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ABSTRACT 

African swine fever (ASF) is a devastating disease for which there is no vaccine 

available. The ASF virus (ASFV) primarily infects cells of the myeloid lineage and 

this tropism is thought to be crucial for disease pathogenesis. A detailed in vitro 

characterization of the interactions of a virulent (22653/14) and a tissue culture 

adapted (BA71V) strains of ASFV with porcine monocytes, un-activated (moM), 

classically (moM1) and alternatively (moM2) activated monocyte-derived 

macrophages was conducted to better understand this relationship. Low 

concentration of hM-CSF was selected as the method of choice to generate moM. 

Using a multiplicity-of-infection (MOI) of 1, both viruses were able to infect 

monocytes and macrophage subsets, but BA71V presented a reduced ability to infect 

moM1 compared to 22653/14, with higher expression of early compared to late 

proteins. Using an MOI of 0.01, only 22653/14 was able to replicate in all the 

macrophage subsets, with initially lowest in moM1 and moM2 ASFV down-

regulated CD16 expression and BA71V-infected but not 22653/14-infected moM 

and moM2 presented with a reduced expression of MHC class I. Higher levels of IL-

18, IL1- and IL-1 were released from moM1 after infection with BA71V. These 

results revealed differences between these strains, suggesting that virulent isolates 

have evolved mechanisms to counteract activated macrophages responses, promoting 

their survival, dissemination in the host and so ASF pathogenesis. 
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CHAPTER 1. INTRODUCTION 
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1.1 Monocytes and macrophages  

 

Monocytes and macrophages are the main target of the African Swine Fever Virus 

(ASFV) (Sánchez-Cordón et al., 2008). 

Monocytes are primary immune cells, which are derived from a common myeloid 

progenitor cells in the bone marrow (haematopoietic stem cell) and there undergo 

differentiation steps, in response to macrophage colony-stimulating factor, before 

enter the bloodstream (Volkman and Gowans, 1965, Mosser and Edwards, 2008). In 

mice, monocytes can also be differentiated into 2 populations: ‘inflammatory’ 

monocytes, with a GR1+CX3CR1low phenotype, which rapidly exit the blood, and 

‘resident’ monocytes, which do not express GR1− (Geissman et al., 2003). As shown 

in fugure 1.1, monocytes circulate in the peripheral blood before migrating to 

different tissues and replenish the tissue macrophage populations (Volkman and 

Gowans, 1965; Mosser and Edwards, 2008). Their half life is very short, about one 

day in mice (Van Furth and Cohn, 1968) and 3 days in humans (Whitelaw, 1972).  

 

 

Figure 1.1. Monocytes origin and differentiation. Monocytes originate in the bone 

marrow from a common haematopoietic stem cell (HSC) and there they undergo 

differentiation steps during which they commit to the myeloid and then to a 

monocyte lineage. They differentiate into monoblasts and then pro-monocytes before 

becoming monocytes, which enter the bloodstream. In mice these cells can 

differentiated into two populations: inflammatory and resident monocytes. It is 

unclear if inflammatory monocytes mature into resident monocytes or if they 

represent distinct populations. Monocytes migrate to different tissues, where they 

replenish tissue-specific macrophages. CNS, central nervous system; GM-CFU, 

granulocyte-macrophage colony-forming unit; M-CFU, macrophage colony-forming 

unit. Figure taken from Mosser and Edwards, 2008. 
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Monocytes are a heterogeneous population and in human they can be divided into 

two subsets: CD14+CD16- (90% of circulating monocytes), which are often called 

classical monocytes, and CD14+CD16+, which exhibit features of tissue macrophages 

(Ziegler-Heitbrock, 1996). CD14+CD16+ express CD32 and higher amount of MHC 

II molecules than classical monocytes and they have distinct chemokine–receptor 

expression profile (Weber et al., 2000). Human monocytes can also be characterised 

also by their expression of CD64, also known as FcyRI (Grage-Gribenow et al., 

2001). CD14+CD16+CD64+ monocytes present a dendritic cells (DC) phenotype, 

expressing higher levels of MHC II and CD80/86 than classic monocytes and having 

an enhanced T-cell-stimulatory activity (Grage-Gribenow et al., 2001). It was 

speculated that CD14+CD16+CD64+ cells could represent an immunoregulatory 

monocyte phenotype or an intermediate phenotype between monocytes and DC 

(Grage-Gribenow et al., 2001). As previously stated, in mice monocytes can be 

divided according to their expression of CCR2, CX3C-chemokine receptor 1 

(CX3CR1) and GR1 into two subpopulations: inflammatory CCR2+GR1+CX3CR1low 

and resident CCR2-GR1-CX3CR1high (Palfrarman, 2001, Geissman et al., 2003). It is 

unclear if they represent distinct populations or if inflammatory monocytes are 

initially released into the circulation and, in the absence of inflammation, they 

mature into resident macrophages, altering their functional and phenotypic 

characteristic, passing through an intermediate phenotype (CCR2+GR1low) (Gordon 

and Taylor, 2005). Porcine monocytes can instead be characterised based on 

expression of CD163, which is scavenger receptor of haemoglobin/haptoglobin 

complexes (Sachez et al., 1999, Kristiansen et al., 2001). CD163+ monocytes 

represent a more mature subset, in fact they produce higher amount of TNF-, 

present higher levels of CD80/CD86 co-stimulatory molecules and SLA DR antigens 

and have better antigen-presenting capacity to primed T CD4+ lymphocytes 

(Chamorro et al., 2004).  

As shown in figure 1.1, circulating monocytes migrate into tissue in the steady state 

or in response to inflammation, where they differentiate into macrophages or into 

specialised cells such as DC and osteoclasts (Volkman and Gowans 1965, Mosser 

and Edwards, 2008). Beyond this precursor role, monocytes can carry out specific 

effector functions during infection (Serbina et al., 2008). In fact in mice 



 

Giulia Franzoni 

‘Interaction of monocytes and derived macrophage subsets with African swine fever viruses of diverse virulence’ 

International PhD Course in Life Sciences and Biotechnologies  

University of Sassari 

 

inflammatory monocytes are implicated in defence against bacterial, protozoal, and 

fungal pathogens. They respond rapidly to microbial stimuli by secreting cytokines 

and antimicrobial factors (Serbina, et al., 2008). In addition, a recent study reported 

that in mice monocytes can participate in steady-state surveillance of the lung, in a 

complementary way to resident macrophages and DC, without differentiating into 

macrophages (Rodero et al., 2015). 

Macrophages as recognised by Metchnikoff are first and foremost professional 

phagocytes, which express all the genes required to internalize particles and to 

degrade those particles in lysosomes (Hume, 2015). Tissue macrophages maintain 

tissue homeostasis though the clearance of senescent cells and the repair/remodelling 

of tissues after inflammation (Gordon, 1988). They clear the interstitial environment 

of extraneous cellular materials, independently of immune-cell signalling and in the 

absence of other immune cells. Macrophages are involved in removal of cellular 

debris that are generated during tissue remodelling and rapidly clear cells that have 

undergone apoptosis. In human they also clear approximately 2 x 10 erythrocytes 

each day, recovering iron and haemoglobin (Mosser and Edwards, 2008). These cells 

can rapidly respond to endogenous danger signals generated following injury or 

infection. They recognize pathogen-associated molecular patterns (PAMPs) through 

pattern-recognition receptors (PRRs), such as toll like receptors (TLRs), NOD-like 

receptors (NAPLs) and C-type lectin receptors. Through complement receptors these 

cells interact with the complement inflammatory cascade, crucial to ward off 

infection (Martinez et al., 2009). Macrophage are a heterogeneous population and 

this heterogeneity reflect the specialization of function adopted by macrophages in 

different anatomical locations. For example osteoclasts are specialised in bone 

remodelling and instead alveolar macrophages present high expression of pathogen 

recognition receptors (PRRs), enabling them to clear microorganisms, virus and 

environmental particles in the lung (Gordon and Taylor, 2005).  

In vitro human monocytes can be differentiated into macrophages (MoM with the 

addition of macrophage colony stimulator factor (M-CSF) to culture media (Gordon 

and Taylor, 2005). M-CSF, also known as colony-stimulating factor-1 (CSF-1), 

controls the survival, proliferation, and differentiation of mononuclear phagocytes 
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(Stanley et al., 1997). It drives the differentiation of monocytes into macrophages 

acting via a cell surface tyrosine kinase receptor, known as colony stimulating factor 

receptor 1 (CSF-1R), expressed on cells of the mononuclear phagocyte lineage 

(Stanley et al., 1997). CSF-1 bind to the CSF receptor (CSF-1R) and it has been 

reported that treatment of mice with monoclonal antibodies against this receptor 

depleted most tissue macrophage populations (McDonald et al., 2010).  

In pigs monocytes can be differentiated into macrophages through culture with M-

CSF for 4-7 days (Singleton et al., 2016, Kyrova et al., 2014) or with different 

concentration of porcine serum or plasma for 3-4 days (10%: Garcia-Nicolas et al., 

2014, Kyrova et al., 2014; 20% Chamorro et al., 2000, Sanchez-Torres et al., 2003; 

30%: McCullough et al., 1997, McCullough et al., 1999, Basta et al., 1999, Basta et 

al., 2001, Tsai et al., 2010). In addition, some authors used the media from the 

murine fibroblast L929 cells line as a source of M-CSF (Genovesi et al., 1990, Zsak 

et al., 1998, Wang et al., 2011). In few studies researchers differentiated monocytes 

into macrophages using media supplemented with just 10% fetal bovine serum (FBS) 

(10%: Gil et al., 2003, Gil et al., 2008), but the work of McCullough and colleagues 

(1999) reported that monocytes cultured in media supplemented with FSB remained 

morphologically closer to monocytes than those cultured in porcine plasma 

(McCullough et al., 1999). As previously stated, in humans M-CSF is commonly 

used to in vitro differentiate monocytes into macrophages (Gordon and Taylor, 2005) 

and treatment of porcine monocytes with M-CSF increases cell viability (Genovesi et 

al., 1990). Fairbairn et al. (2014) observed that porcine PBMC cultured with hM-

CSF (104 U/ml) increased in size and granularity compared with freshly isolated 

PBMC and that the CD14+CD172a+ population was selectively expanded, suggesting 

that as in humans M-CSF act as a mitogen for pig monocytes (Fairbairn et al., 2014). 

To date there is not a standardize protocol to in vitro differentiate porcine monocytes 

into macrophages and in the first part of this thesis we focus on comparing different 

methods described in the literature, assessing their effect on macrophages 

morphology, expression of surface markers, cytokine release and susceptibility to 

monocytropic ASFV (Chapter 3). 
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Several studies analyzed the interaction of ASFV with monocytes and macrophages, 

and there are better described in the section 1.7.1. To date, no studies investigated the 

interaction of ASFV with activated macrophages. 

Macrophages present remarkable plasticity, that allow them to respond to 

environmental signals, produced also by antigen-specific immune cells. Both the 

innate and the adaptive immune responses affect their phenotype and physiology 

(Mosser and Edwards, 2008). Macrophage activation results in their polarisation into 

different functional subsets: classical activated macrophages (M1), alternative 

activated macrophages (M2) and type II-activated or regulatory macrophages 

(Mosser, 2003, Mosser and Edwards, 2008), as represented in figure 1.2. 

M1 polarization can be reached in vitro by exposure to IFN- and lipopolysaccharide 

(LPS), which induces TNF production. Classical activation results in secretion of 

high levels of pro-inflammatory cytokines and increased microbicidal or tumoricidal 

capacity (Mosser, 2003). Stimulation with IFN- results in increased production of 

superoxide anions, oxygen and nitrogen radicals by macrophages. In fact the main 

role of M1 macrophages is in host defence to intracellular pathogens and in driving 

Th1 cellular immune responses (Mosser and Edwards, 2008). It was reported that 

mice lacking IFN- expression are more susceptible to various bacterial, protozoal 

and viral infections, as are humans with genetic mutations in these signalling 

pathways (Filipe-Santos et al., 2006). Moreover some pathogens have developed 

mechanisms to interfere with IFN- signalling and to prevent efficient macrophage 

activation (Mosser and Edwards, 2008). M1 are vital component of the host defence, 

but their activation might be tightly controlled, in fact they are key mediators of the 

immunopathology that occurs in several autoimmune diseases (Mosser and Edwards, 

2008). Very few studies analysed macrophage classical activation in pigs. It was 

reported that in pig classical activation led to MHC II up-regulation, suggesting that 

also in this specie M1 have and enhanced antigen presenting functions (Garcia-

Nicolas et al., 2014, Singleton et al., 2016).   
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Figure 1.2. Cytokines produced by immune cells can give rise to macrophages 

with distinct physiology. Classical activated macrophages arise in response to IFN-

, which can be produced by T cells or NK cells, and TNF, produced by antigen 

presenting cells (APCs). Alternative activated macrophages arise in response to IL-4, 

which can be produced by TH2 cells or by granulocytes. Regulatory macrophages 

are generated in response to various stimuli, such as immune complexes, 

prostaglandins, G-protein coupled receptor (GPCR) ligands, glucocorticoids, 

apoptotic cells or IL-10. Figure taken from Mosser and Edwards, 2008. 

Alternative activation of macrophages was discovered later than classical activation. 

It was found that alternative activation occurred via the stimulation of macrophages 

with IL-4, which was found to up-regulate expression of the mannose receptor 

(CD206) (Stein et al., 1992). Activation with this cytokine was clearly distinct from 

the classic activated macrophage, in fact M2 do not produce NO and have a poor 

ability to kill intracellular pathogens (Modolell et al., 1995). It was later discovered 

that alternative activation results also from exposure to IL-13, which shares the same 

IL-4 receptor alpha (IL-4Rα) chain as IL-4 (Gordon, 2003). M2 macrophages are 

primarily associated with mechanisms of immunosuppression and wound repair 
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(Gordon, 2003), in fact they are also called ‘wound-healing’ macrophages (Mosser 

and Edwards, 2008). They are not efficient at antigen presentation and instead 

promote cell growth, collagen formation and tissue repair; M2 secrete several 

fibrogenic factors and insulin-like growth factor 1 and platelet-derived growth factor 

C, which provide signals for tissue proliferation and repair (Mosser, 2003, Martinez 

et al., 2009). M2 produce high levels of the pro-inflammatory cytokine IL-10 and 

mediate repression of pro-inflammatory factors, so are compromised in their ability 

to kill intracellular pathogens and down-regulate a pro-TH1 response (Mosser, 2003, 

Martinez et al., 2009). Macrophage alternative activation is implicated in the success 

of TH2 responses, mainly directed toward extracellular parasites such as helminths 

and some protozoa. Intracellular pathogens have, as a result, created mechanism to 

promote macrophage alternative activation and to avoid TH1 immune control 

(Martinez et al., 2009). Very few studies analysed macrophage alternative activation 

in pigs. In this specie alternative activation leads to CD163 down-regulation, but has 

no influence on MHC class I or II expression (Garcia-Nicolas et al., 2014).   

