal nuclear function. Based on all these scientific 

considerations, it can be hypothesized that aberrant acetylation of TDP-43 can act in a 

pathogenic way and that this can trigger the aggregation and loss of TDP-43 function. 

However, it remains to be investigated whether TDP-43 acetylation is limited to ALS or if 

this modification causes a wider range of TDP-43 proteopathies, thus expanding the 

clinical and therapeutic relevance of this phenomenon198. 

Acetylation also does not significantly alter steady-state TDP-43 protein levels in cell-

based system135.  

When the effect of acetylation on binding with target mRNAs is evaluated, particularly 

acetylation on K145 and K192 within the RRP domains of TDP-43, by means of mass 

spectrometry assay, obtained data suggest that even a single acetylation event is 

sufficient to compromise the binding and splicing functionality of RNA, thus 

demonstrating how modification on K145 causes a critical change in the TDP-43 function. 

Other data reported by Bhardwaj, show that non-specific K145 acetylation, induced in 

vitro using acetic anhydride, is more effective in the absence of RNA, suggesting that the 

RNA binding protects K145 from acetylation249. According to these experimental data, 

TDP-43 acetylation within the RRMs is sufficient to compromise normal RNA binding, thus 

forming a fast and efficient regulator switch to modulate TDP-43 association with 

downstream target RNAs198. 

In pathologic conditions, TDP-43 is abnormally phosphorylated on serine C terminal 

terminals (Ser-403/404 and Ser-409/410) by multiple kinases250-253, which is a highly 

specific marker of disease26,198,201. Although phospho-TDP-43 immunoreactivity is now 

considered to be an important biomarker in postomortem dignostics, it is not yet clear 

what the role of this post-translational modulation at TDP-43 level is. In fact, different 

research groups interpret phosphorylation as an incident that disadvantages aggregation 

instead of promoting it202,203, thus assuming the existence of additional signalling 

mechanisms modulating the activity of TDP-43 and the co-generating aggregate 
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formation. 

Recent studies by Cohen on TDP-43 acetylation, point to a new therapeutic openness 

closely linked to translational post modifications that are often associated with proteins 

involved in ALS. In fact, it has been shown as one single acetylation-mimic (K145Q) 

modulating the TDP-43 RNA regulatory function, lead to a robust aggregation, when it is 

targeted at cytoplasm, triggering many of pathological distinctive signs associated with 

TDP-43 proteinopathy included hyperphosphorylation, mitochondrial perturbations and 

an inflammatory response. However, it is possible to improve chaperone function 

relieved the burden of TDP-43 aggregates through a HSF-1 transcriptional waterfall, as 

acting with an endogenous reconstruction program, it is able to engage and remove the 

TDP-43 in vivo inclusions251. 

Another important experimental test that best clarifies the key role of acetylation has 

been obtained from recent in vitro studies that have shown that loss of nucleic acid 

binding converts TDP-43 into unstable insoluble agglomerates247,248, implying physical 

association with nucleus that acids can act to stabilize the terminal C-terminal TDP-43 as a 

prion domain, bringing a more soluble functional protein that can thus act as a switch 

regulator to modify TDP-43 affinity for the target RNA. Indeed, treatment of cells with 

agents that increase oxidative stress and which promote loss of association with RNA led 

to TDP-43 acetylation and insoluble accumulation. 

It is probable that acetylation of K145 residue, located in the site that allows TDP-43 

DNA/RNA linkage, is facilitated, as this site is more accessible, thus allowing a more rapid 

alteration of TDP- 43254.198. 
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Figure 8 Acetylation and deacetylation cycle of TDP-43. TDP-43 which normally has a high affinity for nuclei 

when it is subjected to excessive stress oxidizing, for example by external factors or genetic factors, 

undergoing modifications such as crosslinking of cysteine disulfide11 and lysine acetylation , going to alter 

the affinity of the bond with RNA but above all, leading to a buildup of protein in the cytokine and nucleus. 

These agglomerates are easily linked by the HDAC6 / CHIP / Hsp70 complex which is capable of deacetating 

these complexes and reporting TDP-43 under normal conditions, provided the stress is not too prolonged 

over time
5
. 

 

.  
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MATERIALS AND METHODS 

 

Antibodies and reagents 

The following primary antibodies were used in this study: Myc monoclonal antibody 

(M4439, Sigma-Aldrich), β-actin antibody (A5441, Sigma-Aldrich), Flag (F3165, Sigma-

Aldrich), HDAC1 (10197-1-AP, Proteintech), TARDBP (190782-2-AP, Proteintech), 

Acetylated-Lysine antibody (9441, Cell Signaling), anti-rabbit peroxidase-conjugated 

secondary antibody (AP132P EMD Millipore and anti-mouse peroxidase-conjugated 

secondary antibody (AP124P EMD Millipore); anti-rabbit, anti-mouse Alexa 488 (A-11001, 

Life Technologies) or 647-conjugated secondary antibody (A-21244, Life Technologies). All 

antibodies were used at the dilution recommended by the manufacturer’s instructions.  

The following HDAC inhibitors were used in this study: Sodium phenil butyrate (SML0309, 

Sigma-Aldrich), Trichostatin A (T8552, Sigma-Aldrich), Sodium butyrate (B5887, Sigma-

Aldrich), Valproic acid sodium salt (P4543, Sigma-Aldrich).  

 

Mice tissue 

Mice tissues were dissected from BALB31c mice housed at the Istituto Zooprofilattico 

della Sardegna (Sassari, Italy). All animal procedures have been performed according to 

the European Guidelines for the use of animals in research (86/609/CEE) and the 

requirements of Italian laws (D.L. 116/92, Directive 2010/63/EU). The ethical procedure 

has been approved by the Animal welfare office, Department of Public Health and 

Veterinary, Nutrition and Food Safety, General Management of Animal Care and 

Veterinary Drugs of the Italian Ministry of Health (Application number 32/08 of 7 July 

2008; Approval number 744 of 9 January 2009). All the experiments were performed by 

authorized investigators. Dissected tissue were immediately freezed in liquid nitrongen 

and stored at -80°C. 
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Plasmids construction and oligonucleotides 

Sequence coding for human TDP-43 (NM_007375.3) or human HDAC1 (NM_004964.2) 

were cloned in different expression vectors (pCS2-MTK, pCMV-3xFlag or pShuttle2) and 

used for site directed mutagenesis (QuickChange site-directed mutagenesis kit, Agilent). 

Mutants were obtained by mutagenesis starting from hTDP43, using the Quickchange 

site-directed mutagenesis kit (Stratagene) and primers indicated in the following table: 

 

Mutation Oligonucleotides 

M337V 5’CAGTTGGGGTATGGTGGGCATGTTAGC 3’ 

A382T 5’AATTCTGGTGCAACAATTGGTTGGG3 3’ 

K145A-K192A 5’ GATCTTAAGACTGGTCATTCAGCGGGGTTTGGCTTTGTTCG 3’ 

K145Q-K192Q 5’ GCCTTTGAGAAGCAGACAAGTGTTTGTGGGGCGCTGTACAG 3’ 

K236E 5’ TCCAATGCCGAACCTGAGCACAATAGCAATAGA 3’ 

D169G 5’ TTCTCTCAGTAGGGGGTGTGAT 3’ 

ΔNterm 5’ GAATTCAAGGCCTCTCGAGCCATAGTGTTGGGTCTCCCATGG 3’ 

ΔRRM1 5’ CAGAAAACATCCGATTTAATAGTGCCTAATTCTAAGCAAAGC 3’ 

ΔRRM2  5’ GAGCCTTTGAGAAGCAGAAAACACAATAGCAATAGACAG 3’ 

ΔG-rich 5’ CAGTTAGAAAGAAGTGGAAGAGGAATGTAGCTCGAG 3’ 

ΔRRM1- ΔRRM2 5’ CAGAAAACATCCGATTTAATAGTGCCTAATTCTAAGCAAAGC 3’ 

 

Table3: Primer tablets used for mutagenesis from hTDP43. 

Site-directed mutagenesis was performed according to instruction manual (Agilent 

Technologies Inc, Stratagene#200518). PCR was performed using oligos indicated in table 

3 and PFU DNA Polymerase (Promega, M7741).  

PCR was performed as follows:  

95 °C for 5‟ 

95° C for 3‟  

54-56 °C for 30‟‟  

72°C (1‟ for Kb)  

72° C for 10‟  

Repeated for 18 cycles 
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PCR amplified DNA was DpnI digested (to disrupt non mutated DNA), and then 

transformed in competent DH5α cells. Positive clones were screened by sequencing. 