Another macrophage category is the type II-activated macrophage, which were 

recently classified as one M2 subtype. In fact M2 can be subdivided in three 

subtypes: M2a (after exposure to IL-4 or IL-13), M2b (immune complexes in 

combination with IL-1beta or LPS) and M2c (IL-10, TGF-beta or glucocorticoids) 

(Martinez et al., 2008). Macrophage activation with immune complexes and LPS 

results in inhibition of IL-12 and promotion of IL-10 secretion, up-regulation of 

antigen presentation and promotion of a TH2 response (Martinez et al., 2008). 

Glucocorticoids affect monocyte adherence, spreading, phagocytosis and apoptosis, 

whereas IL-10 is a potent inhibitor of TH1 cells (Martinez et al., 2008). 

Nevertheless, macrophage taxonomy and the M1/M2 paradigm is a limited attempt 

to define the complexity and plasticity of mononuclear phagocytes. Individual 

macrophage cells differ markedly from each other, and change their functions in 

response to the subtle and continuous changes in the surrounding environmental 

signals, so M1/M2 subsets represent the two extreme of diverse functional 

macrophage activation states (Sica and Matovani, 2012, Italiani and Boraschi, 2014, 

Hume, 2015).  
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1.2 African Swine Fever 

African swine fever (ASF) is caused by a highly infectious virus that affects 

domestic and wild pigs and it is considered a notifiable disease by the OIE World 

Organisation for Animal Health because of its potential for rapid dissemination and 

significant socio-economical consequences (Sanchez-Vizcaino, 2006). 

The aetiological agent is the African swine fever virus (ASFV), the only member of 

the Asfarviridae family (Dixton et al., 2005).  

ASF is currently endemic in many sub-Saharan countries of Africa and Sardinia 

(Italy). The spread of this disease to the Caucasus region in 2007, and from there to 

Russia and Ukraine in 2012, Belarus in 2013, and European Union countries 

(Lithuania, Estonia, Latvia and Poland) in 2014-2016, now endangers the pig 

industry worldwide (Alonso, 2013, OIE WAHIS interface).  

In Russia ASFV progressively spread and 18 federal districts reported outbreaks 

(OIE, WAHIS interface). In this area ASFV has been isolated in wild boars and the 

persistence of the virus in the sylvatic cycle makes eradication more difficult 

(Beltran-Alcrudo et al., 2008). In addition, a recent study revealed the existence of 

long-term infected animals in this area, which could become carriers and persist in 

the population, leading to the maintenance and future reappearance of the disease 

(Mur et al., 2016a).  

In Poland ASFV was first detected in early 2014 and between 2014 and 2015 65 

cases of ASFV infection in wild boar have been recognised, located near the border 

with Belarus in Sokółka and Białystok counties (Wozniakowski et al., 2016). 

Recently, in that country cases of ASFV have been described also in domestic pigs 

(OIE WAHIS interface). 

The distribution of ASFV from January 2016 is illustrated in Figure 1.3.  
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Figure 1.3 Distribution of ASFV from January 2016. Figure taken from 

http://web.oie.int (disease and distribution maps). 

 

Using retrospective analysis it was established that the first ASFV outbreak occurred 

in Africa in 1907, but the disease was firstly described in Kenia in 1921 by 

Montgomery. The first spread of ASF outside Africa was to Lisbon (Portugal) in 

1957 and a further outbreak occurred in 1960 in Lisbon. ASF become endemic in all 

the Iberian peninsula and outbreaks were reported subsequently in a number of other 

European countries, including Malta, Italy, France, Belgium and The Netherlands 

(Costard et al., 2013). In Spain and Portugal complete eradication took more than 30 

years (Sanchez-Vizcaino, 2006). 

In Sardinia the disease first occurred in 1978 and now is endemic, as a result of 

extensive pig farming that has been practised for centuries and of the presence of 

endemically infected wild boar (Firinu et al., 1988; Costard et al., 2009). 

There is no vaccine or treatment available and apart from stamping out and 

movement control, there are no control measures, thereby potentially resulting in 

extreme losses for producers (Costard et al., 2013). 

 

As previously written, ASF affects both domestic and wild pigs (Sanchez-Vizcaino, 

2006).  

http://web.oie.int/
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African wild pigs are resistant to the disease and ASF persists in Africa via a natural 

cycle of transmission between the warthog (Phacochoerus aethiopicus), bushpig 

(Potamchoerus porcus) and the soft tick (Ornithodorus moubata). Warthogs are born 

free from infection and may be infected early in life following the bite of an infected 

tick. Virus replicates in the warthog and produces a low degree of viraemia for a few 

weeks, which is sufficient to infect a proportion of ticks that feed on the viraemic 

young warthogs (Thomson, 1985). Domestic pigs in Africa acquire infection from 

wildlife reservoirs of the virus primarily by the bite of an infected tick (Plowright, 

1977). 

In other areas, such as Sardinia, infection can occur either directly (escretions, 

secretions, dead animals) or indirectly (fomites, such as clothing, equipment and 

vehicles), in fact ASFV can persist in the environment for several days. The virus 

can persist in tissues for several months and feeding domestic pigs with uncooked 

swill can result in infection (Costard et al., 2009). Soft ticks Ornithodoros are absent 

in Sardinia, so they are not involved in the persistence of the virus in the island 

(Costard et al., 2013). In a recent study 1767 porcine serum samples collected from 

all around the island (1261 from domestic and 506 from wild boar) were analysed for 

antibodies to salivary antigens of Ornithodoros erraticus and only one sample 

resulted positive. In addition, ticks were directly searched in a number of pig 

premises with no success, confirming the absence of Ornithodoros Erraticus tick role 

in ASF cycle in Sardinia (Mur et al., 2016b). 

Recovered pigs can remain persistently infected for periods of 6 months or more, 

representing an obstacle for eradication of the disease from endemic areas 

(Wilkinson 1984, Oura et al. 2005). 

The clinical signs associated with ASF are very varied as they depend on how 

virulent the viral isolate is and on the breed and physical condition of the pig. 

African ASFV isolates generally induce peracute or acute disease. European 

domestic pigs and boars are very susceptible and exhibit a wide range of clinical 

signs from subacute to chronic. As above stated, wild African pigs are very resistant 

to infection and do not generally present any lesions (Sánchez-Vizcaíno, 2006). 



 

Giulia Franzoni 

‘Interaction of monocytes and derived macrophage subsets with African swine fever viruses of diverse virulence’ 

International PhD Course in Life Sciences and Biotechnologies  

University of Sassari 

 

In Europe, it has been observed that wild boars are susceptible to the disease as 

domestic pigs (Jori and Bastos, 2009, McVicar et al., 1981). Outbreaks of ASF in 

wild boars fade out, so the contact with infected domestic pigs or other source of 

infection is essential for the persistence of the virus in the sylvatic cycle (Laddomada 

et al., 1994). 

In the acute form, the animals show high temperatures (40-42ºC), recumbency and 

lack of appetite, and suffer respiratory disorders. In some cases there may be nasal 

haemorrhaging, constipation and vomiting. Exanthemas are very evident (pinkish 

almost purple skin due to intense hyperaemia), and/or cyanotic foci, which appear as 

irregular purple-coloured marks on the skin of the extremities, ears, chest, abdomen 

and perineum. Abortion frequently occurs in gestating females. In acute cases, the 

disease causes death in 90 to 100% of affected animals. In acute and subacute 

courses death occurs between 7 and 20 day post infection, the signs develop more 

slowly. The chronic form is characterised by a large variety of clinical signs which 

are mainly the result of secondary bacterial complications. Mortality is low, affecting 

between 2 and 10% of all the sick animals (Sánchez-Vizcaíno, 2006).  

Some characteristic ASF lesions are: purplish and megalic spleen, haemorrhaging in 

the tonsils and lymphatic ganglia, particularly in the gastrohepatic and renal ganglia, 

and petechial haemorrhaging in the kidneys, bladder mucosa, pharynx and larynx, 

pleura and heart, endocardium and pericardium, hydropericardium, ascitis, and 

hydrothorax and hepatic congestion (Figures 1.4, 1.5, 1.6) (Sánchez-Vizcaíno, 2006). 

The disease is characterised by severe lymphopenia, immunodepression and 

thrombocytopenia (Gómez-Villamandos et al., 2013). 

 

  

Figure 1.4 Spleen: purplish and megalic (Sánchez-Vizcaíno, 2002). 
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Figure 1.5 Tonsils with subepithelial haemorrhages (Sánchez-Vizcaíno, 2002).   

 

Figure 1.6 Kidney: petechiae in the entire cortex area (Sánchez-Vizcaíno, 2002).  

 

1.3 African Swine Fever Virus 

As above stated, the aetiological agent is the African swine fever virus (ASFV), the 

only member of the Asfarviridae family (Dixon et al., 2005). It is a large, enveloped 

virus with double-stranded DNA genome of 170 to 190 kbp. ASFV encodes for 

between 151 and 167 open reading frames (ORFs) (Dixon et al., 2013a).  

The ASFV particle has an icosahedral morphology with an average diameter of 200 

nm and is composed by several concentric domains, as illustrated in Figure 1.7: 1) an 

internal core, 2) the core shell, a thick protein layer, 3) an inner lipid envelope, 4) the 

icosahedral capsid (Carrascosa et al., 1984; Andres et al., 1997). The extracellular 

virions possess also an external envelope (Breese and DeBoer, 1966).  

Thanks to this structure, the virus is highly resistant to PH and temperature 

variations, in fact it can remain infectious for 18 months at room temperature 

(Sanchez-Vizcaino, 2006). 
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ASFV is highly resistant to PH and temperature variations, in fact it remains stable at 

PH 4-10 and it is inactivated only after cooking for 20 minutes at 60°C. Smoked 

sausages and matured ham required smoking at 32-49°C for 12 hours and maturing 

for 25-39 days to inactivate the virus (Plowright et al., 1994). 

 

 

 
Figure 1.7 Localization of different ASFV structural proteins inside ASFV 
(Figure taken from Salas and Andres, 2013). 

 

 

ASFV entry involves dynamin-dependent and clathrin-mediated endocytosis 

(Hernaez and Alonso, 2010) or through macropinocytosis (Sanchez et al., 2012). 

 

During endocytosis, ASFV viral particles undergo disassembly in various 

compartments, thanks to the acid pH of endosomes. In fact, the inhibition of the 

endosomal acidification impedes ASFV desencapsidation and so successful infection 

(Cuesta-Geijo et al., 2012). Then ASFV requires cholesterol to exit the endosome to 

gain access to the cytoplasm, in order to establish productive replication. In fact a 

recent study reported that accumulation of cholesterol in endosomes impairs fusion, 

resulting in retention of ASF virions inside endosomes (Cuesta-Geijo et al., 2015).  

After exit from the endosome-lysosome, ASFV virions develop a strong association 

with the microtubular network (Netherton and Wileman, 2013). One of the major 

structural proteins of ASFV, p54, interacts directly with the 8-kDa light chain of the 

microtubule motor protein dynein (Alonso et al., 2001) and it has been shown that 

alteration in the p54-dynein interaction in infected cells results in a marked decrease 
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in virus infectivity, viral replication and finally virus production (Hernaez et al., 

2010). 

 

ASFV DNA replication occurs mainly in perinuclear cytoplasmic viral assembly 

sites, close to the microtubular organizing centre (MTOC), known as virus factories 

(Netherton and Wileman, 2013). ASFV factories recruit different cellular 

components, including cellular chaperones, such as hsp70, and mitochondria 

(Castelló et al., 2009; Heath et al., 2001; Rojo et al., 1998). 

 

During ASFV infection, all the components of the translation machinery examined 

(eIF4G, eIF4E, eIF2, eIF3b and the eukaryotic elongation factor 2 [eEF2]) and 

ribosomes are relocated from a diffused distribution throughout the cytoplasm of 

infected cells to the viral factories. Also the mitochondria network are mobilized 

together with ribosomes to the viral factories. The increase in the availability of host 

sources in the viral factories and simultaneously its depletion in the cytoplasm may 

results in the shut off of the host mRNA translation (Castello et al., 2009).  

ASFV mRNAs are structurally similar to the cellular mRNAs and posses a cap 

structure in its 5’-UTR and a poly (A) tail of 33 nucleotides in average (Salas et al., 

1981). The fact that ASFV mRNAs are capped indicates that they drive translation 

by a canonical cap-dependent mechanism, as happens with most of cellular mRNAs. 

Also some studies reported that a part of the genome replication is initiated within 

the nucleus (Netherton and Wileman, 2013). 

ASFV utilises the cytoskeletal network to facilitate its egress from the virus factory 

to the plasma membrane and out of the infected cell (Netherton and Wileman, 2013). 

Finally progeny virions are bud out or are propelled away along actin projections to 

infect new cells (Netherton and Wileman, 2013). In fact, ASFV infection induces 

long unbranched actin projections, similar to those detected in filopodia, that 

originate from the plasma membrane (Jouvenet et al., 2006). Interestingly, ASFV 

infection evolves toward cell lysis at very late times of infection (Breese and 

DeBoer, 1966), which might represent an alternative mechanism of viral egress. 
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Figure 1.8 Replication cycle of ASFV. Replication cycle of ASFV, from virus entry 

to formation of the early endosome, its maturation, virion desencapsidation in the 

acidic late endosomal compartments and finally to virions exit along actin 

projections (Figure taken from Alonso et al., 2013). 

 

The first morphological indication of viral assembly is the accumulation within the 

factory of viral membranes, which are the precursors of the inner envelope of the 

viral particle (Salas and Andres, 2013). Then, the capsid is preassembled on the 

convex face of the viral membranes, which thus become polyhedral forms (Garcia-

Escudero et al., 1998). P72 is the major capsid protein, but capsid assembly depends 

also on protein pB602L, a non-structural protein that acts as a chaperone for the 

folding of p72 (Epifano et al., 2006a), and on protein pB438L, a minor capsid 

component probably involved in the formation of the capsid vertices (Epifano et al., 

2006b). 

Simultaneously to the capsid assembly, the core shell is formed underneath the 

concave face of the viral envelope (Andres et al., 1997) and its main constituents 

domain are the proteolytic products of the two virus polyproteins pp220 and pp62 

(Andres et al., 2002). 

The formation of the nucleoid is likely to be the last step in morphogenesis. Probably 

the viral DNA is first encapsidated, possibly together with nucleoproteins, and then 

condensed inside the assembling virus particles to produce the “full” mature virions 

(Salas and Andres, 2013). 
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African swine fever virus (ASFV), like other complex DNA viruses, sets up a 

number of strategies to evade the host’s defense systems, such as apoptosis, 

inflammation and immune responses (Sanchez et al., 2013). Some viral proteins 

involved in evading host’s defence are described below.  

 

ASFV proteins involved in modulating host defence, regulating host gene 

transcription, are: 

• A238L protein, which inhibits activation of the transcriptional factors NFkB 

and NFAT. It interacts with the p65 subunits of NFkB during infection, creating a 

complex thus inhibiting this transcriptional factor (Revilla et al., 1998). In addition, 

A238L alters the activity of NFAT, through inhibition of the host calcineurin 

dependent pathways (Dixon et al., 2004). This protein down-regulates the production 

of pro-inflammatory cytokines, such as TNF- by ASFV infected macrophages 

(Powell et al., 1996, Granja et al., 2006a). In fact it has been reported that infection 

with the mutant ASFV E70, deleted on A238L, is characterized by an increased 

synthesis of TNF- and other cytokines (Salguero et al., 2008). A238L has effects 

also on the nitric oxide synthesis. By using a recombinant ASFV lacking of the 

A238L gene, it has been demonstrated that A238L strongly down regulates inducible 

nitric oxide synthase (iNOS) activation (Granja et al., 2006b). 

• A224L protein, which is an inhibitor of apoptosis (Nogal et al., 2001) and is 

also involved in the NK-kB activation (Rodriguez et al., 2002). 

• ASFVj4R protein, which binds the host -NAC protein (Goatley et al., 2002) 

and influences its transcription. It has been speculated that the interaction between 

ASFVj4R and -NAC affects the ability of this cellular factor to act as a 

transcription co-activator (Sanchez et al., 2013).  

• The ASFV ubiquitin conjugating (UBCv) enzyme, which might play a role in 

regulating host gene transcritpion. In fact it was described that this viral protein  

binds the NH2-terminal end of a host nuclear protein SMCy, which is involved in 

gene transcription (Bulimo et al., 2000). 
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In addition ASFV developed mechanisms to regulate host cell cycle. ASFV strongly 

induces Myc activation from early times after infection, which promotes cell 

growing and protein synthesis (Castello et al., 2009). It regulates the expression of 

the components of eIF4F complex at transcriptional level, in order to guarantee the 

viral protein synthesis (Castello et al., 2009). Moreover it has been reported that the 

viral protein A224L inhibits caspase activation, promoting cell survival (Nogal et al., 

2001). 

 

This virus monopolizes all the components of the host translation machinery, 

relocating them to the ‘viral factories’, in order to guarantee viral proteins synthesis.  

The phosphorylation of the  subunit of the eIF2 inhibits its activity and so inhibits 

translation and protein synthesis, so eIF2 phosphorylation is one of the most 

important host defense mechanisms against viral infections and ASFV has developed 

mechanisms to avoid the phosphorylation of this factor (Sanchez et al., 2013). 

Phosphorilated-eIF2 levels decrease at early times post infection, and remain 

undetectable throughout the infection (Castello et al., 2009), suggesting a viral 

mechanism to ensure the availability of this factor for viral protein synthesis. 

It has been shown that DP71L induces a decrease of phosphorylated eIF2 and 

enhances the expression of co-transfected reporters, suggesting that DP71L plays a 

role in keeping the translation machinery active to allow viral protein synthesis 

(Zhang et al., 2010). However, ASFV possess multiple mechanisms to avoid eIF2 

phosphorylation (Zhang et al., 2010). It has been observed that this virus induces 

phosphorylation of eIF4E, which takes place after 8 hours post infection (pi) and is 

associated to an enhancement of the viral replication and protein synthesis (Castello 

et al., 2009). 

 

Moreover, ASFV encodes several proteins involved in inhibiting apoptosis of 

infected cells. In fact, ASFV-infected macrophages undergo apoptosis at late time 

post-infection (24-48 hours pi), suggesting that there are some viral genes that 

negatively regulate apoptosis (Ramiro-Ibanez et al., 1996), such as: 

• The protein encoded by A179L, which represents the viral homolog of the 

anti-apoptotic protein Bcl2 (vBcl2) and inhibits the action of several pro-
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apoptotic protein (Bid, BimL, BimS, BimEL, Bad, Bmf, Bik, Puma and DP5) 

(Galindo et al., 2008). 

• A224L protein, a homolog of inhibitor of apoptosis proteina (IAP), which 

inhibits caspase 3 (Nogal et al., 2001) and activates the transcription factor 

NFkB (Rodriguez et al., 2002). 

• E153 protein, which acts on the 53 pathway (Hurtado et al., 2004). 

• DP71L protein, which induces dephosphorylation of the initiator factor 

eIF2, playing an important role in keeping the translation machinery active 

to synthesize new viral proteins (Rivera et al., 2007, Zhang et al., 2010). 

 

Phylogenetic analysis of ASFV is based on the partial sequence of the B646L gene, 

which encodes for the structural protein p72 (Bastos et al., 2003). This analysis 

showed that is a strong correlation between isolates from West Africa, South 

America and Europe collected before 2007, all belonging to genotype I. In contrast, 

isolates from South and East Africa present more differences and are grouped in 

other 22 genotypes (Bastos et al., 2003, Lubisi et al., 2005, Boshoff et al., 2007, 

Achenbach et al., 2016). Genotype XXIII is present in Ethiopia and was only 

recently discovered (Achenbach et al., 2016). 

As previously stated, in June 2007 ASF was confirmed in Georgia, and it has since 

spread to neighboring countries. Sequence analysis indicated that the Georgia 2007 

isolate is closely related to isolates belonging to genotype II, which is circulating in 

Mozambique, Madagascar, and Zambia (Rowlands et al., 2008). ASFV was first 

detected in Russia 2007 and all the isolates collected in the Russian Federation from 

2007 to 2011 revealed 100% nucleotide identity of B646L gene sequence and formed 

one genetic cluster within genotype II (Malogolovkin et al., 2012). 

Other genes have been used to discriminate between isolates on a regional level: 

B602L (coding for the J9L protein), CP204 (coding for the P32 protein) and E183L 

(coding for the envelope protein P54) (Gallardo et al., 2009, Nix et al., 2006, 

Rowlands et al., 2008). The analysis of this genes is useful to study the epidemiology 

and evolution of different isolates and can be used to identify the source of 

contamination in case of new ASFV outbreaks (Nix et al., 2006). 
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Recently the analysis of the TRS in the intergenic region between the I73R and  

I329L genes, at the right end of the genome, has been used to investigate the genetic 

variability among ASFV isolates circulating in eastern Europe. Viruses from Poland 

and Lithuania presented a TRS insertion identical to that present in ASFV isolates 

from Belarus and Ukraine, but not in the remaining viruses from eastern Europe, 

including those obtained in Russia in 2012 and in Georgia in 2007. These molecular 

data suggested that the ASFV isolstes detected in Poland and Lithuania most 

probably originated from Belarus (Gallardo et al., 2014).   

 

The phylogenetic analysis, based on the sequence of the gene coding for the protein 

p72, showed that all the Sardinian isolates belong to the genotype I, along with the 

isolated from South America, Caribbean, West Africa and Europe (Giammaroli et 

al.,  2011). Between Sardinian isolates there are no differences in the genomic region 

p54, but there are differences in the B602L gene, which is involved in viral 

morphogenesis. Sardinian isolated can be divided in two subgroups (X and III) on 

the basis of the presence/absense of a deletion of 12-13 tetramers in this region. This 

deletion (subgroup X) is present in almost all the isolates from 1990 and there are no 

differences between viruses isolated from domestic pigs and wild boar (Giammaroli 

et al., 2011). In a recent study 44 sardinian isolates collected during 1978-2014 were 

further characterised, through the analysis of p30, CD2V and I73R/I329L variable 

regions (Sanna et al., 2016). Researchers showed that Sardinian isolates can be 

divided into two sub-groups also by the sequences comparison of the CD2v gene: 

oldest Sardinian isolates (1978-1990) displayed 8 PPPKPC identical hexamers 

interrupted in the midst by a SPPKPC and a RPPKCP motifs and followed by an 

hexamer with an aminoacidic substitution (PPSKPC rather than PPPKPC), in 

contrast viruses isolated in recent years (from 1990 to 2014) show 7  identical repeats 

with the same central interruption where the last hexamer was not modified (Sanna et 

al., 2016). These studies suggest that since 1990 the ASF outbreaks in Sardinia are 

caused by a mutated form of the virus.   
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1.4 Control of ASF in Sardinia 

As above stated, in Sardinia the disease first occurred in 1978 and now is endemic. 

The disease originated in the south part of Sardinia and it was probably introduced 

from Spain through food products containing uncooked pork, which were used to 

feed sardinian pigs (Mannelli et al., 1997). As previously stated, Ornithodoros ticks 

are not involved in the epizootic cycle of ASF in Sardinia and the control of other 

risk factors present in the island is necessary for effectively eradicate the disease 

(Mur et al., 2016b). The persistence of ASFV is probably due to extensive pig 

farming that has been practised for centuries and of the presence of endemically 

infected wild boar (Firinu et al., 1988, Costard et al., 2009). In a recent study a 

Bayesian multivariable logistic regression mixed model was used to assessed the 

factors associated to the ASFV occurrence in Sardinia. Researchers found that ASFV 

persistence was associated to particular socio-cultural, productive and economical 

factors found in the region, particularly to large number of confined farms (most of 

them backyard), high road density, high mean altitude, large number of open 

fattening farms, and large number of pigs per commune (Martinez-Lopez et al., 

2015).  

In the last decades several legislative measures were developed in order to eradicate 

this disease.  

The 14th February 1968 ministerial decree (‘ordinanza ministeriale’) disposed that 

the mayor, after notification of ASF presence or suspect, ordered sequestration 

(‘sequestro di rigore’) of infected, suspected infected and suspected contaminated 

animals. The ‘provincial veterinarian’ (‘veterinario provinciale’), after mayor’s 

provisions, issued with urgency decrees of ‘infectious zone’ (‘zona infetta’) and 

‘protection zone’ (‘zona di protezione’) and ordered immediate killing of infected, 

suspected infected and suspected contaminated animals. The decrees of ‘infectious 

zone’ (‘zona infetta’) and ‘protection zone’ (‘zona di protezione’) were revoked 

respectively at least 60 and 30 days after the last outbreak (OM 14-2-1968). 

In the following years several modification were made to this legislative measure, to 

more efficiently fight against ASF. The Member States of the European Union 
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moved from a diversity of national control policies towards a common, community 

wide approach based on notification of outbreaks, harmonized control measures, 

uniform diagnostic procedures and contingency plans. In 2002 an EU directive was 

issued to determine actions to be taken within the EU to fight against ASF, including 

measures to be applied in case of an outbreak or a suspect or presence of ASF in wild 

boar (direttiva 2002/60/CE). In 2005 an EU decision was issued focussing on the 

presence of ASF in Sardinia. This decision established rules about movements, 

shipments, stampings (‘bollatura’) of sardinian pigs and pig products, to avoid 

dissemination of the disease in other areas of the EU (decisione 2005/363/CE). 

Moreover, the decision 2005/362/CE was issued with the aim to eradicate ASF from 

wild boar in Sardinia (decisione 2005/362/CE). The decision 2005/363/CE has been 

recently abrogated and it is currently in force the decision of the European 

Commission of the 27th of March 2014, which will be effective till the 31st of 

December 2017. According to this decision, there is a prohibition to export live pigs, 

porcine sperm, ovules and embryos, pork and any product containing pig meat from 

Sardinia (and other areas within the EU where ASF cases has been recently 

reported). There are dispensations to export pork and products containing pig meat 

from Sardinia if they are made from pigs born and bred outside Sardinia and other 

areas with ASF. Moreover there are dispensation to export products containing pig 

meat if they are processed with a treatment that guarantee that there will be no risk 

related to ASF (decisione di esecuzione 2014/178/UE). 

According to the extraordinary ASF eradication plan, since 2014 Sardinian local 

authorities adopted further measures to eradicate ASFV from Sardinia (Deliberazione 

50/17 del 16.12.2014 Regione Autonoma della Sardegna, Legge Regionale n.34 del 

22.12.2014, Determinazione 87 del 11.2.2015 Regione Autonoma della Sardegna). 

According to the current legislation, in case of an ASF outbreak the official 

veterinarian must contact the ‘Unità di Crisi Locale’, a group of experts which 

coordinate the execution of  the legislative measures.  

Further measures were adopted to contrast the contact between domestic pigs and 

wild boars. In fact in Sardinia wild boar are likely to play an important role in 

facilitating virus persistence in areas where they lives in continuous contact with free 
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ranging domestic pigs (Costard et al., 2009). Every pig farm should adopt measure to 

avoid pigs-wild animals contacts and every pig should be kept on holdings, under 

human control. If feral pigs are detected, they are going to be killed by official 

veterinarians, even if they don’t display ASF clinical signs (Legge Regionale n.34 

del 22.12.2014, Determinazione 87 del 11.2.2015 Regione Autonoma della 

Sardegna). 

Every pig owner should register animals at the ‘Banca dati nazionale’ and every farm 

is subjected to official controls. Pigs are examined by official veterinarians, who also 

assess if in the farm there are effective measures to avoid contact between domestic 

and feral pigs/wild boars. Official veterinarians collect pig blood, which is sent to the 

Istituto Zooprofilattico Sperimentale (IZS) of Sardinia, where serological assays to 

detect antibodies against ASFV are performed. A farm became ‘Azienda certificata 

per PSA’ if it was inspected at least once in the previous 12 months by an official 

veterinarian, every pig did not display ASF clinical signs and did not present 

antibody against ASFV (Legge Regionale n.34 del 22.12.2014, Determinazione 87 

del 11.2.2015 Regione Autonoma della Sardegna).  

Further measures were taken also to control the spread of the disease in the wild boar 

population. Hunters must not leave organs or pieces of the carcass in the field, must 

collect wild boar blood sample for analysis, must inform an official veterinarian in 

case of finding of dead wild boar Legge Regionale n.34 del 22.12.2014, 

(Deliberazione 50/17 del 16.12.2014 Regione Autonoma della Sardegna). In some 

area (‘macroareali’), displayed in Figure 1.9, hunt is forbidden unless special 

requirements are fulfilled (Determinazione n. 7 del 15.10.2015, Regione Autonoma 

della Sardegna, Determinazione n. 25 del 20.11.2015, Regione Autonoma della 

Sardegna).   
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Figura 1.9. Area (‘macroareali infetti nel selvatico’) of Sardinia where wild boar 

hunt is forbidden (Determinazione n. 25 del 20.11.2015, Regione Autonoma della 

Sardegna). 

 

1.5 ASF diagnosis in Sardinia 

Samples of domestic pigs and wild boars, collected by official ASL veterinarians, are 

sent to the IZS of Sardinia. That institute is responsible for the ASF diagnosis in 

Sardinia (Legge Regionale n.34 del 22.12.2014, Determinazione 87 del 11.2.2015 

Regione Autonoma della Sardegna). 