 

Adenoviral vectors 

All adenoviral vectors (pAdenoX-hTDP43WT/Q331K/M337V/A382T/ΔRRM1-2/K145A-

K192A/K145Q-K192Q and pAdenoX-hHDAC1) were generated using the Adeno-X 

Expression System 1 (Clontech). Their production was completed in two stages. First, 

generation of mammalian expression cassette was done by cloning the gene of interest 

into pShuttle2. Second, excision of expression cassette from pShuttle2 and its insertion 

into I-Ceu I and PI-Sce I sites of BD Adeno-X Viral DNA was accomplished. All constructions 

were verified by automated sequencing. 

 

Bacterial strain 

Escherichia coli DH5-α were used as competent cells. Bacterial cells were defective for 

restriction and had mutations in relA1 and recA1 genes, to improve the stability and 

quality of recombinant plasmids.  

 

Cell lines 

SH-SY5Y cell line: SH-SY5Y cells (CRL-2266, ATCC, Rockville, MD) were human cells derived 

from neuroblastoma cell line.  

Adeno-X 293 cell line: Adenovirus 5-transformed Human Embryonic Kidney 293 cell line 

(CRL 1573 HEK 293; ATCC, Rockville, MD,) was used to package and propagate the 

recombinant adenoviral- based vectors produced with the BD Adeno-X Expression 

System.  

 

Cell culture  

SH-SY5Y were cultured in Dulbecco MEM/F12 ground (Gibco BRL), Adeno-X 293 in 

Dulbecco MEM (Gibco BRL), in presence of 10% fetal calf serum free of tetracycline 

contamination (Tet-free FCS, Clontech), previously inactivated at 56 °C for 30’minutes. 

Medium contained 100 units/ml of penicillin G and 100 μg/ml of streptomycin (Gibco 
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BRL). Cells were grown in an incubator at 37 °C, in (with) a humidified atmosphere 

containing 5% CO2. Trypsin (0.5 g/ml, 68 mM EDTA) was added to split cells and then 

diluted in fresh medium. Transient expression of each vector (2,5 µg DNA/1 × 106 cells) 

was obtained with Lipofectamine Plus reagent (Invitrogen) according to manufacturer's 

instructions. After an incubation of 4 h with transfection reagents, the cells were cultured 

in normal growth medium for 24 or 48 h. Trasduction with adenoviral particle with a MOI 

of 5 pfu/cell was performedaccording to6). 

 

Standard techniques of molecular biology.  

All standard techniques of molecular biology were performed according to Molecular 

Cloning–A Laboratory Manual7.  

 

Coimmunoprecipitation 

Briefly, cultured cells were lysed with lysis buffer (120 mM NaCl, 50 mM Tris pH 7.5, 5 mM 

EDTA, 0.5% NP-40, and 1 mM freshly prepared PMSF), containing protease inhibitors 

(SIGMA P 8340). Cell lysates were immunoprecipitated, overnight at 4°C, with specific 

antibodies; immunocomplexes were then captured by incubating, for 16 hours at 4°C with 

continuous gentle shaking, with protein-A sepharose from Staphylococcus aureus (SIGMA 

P3391). Subsequently, immunocomplexes were analyzed by means of Western blotting, 

using specific antibodies. 

 

SDS PAGE and Western immunoblotting 

Protein content was determined using Bradford protein assay (27813 SIGMA). Equal 

amounts of protein extracts were resolved by standard SDS/PAGE. Samples were then 

electroblotted onto Protan nitrocellulose membranes (GE Healthcare Life Science). 

Afterwards, membranes were incubated in 3% low-fat milk, diluted in 1 X PBS-Tween 

0.05% solution with the indicated antibody for 16 h at 4°C. Anti-Rabbit IgG (whole 

molecule)- and Anti-Mouse IgG (whole molecule)-Peroxidase antibody (EMD Millipore) 

were used to reveal immunocomplexes by enhanced chemioluminescence (Thermo 
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Fischer). The apparent molecular weight of proteins was determined by calibrating the 

blots with prestained molecular weight markers (Bio-Rad Laboratories). 

 

2D electrophoresis analysis 

Two-dimensional electrophoresis was been used to separate of proteins according to 

their isoelectric point (1st dimension) and, orthogonally, to their molecular weight (2nd 

dimension). 

The samples were applied to 70 mm IPG strips (pH 4-7, Bio-Rad laboratories), by 

overnight rehydration loading at 20 ° C, and subsequently isoelectrofocused at 50 μA / 

IPG strip for 22 kVh at 20 ° C. 

After focusing, proteins were in-gel reduced by incubating IPG strips with 50 mM Tris 

buffer containing 6 M Urea, 30% glycerol v / v, 3% SDS w / v and 1% DTT w / v, followed 

by in- gel alkylation with the same solution containing 2.5% iodoacetamide w / v, in place 

of DTT, under continuous shaking for 15 minutes before the second dimension. IPG strips 

were then sealed with 0.5% low melting point agarose w / v, in SDS running buffer, at top 

of second dimension gels (8 cm x 7 cm x 0.1 cm). SDS-PAGE was performed using 15% T, 

3% C polyacrylamide gels at 50V for 15 minutes and subsequently at 150V for about 90 

minutes. Later gels were subjected to western blot analysis, as described above. 

 

Immunofluorescence 

Cells were grown in 35 mm plates, fixed with 4% paraformaldehyde in 1 × PBS and 

permeabilized with 0.2% Triton X-100 in 1 × PBS. After a blocking step for 1 h in 5% BSA, 

diluted in 1 × PBS–0.05% Tween-20, cells were incubated with the primary antibody 

mouse anti-Myc (Sigma-Aldrich), diluted 1∶10000 in blocking solution, overnight at 4°C, 

and then incubated with a secondary antibody Alexa Fluor®488 goat anti-mouse IgG (Life 

Technologies), diluted 1∶1000 in blocking solution, for 1 h at room temperature. Cells 

were then analyzed with a Leica TCS SP5 confocal microscopy, with LAS lite 170 image 

software. 
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Chromatin Immunoprecipitation (ChIP) 

SH-SY5Y cells (4 x 106) were plated 24 hours before transduction, and infected by using 

viruses encoding for TDP WT at a multiplicity of 30 pfu/cell. After 24 hours, cells were 

harvested and chromatin immunoprecipitation was performed using EZ-Magna ChIP™ 

(Millipore), according to the manufacturer’s protocol.  

Each immunoprecipitated (IP) reaction was performed using about 1x106 cells equivalents 

of chromatin. The antibodies used for immunoprecipitation were the following: TARDBP 

Polyclonal Antibody (Proteintech_10782-2-AP) and Normal Rabbit Ig (reagent supplied) as 

negative control. Purified chromatin was eluted and DNA fragments were used for qPCR. 

 

Luciferase activity assay 

The DDIT3 (DNA-damage-inducible transcript 3, gene-synonym CEBPZ, CHOP, GADD1538) 

promoter from -954 to +91 was cloned between the XhoI and HindIII sites in the pGLE-

Basic Vector. All constructions were verified by automated sequencing. SH-SY5Y cells 

were seeded in 24-well plates and cultured for 16 h. Cells were then transfected by wild-

type or mutant of TDP43, HDAC1 and luciferase constructs, in addition to a Renilla vector, 

used as an internal control for luciferase activity; transfected cells were further cultured 

for 48h. Luciferase assays were conducted using dual luciferase assay system (Promega). 

Each experiment was performed in triplicate. 

 

Splicing assays 

SH-SY5Y cells (8 x 105) were plated 24h before transduction and then infected by using 

viruses encoding for TDP WT or with A382T mutation and for HDAC1 at a multiplicity of 

30 pfu/cell (plaque-forming unit/cell). After 48 hours, cells were harvested and total RNA 

was collected using Trizol Reagent (Invitrogen). Reverse transcription was performed 

using M-MLV Reverse Transcriptase (Promega), according to the manufacturer’s protocol. 

PCR with DNA Polymerase (Promega) was carried out for 25 amplification cycles (95°C for 

30 seconds, 55°C for 30 seconds and 72°C for 30 seconds). To test the splicing pattern of 

endogenous gene POLDIP3/SKAR the following primers were used: forward (5′-

GCTTAATGCCAGACCGGGAGTTGGA-3′) and reverse (5′- 
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TCATCTTCATCCAGGTCATATAAATT-3′). To evaluate transduction efficiency and expression 

of exogenous TDP, both WT and mutant, and HADC1, PCR reaction was performed by 

using the following primers: TDP-forward (5’-AACAATCAAGGTAGTAATATGG-3’), TDP-

reverse (5’-TGTAACCATTATAAGCTGCAA-3’) and HDAC1-forward (5’-

AAATGCAGGCGATTCCTGA-3’), HDAC1-reverse (5’-TGTAACCATTATAAGCTGCAA-3’). All 

PCR products were analyzed on 1.5% agarose gels. 