According to the current legislation, ASF should be suspected every time that 

animals display: fever (more than 40°C), lack of appetite, cutaneous and 

subcutaneous haemorrhaging, abortion, death of pigs of any ages without 

identification of other causes. ASF should be suspected every time there is death, 

infertility or abortion without an identified cause. Samples should be collected in 

case of outbreaks, epidemiological link with an outbreak, serological positivity, death 

animal or abortion. Sample suitable for virus isolation are: heparin blood, spleen, 

kidney, lymph nodes, tonsils, long bone (for bone marrow collection) and foetus 

(Decisione della Commissione del 26 maggio 2003 recante approvazione di un 
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manuale di diagnostica della peste suina, OIE Manual of Diagnostic Tests for 

Aquatic Animals, 2012).  

Techniques used to identify ASFV are: 

• Direct immunofluorescence, to detect the virus in tissue samples; 

• Haemoadsorbing test (Malmquist test); 

• PCR and RT-PCR, to detect ASFV in any kind of sample, as heparin blood, 

bone marrow, serum, tissue and organs not well conserved; 

• Sequencing and molecular epidemiological analysis, to analyse all the 

isolates positive at the Malmquist test. 

In case of a positive result in one of the previous assays, an ASFV outbreak is 

opened. Positive samples should be re-tested with a different assay, even on a 

different animal in the same farm. In case of an ambiguous result or in case of a 

positive result in the absence of clinical symptoms or pathological lesions of ASF, a 

test to isolate the virus should be performed. On these samples, one of the following 

test is performed: PCR, Real Time PCR, Malmquist Test. 

Serological assays to detect antibodies against ASFV are performed on blood 

samples. The first serological assay to be used is the ELISA and in case of a positive 

result an immunoblotting assay is also performed. Results of the serological assay 

should be evaluated considering the clinical symptoms and the epidemiological 

situation, in case of a suspected or an opened ASF outbreak (Decisione della 

Commissione del 26 maggio 2003 recante approvazione di un manuale di diagnostica 

della peste suina, OIE Manual of Diagnostic Tests for Aquatic Animals, 2012).  

During the hunting season, according to the extraordinary ASF eradication plan 

(Deliberazione 50/17 del 16.12.2014 Regione Autonoma della Sardegna) official 

veterinarian collect blood samples from dead wild boar, which are sent to the IZS of 

Sardinia to detect antibodies against ASFV, by ELISA and immunoblotting. In the 

area displayed in Figure 1.9, also spleens are collected by official veterinarians and 

are sent to the IZS of Sardinia to detect ASFV, by direct immunofluorescence, 

haemoadsorbing test (Malmquist test), PCR and RT-PCR. 
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1.6 ASF vaccines and antiviral agents 

Currently there are no vaccine against ASFV. Pigs that survive inoculation with 

ASFV isolates with reduced virulence can be protected from challenge with the 

homologous or closely related virulent viruses (Leitão et al., 2001, Oura et al., 2005, 

King et al., 2011), indicating that anti-ASFV immune response(s), including 

protective immune response(s), developed in these pigs prior to challenge with the 

virulent virus (Takamatsu et al., 2013).  

Efforts has been done to develop attenuated ASFV strains, by deletion of specific 

genes from virulent ASFV isolates. Independent deletions of the UK (DP69R) or NL 

(DP71L) genes from the ASFV E75 (Zsak et al., 1998, Zsak et al., 1996) and 

deletion of the 9GL (B119) gene from the virulent Malawi Lil-20/1 strains (Lewis et 

al., 2000) resulted in creation of recombinant deletion viruses with reduced virulence 

in swine, able to confer protection to challenge with the homologous parental virus 

(Zsak et al., 1998, Zsak et al., 1996, Lewis et al., 2000). Multigene family (MGF) 

360 and 530/550 have been implicated in the modulation of type I interferon (IFN) 

response, so additional copies of these genes were deleted or interrupted from a 

virulent genotype I isolate, Benin 97/1. The deleted mutant (BeninMGF) was 

attenuated in pigs and immunisation and boost with this virus protected against 

challenge with a lethal dose of Benin 97/1, suggesting that deletion of IFN 

modulators is a promising route for rational attenuation of virulent ASFV isolates to 

construct candidate vaccine strains (Reis et al., 2016). Recent studies focused on the 

creation of a deletion vaccine strain based on the attenuation of the virulent and 

epidemiologically relevant Georgia2007 isolate. Deletion of 9GL (B119L) resulted 

in a mutant (ASFV-G-9GL) virus with limited replication in swine macrophages, 

but able to confer protection to homologous challenge when administered at a lower 

dose (102-103 HAD50) 21-28 days before infection with the parental strain (O’Donnel 

et al., 2015). Depletion of six genes belonging to MGF 360 and 505 lead to the 

creation of a vaccine strain (ASFV-G-MGF) able to replicate efficiently in primary 

macrophage cell cultures, completely attenuated in swine, and vaccination with 102-

104 HAD50 protected pigs to challenge with the virulent parental strain (O’Donnel et 

al., 2015). Despite both vaccine strains (ASFV-G-Δ9GL and ASFV-G-ΔMGF) were 

efficient in inducing protection, they presented concerns regarding their safety. So a 
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new mutant, ASFV-G-Δ9GL/ΔMGF, harboring deletions of both 9GL and 

MGF360/505 genes, was constructed. This virus was highly attenuated in swine, but 

did not induce protection against challenge with the virulent parental ASFV-G isolate 

(O’Donnel et al., 2016). In addition, deletion of the thymidine kinase gene was 

performed in a strain of Georgia adapted to replicate in Vero cells (ASFV-G/V). This 

mutant (ASFV-G/V-ΔTK) was completely safe in pigs, but unable to provide 

protection to challenge with the virulent parental strain (Sanford et al., 2016). These 

results suggest caution towards approaches involving genomic manipulations when 

developing rationally designed ASFV vaccine strains isolate. In addition, even if 

attenuated viruses could be used to protect pigs against challenge with virulent 

strains, the use of this kind of vaccines has some risks, due to the fact that the 

attenuated virus could revert to virulence in vivo.  

The use of vaccine strains which undergo a single cycle of infection but do not 

produce infectious progeny would avoid this risk. However higher virus load would 

most likely be required to induce protection (Dixon et al., 2013). In the past it has 

been shown that inactivated vaccines are not useful to protect pigs against ASFV 

(Stone et al., 1967; Mebus, 1988) and recently it has been reported that modern 

adiuvants, like PolygenTM or Emulsigen®-D, do not increase the efficacy of these 

kind of vaccines (Blome et al., 2014). The construction of vaccines using techniques 

of molecular biology, not including the whole virus but immunological 

proteins/peptides, would be useful for the eradication of the disease. Nevertheless, 

knowledge of protective antigens is essential to create these kind of vaccines (Dixon 

et al., 2013). 

Antibody response against ASFV can be detected even 7 days pi (Parker and 

Plowright, 1968), but there are controversies about the ability of these antibodies to 

neutralise the virus (Escribano et al., 2013). Nevertheless, it is not possible to 

exclude that antibody response does not contribute to protection. Some studies 

showed that administration of sera of immune animals to infected pigs delay clinical 

symptoms, reduce viremia and increase the survival probability (Onisk et al., 1994). 

Instead, several studies reported the importance of the cellular immune response 

against ASF, especially of the CD8+ T cells (Argilaguet et al., 2012, Argilaguet et 

al., 2013, Oura et al., 2005). 
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Recombinant viruses represent an attempt to design a safe and efficient ASFV 

vaccine. A recombinant Newcastle disease virus (rNDV) expressing the ASFV 

protein 72 (p72) was recently constructed. The recombinant virus was safe in mice 

and animals immunized with rNDV/p72 developed high titers of ASFV p72 specific 

IgG antibody and T cell response (Chen et al., 2016). Futher studies in pigs will 

evaluate the efficacy of this potential vaccine candidate for preventing ASF. 

Lokhandwala et al. (2016) recently tested the safety and immunogenicity of an 

adenovirus-vectored ASFV multi-antigen cocktail. Codon-optimized synthetic genes 

encoding p32, p54, pp62, and p72 ASFV antigens were used to generate a 

recombinant adenovirus. Immunization with the cocktail rapidly induced ASFV 

antigen-specific antibody and cellular immune responses against all the antigens. 

Importantly, significant antigen-specific IFN-γ responses were detected post-priming 

and post-boosting (Lokhandwala et al., 2016). A challenge study need to be 

performed in order to evaluate the relevance of the induced immune responses in 

regards to protection. 

DNA vaccines, where one or more genes encoding immunological proteins are 

inserted, can be used to induce a stronger cellular response. To date several ASFV 

proteins have been identified as target of the immunological response, such as p30 

and p73 (Leitao et al., 1998, Alonso et al., 1997). Moreover hemagglutinin (HA) 

showed the ability to confer protetion in the absence of neutralising antibodies (Ruiz-

Gonzalvo et al., 1996). Recent studies showed that ASFV vaccines based on the 

proteins p30, p54 and HA were able to induce a T cell response and partially 

protected pigs against challenge with a virulent ASFV isolate (Argilaguet et al., 

2012, Argilaguet et al., 2013). In fact a DNA vaccine containing p30, p54 and HA 

fused to ubiquitin was able to protect more than 50% of the vaccinated pigs against 

challenge with a virulent ASFV strain, in the absence of antibody response 

(Argilaguet et al., 2012). Protected pigs showed a peak in the number of CD8 T cells 

3 days post vaccination and leukopenia was delayed and had lower intensity. In the 

same study two 9mers target of the T cell response were identified, both located on 

HA, and immunodominance hierarchy in the T cell response and SLA I restriction 

were observed (Argilaguet et al., 2012). In addition, in another study the ASFV 

proteins p54, p30 and HA were inserted in a baculovirus vector (BacMam-sHAPQ), 
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under control of the human cytomegalovirus promoter (CMVie). The use of this 

vaccine induced a strong T cell response, positively correlated with protection in 

survived pigs (4 out of 6), in the absence of antibody response (Argilaguet et al., 

2013). The use of peptide vaccine against ASFV has also been tested. A vaccine 

based on 17 ASFV immunological peptides failed to protect pigs against an ASFV 

lethal challenge, nevertheless it was able to statistically significantly delay mortality 

(Ivanov et al., 2011).  

Recently, it has been reported that other two ASFV proteins, CD2v (EP402R) and C-

type lectin (EP153R), represent significant protective antigens for ASFV, so they 

should be targeted in future vaccine design and development (Burmakina et al., 

2016). 

Further studies should be performed on the interaction of ASFV with the porcine 

immune system, to understand how attenuated virus induce protection and to identify 

targets of the protective immune response, generating information useful to underpin 

vaccine development efforts. 

 

Several studies focused on the development of antiviral agents against ASFV. Those 

treatments might be beneficial in areas located close to the affected farms, in order to 

isolate the epidemic area (Zakaryan and Revilla, 2016). Potential anti-ASFV 

compounds can be divided into two groups: 1) agents that affect ASFV replication 

cycle (from virus attachment to release of virus progeny); 2) agents that target host 

cell factors involved in virus replication. Antiviral agents belonging to the first group 

are: sulphated polysaccharides which affect ASFV attachment; cholesterol removing 

agents that inhibit viral entry; drugs blocking endosomal acidification (ammonium 

chloride, amantadine, chloroquine, and methylamine) required for ASFV replication 

(Zakaryan and Revilla, 2016). Agents belonging to the second group are: 

fluoroquinolones, a family of drugs which interfere ASFV replication targeting the 

type II topoisomerase (Mottola et al., 2013); lauryl-galattate, which inhibits both 

cellular and viral DNA synthesis (Hurtado et al., 2008); polyphenolic phytoalexins, 

which interfere with viral DNA replication, late viral protein synthesis and viral 

factory formation (Galindo et al., 2011). A recent study tested the antiviral effect of 

five flavonoids on the replication of ASFV in Vero cells. Researchers observed a 
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dose-dependent anti-ASFV effect of apigenin in vitro. Apigenin was highly effective 

at the early stages of infection; it inhibited ASFV-specific protein synthesis and viral 

factory formation (Astghik et al., 2016). Neverthelss the antiviral activities of the 

compounds mentioned were only tested in vitro and evidence of their in vivo efficacy 

is still lacking (Zakaryan and Revilla, 2016).  

 

1.7 Immunology against ASFV         

As above stated, pigs that survive inoculation with ASFV isolates with reduced 

virulence can be protected from challenge with the same or closely related virulent 

viruses (Leitão et al., 2001, Oura et al., 2005, King et al., 2011). This indicates that 

anti-ASFV immune response(s), including protective immune response(s), developed 

in these pigs prior to challenge with the virulent virus (Takamatsu et al., 2013). The 

analysis of the immune mechanisms underlying the development of this immunity 

will generate information useful for the development of un efficient vaccine against 

this disease. 

 

1.7.1 ASFV and innate immunity 

ASFV mainly targets myeloid lineage cells, especially monocytes and macrophages, 

which are thought to be crucial for viral persistence and dissemination (Sierra et al., 

1991, Sánchez-Cordón et al., 2008). ASFV encode different genes to avoid apoptosis 

(such as A224L, A179L, EP153R), so infected macrophage can survive and 

disseminate the virus into the whole organism (Nogal et al., 2001, Galindo et al., 

2008, Hurtado et al., 2004, 2011). 

Infected monocytes-macrophages containing virus replication sites may synthesize 

and release monokines (TNF-, IL-1) which would trigger lymphocytes apoptosis 

(Fernandez de Marco et al., 2007). In fact it has been speculated that the level of 

apoptosis depends on the amount of cytokines released, and this in turn depends on 

the number of ASFV infected macrophages, and this may explain the greater 

presence of lymphocyte apoptosis of highly virulent isolates such as Malawi 

compared with the less virulent isolates such as Malta (Oura et al., 1998). 
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To date several studies analysed the cytokine response of monocyte/macrophages to 

ASFV (Gomez del Moral, 1999, Gil et al., 2003, Gil et al., 2008, Zhang et al, 2006) 

and more recent study reported the expression of chemokines after ASFV infection 

(Fishbourne et al., 2013). It has been shown that the low-virulent ASFV/NH/P68 

induces enhanced expression and production of relevant regulatory cytokines 

(IFN, TNF- and IL12) in comparison to the highly virulent ASFV/L60 (Gil et 

al., 2008) and it has been reported that the low virulence strain OURT88/3 induces 

higher expression of key inflammatory chemokines (CCL4, CXCL8, CXCL10) 

compared to infection with high virulence strain Benin 97/1 (Fishbourne et al., 

2013). A different response of antigen presenting cells (APCs) to ASFV isolates of 

reduced virulence could lead to the acquisition of a protective immunity rather than 

disease.   

A recent study assessed the effect of ASFV on the expression of surface markers on 

bone marrow-derived macrophages, obtained from femur bones. Flow cytometry was 

used to analyse the expression of several surface markers in ASFV infected cells: 

MHC II, CD163, CD203a, CD45, CD16 (Lithgow et al, 2014). They observed that 

MHC II, CD203a, CD45 are not up-regulated after ASFV infection and CD16 is 

instead down-regulated in macrophages after ASFV infection. This study produced 

results contrasting to a previous work, where the importance of CD163 in ASFV 

infection was described (Sanchez-Torres et al., 2003). In fact Lithgow et al. (2014) 

observed that this marker is not up-regulated after ASFV infection and the virus is 

able to infect both CD163+ and CD163- bone marrow-derived macrophages (Lithgow 

et al., 2014). The effect of the virus on the expression of this marker on 

monocytes/macrophages should be better defined.  

DC are one of the target of ASFV. DC are thought to be the most potent antigen 

presenting cells (APCs) that play an important role in induction of adaptive immune 

responses, by processing antigens, expressing lymphocyte co-stimulatory molecules, 

migrating to lymphoid organs and secreting cytokines (Banchereau and Steinman., 

1988). These cells express a variety of specialised pattern recognition receptors 

(PRRS), including Toll-like receptors (TLRs) for the recognition of pathogen 

associated molecule patterns (PAMPs) (Gijzen et al., 2006). DC can broadly be 

file:///E:/../../../Users/giuliafrit/Desktop/macro%20ASFV/paper%20thesis%20writing/AppData/Local/Packages/microsoft.windowscommunicationsapps_8wekyb3d8bbwe/LocalState/LiveComm/dbab79a0148fb1c4/120712-0049/Att/20007105/ASF/Correlation%20of%20cell%20surface%20marker%20expression%20with%20African%20swine%20fever%20virus%20infection.html#bib0080
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divided into two subpopulations: conventional or myeloid DC (mDC), with main 

function in antigen presentation, and plasmacytoid DC (pDC), specialized in rapidly 

secreting large amounts of type I interferon (McCullough and Summerfield, 2009).  

Despite the important role that DC play in innate and adaptive immunity against 

pathogens (Banchereau and Steinman., 1988), little is known about their interaction 

with ASFV. ASFV is able to infect skin-derived DC and this interferes with a 

subsequent infection with FMDV, in fact ASFV inoculation 3 hours before FMDV 

inoculation blocked FMDV infection (Gregg et al., 1995a). In vivo it has been 

observed that ASFV is able to infect interdigitating DC (iDC) and in pigs infected 

with a virulent ASFV isolate there is reduction in the number of iDC in mandibular 

lymph nodes from 3 days pi (Gregg et al., 1995b). A recent study reported that 

infection in vitro of porcine leucocytes enriched for DC with ASFV induced high 

levels of type I interferon, suggesting that ASFV-infected pDC could be a potential 

source of interferon in animals undergoing acute ASF (Golding et al., 2016). 

In the same study it was reported an important role of type I IFN in preventing 

replication of attenuated ASFV strains in macrophages. Researchers observed that 

replication of attenuated strains, containing MGF 360/530 deletions, but not virulent 

ASFV isolates in porcine alveolar macrophages was inhibited by recombinant 

porcine IFN-α (Goldwing et al., 2016). Also a former study described that IFN- has 

an important role in protection against ASFV: it can reduce ASFV replication in both 

porcine monocytes and alveolar macrophages, inhibiting synthesis of late ASFV 

proteins (Esparza et al., 1988). Virulent isolates have developed mechanism to 

overcome IFN antiviral activity, in fact MFG 360/530 genes either directly or 

indirectly suppress a type I IFN response (Afonso et al., 2004). Deletion of MGF 

360/530 probably results in absence of interference with antiviral genes induced by  

IFN-. Type I interferon can induce interferon-induced transmembrane (IFITM) 

protein expression, a group of antiviral restriction factors that restrict viral 

progression at entry. A recent study reported that infection with cell-adapted ASFV 

isolate BA71V, which is IFN sensitive, was able to induce IFITMs expression. High 

levels of this proteins caused a collapse of the endosomal pathway to the perinuclear 

area. Expression of IFITM1, 2 and 3 reduced virus infectivity in Vero cells, with 
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IFITM2 and IFITM3 having an impact on viral entry/uncoating (Munoz-Moreno et 

al., 2016). 

Little is known about the effect of ASFV on natural killer (NK) and -T cells, which 

are two major lymphocyte populations of the innate immune system. Their 

activation/inhibition could be crucial, given that swine possess only a small number 

of cytotoxic T-cells, but large numbers of lymphocytes with innate cytotoxic activity, 

especially γδ-T cells (Denyer et al., 2006). In young pigs, γδ-T cells and NK cells 

represent 50% and 10% of the total peripheral blood lymphocyte population, 

respectively, although their frequencies decrease with age (Denyer et al., 2006, 

Gerner et al., 2009). It is well known that NK cells possess the ability to attack 

pathogen-infected and malignant cells and to produce immunostimulatory cytokines, 

such as IFN-γ and TNF-α (Gerner et al., 2009). Specifically, these cells are triggered 

to kill or ignore cells (cancer cells and virus-infected cells) depending on a balance 

of inhibitory and activating signals received through ligands on potential targets. 

Activation of these cells by most pathogens is led by accessory cells, especially 

mature DC, which release cytokines and provide contact-dependent signals to NK 

cells (Newman et al., 2007, Trinchieri, 2003, Fehniger and Caligiuri, 2001). Several 

studies suggest the importance of NK cells in response to ASFV (Leitao et al., 2001, 

Norley et al., 1983, Martins et al., 1994). Leitao et al. (2001) showed that NK 

activity was correlated to survival after ASFV infection. In that study 31 pigs were 

inoculated with ASFV/NH/P68 and some pigs developed ASF chronic type lesions 

and others instead remained asymptomatic. In animals developing lesions and 

viraemia, NK activity levels were close to that of control animals, instead pigs 

remaining asymptomatic after infection had elevated NK cell activity (Leitao et al., 

2001). Instead another study reported that pigs infected with ASFV exhibited a 

suppressed NK activity, but that was probably due to the sensitivity of NK cells to 

increased temperatures. In fact NK cell activity was lost when cells were incubated at 

40°C in vitro and the authors suggested that pyrexia might be the cause of the 

depressed NK cell activity (Norley et al., 1983). Martins et al. (1994) showed that 

NK cell activity of PBMC derived from naïve pigs was stimulated in vitro by non-

virulent NH/P68 virus, but depressed by virulent Lisbon 60 isolate. 
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-T cells represent another significant lymphocyte population originally 

defined as effector lymphocytes of the innate immune system but now being 

regarded, like NK-cells, as also playing an important role in the activation and 

regulation of immune responses. -T cells express a subtype of T cell receptor 

(TcR) different from the conventional  TcR and display characteristics of both T 

cells and cells of the innate immune system. They recognize conserved non-peptide 

antigens that are up-regulated by stressed cells, by both TcR and non-TcR molecules, 

such as TLRs and NK receptors (NKRs). Like NK cells, the balance between 

activating and inhibitory signals regulates the  cell response (Bonneville et al., 

2010). cells can produce cytokines, such as IFN- and TNF-, involved in the 

protection against viruses and other intracellular pathogens, or cytokines that 

contribute to the protection against extracellular parasites (IL-4, IL-5 and IL-13), 

extracellular bacteria (IL-17) and also immunosuppressive cytokines (Transforming 

Growth Factor (TGF)- and IL-10) (Bonneville et al., 2010). Activation of cell 

responses may therefore be direct or indirect, mediated by the interaction with APCs, 

such as DC, through release of pro-inflammatory cytokines and expression of ligands 

for TcR and NKRs (Devilder et al., 2009). In swine, -T cells act both as 

cytotoxic cells and professional antigen presenting cells (APCs). They can express 

CD8 and MHC II molecules, and the latter seems to be correlated with T cell 

activation in swine (Gerner et al., 2009).  

Little is known about the interaction of ASFV with -T cells. In a study 

researchers used lymphocytes from ASFV immune pigs and observed that these cells 

are able to present viral antigen (Takamatsu et al., 2006), however the interaction of 

ASFV with -T cells should be better studied in the future. 

 

1.7.2 ASFV and adaptive immunity 

1.7.2a Humoral Immunity 

Almost all virus can be neutralised by antibodies. However, there is some 

controversy about antibody-mediated neutralization of ASFV with sera from 
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convalescent pigs and about the protective relevance of antibodies in experimentally 

vaccinated pigs (Escribano et al., 2013). 

In the past some it was indicated the lack of neutralizing activity of sera from 

animals infected with ASFV (Hess, 1981), nevertheless evidence of neutralising 

antibodies against this virus has been provided by numerous groups in the last 15 

years (Escribano et al., 2013). 

Onisk et al. (1994) examined the role of anti-viral antibodies in homologous 

protective immunity to a virulent ASFV strain E75 by passive transfer experiments 

in swine. 85% of animals that received anti-ASFV immunoglobulin survived 

challenge infection and remained clinically normal following challenge, while 100% 

mortality was observed in control group animals. These data indicate that anti-ASFV 

antibodies alone protect swine from lethal infection with virulent ASFV (Onisk et 

al., 1994). Also Zsak et al. (1993) showed that sera from convalescent swine infected 

with an attenuated AFV isolate (E75CV1-4, derived from the Spanish strain E75 and 

adapted to grow on CV1 cells and propagated in pig macrophages) neutralized the 

infectivity of virulent ASFV isolates E75, E70, Lisbon 60, Malawi Lil 20/1 and a low 

passage tissue culture adapted variant of E75 (E75CV/V3) by 86-97% in Vero and 

macrophage cell cultures. Unexpectedly, these immune sera failed to neutralize high 

passage tissue culture adapted ASFV variants including Lisbon 60, Haiti, Dominican 

Republic I, Dominican Republic II, and Brazil II. These results suggest that tissue 

culture adaptation of ASFV isolates may be associated with loss of specific 

determinants associated with virus neutralization (Zsak et al., 1993). 

In fact few years later, Gomez-Puertas et al. (1997) showed that highly passaged 

ASF viruses were resistant to neutralization by antisera from convalescent pigs or 

antibodies generated against individual viral proteins which neutralized low-passage 

viruses. They showed that the absence of neutralization of high-passage viruses is not 

due to antigenic variability of critical epitopes, but is linked to the relative amount of 

phosphatidylinositol in viral membranes, which is higher in low-passage viruses. The 

data suggest that phosphatidylinositol is essential for a correct epitope presentation to 

neutralizing antibodies. Additionally, the removal of phosphatidylinositol from a 
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low-passage virus by a specific lipase transformed this virus from neutralizable to 

non neutralizable (Gomez-Puertas et al., 1997). 

Anti-ASFV antibodies neutralize the virus before and after binding to susceptible 

cells. Gomez-Puertas et al. (1996) observed that neutralising antibodies inhibited 

about 80% of virus attachment and more than 90% of virus internalization and the 

combination of both mechanisms neutralized more than 95% of virus infectivity. In 

addition, researchers reported that antibodies to proteins p72 and p54 are involved in 

the inhibition of a first step of the replication cycle related to virus attachment, while 

antibodies to protein p30 are implicated in the inhibition of virus internalization 

(Gomez-Puertas et al., 1996). Moreover, proteins p54 and p30 mediate specific 

interactions between ASF virus and cellular receptors and that simultaneous 

interference with these two interactions has a complementary effect in antibody-

mediated protection (Gomez-Puertas et al., 1998). 

Even if the existence of neutralising anti-ASFV antibodies has been demonstrated, a 

persistent non-neutralized ASFV fraction of about 10% is found with most 

convalescent swine sera in vitro neutralization assay. Probably, the main cause for 

the persistent surviving virus fraction observed in neutralization assay if the 

induction of blocking antibodies, and this could also explain the persistent infections 

observed in some convalescent pigs (Gomez-Puertas and Escribano, 1997). 

Although antibody-mediated immune mechanisms have been shown to be important 

in immunity to ASF, a study showed that neutralizing antibodies to some ASFV 

proteins (p30, p54, and p72) are not sufficient for antibody-mediated protection. In 

that study pigs immunized with baculovirus-expressed p30, p54, p72 from the 

pathogenic ASFV isolate Pr4 died 7-10 days post challenge with 104 TCID50 of Pr4 

virus. Nevertheless, test group animals exhibited a 2-day delay to onset of clinical 

disease and reduced viremia levels at 2 days post infection in comparison to the 

control group (Neilan et al., 2004). Further studies are needed to clarify the role of 

ASFV antibodies in protection. 
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1.7.2b Cellular Immunity 

Despite the controversy on the role of neutralising antibodies in protection against 

ASFV, several studies demonstrated the importance of cellular immune response 

against this virus.  

IFN- has an important role in protection against ASFV, in fact it reduces ASFV 

replication in both porcine monocytes and alveolar macrophages. Instead, TNF- 

does not show antiviral activity in either type of cells (Esparza et al., 1988). 

Several study analysed the role of T cells in response to this virus. The first 

demonstration of ASFV specific lymphocyte proliferation was described by Wardley 

and Wilkinson (1980) 10 days pi with a non-virulent virus, however they did not 

detect ASFV specific lymphocyte proliferation after infection with a virulent virus, 

presumably because the pigs died too quickly. One year later Sanchez-Vizcaino et al. 

(1981) showed that infection with moderate or non-virulent strains of ASFV induced 

ASFV specific memory T cell proliferation against homologous virus. Also Revilla 

et al. (1992) observed that a non-virulent ASFV isolate (BA71V) induced memory T 

cell response against homologous virus. In fact PBMC from inbred pigs that were 

immunized with autologous macrophages infected with BA71V produced IFN- 

when challenged in vitro with homologous or attenuated isolates of the ASF virus, 

but not with heterologous or virulent isolates (Revilla et al., 1992). 

Later experiments (Martins et al., 1993, Scholl et al., 1989) examined ASFV specific 

T cells activities in swine that had recovered from the non-haemabsorbing ASFV 

isolate NH/P68. Scholl et al. (1989) showed that blood mononuclear cells (BMC) 

from swine surviving experimental infection with NHV exhibited a strong virus-

induced, antigen-specific blastogenic response, absent in control pigs. This ASFV-

induced blastogenesis was dependent on virus dose and on the presence of adherent 

cells (Scholl et al., 1989). Few years later Martins et al. (1993) show that ASFV 

specific CTL activity was triggered in swine infected with the NHV isolate. PBMC 

from such infected swine showed significant activity in CTL assays, using cultured 

ASFV-infected porcine blood derived macrophages as target cells. This CTL activity 

appeared to be SLA class I restricted because it was higher in the infected 
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macrophages of the same haplotype, and was blocked by anti-CD8 monoclonal 

antibodies (mAbs) but not by anti-CD4 mAbs. Experiments with macrophages 

infected with different ASFV isolates revealed that there was marked lysis of 

macrophages infected with the virulent L60 isolate but less lysis of macrophages 

infected with the DR-II and Tengani isolates (Martins et al., 1993). King et al. 