Densitometric analyses for the quantification of agarose gels were performed using 

Quantity One software program (Bio Rad Laboratories). 

 

qPCR 

2µl aliquots of each sample was used in triplicate for qPCR analysis of the CHOP 

promoter. Thermal cycling was performed using a Rotor-Gene Q (Qiagen). SYBR Green 

(Invitrogen) was added at 1:10,000 dilution to each 20µl PCR reaction. qPCR was 

performed in triplicate for each input, control (IgG antibody) and immunoprecipitation 

sample (TDP antibody).  

DNA in immunoprecipitated samples was quantified and relatively expressed by using 

control IgG samples set as 1. 

Factor binding to the CHOP gene was determined to be significantly enriched using one-

way ANOVA.  

The primers used to perform the qPCR are the following: CHOP1-F (5’- 

GTGAAACGTAGTCTCGCTCTG -3’) and CHOP1-R (5’- CCAGCTAATGGGCACATAGG-3’), 

CHOP2-F (5’- CCCAGTGGATGGATACCAAC-3’) and CHOP2-R (5’- GTTTGGCAACCGGTGTCTG-

3’), CHOP3-F (5’- CAGACACCGGTTGCCAAAC-3’) and CHOP3-R (5’- 

GCCTTAGACTTAAGTCTCTGACC-3’), CHOP4-F (5’- CTCCAGGGTTCAAGCGATTCT-3’) and 

CHOP4-R (5’- AGCGGATCACTTGAGGTCAG-3’), CHOP5-F (5’- AACGGCGGGTAAAGCTAGG-

3’) and CHOP5-R (5’- GTGGGGGAGAGGAGAGAGG-3’), CHOP6-F (5’- 

ACATTGCATCATCCCCGC-3’) and CHOP6-R (5’- TCGCTCCCTCTCGCTAGG-3’). 
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Silencing histone deacetylases1 (HDAC1) gene by RNA interference.  

SH-SY5Y cells (1 x 105) were seeded 24 hours before the first transfection with the small 

interfering RNA (siRNA) oligonucleotide specific for HDAC1 gene. Lipofectamine 3000 

reagent (Lipofectamine® 3000, Invitrogen by Life Technologies) was combined with 

Optimem medium (Promega) (reaction 1); meanwhile, in a different tube, 148 pmolof 

HDAC1 siRNA and 500 ng of TDP, WT or mutant, were mixed with Optimem (reaction 2). 

Both reactions were mixed and left for 5 minutes at room temperature. Afterwards, the 

mix was added to the cells and incubated at 37°C and 5% of CO2. After 48 hours the 

transfection procedure was repeated only for HDAC1 siRNA, and cells were incubated at 

37°C and 5% of CO2 for other 24 houres. After 72 hours a MTS assay was performed, and 

cells were finally washed 2 times with PBS; subsequently, cell lysates were subjected to 

western blot analysis with anti-HDAC1 antibodies to evaluate expression level. 

 

Design of targeting components and the use of the CRISPR Design Tool 

The web interface of CRISPR Design Tool (http://tools.genome-engineering.org) was used 

to develop gRNAs, listed belowe. 

 

gRNA1 HDAC1F caccgTGAGTCATGCGGATTCGGTG 

gRNA1 HDAC1R aaacCACCGAATCCGCATGACTCAc 

gRNA3 HDAC1F caccgGATACCAGAGATGGCTTTTT 

gRNA3 HDAC1R aaacAAAAAGCCATCTCTGGTATCc 

gRNA6 HDAC1F caccgCCCAATGAAGCCTCACCGAA 

gRNA6 HDAC1R aaacTTCGGTGAGGCTTCATTGGGc 

 

Table 4. The oligo table used for creating the CRISP/Cas9 constructs. 

 

Off-target activity was evaluated additionally with Blastn 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi).  

The pSpCas9(BB)-2A-Puro (Addgene # 48139) that expresses the Streptococcus pyogenes 

Cas9 (including an NLS and a FLAG tag) from a CAG promoter, and has a U6 promoter 

driven gRNA was used as cloning backbone according to (ran et al., 2013 Nature Protocols 

8, 2281–2308). Briefly, phosphorylation and annealing was performed with the three 
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couple of oligos, mentioned above, harboring a BbsI overhang. Afterwards, BbsI 

(#FD1014, ThermoFisher) mediated digestion and T4 DNA ligase (#M0318L, NEB) directed 

ligation in the linearized pSpCas9(BB)-2A-Puro was performed. After the transformation, 

cloning has been verified with a control PCR with the primers in the table. Plasmids were 

purified and sequenced. After transfection of the indicated combinations of pSpCas9(BB)-

2A-Puro-gRNAs (Fig. 1B), positive cells were selected using puromycin (2 μg mL−1) for five 

days prior to clonal expansion. Empty pSpCas9(BB)-2A-Puro was used as negative control. 

 

HDAC inhibitors  

To inhibit HDAC1 activity, we used : Sodium phenil butyrate (SML0309, Sigma-Aldrich), 

Trichostatin A (T8552, Sigma-Aldrich), Sodium butyrate (B5887, Sigma-Aldrich), Valproic 

acid sodium salt(P4543, Sigma-Aldrich).  

Sodium Butyrate was weighted, solved in water at a stock concentration of 10 mM, and 

then diluted at the final concentration of 0,2 and 0,04 mM. Trichostatin A was solved in 

ethanol, at the stock concentration of 1 mg/ml, and then diluted at the final 

concentration of 10 and 25 nM. We plated target cells (SH-SY5Y or CRISP-Cas9 HDAC1 

clones) in culture plates desired 12–24 hours before infection. The next day, we removed 

the growth medium and infected target cells diluting viruses at a multiplicity of between 

5–30 pfu/cell in OPTIMEM (Thermo Fisher Scientific). We then incubated the cells in a 

humidified CO2 (5%) incubator at 37°C for 1 hour, to allow virus to infect the cells. Then, 

we added fresh complete growth medium and incubated in a humidified 5% CO2 at 37°C 

to allow the expression of the adenoviral construct. We analyzed gene expression at 

different time points, previously decided, and then we proceeded with further 

experimental manipulations. 

Viability of both control SH-SY5Y cells or SH-SY5Y cells infected with adenoviruses 

encoding for TDP-43-causative gene, was calculated after 72 hours, through an MTS 

assay. Cell viability was assessed by a colorimetric assay using 3(4,5-dimethylthiazol-2yl)-

5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium (MTS) assay (Cell Titer 96 

Aqueous One Solution Assay, Promega), according to manufacturer’s instructions. 

Absorbance at 490 nm was measured in a multilabel counter (Victor X5, PerkinElmer). 
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DNA Damage  

SH-SY5Y cells (1 x 105) were plated 24 hours before transduction, and infected by using 

viruses encoding for TDP WT, M337V, A382T, ΔRRm1-2, KK-AA and KK-QQ at a multiplicity 

of 40 pfu/cell . 

48 hours after infection, for UV irradiation, cells were treated with UV-C (254 nm) using a 

lowpressure mercury lamp, and the cells were either subjected to global (5 J/m2).  

After the microirradiation, cells were incubated for 4 hours at 37 °C, in a humidified 

atmosphere containing 5% CO2. All slides are processed successfully by assaying the 

previously mentioned immunofluorescence protocol and analyzed by confocal 

microscopy. 

 

Statistical analysis 

The results are presented as means ± S.D. of n≥3 independent experiments. Statistical 

evaluation was conducted by one-way or two-way ANOVA and Bonferroni post test. Values 

significantly different from the relative control are indicated with an symbol: *p<0,05; 

**p<0,01; ***p<0,001 or § p<0,05; §§ p<0,01; §§§ p<0,001.  
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RESULTS 

 

TDP-43 interacts with HDAC1 in vitro and in vivo, via RNA binding domains 

Preliminary experiments performed in our laboratory (Masala A., PhD thesis 2016) have 

demonstrated that, in transfected SH-SY5Y cells, TDP-43 can interacts with HDAC1, in a 

similar way as it has been demonstrated for FUS9. To extend this result to more 

physiological conditions, co-immunoprecipation from mice neuronal tissues, using an 

anti-TDP-43 antibody, was performed. As shown in Figure 9A, a strong and specific 

interaction was observed between TDP-43 and HDAC1 in different neuronal tissues, but 

especially in the spinal cord.  

In order to extend these results, we performed a battery of co-immunoprepitation 

experiments. HEK293 cells were transfected with HDAC1 fused with Flag-tag in 

association with WT or pathological mutant TDP-43 fused with Myc-tag and Myc-tagged 

FUS as positive control. We confirmed the interaction between FUS and HDAC1, and 

moreover TDP-43 interacts with HDAC1, independently from the pathogenic TDP-43 

variants M337V and A382T (Figure 9B-C).  

To characterize the domain(s) of TDP-43 responsible for the TDP-43/HDAC1 interaction, 

we generated a series of Myc-tagged TDP-43 fragments representing the various putative 

functional domains of the protein (N-terminal, RRM1, RRM2 and G-rich domain). Co-

immunoprecipitation experiments, performed on cell lysates from transfect HEK293 cells, 

demonstrate that TDP-43 interacts with HDAC1 via both RRM1 and RRM2 domains, and 

that only in the double deletion mutant the interaction is abolished (Figure 9D). 
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Figure 9. TDP43 interacts with TDP43 in vivo and in vitro via RRM1 and RRM2 domains. 

A) Spinal cord, striatum cerebellum of BALB31c mice were used for co-immunoprecipitation experimets using 

α-TDP-43; B)HEK 293T cells were transiently transfected with Myc-tagged TDP43 WT or deletion mutant 

expression constructs (ΔRRM1, ΔRRM2, ΔG-rich, ΔRRM1/RRM2) and FLAG-taggedHDCA1; C) HEK 293T cells 

were transiently transfected with myc-tagged TDP-43 WT or mutant expression constructs (M337V or 

A382T) and FLAG-tagged HDCA1; D) Bar graph shows the relative binding of HDAC1 to mutantTDP-43, 

normalized to TDP-43 WT. The data were obtained from four independent experiments; *indicates p > 0.05 

and **indicates p > 0.01 versus WT binding, analyzed with one-way ANOVA. 

 

RMM1 and RRM2 domains have been shown to be crucial in TDP-43 physiopathology. 

They are necessary for regulation of alternative splicing and deletion of RRM-1 domain 

alters TDP-43 translocation in the nucleus5,10. Moreover the two major TDP-43 acetylation 

sites, K145 and K1925, and two of the three TDP-43 pathological mutants that are out of 

the Grich domain, ALS linked mutation D169G and FTLD-TDP linked mutation K263E11, are 

localized in this regions. Plasmids contructions coding for these mutants (D169G, K263E, 

RRM1-2, KK-AA, KK-QQ) were generated, transiently expressed in SH-SY5Y cells and 

analyzed by immunofluorescence (Figure 10), indicating that the localization of these 
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mutatedproteins is exclusively nuclear, with the exception of TDP-43 D169G which is also 

located partially in the cytoplasm. Moreover according to previous published results, 

Plasmids contructions coding for these mutants (D169G, K263E, RRM1-2, KK-AA, KK-QQ) 

were generated, transiently expressed in SH-SY5Y cells an 

 

 

Figure 10. Evaluation of TDP-43 WT subcellular localization and some mutants. (A) SH-SY5Y were 

transfected with the TDP-43 WT, D169G, K263E, RRM1-2, KK-AA,KK-QQ constructs and analyzed 48 hours 

later by immunofluorescence. The TDP-43 signal was revealed by primary anti-myc antibodies and anti-

mouse ALEXA 488 secondary. The slides were analyzed by Leica confocal microscope. 

 

Co-immunoprecipitation experiments were performed, using the indicated mutants as 

described in Figure 9 and only the acetylation mimic mutant (KK-QQ) displays a significant 

decrease in HDAC1 binding (Figure 11A-11B). 
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Figure 11. Coimmunoprecipitation between TDP-43 mutants and HDAC1. A) HEK293T cells were transiently 

transfected with myc-tagged TDP-43 WT or mutant expression constructs (D169G, K263E, ΔRRM1-2, KK-AA 

or KK-QQ) and FLAG-tagged HDCA1; B) Bar graph shows the relative binding of HDAC1 to mutant TDP-43, 

normalized to TDP-43 WT. The data were obtained from four independent experiments; **indicates p > 0.01 

versus WT binding, analyzed with one-way ANOVA. 

 
HDCA1 modulates TDP-43 acetylation 

Acetylated-TDP-43 was been demonstrated to be an HDAC6 substrate5. In order to 

investigate if also HDAC1 overexpression can alter TDP-43 acetylation, we performed a 2D 
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gel-analysis of immunoprecipitated TDP-43. SH-SY5Y cells were transfected with TDP-43 

alone or in combination with HDAC1 and 48h after transfection, TDP-43 was 

immunoprecipitated, separated by isoelectro-focusing (pH range comprised between 3 

and 6) followed by SDS/PAGE. The level of TDP-43 acetylation was evaluated using anti-

acetyl Lysine antibody (Figure 12).  

The co-transfection with HDCA1, as well as the one with HDAC6, that it has been shown 

to remove acetyl group(s) from acetylated targets, shifts the isoelectric point (pI) of 

immunoprecipitated TDP-43. This effect is partially prevented by deletion of RRM1-RRM2 

domains, confirming, as previously demonstrated, that K145 and K192 are not the only 

acetylated residues on TDP-43 and demonstrating that the TDP-43 interaction domain 

with HDAC1 is necessary for the deacetylation to occur.  

 

 

 

Figure 12. 2-DE maps reporting TDP-43 acetylation level after immunoprecipitation. Representative 2-DE 

maps showing the change in TDP-43 acetylation status, revealed by using an anti-acetyl lysine antibody, 

after immunoprecipitation with anti-Myc from HEK293 transfected with TDP-43, HDAC1 or HDAC6. 

  

Adenoviral delivery of TDP-43 and HDAC1  

In order to study TDP-43 physiopathology, in relationship with HDAC1, we decided to use 

an adenovirus-based transient expression system, since recombinant adenoviral 
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expression vectors exploit the high nuclear transfer efficiency and the low pathogenicity 

of the virus to deliver genes to the host cell (Adeno-X Expression System, Clontech). The 

assembly of recombinant adenoviruses has been completed in few stages: first, the cDNA 

encoding for HDCA1, TDP-43 WT, pathological mutants M337V and A382T, mutants 

K145A-K192A (KK-AA), K192Q-K192Q (KK-QQ) or ΔRRM1-2 were cloned into pShuttle2 

plasmid DNA. Second, the expression cassette was excised from recombinant pShuttle2 

vector by digestion with I-Ceu I and PI-Sce I, ligated into pAdeno-X and selected. Third, the 

recombinant adenoviral constructs were cleaved by PacI to expose the inverted terminal 

repeats (ITR) and transfected into HEK-293 AdenoX cell lines. After 7–10 days, viruses 

were harvested and amplified by infecting packaging cells for three times to obtain high 

titer virus stocks. The final yields were evaluated performing an end-point dilution assay. 

To characterize TDP-43 adenoviral expression vectors, recombinant adenoviruses were 

used to transduce SH-SY5Y cells with a scalar multiplicity of infection (M.O.I.): 5-40 

pfu/cell. Forty-eight hours after transduction, cells were lysed and protein extracts 

analysed by Western Blot. As shown in Figure 5 all adenoviral preparations are able to 

produce a high level of expression of TDP-43 (Figure A and B) and HDAC1 (Figure C) in SH-

SY5Y cell lines. Interestingly only the pathological mutants, and at a less extend WT TDP-

43, induce reduction in cell vitality at low MOI. The decrease in cell viability observed with 

the other mutants and with HDAC1 can be observed only with a MOI of 40 pfu/cell and it 

is likely due to adenoviral toxicity itself.  
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Figure 13. Effect of adenoviral delivery of WT or mutant TDP43 and HDAC1 on SH-SY5Y cell viability. A) 

MTS assay on SH-SY5Y cells transduced by TDP-43 WT, M337V, A382T, ΔRRM1-2, KK-AA and KK-QQ 

adenoviruses, at a final concentration of 5, 10, 20 and 40 PFU/cell, and analyzed 48 hours after 

transduction. Cell lysates were subjected to reducing SDS-PAGE and western blot. The anti-TDP-43 antibody 

was used to visualize TDP-43 expression level and β-actin serves as controls for equal loading of samples. B) 

MTS assay on SH-SY5Y cells transduced by HDAC1 adenoviruses, at a final concentration of 5, 10, 20 and 40 