(2011) observed that the ability of lymphocytes from immune pigs to release IFN- 

in vitro in response to different isolates was correlated with protection against ASF.  

Immunisation of pigs with the non-virulent OURT88/3 isolate followed by the 

closely related virulent OURT88/1 isolate could confer protection against challenge 

with virulent isolates from Africa, including the genotype I Benin 97/1 isolate and 

genotype X Uganda 1965 isolate. Cross-protection was correlated with the ability of 

different ASFV isolates to stimulate production of IFNby lymphocytes from 

OURT88/3 and OURT88/1 immunised pigs, assessed in vitro by ELISPOT (King et 

al., 2011). 

Few recent studies underlined the importance of T cell response in ASFV-vaccine 

induced protection. As above stated, ASFV vaccines based on the proteins p30, p54 

and HA were able to induce a T cell response and partially protected pigs against 

challenge with a virulent ASFV isolate (Argilaguet et al., 2012, Argilaguet et al., 

2013). A DNA vaccine containing p30, p54 and HA fused to ubiquitin was able to 

protect more than 50% of the vaccinated pigs against challenge with a virulent ASFV 

strain, in the absence of antibody response (Argilaguet et al., 2012). In another study 

the ASFV proteins p54, p30 and HA were inserted in a baculovirus vector (BacMam-

sHAPQ), and the use of this vaccine induced a strong T cell response, positively 

correlated with protection in survived pigs (4 out of 6), in the absence of antibody 

response (Argilaguet et al., 2013). 

The critical importance of CD8+ lymphocytes on protective immunity to ASF was 

demonstrated directly by depleting CD8+ lymphocytes from ASF immune pigs in 

vivo. Researchers showed that depletion of CD8 T cells from pigs vaccinated with an 

avirulent ASFV isolate OURT88/3 resulted in a loss of protection when challenged 

(Oura et al., 2005). 
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A study on the phenotype of ASFV specific CD8+T cells revealed that there are two 

distinctive populations: a conventional (perforin+CD2+CD3+CD4-

CD5+CD6+CD8+CD16-) and a CD4+ phenotype ( 

perforin+CD2+CD3+CD4+CD5+CD6+CD8+CD16-),  both able to lyse ASFV infected 

syngeneic target cells (Denyer et al., 2006). In a recent study the phenotype of 

ASFV-specific double positive CTLs was characterised. Pigs were immunized by 

inoculating non-virulent ASFV isolate OURT88/3 and then challenged 4 weeks later 

with the related virulent isolate OURT88/1. Only one pig exhibited transient pyrexia 

and viraemia. Before challenge with OURT88/1, PBMC from immune pigs were 

stimulated in vitro for 5 days with OURT88/1 and the phenotypes of proliferated 

lymphocytes were analyzed. More than half (55.7%) of the proliferating CD4+ cells 

in the protected pigs expressed perforin, in contrast to only 13.8% of proliferating 

CD4+cells from the diseased pig (Takamatsu et al., 2013). Unpublished observations 

from Denyer, Stirling & Takamatsu revealed that IFN- positive lymphocyte 

population from ASFV stimulated immune PBMC was dominated by the CD4+CD8+ 

T cell phenotype, but only a third of these cells presented a typical memory helper T 

cell (CD4+CD8low) phenotype and the rest were CD8hiCTL (Takamatsu et al., 2013). 

Further investigation is needed to explore the contribution of CD4+CD8+ T cells in 

protection to ASF. 

Several studies were made in order to identify antigens recognized by ASF immune 

porcine T cells. In a study SLA inbred minipigs were experimentally infected with an 

attenuated isolate of the virus and CTL assays were performed using alveolar 

macrophages as target cells. It was observed that ASFV-specific cytotoxic T 

lymphocytes recognize and lysed p32, an immediate early ASFV protein (Alonso et 

al., 1997). Also the structural ASFV protein p72 was identified as target of CTLs. 

Researchers used expression vectors based on the Pseudomonas outer membrane 

lipoprotein I gene (oprI) to study ASFV-specific CTL activity. They observed that 

the aminoacid sequence HKPHQSKPILTDENDTQRTCSHTNP from the major 

structural ASFV protein (VP72) is presented by macrophages, which are lysed under 

restriction of SLA class I antigens (Leitão et al., 1998). Recently two 9-mer peptides 

within the ASFV haemagglutinin protein (CD2v, EP402R) were identified as CTL 

epitopes. Researchers tested a panel of 53 9mer peptides selected in silico from 
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within p54, p30 and sHA protein sequences. In silico prediction of CTL epitopes was 

based on their binding affinity to TAP, due to the fact that MHC I restricted epitopes 

can often be transported by TAP as N-terminal elongated peptide precursors. 

Immunodominance hierarchy in the responses and the SLA I restriction were also 

observed (Argilaguet et al., 2012). 

 

1.8 Aim, hypothesis and objectives 

There is a need to develop alternative strategies to improve the control of ASF 

outbreaks and minimize the need for mass culling. As previously stated, main target 

of the virus are cells of the myeloid lineage and this tropism is thought to be crucial 

for disease pathogenesis. A detailed characterization of the interaction of ASFV 

isolates of differing virulence with monocytes and macrophages subsets would aid 

the understanding of the immunological mechanisms underlying the disease, 

generating information to aid the development of marker vaccines. 

In this thesis, responses of monocytes and derived macrophage subsets to ASFV 

were investigated through the following two objectives: 

• To compare different methods to differentiate porcine monocytes into 

macrophages, assessing their phenotype, release of cytokines and 

susceptibility to ASFV infection (Chaper 3). 

• To determine the interaction of monocytes and macrophage subsets to 

the avirulent BA71V and the virulent 22653/14 ASFV strains, 

characterising their susceptibility to infection, expression of surface 

markers and release of cytokines (Chapter 4).  
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CHAPTER 2.  MATERIALS AND METHODS 
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2.1 Animals and blood sampling 

Blood samples were obtained from 6 to 18 months old healthy crossbred pigs (Sus 

scrofa) housed at the experimental facility of the IZS of Sardinia (Sassari, Italy), 

authorized for animal research by Italian Ministry of Health. The ASFV negative 

status of the animals was confirmed by a commercial ELISA test (Ingenasa, Madrid, 

Spain) and by an immunoblotting test (OIE, 2012). Heparinized blood was collected 

by cranial vena cava puncture using a 50 mL syringe containing 5000 IU of sodium 

heparin (Thermo Fisher, Germany), connected to a mm 14-gauge needle (Delta Med, 

Mantova, Italy). Animal housing, handling and sampling procedures were performed 

in accordance with the local ethics committee, according to the guide of use of 

laboratory animals of the Italian Ministry of Health. 

 

2.2 Viruses 

The attenuated ASFV BA71V strain (kindly provided by EU Reference laboratory 

CISA-INIA, Madrid, Spain) is non pathogenic in swine and was obtained by 

adaptation to growth in Vero cells of the BA71 isolate (a highly virulent virus 

isolated in Badajoz, Spain in 1971) (Enjuanes et al., 1976). It belongs to the p72 

genotype I and cluster within sub-group V of the B602L gene (Bastos et al., 2003, 

Nix et al., 2006). BA71V was propagated in vitro by inoculation of sub-confluent 

monolayers of Vero cells, maintained in Dulbecco’s Modified Eagle Medium (D-

MEM) (Euroclone, Milan, Italy) supplemented with 50 g/ml gentamicin (Gibco, 

Thermo Fisher Scientific, Monza, Italy) and 10% foetal bovine serum (FBS) (Gibco, 

Thermo Fisher Scientific). Images of un-infected and infected Vero cells are 

displayed in Figure 2.1. After 1-2 days at 37°C, 5% CO2, a clear cythopatic effect 
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was observed and the supernatant was collected and pooled with a freeze-thawed cell 

lysate. The resultant pool was clarified by centrifugation at 3000g for 15 minutes in a 

rotating bucket centrifuge, aliquoted and stored at -80°C. Virus titres were obtained 

by serial dilution of the virus suspension on Vero cells followed by observation for 

cytopathic effect and crystal violet staining to identify infection rates as previously 

described (Carrascosa et al., 2011).     

 

         

Figure 2.1. Infection of Vero cells with BA71V. Vero cells were mock-infected (A) 

or infected for 24 hours with BA71V (B). In Figure B a clear cytophatic effect is 

visible. Images taken with an inverted microscope (Olympus, Tokjo, Japan), using a 

10X magnification. 

 

The highly virulent ASFV Sardinian field strain 22653/14 is placed in the p72 

genotype I and was isolated from the spleen of a naturally infected pig collected from 

a 2014 outbreak in the province of Cagliari (Exotic Disease Laboratory ASFV 

Archive, IZS of Sardinia, Sassari, Italy). Genotype of 22653/14 was determined by 

partial p72 gene characterization, as previously described (Bastos et al., 2003). 

ASFV 22653/14 was propagated in vitro by inoculation of sub-confluent monolayers 

of porcine monocytes/macrophages for no more than six passages (Malmquist and 

Hay, 1960). In brief, leukocytes were cultured in RPMI-1640 medium supplemented 

with 20% (v/v) autologous plasma, 100 U/ml penicillin and 100 µg/ml streptomycin. 

B A 



 

Giulia Franzoni 

‘Interaction of monocytes and derived macrophage subsets with African swine fever viruses of diverse virulence’ 

International PhD Course in Life Sciences and Biotechnologies  

University of Sassari 

 

After 2 days, non-adherent cells were removed and virus suspension was added to 

the adherent monocytes/macrophage monolayer. After 2 hours incubation, RPMI-

1640 medium supplemented with 1% (v/v) autologous plasma, 0.1% autologous 

erythrocytes, 100 U/ml penicillin and 100 µg/ml streptomycin was added. After 3 

days at 37°C in 5% CO2, the supernatant was collected and pooled with a freeze-

thawed cell lysate. The resultant pool was clarified by centrifugation at 3000g for 15 

minutes, aliquoted and stored at -80°C. Images of un-infected and infected 

macrophages are displayed in Figure 2.2. Viral titre of ASFV 22653/14 was obtained 

by serial dilution of the virus suspension on monocyte/macrophages in 96 well plates 

and cell cultures were observed for hemadsorption (Malmquist and Hay, 1960) or 

immunofluorescence (OIE, 2012). For detection of infected cells by 

immunofluorescence a FITC-conjugated polyclonal antibody against ASFV (kindly 

provided by the EU ASF Reference Laboratory CISA- INIA, Madrid, Spain) was 

used. In brief, medium was removed from each well, monolayer of macrophages 

were washed with PBS and then cells were fixed by addition of methanol for 15 

minutes. After two washes with PBS, cells were incubated 1 hour at 37°C with a 

polyclonal antibody anti-ASFV diluted 1:200 in PBS and then washed twice with 

PBS. Plates were viewed under an inverted fluorescent microscope (Axiovert 200, 

Zeiss, Germany). There was correspondence between viral titres obtained using 

immunofluoresce and hemadsorption.  

All the virus titres were determined using the Spearman–Kärber formula. 

Mock-virus supernatants were prepared in identical manner from uninfected Vero 

cell (‘mock Vero’) or monocyte/macrophage (‘mock macrophages’) cultures.  
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Figure 2.2 Infection of macrophages with 22653/14. Porcine blood derived 

macrophages were mock-infected (A) or infected for 24 hours with 22653/14 (B). In 

Figure B clear haemoadsorbing effects (‘rosetta’) are visible. Images taken with an 

inverted microscope (Olympus), using a 10X magnification. 

 

2.3 Enrichment of monocytes  

Peripheral blood mononuclear cells (PBMC) were prepared by layering 30 ml of 

heparinized blood diluted 2:1 in Dulbecco’s phosphate buffered saline without 

calcium and magnesium (PBS) over 20 ml of Histopaque-1077 (Sigma-Aldrich, St. 

Louis, USA) and centrifuged at 600g for 20 minutes at 4°C without breaking (Berg 

et al., 2013). PBMC were collected from the plasma-Histopaque interface, washed 

thrice in PBS at 4°C, pelleted and re-suspended in RPMI-1640 medium (Euroclone, 

Milan, Italy) supplemented with 10% FBS (Thermo Fisher Scientific, Rockford, 

USA), penicillin (100 U/ml) and streptomycin (100 μg/ml) (Pen Strep, Thermo 

Fisher Scientific, Rockford, USA) (monocyte medium).  

Porcine monocytes were isolated by plastic adhesion using flasks (Corning, NY, 

USA) pre-incubated with autologous porcine plasma, according to previous methods 

with slight modifications (Berg et al., 2013). In brief, autologous plasma was 

collected from heparinized blood by centrifugation at 700g for 30 minutes at 4°C 

without breaking. Flasks were incubated for 1 hour at 37°C with 5% CO2 with 

autologous plasma before removal of plasma and addition of PBMC. Flasks were 

B A 
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incubated for 1 hour and non-adherent cells were then removed by 4 washes with 

unsupplemented RPMI-1640 and adherent cells were incubated overnight at 37°C 

with 5% CO2 in monocyte medium. The following morning adherent cells were 

detached by placing the flasks on ice for 1 hour, pelleted by centrifugation at 200g 

for 8 minutes and re-suspended in monocyte medium; an aliquot was used to count 

and to assess cells viability using a Countess Automated Cell Counter (Thermo 

Fisher Scientific). 8-10x105 live cells/well were seeded in a 12 well plates (Greiner 

CELLSTAR, Sigma). In selected experiments a second aliquot was used to assess 

cell purity: cells were stained with CD14-PerCP (TUK4, Miltenyi Biotec, Bergisch 

Gladbach, Germany) for 10 min at room temperature (RT), washed with PBS 

supplemented with 2% FBS and resuspended in PBS. Cells were analysed using a 

FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, New Jersey, USA) 

and an average of 90% CD14+ monocytes was observed, as displayed in Figure 2.3. 

 

 

Figure 2.3 Assessment of monocyte purity using flow cytometry. Porcine blood 

derived monocytes were stained with CD14-PerCP for 10 minutes at RT, washed and 

analysed using a FACSCalibur flow cytometer. Cells with FSC and SSC typical for 

monocytes were analysed for their expression of surface marker CD14. 
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2.4 In vitro differentiation of monocyte into moM and activation 

In Chapter 3, six different culture conditions were tested for moM differentiation. 

Monocytes were cultured for 5 days at 37°C with 5% CO2 in medium supplemented 

with different concentrations of autologous porcine plasma or human M-CSF (hM-

CSF). Plasma supplemented media were composed of RPMI-1640, 

penicillin/streptomycin (100 U/ml/100 μg/ml) and 10%, 20% or 30% (v/v) 

autologous porcine plasma, whereas hM-CSF supplemented media were prepared 

with monocyte medium and 50 ng/ml, 100 ng/ml or 200 ng/ml of recombinant 

human M-CSF (eBioscience, San Diego, USA). Porcine plasma and FBS were heat-

treated at 56°C for 30 minutes to inactivate complement before addition to culture 

media. In Chapter 4, moM differentiation was achieved by culturing monocytes for 

5 days in monocyte medium supplemented with and 50 ng/ml hM-CSF. 