PFU/cell and analyzed 48 hours after transduction. Cell lysates were subjected to reducing SDS-PAGE and 

western blot. The anti-HDAC1 antibody was used to visualize HDAC1 expression level and β-actin serves as 

controls for equal loading of samples. C) The HDAC1 was detected by anti-HDAC1 antigen and secondary 

anti-rabbit ALEXA 647 or anti-Flag antigen and secondary anti-mouse ALEXA 488. The slides were analyzed 

by Leica confocal microscope. The data were obtained from four independent experiments; ** indicates p > 

0.01 versus WT binding, analyzed with one-way ANOVA. 
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HDAC1 is not delocalized in the cytoplasm upon TDP-43 expression 

HDAC1, like most HDCAs, is a nuclear enzyme that can be rilocalised in the cytosol in 

damaged brain axons with multiple sclerosis, exemplary demyelinating models and in 

cultured neurons exposed to glutamate and TNF-α. More recently, during development of 

the Xenopus brain, HDAC1 was observed in both neurons and mitochondria of developing 

neurons12. TDP-43 instead is predominantly nuclear, although in fibrillary conditions it 

may move to the cytoplasm, causing a loss of function that results in detrimental effects 

on RNA metabolism. In pathological conditions, where TDP-43 is varied 

(hyperphosphorylated, ubiquitined, acetylated) and prompted to generate C-terminal 

fragments in the brain and spinal cord of frontotemporal lobo degeneration with 

ubiquitinated inclusions13.  

We therefore decided to test in our experimental models the subcellular localization of 

HDAC1 in the presence of different TDP-43 mutants. As shown in Figure 14, TDP-43, 

regardless of the excessive expression of HDAC1, still shows a nuclear location. 
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Figure 14. Immunofluorescence analysis of TDP43 WT and deletion mutants localization and HDAC1 in SH-

SY5Y cells: A) SH-SY5Y cells were transduced with TDP-43 WT, M337V or A382T, without or B) with HDAC1. 

The TDP-43 signal was revealed by primary anti-myc antibodies and anti-mouse ALEXA 488 secondary, 

HDAC1 was detected by anti-HDAC1 antigen and secondary anti-rabbit ALEXA 647. The slides were analyzed 

by Leica confocal microscope. 

 

Physiological relevance of TDP-43/HDCA1 interaction: HDCA1 modulates 

TDP-43 transcriptional activity  

TDP-43 have been originally described as transcription factor for TAR DNA of HIV114, but 

at present the only other target on DNA is the testis specific mouse acrv1 (SP10) 

promoter15. TDP-43 has been also shown to induce a transcriptional up regulation of 

C/EBP-homologous protein (CHOP) promoter and the genetic disruption of the CHOP 

gene markedly attenuated TDP-43-induced cell death16. Moreover, the TDP-43-induced 

up regulation of CHOP expression is mediated by both reduction of CHOP degradation 

and by up regulation of CHOP mRNA level. Thus, we decided to use CHOP promoter (from 

-954 to +91) to drive the expression of luciferase reporter and to test the ability of WT 

and TDP-43 pathological mutants of regulating this promoter.  

48h after transfection with the indicated plasmid (Figure 15), SH-SY5Y cells were assayed 

for luciferase activity in a multiplate reader using the Dual-GlowTM Luciferase Assay 

System (Promega, USA). Firefly luciferase activity was then normalized to the Renilla 

luciferase activity to control the transfection efficiency. Data were then normalized to 

luciferase activity in cells transfected with empty vector, which was given a value of 

100%. As show in Figure 15 TDP-43 can act as robust activator of CHOP promoter. 

Transcriptional activation on this promoter was reduced when pathological mutants 

(A382T) are expressed and abolished by RRM1-RRM2 deletion.  

 



RESULTS 62 
 

 
 

 Simona Sanna: “Epigenetics and neurodegeneration: physiological relevance of TDP-43/HDAC1 interaction”. 
Ph.D. Course in Life Sciences and Biotechnologies – University of Sassari. 

 

  

 

Figure 15. HDAC1 overpression interferes with transcriptional activity TDP 43 on CHOP: The graph shows 

the data obtained from the luciferase assay performed on SH-SY5Y transfected with TDP-43 WT and 

different mutations, with or without HDAC1, showing that the presence of HDCA1 determines a reduction in 

CHOP transcriptional activation due to WT or mutated TDP43 expression, while this effect is no longer visible 

in the presence of the deletion mutant ΔRRM1/2. The data were obtained from four independent 

experiments; **indicates p> 0.01 and *** p > 0.001 versus HDAC1 expression, and indicates § > 0.05 and 

*** , § § > 0.01 versus TDP-43 expression; analyzed with two-way ANOVA. 

Since HDAC1 is a key component of an intricate network of acetylated substrates involved 

in transcription, not surprising, its overexpression induces a reduction of TDP-43 induced 

luciferase activity. Most importantly, also TDP-43 acetylation itself seems to be relevant 

for CHOP transcriptional activity since overexpression of the acetylation mimicking variant 

(KK-QQ), but not the non-acetylable mutant (KK-AA) impairs luciferases activity 

independently from HDAC1 overexpression.  

These experimental evidence indicate a possible direct interaction between TDP-43 and 

CHOP promoter, which we confirm by ChIP approach. In a first attempt we tested the 

CHOP promoter activation in response to sodium arsenite, using as marker of 

transcriptional activation the dual modification of histone H3 phosphorylated at serine 10 

and acetylated at lysine 14 (H3-PS10/AcK14). As expected CHOP transcriptional activation 

is accomplished by histone H3 phosho-acetylation (Figure 16). 
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Figure 16. Setting the ChIP on SH-SY5Y:The Figure shows the result of the ChIP performed on SH-SY5Y cells 

treated with Sodium Arsenite (10µM) for 1, 3 or 6 hours to evaluate the activation of the CHOP promoter in 

response to the treatment using an activation marker transcriptional such as the double modification of 

Hydroxy H3 phosphorylated to serine 10 and lysine 14 acetylated (H3-PS10 / AcK14). 

 

We, thus decided to transduce SH-SY5Y cells with adenoviral particle coding for 5xMyc-

TDP-43 and After 24 hours chromatin was extracted and immunoprecipitated using anti-

TDP-43 or anti-IgG as a negative control. As shown in Figure 17, we have been able to 

demonstrate that TDP-43 binds directly to the CHOP promoter by first amplifying a larger 

portion by using the pair indicated in materials and methods such as CHOP3-R and 

CHOP3-F, thus generating an amplifier of about 600 pb, then switch to the primer pair 

CHOP6-R and CHOP6-F, for qPCR, which amplify the reduced portion of the putative 

binding site of TDP-43 to CHOP. 
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Figure 17. Identification of TDP43 binding sites on CHOP promoter. A) To test the TDP-43 binding, we 

designed 6 pairs of primers that amplify several portions of the putative TDP-43 binding region on the CHOP 

promoter. Among these, the primer pair, CHOP 3 (indicated in the materials and methods), was selected, 

thus obtaining the amplified green region indicated in the figure used. B) The image shows the result of the 

agarose gel electrophoresis, of the analyzed samples qPCR after chromatin immunoassay. C) Actual banding 

was evaluated with data obtained from the qPCR and collected in the graph. The data were obtained from 

four independent experiments; ** indicates p> 0.015 for the fold enrichment analyzed with one-way ANOVA. 

 

TDP-43 splicing activity on POLIDP3 mRNA is modulated by acetylation 

levels, but not by HDCA1 overexpression  

Since it has been demonstated that the acetylation-mimetic TDP-43 mutant shows a 

reduction in the RNA binding and splicing functionality on CFTR transcripts17, we have 

examined in depth if HDCA1 overexpression may alter the TDP-43 splicing activity. As a 

target of TDP-43, we decide to monitor the inclusion of exon 3 of the interrelated 

polymerase delta [POLDIP3] mRNA, that has been demonstrated to be excluded by 

depletion of TDP-4318,19. RT-PCR experiments performed on SH-SY5Y cells demonstrate 

that, in our experimental systems, overexpression of TDP-43 WT or bearing the 
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pathological mutation A382T and the non-acetylable KK-AA, stimulates POLDIP3 exon 3 

exclusion (increase of variant 2), effect that is exacerbated by the lack of RRM1-2 

domains. Surprisingly both the acetylation mimic KK-QQ induce a comparable exon 3 

exclusion, favouring a scenario in which the TDP-43 overexpression is altering the splicing 

pattern independently from any acetylation status. HDCA1 overexpression do not alter 

this phenomena in all the experimental conditions, althought we observed a genereal 

downregulation of exon3 exclusion in presence of HDAC1. 

 

 

Figure 18. TDP-43 splicing activity on POLIDP3 mRNA: A) Splicing diagram following the over-expression of 

TDP-43. B) SH-SY5Y cells transfected with TDP-43 WT and different mutants, with or without HDAc1 (C) 

Quantification of data obtained in B. 
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TDP 43 and HDCA1, their role in responding to DNA damage 

FUS and TDP-43 have been shown to play a key role in the response to DNA damage, 

since the loss of function of one of these two proteins results in a faulty repair of DNA 

damage associated with stopping in transcription20. Based on these data, we assessed 

whether the presence of HDAC1 could interfere with this specific TDP43 activity. To 

determine whether TDP-43 together with HDAC1 is localized at the DNA damage foci, we 

induce double strand brecks using UV-C rays on SH-SY5Y previously transduced with TDP-

43 WT or bearing different mutations. Immunofluorescence analysis demonstrates that, 

in irradiated cells, TDP-43 and HDCA1 colocalized in small spots, where, perhaps jointly, 

are involved in repair of DNA damage.  

In addition, by cell count we quantified the localization of TDP-43 following treatment 

with UV-C. TDP-43 WT as well as the pathological mutants, relocalized in the cytoplasm 

(figure 19 B). Only the acetylation mimicking mutant is retaine in the nucleus at the same 

extend in both treated and untreated cells KK-QQ. 

These data are also supported by the evaluation of cell viability following treatment 

(Figure 19 D), in fact, only with pathogenic mutants M337V and A382T there is a slight 

survival due to the loss of function due to mutated TDP-43 subtraction , which 

accumulates in the inclusion bodies. 



RESULTS 67 
 

 
 

 Simona Sanna: “Epigenetics and neurodegeneration: physiological relevance of TDP-43/HDAC1 interaction”. 
Ph.D. Course in Life Sciences and Biotechnologies – University of Sassari. 

 

  

 

 



RESULTS 68 
 

 
 

 Simona Sanna: “Epigenetics and neurodegeneration: physiological relevance of TDP-43/HDAC1 interaction”. 
Ph.D. Course in Life Sciences and Biotechnologies – University of Sassari. 

 

  

 

Figure 19. WT and mutant TDP-43 colocalize with HDCA1 at DNA damaged foci. A) and B) SH-SY5Y 

transduced cells with TDP-43 WT and mutants treated with UV-C and analysed for TDP-43 and HDAC1 

localization. The TDP-43 signal was revealed by primary anti-TDP-43 antibodies and anti-mouse ALEXA 488 

secondary, HDAC1 was detected by anti-HDAC1 antigen and secondary anti-rabbit ALEXA 647. The slides 

were analyzed by Leica confocal microscope. C) The graph summarizes the image analysis, which reveals 

how TDP-43 becomes more cytoplasmic after DNA damage caused by UV-C exposure. D) The graph shows 

that as a result of UV-C exposure, there is less cellular survival in the specimens expressing the mutant 

M337V and A382T points. The data were obtained from four independent experiments; ** indicates p> 0.01 

for the cell survival analyzed with one-way ANOVA. 

 

TDP-43 and HDAC1 have a synergistic effect in decreasing cell vitality  

As described in the previous paragraph, WT or pathological mutant TDP-43 

overexpression is neurotoxic, inducing a reduction in cell survival, according to what it has 

been described in many other cellular and animal systems21-23. We thus decided to 

evaluate the effect of HDAC1 expression level or activity perturbation on TDP-43 induced 

cell toxicity.  

Data obtained in our laboratory have shown that HDAC1 stable overexpression in SH-SY5Y 

cells has a detrimental effect on TDP-43 mutated cell damage (Masala A. PhD thesis 

2016). Then we decided to manipulate the expression or the activity of HDAC1 to study 

whether this could have any effect on cellular mortality induced by the overpression of 

TDP-43. 
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In order to knockdown HDAC1 we decided to use CRISPR/Cas9 genome editing technique 

in SH-SY5Y cells. To generate stable cell lines in which the expression of HDAC1 was 

blocked, SH-SY5Y were transfected with a plasmid coding for the humanized Cas9 and 

different gRNA targeting the second exon of HDAC1 gene. After the selection by 

puromycin, single stable clones were isolated and analyzed for HDAC1 expression (Figure 

20A and B), leading to the identification of two clones in which HDAC1 protein expression 

was absent (Figure 20B). The two clones were then further analyzed by 

immunofluorescence (Figure 20 C) and sequencing. 
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Figure 20. CRISPR/Cas9 genome modification of HDAC1 gene in SH-SY5Y cells: A) Summary of monoclonal 

lines generated by CRISPR-Cas9; B) Stable CRISP-Cas9 HDAC1 clones were analyzed to evaluate HDAC1 

expression levels by SDS-PAGE and Western blot using an anti-HDAC1 and (D) The HDAC1 signal was 

revealed by primary anti-HDAC1 antibodies and anti-rabbit ALEXA 488 secondary, β-actin was detected by 

anti-β-actin antigen and secondary anti-mouse ALEXA 647. The slides were analyzed by Leica confocal 

microscope. 

 

The two HDAC1-KO lines isolated were used in cellular vitality test, after being transduced 

with WT or pathological mutant TDP-43, as shown in Figure 21. 

 

 

 

Figure 21. HDAC1-KO cell lines display reduction in cell toxicity induced by TDP-43: A) Cell viability test in 

cell line SH-SY5YHDAC1 gRNA3 and HDCA1 gRNA8 (obtained using CRISP-Cas9 technology) after 

transduction with adenovirus coding for TDP43 WT, M337V, A382T. Western blotting using anti-TDP43, anti-
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HDAC1 and anti-β-actin. The data were obtained from four independent experiments; ** indicates p > 0.01 

versus SH-SY5Y, analyzed with one-way ANOVA. 

 

To extend this result, using a commercial HDAC1-siRNA, we induced a reduction of HDAC1 

protein level of about 70% that resulted in a statistically significant decrease of TDP-43 

induced cell toxicity, compared to the random sequence control (Figure 22), further 

confirming the results obtained by genetic ablation of HDCA1.  

 

 

Figure 22. HDAC1 silencing whit CRISP/Cas9 reduces cell toxicity induced by mutant TDP43: A) Cell viability 

test in SH-SY5Y cell line after transduction by adenovirus coding for TDP43 WT, M337V, A382T containing 

the 5xMyc epitope and following treatment with siRNA or scrambled. Western blotting using anti-TDP43, 

anti-HDAC1 and anti-β-actin. ** indicates p > 0.01 and *** p > 0.001 versus untreated with HDAC1 siRNA, 

analyzed with one-way ANOVA. 

HDAC inhibition has been shown to be protective in wide range of pathological 

conditions24,25, including ALS. The HDACi sodium butyrate (NaB), 4-phenylbutyrate (SPB) 

and Trichostatin A (TSA), fatty acid derivatives that inhibit most class I and II HDACs, have 

have been tested used in SOD1-G93A mouse model. Moreover the therapeutic potential 
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of NaB it has been demonstrated in other neurodegenerative diseases such as Alzheimer 

disease26,27, Parkinson’s28 and Huntington29 as well as with SPB treatment extends survival 

and motor performance in SOD1-G93A mice models and in, a phase 2 clinical trial, it has 

been demonstrated to be safe and well tolerated30,31; TSA induces a modest improvement 

in motor function and survival as well as protection against motor neuron death32(Figure 

15); VPA, currently used for treatment of epilepsy, even if it did not improve survival of 

SOD1-G86R mice, it did improve the acetylation status on the spinal cord33. Moreover 

butyrates and valproic acid are also known to readily cross the BBB34. We thus decided to 

test the effects of these four HDACis on TDP-43 induced cell toxicity. 

In a preliminary experiment, we evaluated the cellular toxicity of the different HDAC 

inhibitors, using different HDACi concentrations, in a dose-response test that evaluated 

cell viability, as is shown in the figure 23. 

Using this test, it was possible to identify which of the concentrations we used, were not 

toxic after 48h of treatment, and for each of these inhibitors we have chosen two 

different concentrations: 0.04mM and 0.2mM for NaB, 10nM and 25nM for TSA, 0.1mM 

and 0.5mM for SPB. 