To assess macrophage activation, moM obtained using 30% autologous porcine 

plasma or 50 ng/ml hM-CSF were both classically and alternatively activated as 

described in humans and pigs (Gordon and Taylor, 2005, Garcia-Nicolas et al., 2014, 

Singleton et al., 2016). In Chapter 4, only moM cultured in 50 ng/ml hMCSF were 

activated. For classical activation, moM were cultured in monocyte medium 

supplemented with 100 ng/ml of recombinant porcine IFN- (Raybiotech Inc, 

Norcross, GA, USA) and 100 ng/ml of LPS (Lipopolysaccharide from Escherichia 

coli 0111:B4; Sigma-Aldrich) for 24 hours at 37°C in 5% CO2, while for alternative 

activation, cells were stimulated with 20 ng/ml of recombinant porcine IL-4 (R&D 

Systems, Minneapolis, MN, USA) under the same culture conditions.  
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2.5 In vitro ASFV infection of monocytes/macrophages subsets and growth 

curves 

Monocytes, moMΦ, moM1 and moM2 were infected, following the replacement of 

culture media with fresh monocyte medium free of growth factors and/or cytokines, 

with the virulent 22653/14 or the attenuated BA71V ASFV strains. Monocytes and 

macrophages were infected using an MOI of 1 and mock-infected controls were 

included in every experiment. Cells were incubated at 37oC, harvested after 24 hours 

(Chapter 3) or 18 hours (Chapter 4) and infection was assessed by intracytoplasmic 

p72 expression using flow cytometry. In defined experiments, culture supernatants 

were collected to evaluate cytokine release in response to infection. To evaluate 

BA71V and 22653/14 growths in moMΦ, moM1 and moM2, cells were infected 

with an MOI of 0.01 and after 90 minutes the inoculum was removed, cells were 

washed with RPMI and fresh monocyte medium added to the wells. Culture 

supernatants were collected 0, 24, 48, 72 hours pi, cleared by centrifugation at 2000g 

for 3 minutes and stored at -80°C until analysed.  Viral titres in culture supernatants 

were determined by RT-PCR, as described below. In parallel macrophages were 

harvested and infection was confirmed by flow cytometry, as described below.  

 

2.6 Light microscopy 

Infection of Vero cells with BA71V and of monocyte/macrophages with the 

Sardinian field isolate 22653/14 were assessed by light microscopy, as displayed in 

figure 2.1 and 2.2. Differentiation of monocytes into moMΦ was observed by light 

microscopy. Monocytes were photographed immediately or were differentiated in 
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macrophages with different methods. Light microscopy was performed using an 

inverted microscope (Olympus, Tokjo, Japan), with 10X omagnification. 

 

2.7 Confocal microscopy 

Monocyte and moMΦ morphology was analysed by confocal microscopy, as 

previously described (Kyrova et al, 2014). Confocal microscopy was kindly 

performed by Dr Antonio Anfossi. Monocytes were cultured on two-well chamber 

slides (Thermo Fisher Scientific) at a concentration of 5x105 live cells/well and were 

observed immediately or following differentiation under the different culture 

conditions. In defined experiment, macrophages differentiated using 50 ng/ml of hM-

CSF were activated for 24 hours before observation. Cells were fixed with 4% 

paraformaldehyde and labelled with Hoechst 33342 (Molecular Probes, Thermo 

Fisher Scientific) for nuclear staining and Alexa Fluor 488 conjugated phalloidin 

(Molecular Probes, Thermo Fisher Scientific) to visualize actin cytoskeleton. 

Microscopy was performed using a Leica SP5 Confocal Microscope (Leica 

Microsystem, Wetzlar, Germany) equipped with a 40X Plan-Apo 1.25 NA oil 

immersion objective. Images were acquired on a format of 1024x1024 pixel, with a 

line average of 2 and scan speed of 100 Hz. Images were processed with LAS AF 

Lite software (Leica Microsystem) for contrast and brightness adjustments. 

Manipulations did not change the data content. 

 

2.8 Assessment of metabolically active cells  

A colorimetric assay based on the reduction of the MTS tetrazolium salt was used to 

assess metabolically active cells (CellTiter 96® Aqueous Non-Radioactive Cell 
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Proliferation Assay; Promega, Madison, USA). Monocytes were seeded into a 96 

well plates at a concentration of 1-2x105 live cells/well and differentiated into 

moMΦ with the six different methods as mentioned above. A control sample 

prepared with monocytes incubated in monocyte medium was also included. After 3 

days, medium was discarded, cells were washed twice with RPMI-1640 and 100 

l/well of fresh monocyte medium were added. The assay was performed, according 

to manufacturer’s instruction, and absorbance was read with an Epoch microplate 

reader (BioTek, Winoosky, VT, USA). 

 

2.9 Flow cytometry 

Expression of surface markers on porcine monocytes and moMΦ were analysed by 

multi-parameter flow cytometry. Cells were harvested with ice-cold PBS with 10mM 

EDTA, washed in PBS and transferred to a round-bottom 96 well plate (1-2 x 

105/well) for staining. To assess viability, cells were stained with LIVE/DEAD® 

Fixable Far Red Dead Cell Stain Kit (Thermo Fisher Scientific) for 30 minutes at 

4°C and washed twice with PBS supplemented with 2% FBS. Direct and indirect 

staining methods based on both unconjugated and fluorochrome-conjugated mAbs 

specific for cell surface markers were performed. The mAbs used were: MHC class 

II DR (clone 2E9/13, Bio-Rad, Oxford, UK), CD163-RPE (clone 2A10/11, Bio-

Rad), CD203a (clone PM18-7, Bio-Rad), CD14-PerCP (clone Tük4, Miltenyi Biotec, 

Bergisch Gladbach, Germany), MHC class I (JM1E3; AbD Serotec), CD16-RPE 

(G7, Thermo Scientific Pierce, Rockford, IL, USA). Primary mAbs were added to 

each well and incubated for 10 min at room temperature (RT). For indirect staining, 

secondary antibodies (Rat anti-mouse IgG2b-RPE-R&D Systems, Goat anti-mouse 
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IgG Fc cross adsorbed RPE-conjugated, Thermo Fisher Scientific) specific for the 

corresponding unconjugated primary antibody were used and allowed to incubate at 

RT for additional 10 minutes after a washing step. To complete either direct or 

indirect immunofluorescence procedures, excess of primary or secondary antibodies 

were washed away with PBS. For control staining, the following irrelevant isotype-

matched control antibodies were employed: mouse IgG1 isotype control PE 

conjugated (clone ZX3, Thermo Fisher Scientific), mouse IgG1 negative control 

purified, mouse IgG2b negative control purified (Bio-Rad). To assess ASFV 

infection, intracytoplasmic staining was performed. Cells were fixed and 

permeabilized using Leucoperm (Bio-Rad) according to manufacturer’s suggestion. 

Afterwards cells were incubated with mAbs at RT for 30 minutes in the dark. mAbs 

used for intracellular staining were: anti-p72-FITC (18BG3, Ingenasa) and p30-FITC 

(kindly provided by Dr Gian Mario De Mia, IZSUM, Italy). Cells were washed twice 

in PBS, re-suspended in PBS and transferred to FACS tubes prior to flow cytometric 

analysis. All the washes used centrifugation at 836g for 3 minutes. All antibodies 

used for flow cytometric analysis are listed in Table 2.1. At least 5000 live 

monocytes/moMΦ were acquired on a FACS Calibur (FACS Calibur, BD, Franklin 

Lakes, USA) flow cytometer and analysed using Cell Quest Pro software (BD). 

Analysis of data was performed by gating on viable cells (Live/Dead Fixable Dead 

Cell Stain negative) in the monocyte/macrophage population, and their expression of 

surface and intracytoplasmic markers was assessed. Gates for surface markers were 

set using the corresponding isotype controls, whereas gates for ASFV proteins were 

set using the mock-infected controls. 
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2.10 TNF- release in response to LPS stimulation 

Analysis of TNF- secretion from monocytes and moMΦ in response to LPS 

stimulation was also performed. Briefly, culture media were discarded and replaced 

with fresh monocyte medium, then cells were stimulated with 100 ng/ml of LPS. 

Unstimulated cells were used as a negative control. After 6 hours of culture, 

supernatants were collected, cleared by centrifugation at 2000g for 3 minutes and 

stored at -80°C until analysed. The measurement of TNF- levels in culture 

supernatants was performed using a Porcine TNF- Duoset ELISA (R&D System), 

according to the manufacturer’s instructions and absorbance was read with an Epoch 

microplate reader (BioTek). 

 

2.11 Patterns of cytokine secretion  

Analysis of basal cytokine release from moMΦ differentiated in different media or in 

response to classical and alternative activation or after ASFV infection was 

performed using a multiplex immunoassay. Monocytes were seeded in 12 well plates 

and differentiated into moMΦ under the different conditions as described above. 

After 5 days, supernatants were collected, cleared by centrifugation at 2000g for 3 

minutes and stored at -80°C until analysed. MoMΦ cultured in 30% autologous 

plasma or 50 ng/ml hM-CSF were left untreated or classically and alternatively 

activated. After 24 hours activation, supernatants were collected, cleared by 

centrifugation at 2000g for 3 minutes and stored at -80°C until analysed.  

Analysis of cytokine release in response to ASFV infection was also assessed. 

Monocytes and macrophage subsets were infected with the avirulent BA71V or the 

virulent 22653/14 strains, alongside with mock-infected controls. 18 hours pi, 
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supernatants were collected, cleared by centrifugation at 2000g for 3 minutes and 

stored at -80°C until analysed.  

The simultaneous measurement of GM-CSF, IL-1, IL-1, IL-RA, IL-2, IL-4, IL-6, 

IL-8, IL-10, IL-12, IL-18 and TNF-α was performed using the Porcine 

Cytokine/Chemokine Magnetic Bead Panel Quantikine kit (Merck Millipore, 

Darmstadt, Germany) and a Bioplex MAGPIX Multiplex Reader (Bio-Rad, 

Hercules, CA, USA), according to the manufacturer’s instructions. In defined 

experiments, only the levels of IL-1α, IL-1β, IL-1RA, IL-6, IL-10, IL-12 and TNF-α 

were assessed. These experiments were kindly performed by Dr Silvia Dei Giudici, 

Dr Piero Bonelli and Susanna Zinellu. The intra-assay and inter-assay CV were 10% 

and 20%, respectively. 

 

2.12 DNA extraction and real-time PCR 

Viral DNA was extracted from cell culture supernatants using High Pure PCR 

Template Preparation Kit according to the manufacturer’s protocols (Roche, 

Mannheim, Germany). ASFV viral copy numbers were assessed by real-time PCR 

(King et al., 2003), using the TaqMan Fast Advanced Master Mix (Applied 

Biosystems), 0.8 µM of sense and anti-sense primers (5’-CTG CTC ATG GTA TCA 

ATC TTA TCG A-3’and 5’-GAT ACC ACA AGA TCR GCC GT-3’), 0.2 µM of 

TaqMan probe 5’-[6-carboxy-fluorescein (FAM)]-CCA CGG GAG GAA TAC CAA 

CCCAGT G-3’-[6-carboxy-tetramethyl-rhodamine (TAMRA)] in a total volume of 

25 µl containing 5 µl of extracted DNA. The incubation profile was established as 

follows: 40 cycles of denaturation at 95°C for 15’’, annealing at 58°C for 60”, after a 

initial denaturation step at 95°C for 10’. The plasmid pEX-K4-ASFV-E70p72 
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(Eurofins Genomics, USA) was used as the template to prepare the standard curve 

for the real-time PCR assay. This plasmid contains a full length p72 sequence and the 

copy number was calculated based on the plasmid and insert molecular weight. For 

each experiment, a standard curve was prepared by serial dilution (10+8-10+1) of 

pEX-K4-ASFV-E70p72 template DNA. These experiments were kindly performed 

by Dr Silvia Dei Giudici and Martina Sale.  

 

2.13 Data analysis and statistics 

All experiments were performed in duplicates (for metabolic activity assay and 

multiplex cytokine immunoassay) or triplicates (all other assays), and repeated at 

least three times with different blood donor pigs. Graphical and statistical analysis 

was performed using GraphPad Prism 5.04 (GraphPad Software Inc, La Jolla, USA). 

Data were presented as boxplots, indicating the median (middle line), 25th and 75th 

percentiles (boxes), maximum and minimum (whiskers), or as means with standard 

deviations (SD) quoted to indicate the uncertainty around the estimate of the group 

mean. A Mann-Whitney test or a one-way analysis of variance (ANOVA) followed 

by a Kruskal-Wallis test was used; a p value <0.05 was considered statistically 

significant.  
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Table 2.1 Antibodies used for flow cytometric analysis of surface and 

intracellular markers of porcine myeloid cells 

mAb Source Clone 

Host 

specie

s 

Target 

species 
Isotype 

Conc 

(mg/

ml) 

Label 

Working 

Dilution 

(for 

staining) 

CD14 
Miltenyi 

Biotec 
TUK4 Mouse Human IgG2a ND 

PerCP

-Cy5.5 
Neat 

CD163 
AbD 

Serotec 

2A10/

11 
Mouse Pig IgG1 ND RPE 1/5 

CD203a 
AbD 

Serotec 

PM18

-7 
Mouse Pig IgG1 1 None 1/50 

MHC II 
AbD 

Serotec 

2E9/1

3 
Mouse Pig IgG2b 1 None 1/20 

CD16 

Thermo 

Scientific 

Pierce 

G7 Mouse Pig IgG1 ND  RPE 1/5 

MHC I 
AbD 

Serotec 

JM1E

3 
Mouse Pig IgG1 1 None 1/50 

IgG1 isotype 

control  

Thermo 

Scientific 

Pierce 

ZX3 Mouse Pig IgG1 ND  PE 1/5 

IgG1 isotype 

control 

AbD 

Serotec 

BB23

8E6 
Mouse Pig IgG1 0.1 None 1/80 

IgG2b isotype 

control 

AbD 

Serotec 

76-2-

11 
Mouse Pig IgG2b 0.1 None 1/40 

p30 IZSUM ND Mouse ASFV ND ND FITC 1/15 

p72 Ingenasa 
18BG

3 
Mouse ASFV IgG2a 1 FITC 1/25 

Rat anti-mouse 

IgG2b PE-

conjugated 

secondary 

antibody 

R&D 

Systems 

33272

3 
Rat Mouse IgG1 ND PE 1/10 

Goat anti-

mouse IgG Fc 

cross adsorbed 

RPE-

coniugated 

secondary 

antibody 

Thermo 

Scientific 

Pierce 

Polycl

onal 
Goat Mouse 

Polyclo

nal 
0.5 RPE 1/80 

         

ND: not determined. 
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CHAPTER 3. RESULTS: IN VITRO DIFFERENTIATION OF PORCINE 

MONOCYTES INTO MACROPHAGES 
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3.1 Introduction 

moM have been employed as a model cell in numerous studies of the porcine 

immune system. However, the lack of a standardized method for moMΦ 

differentiation hampers the comparison of results coming from the use of different 

laboratory protocols. In the first phase of the work, we sought to determine the 

optimal method for porcine moM generation by directly comparing the phenotype 

and function following differentiation induced by different protocols. The use of 

varying concentrations of autologous plasma (10, 20 and 30% v/v) or recombinant 

human macrophage-colony stimulating factor (hM-CSF; 50, 100, and 200 ng/ml) to 

differentiate porcine monocytes into macrophages were compared. Changes in cell 

morphology and surface marker expression were assessed by confocal microscopy 

and flow cytometry. Macrophage differentiation was evaluated by analysing TNF-α 

response to LPS stimulation and determining cytokine secretion patterns under both 

basal conditions and after classical and alternative activation. The effects of the 

differentiation methods on metabolic activity and susceptibility to infection with the 

myelotropic ASFV were also evaluated.  