Afterwards, SH-SY5Y cells were transduced whit recombinant adenovirus coding for WT 

or mutant TDP-43 (M337V, A382T, K145A-K192A or K145Q-K192Q) and increasing 

concentration of the class I HDAC inhibitor NaB (0,04/0,2mM, Figure 24), TSA (25/10nM, 

Figure 25) and SPB (0,1/0,5mM, Figure 26), VPA (0,05/0,1mM, data not shown).  
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Figure 23. HDAC inhibitors used to evaluate the effect on TDP-43 overexpression induced toxicity: 

A)Summary table with the characteristics of the HDCAi used. The table shows the concentrations required to 

inhibit 50% of the enzyme (IC50) and some of the clinical trials currently in progress. B) Dose-response 

curves, data arise from the analysis of values obtained from the cellular vitality assay after NaB, TSA, SPB 

treatment. 

Cell viability assays performed 48h after transduction with adenoviral particles coding for 

WT or mutant TDP43 demonstrate a dose dependent increase in survival, upon NaB and 

SPB and at less extend also for TSA treatment (Figure 24, 25, 26). VPA on the contrary 

appears to be ineffective in this experimental paradigm (data not shown).  
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Figure 24. Effect of HDAC inhibitor Sodium butyrate on SH-SY5Y cell viability overexpressing TDP43 

pathological mutant forms: Cell viability test in SH-SY5Y cell line after transduction with adenovirus coding 

for TDP43 WT, M337V, A382T and for TDP43 KK-AA, KK-QQ containing the 5xMyc epitope and NaB 

concentration at indicated concentration. Western blotting using anti-TDP43 and anti-β- actin.** indicates p 

> 0.01 and ***p > 0,001 versus untreated whit NaB, analyzed with one-way ANOVA. 
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Figure 25. Effect of HDAC inhibitor Trichostatin A on SH-SY5Y cells viability overexpressing TDP43 

pathological mutant forms: A) Cellular vitality assay in SH-SY5Y cell line after transduction with adenovirus 

coding for TDP43 WT, M337V, A382T and B) for TDP43 KK-AA, KK-QQ containing the 5xMyc epitope and TSA 

treatment at indicated concentration. Western blotting using anti-TDP43 and anti-β actin. ** indicates p > 

0.01 and ***p > 0,001 versus untreated whit TSA, analyzed with one-way ANOVA. 

 

 

Figure 26. Effect of HDAC inhibitor 4-phenylbutyrate on SH-SY5Y cell viability overexpressing TDP43 

pathological mutant forms: A) Cellular vitality assay in SH-SY5Y cell line after transduction with adenovirus 

coding for TDP43 WT, M337V, A382T and B) for TDP43 KK-AA, KK-QQ containing the 5xMyc epitope and SPB 

treatment at indicated concentration. Western blotting using anti-TDP43 and anti-β actin. ** indicates p > 

0.01 and ***p > 0,001 versus untreated whit SPB, analyzed with one-way ANOVA. 

 

When the KK-AA and the KK-QQ mutants were expressed, the three inhibitors display a 

mild effect on cell viability, that do not reach statistical significance. 

The positive effect of -HDAC inhibition on TDP-43-induced cell toxicity was also confirmed 

in immunofluorescence experiments (Figure 27). HDCAi treated cells display a diffuse 

staining of TDP-43 in the nuclei, which appear more spherical in respect to the one of 

untreated cells. 
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Figure 27. Immunofluorescence in SH-SY5Y expressing different TDP43 isoforms treated with NaB 0.2mM, 

TSA 25nM and SPB 0.5mM. The cells were labeled with an anti-Myc antibody and detected with a secondary 

conjugate to Alexa 488 anti-mouse fluorophore as a secondary antibody. The slides were analyzed by Leica 

confocal microscope. 

 

Expression of hTDP43 in fly eyes leads to progressive eye defects, that is 

reduced by HDAC1 silecing  

We have demonstrated in three different experimental paradigms (gemomic inactivation, 

siRNA and HDACi treatment) that in SH-SY5Y cells the inhibition or the decrease in HDAC1 

level reduce the toxicity induced by WT or mutant TDP43. To confirm our results using an 

in vivo system, in collaboration with the group of Dr. Gianluca Cestra (Institute of 
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Molecular Biology and Pathology, CNR, Rome Italy), we decided to use Drosophila, a 

powerful genetic model widely used to study neurodegeneration including ALS. 

Expression of hTDP-43 in the Drosophila eye leads to a well described retinal 

degeneration, as in Figure 28B, where large apoptotic areas, identifiable in as black 

portions are visible. But when the flies were crossed with a line in which Rpd3, the only 

HDAC1 and HDAC2 ortholog in Drosophila, is inactivated by expression of an RNAi, we 

clearly observe a reduction in retinal degeneration, which exhibits a much more control-

like phenotype with reduced or absent apoptotic areas (Figure 28C). 

This data demostrate that the silencing of HDAC1 in Drosophila, as well in SH-SY5Y cells, is 

sufficient to reduce the toxic effect induced by the over-expression of TDP-43. 

 

Figure 28. Expression of hTDP43 in fly eyes leads to progressive eye defects, that is reduced by HDAC1 

silencing: A) Drosophila line WT, B) Fly line, overexpressing human TDP-43, has a phenotype with obvious 

degeneration of the eye with wide apoptotic areas; C) the intersection of the line overexpressing human 

TDP-43 and with a line in which HDAC1 is silenced, shows a reduction in TDP-43 dependent degeneration. 
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DISCUSSION  

AND CONCLUSION 

 

ALS is predominantly a sporadic disease and environmental triggers may be involved in 

the onset of this disease, probably through epigenetic modifications (including histone 

post-translational modifications, DNA methylation, and RNA editing) that can be acquired 

during life and can contribute to explain pathogenesis, onset and progression. A better 

understanding of the genetic-epigenetic interaction can be crucial to fully comprehend 

the molecular mechanisms underlying motoneuronal death and, due to the reversible 

nature of epigenetic modifications, can be a key point for the design of new and more 

effective treatment (therapies).  

In this respect, the present PhD Thesis adds a new piece to this complicated puzzle, 

demonstrating that TDP-43 can physically interact with deacetylase-1 histone (HDAC1) 

both in vivo and in vitro (figure 9) and, since acetylated TDP-43 would impair its RNA 

binding activity and enhance the formation of aggregates17, targeting TDP-43 acetylation 

can be beneficial. 

We demonstrated that the interaction between TDP-43 and HDAC1 involves both RMM1 

and RRM2 domains, independently from the pathological mutations falling in these 

domains (D169G and K263E) or in the G-rich (M337V and A382T) (figure 11). Interestingly, 

TDP-43 has been demonstrated to undergo to an acetylation cycle that regulates not only 

the nucleo-cytoplasm shuttling, but also its binding activity to RNA17. The major, but not 

the exclusive, sites of acetylation have been identified on lysine 145 and 192, both 

comprised in the RMM1-RMM2 domains17. In our experimental paradigm, the mutant 

mimicking acetylation (referred to as KK-QQ, in whick K145 and K192 have been mutate 

in Q) loses HDAC1 binding activity, that is normal in the non-acetylable mutant (KK-AA). 
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The presence of additional and not yet identified acetylation sites, was further 

demonstrated by immunoprecipitation assays followed by 2D analysis, in which we 

observed that, in a similar way to HDAC6, the presence of HDAC1 changes (modifies) TDP-

43 isoelectric point, and that when TDP-43 lacks the ΔRRM1 and ΔRRM2 domains it is 

partially acetylated (figure 12). 

The RRM1 and RMM2 domains have been highlighted to have a fundamental role 

regarding the tight and highly specific binding of TDP-43 to UG repeats in RNA, and 

deletion of RMM1 alters not only TDP-43 role in splicing regulation10,19, but also its 

dynamics in the nucleus10. In fact mutants lacking functional RRM-1 display a strong 

nuclear-matrix–scaffold association, implying a role for RRM domains in chromatin 

organization10. In this respect we investigated the biological consequences of TDP-

43/HDAC1 interaction on some of the nuclear TDP-43 functions by monitoring 

transcription, splicing and DNA damage recovery.  

 

TDP-43/HDAC1 interaction and transcription 

Considering both that HDAC1 is a key component of an intricate network of acetylated 

substrates involved in transcription and that TDP-43 was found in human brain and in cell 

culture systems to associate with euchromatin, we first evaluated the functional 

relevance of TDP-43/HDAC1 by transcriptional assays. Despite TDP-43 has originally been 

described as a transcription factor for TAR DNA of HIV114, few target genes have been 

identified up to now. TDP-43 acts as a transcriptional repressor on both testis specific 

mouse acrv1 (SP10) promoter15 and on VPS4B gene (vacuolar protein sorting 4 homolog 

B)35, but can also act as a transcriptional activator on C/EBP-homologous protein (CHOP) 

promoter16, although no direct interaction has been demonstrated so far. By ChIP analysis 

and luciferase assays we demonstrated that TDP-43 binds and stimulates CHOP promoter 

activity (Figure 15, 17). This effect can be a key point for cellular response to the stress 

generated by the overexpression of mutant TDP-43. In fact CHOP gene, initially identified 

as responsive gene induced by genotoxic stress such as UV irradiation, under chronic or 

irreversible ER stress conditions, is activated by unfolded protein response (UPR) system, 

and contributes to cell cycle arrest and apoptosis36,37. In Alzheimer disease animal 



DISCUSSION AND CONCLUSION 80 

 

 
 

 Simona Sanna: “Epigenetics and neurodegeneration: physiological relevance of TDP-43/HDAC1 interaction”. 
Ph.D. Course in Life Sciences and Biotechnologies – University of Sassari. 

 

  

models, increase in CHOP protein was measured in presenilin-1 mutant knock-in mice38 

and β-Amyloid induces CHOP expression both in cells and animal brains, whereas 

treatment of cells with CHOP antisense RNA improved neuronal survival after exposure to 

β-amyloid39. A similar beneficial effect due to the reduction in CHOP expression by siRNA 

was observed also in 6-hydroxydopamine model of Parkinson diseases40. In ALS context, 

CHOP overexpression was observed in spinal cord tissues from patients with sporadic 

ALS41 and in experimental models characterized by overexpression of either related or 

causing gene such as SOD141, OPTN42, VAPB43, as well as after treatment with β-

methylamino-L-alanine (BMAA)44. Here we demonstrate for the first time, by ChIP 

analysis, that TDP-43 WT is a direct activator of CHOP (figure 17). The pathological 

mutants A382T and M337V retain this ability and concomitant overexpression of HDAC1 

contributes to CHOP transcriptional down regulation. This effect is partially due to the 

general effect of HDCA1 on transcription, but TDP43 acetylation has a prominent role 

since KK-QQ TDP43 mutant does not activate CHOP transcription, despite its nuclear 

localization (figure 15 and 17). 

 

TDP-43/HDAC1 interaction and splicing 

Among the different TDP-43 splicing targets, POLIDP3 pre-mRNA has been widely used as 

a reporter gene in animal and cellular models, including SH-SH5Y cells45,46. RNA binding 

ability of TDP-43 is necessary to include POLDIP3 exon 3 and this can be relevant for the 

disease, since an increment of POLDIP3 variant-2 mRNA, in which exon 3 is excluded, has 

been described in motor cortex, spinal cord and spinal motor neurons collected by laser 

capture microdissection from ALS patients19.  

In SH-SY5Y cells the expression of a pro-aggregative TDP-43 mutant favours the synthesis 

of the POLDIP3 β isoform over the main α isoform, mirroring a protein level that was 

observed at mRNA level47. In our experimental paradigm we observed that WT or A382T 

TDP-43 overexpression stimulates exon 3 exclusion (decrease in V1/V2 ratio) and the 

concomitant HDAC1 overexpression do not significantly reduce this effect. When KK-QQ 

mutant is expressed the V2 isoform increases and the presence of HDAC1 has no effects 

on V1/V2 ratio. The overexpression of deletion mutant ΔRRM1-2 also exhibits a similar 
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phenotype, with a V1/V2 ratio reduction that is even more evident. This last effect can be 

due to an unrelated TDP-43 interaction with the POLIDP3 RNA, since TDP43 lacks RNA 

interaction domains, or via recruitment of endogenous TDP-4348,49. Globally these data 

indicate that the concomitant overexpression of HDAC1 with the different TDP-43 

mutants analysed do not alter the splicing profile of POLDIP3 (figure 18). 

 

TDP-43/HDAC1 interaction and DNA Damage Recovery 

The role of severe DNA damage and endogenous DNA repair strategies in ALS initiation 

and progression are well defined. TDP-43 and FUS are localized at sites of transcription 

associated to DNA damage, given their colocalization with γH2AX and phosphorylated 

RPA in an increased percentage of UV-damaged cells20. Moreover, like TDP43, FUS can 

interact with HDCA1 and this interaction is crucial for successful DNA repair after laser 

micro-irradiation9. By measuring the effect of WT or mutant TDP-43 overexpression in a 

cell damage paradigm (UV-C treatment) we show, for the first time, that pathological 

mutants M337V and A382T, as well as the acetylation mimicking mutant KK-QQ, reduce 

cell recovery (figure 19) whilst with a different mechanisms. In fact, while TDP-43 

relocalizes in cytoplasm upon (after) UV-C insult, KK-QQ mutant is retained in the nucleus. 

Although these data are preliminary and more experimental evidences should be 

provided, they may suggest that TDP-43, like FUS, colocalizes with HDCA1 on UV-

damaged DNA and the presence of pathological mutations worsens cell survival. 

 

TDP-43/HDAC1: the reduction of HDCA1 level or activity rescues TDP-43 

induced cell toxicity 

We provided evidence that TDP-43/HDAC1 interaction can have a deep impact on TDP-43 

molecular function at different levels and experimental evidence obtained with the 

acetylation mimicking mutant KK-QQ clearly indicates that the modulation of TDP-43 

acetylation status can be considered a new pharmacological target. Using different and 

complementary strategies, spanning from genetic inactivation by CRISPR/Cas9 technology 

or siRNA, to chemical inhibition using three different HDAC pan-inhibitors, we 
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demonstrated in vitro, in SH-SY5Y cells, and in vivo, in Drosophila eye, that HDCA1 

decrease/ablation can mitigate TDP-43 toxicity (figure 21, 22, 24, 25, 26, 27, 28). These 

results, although counterintuitive, can be explained considering that moderate TDP-43 

overexpression in mice results in downregulation of endogenous TDP-43 and causes TDP-

43 aggregation, axonal degeneration, reactive gliosis, gait abnormalities and early 

lethality50,51. In this context HDCA1 decrease/ablation, or in general treatment with HDAC 

pan-inhibitors, can stabilize TDP-43 acetylation and consequently protects cells from 

damage associated to TDP-43 translocation in the cytoplasm that most likely is acquiring a 

new toxic function(s). In this respect we are currently evaluating if HDACi treatment can 

prevent CHOP promoter activation, explaining the positive effect on cell viability, 

according to the positive effect of CHOP reduction by siRNA on SOD1 G93A toxicity52. 

 

Conclusion 

The data presented in this PhD thesis clearly indicate that TDP-43 

acetylation/deaceteylation status, mediated also by HDAC1, affects its biological activity 

and, most importantly, suggest that specific reduction of HDAC1, or the use of pan-HDAC 

inhibitors, reduce TDP-43 induced cell-toxicity. Although we can only speculate on the 

molecular mechanisms underlying these phenomena, the evidence obtained in vivo and 

in vitro certainly create a good substrate to hypothesize future pharmacological tests. 

HDAC inhibitors were originally applied to cancer therapy and some of them, such as 

Panobinostat, have been approved from FDA for multiple myeloma treatment, while 

others, like VPA and SPB, are in clinical trials of phase III and II, respectively, for solid and 

hematological malignancies. At present more than 350 clinical trials have been carried out 

or are on-going involving HDACi not only as single therapeutic but also in combination 

with other targeted agents against various human diseases, including neurodegenerative 

diseases. VPA was approved by FDA in 1978 as an anticonvulsant drug for the treatment 

of seizure disorders, even if the molecular targets of these drugs were not known yet. The 

possibility of using HDACi for neurodegenerative treatment originates in 2008, when 

Hahnen identified two major HDACi neuroprotective mechanisms, including the 

transcriptional activation of disease-modifying genes and the rectification of 
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destabilization in histone acetylation homeostasis53. Several pan-HDAC inhibitors reduced 

ALS development in mice54, but, even if they were safe, tolerable and efficient in 

improving histone acetylation levels, they failed to ameliorate clinical parameters in ALS 

patients31. The translational failure can be due to lack of selectivity for different HDACs 

and to unwanted off-target effects and, for sure, more specific drugs should be 

developed. But it is worth to keep in mind the "edaravone story": only after a post-hoc 

analysis of a previous phase III study significant differences compared with placebo were 

highlighted in subset of ALS patients55. Therefore, considering that HDAC inhibition can be 

a precious therapeutic option, molecular characterization of TDP-43/HDAC1 functional 

interaction can, most likely, open new scenario in ALS therapy. 
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