 

3.2 Phenotype characterization of moMΦ 

First, changes in cell morphology were evaluated by flow cytometry and confocal 

microscopy. As displayed in Figure 3.1, moMΦ differentiated by both autologous 

plasma (AP-moM) and hM-CSF (M-CSF-moM) increased significantly in 

dimension and granularity compared to monocytes, as respectively shown by their 

forward (FSC) and side angle (SSC) light scattering properties measured by flow 

cytometry. No significant differences were observed between moMΦ populations in 
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terms of FSC, instead SSC was increased in AP-moMΦ compared to M-CSF-

moMΦ. Increasing porcine plasma concentrations produced a dose dependent 

increase in granularity as shown by the SSC values. Confocal microscopy showed 

that AP-moMΦ appeared more pleomorphic and presented an increased number of 

elongated projections protruding from cell surfaces compared to M-CSF-moMΦ, as 

represented in Figure 3.2. 

Changes in surface marker expressions were then evaluated by flow cytometry. 

moMΦ differentiation by either method induced a cell surface immunophenotype 

significantly dissimilar from monocytes, with a significant up-regulation in 

expression of CD163, MHC-II DR and CD203a, as shown in Figure 3.3. CD163 was 

more highly expressed in M-CSF-moMΦ compared to AP-moMΦ. Percentages of 

MHC-II DR+ and CD203a+ cells were similar between protocols with the only 

exception of moMΦ differentiated with 30% of autologous plasma, which presented 

significantly higher proportions of CD203a+ cells compared to M-CSF-moMΦ. 
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Figure 3.1. Morphological analyses of monocytes and moM populations using 

flow cytometry. Blood derived monocytes were analysed immediately or 

differentiated into macrophages through incubation with 10, 20 or 30% (v/v) of 

porcine plasma, or using 50, 100 or 200 ng/ml of hM-CSF for 5 days at 37°C in 5% 

CO2. Differences between populations in terms of dimension (FSC, forward scatter) 

and complexity (SSC, side scatter) were evaluated using flow cytometry. Boxplots 

indicate the median (middle line), 25th and 75th percentiles (boxes), maximum and 

minimum (whiskers) of FSC/SSC of three independent experiments performed in 

triplicate. Values for each marker were compared using an ANOVA followed by a 

Kruskall-Wallis test. Different letters indicate significant differences between moM 

populations (p<0.05). 
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Figure 3.2. Morphological analyses of moM populations using confocal 

microscopy. Blood derived monocytes were differentiated into macrophages through 

incubation with 10, 20 or 30% (v/v) of porcine plasma, or using 50, 100 or 200 ng/ml 

of hM-CSF for 5 days at 37°C in 5% CO2. Confocal microscopy observations after 

staining nuclei in blue with Hoechst 33342 and cytoskeleton in green with Alexa 

Fluor 488-conjugated Phalloidin. Magnifications are 40X. 
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Figure 3.3. Expression of cell surface markers by monocytes and moM 

populations. Monocytes and moM populations were analysed for surface markers 

expression and differences between monocytes and moM populations in terms of 

CD163, MHC II-DR and CD203a are displayed. Representative dot plots of 

monocytes and moM differentiated using 30% of plasma or 50 ng/ml of h M-CSF 

are shown. Boxplots indicate the median (middle line), 25th and 75th percentiles 

(boxes), maximum and minimum (whiskers) of positive cells of three independent 

experiments performed in triplicate. Values of MHC II-DR, CD163 and CD203a 

expression were compared using a a Mann-Whitney Test. Different letters indicate 

significant differences between moM populations (p<0.05). 
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3.3 Assessment of metabolically active cells  

The metabolic activity of different moM populations was evaluates using the 

CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay. As displayed in 

Fig 3.4, moMΦ differentiated using hM-CSF as well as 20% and 30% of autologous 

porcine plasma showed enhanced metabolic activity compared to monocytes cultured 

using monocyte medium (RMPI + antibiotics + 10% FBS) alone. M-CSF-moMΦ, 

and the 200 ng/ml cultures in particular, presented increased activity compared to 

AP-moMΦ. Significant differences in the metabolic activity were also found between 

macrophages produced with 10% compared to 30% of autologous plasma. 

 

Figure 3.4 Assessment of the metabolic activity of moM populations. 

Monocytes were seeded into a 96 well plate and differentiated into moM through 

incubation with un-supplemented monocyte medium (RMPI + antibiotics + 10% 

FBS; ‘none’) or in media supplemented with 10-20-30% (v/v) porcine plasma or 

monocyte medium with 50-100-200 ng/ml of hM-CSF for 3 days at 37°C in 5% 

CO2. Metabolic activity was determined using the CellTiter 96® Aqueous Non-

Radioactive Cell Proliferation Assay. Background absorbance was subtracted and 

graph represents the mean data +/- SD from three independent experiments utilizing 

different animals. Values were compared using ANOVA followed by a Kruskall-

Wallis test. Different letters indicate significant differences between moM 

populations (p<0.05). 
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3.4 Susceptibility to ASFV  

The susceptibility of moMΦ differentiated with the different techniques to ASFV 

infection was also analysed. The intracytoplasmic expression of late ASFV p72 

protein was measured to evaluate if the differentiation method could influence viral 

tropism. Our results showed that all moMΦ populations expressed p72 at higher 

levels compared to monocytes, with minimal differences being observed between 

moMΦ differentiated using the different culture conditions (Figure 3.5). Using 30% 

of autologous plasma a slightly lower susceptibility to ASFV infection was observed 

(Figure 3.5). 

 

3.5 LPS-stimulated release of TNF- 

The ability to release TNF- in response to LPS stimulation was also determined. As 

displayed in Figure 3.5, all the six moMΦ populations displayed increased TNF- 

production compared to monocytes. MoMΦ differentiated using 200 ng/mL M-CSF 

secreted the greatest amount of TNF-α. No significant differences between those 

cultured in 50, 100 ng/mL M-CSF and 30% of porcine plasma were found. 

Macrophages differentiated in 10% of porcine plasma produced the lowest amount of 

TNF-α (Figure 3.5).  
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Figure 3.5. Susceptibility to ASFV infection and TNF-α release in response to 

LPS stimulation by monocytes and moM. On the top, susceptibility to ASFV is 

displayed. Monocytes and moM populations were mock-infected or infected with 

the virulent ASFV isolate 22653/14 using a MOI of 1. 24 hours pi cells were 

harvested and infection was evaluated by intracytoplasmic detection of the viral p72 

in flow cytometry. The mean data ± SD from three independent experiments utilizing 

different animals are shown. Below, TNF- release in response to LPS stimulation is 

displayed. Monocytes and moM differentiated with different methods were left 

untreated or stimulated with 100 ng/ml of LPS for 6 hours. Supernatants were 

collected and stored at -80°C till analysis. The mean data +/- SD from five 

independent experiments utilizing different animals are shown. TNF- amounts in 

culture supernatants were evaluated using an ELISA assay. For both panels, 

differences between groups were compared using an ANOVA followed by a 

Kruskall-Wallis test. Different letters indicate significant differences between moM 

populations (p<0.05). 
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3.6 Patterns of cytokine secretion 

The basal release of a panel of cytokines from moMΦ differentiated under the 

different culture conditions was assessed using a multiplex immunoassay. No 

differences in the levels of IL-1, IL-1, IL-6, TNF- were observed between 

macrophage populations (data not shown). Instead statistically significant differences 

were detected in the levels of IL-10, IL-12, IL-1RA (Figure 3.6). MoMΦ 

differentiated using 100 and 200 ng/mL hM-CSF released a statistically significantly 

higher amount of IL-10 compared to AP-moMΦ. Instead the supernatants of AP-

moMΦ contained statistically significant higher amounts of IL-12, but this was also 

present in the background control (RPMI-1640 supplemented with 30% of porcine 

plasma), suggesting that the IL-12 was derived from the autologous plasma as 

opposed to being released by the AP-moMΦ. Higher levels of IL-1RA were detected 

in the supernatant of AP-moMΦ compared to M-CSF-moMΦ or the background 

control.  

Finally, differences in the ability of moMΦ produced under selected differentiation 

culture conditions (30% of plasma and 50 ng/ml of hM-CSF) to respond to classical 

and alternative activation were assessed. Differentiating cells under these conditions 

resulted in the same levels of metabolic activity (Figure 3.4) and so ensured that the 

number of live cells in culture would not influence the results. Culture media was 

discarded before macrophage stimulation. As represented in Figure 3.7, using both 

protocols, classical activation resulted in release of IL-12 and pro-inflammatory 

cytokines IL-1, IL-1, IL-6, TNF- Higher levels of IL-1, IL-1, TNF- were 

observed in moM1 derived from 50 ng/ml M-CSF-moMΦ compared to 30% AP-

moMΦ, instead there were no differences in the other cytokines tested. Almost 
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undetectable levels of cytokines were observed after alternative activation of either 

moMΦ population. 
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Figure 3.6. Basal cytokine release from moM differentiated in different 

culture conditions. Blood derived monocytes were differentiated into moM 

through incubation with 10, 20 or 30% (v/v) of porcine plasma, or using 50, 100 or 

200 ng/ml of hM-CSF for 5 days at 37°C in 5% CO2. IL-1α, IL-1β, IL-RA, IL-6, IL-

10, IL-12 and TNF-α in culture supernatants and background control (BKG) were 

evaluated using a Porcine Cytokine/Chemokine Magnetic Bead Panel Quantikine, 

according to manufacturer’s protocol. The mean data +/- SD from three independent 

experiments utilizing different animals are shown. Values for each cytokine were 
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compared using an ANOVA followed by a Kruskall-Wallis test. The different letters 

indicate significant differences between moM populations (p<0.05). 
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Figure 3.7. Cytokines release by classically and alternatively activated moM. 

MoM differentiated through incubation with 30% (v/v) of porcine plasma (white 

bar) and using 50 ng/ml of hM-CSF (black bar) were both classically (moM1) and 

alternatively (moM2) activated. For classical activation macrophages were 

stimulated with 100 ng/ml of recombinant porcine IFN- and 100 ng/ml of LPS 

while for alternative activation with 20 ng/ml of recombinant porcine IL-4 for 24 

hours at 37°C in 5% CO2. IL-1α, IL-1β, IL-RA, IL-6, IL-10, IL-12 and TNF-α were 

detected in culture supernatants using a Porcine Cytokine/Chemokine Magnetic Bead 

Panel Quantikine, according to manufacturer’s protocol. The mean data +/- SD from 

three independent experiments utilizing different animals are shown. Values for each 

cytokine were compared using a Mann-Whitney Test. Different letters indicate 

significant differences between macrophage populations (p<0.05). 
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CHAPTER 4. RESULTS: CHARACTERIZATION OF THE INTERACTION 

OF ASFV WITH MONOCYTES AND MACROPHAGE SUBSETS 
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4.1 Introduction  

ASFV mainly targets cells of the myeloid lineage, especially monocytes and 

macrophages, thought to be crucial for viral persistence and dissemination (Sierra et 

al., 1991, Sánchez-Cordón et al., 2008). Infection with virulent ASFV isolates 

evolves towards cell lysis at very late time of infection (Breese and DeBoer, 1966), 

since they express proteins (such as A224L, A179L, EP153R) that prevent apoptosis, 

allowing infected cells to survive and disseminate the virus through the body (Nogal 

et al., 2001, Galindo et al., 2008, Hurtado et al., 2004). On the contrary, the avirulent 

tissue-culture adapted BA71V strain is able to infect macrophages and to synthesise 

viral late proteins, but induces early cell death, preventing the production of 

infectious viral progeny (Zsak et al., 2001).  

To date few studies analysed the effects of ASFV on monocytes and macrophages in 

terms of their expression of surface markers (Sánchez-Torres et al., 2003, Lithgow et 

al., 2014) or cytokine and chemokine responses (Gómez del Moral et al., 1999, Gil et 

al., 2008,  Gil et al., 2003, Zhang et al., 2006, Fishbourne et al., 2013) and none have 

compared responses of activated macrophage subsets. Considering the central role of 

M for ASFV pathogenesis and the effects of classical and alternative activation on 

M, it was tested if cells in distinct activation statues reacted differently to ASFV, 

with differences between isolates varying in virulence. Virulent isolates might have 

developed mechanisms to affect activated macrophages responses, to promote their 

survival and dissemination in the host. To address these questions, in the second part 

of the work a detailed in vitro analysis of the interaction of monocytes and derived 

macrophage subsets with a virulent (22653/14) and an avirulent (BA71V) ASFV 

strains was conducted. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=S%C3%A1nchez-Torres%20C%5BAuthor%5D&cauthor=true&cauthor_uid=14648288
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lithgow%20P%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Gil%20S%5BAuthor%5D&cauthor=true&cauthor_uid=14579171
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20F%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fishbourne%20E%5Bauth%5D
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4.2 Generation of monocyte-derived macrophage subsets 

Considering the results generated in the first phase of the work, porcine moMwere 

generated by culturing porcine monocytes in media supplemented with 50 ng/ml of 

hM-CSF for 5 days. These cells were activated by the classical or alternative method 

for a further 24 hours. Monocytes differentiation into macrophages and their 

activation was assessed by confocal microscopy and flow cytometry, as displayed in 

figure 4.1 and 4.2. All monocyte–derived macrophage subsets were larger than their 

monocyte precursors and presented with a spherical shape with short hairy 

protrusions on their surface (Figure 4.1A). In addition, they presented higher 

dimension (forward scatter; FSC) and granularity (side scatter; SSC) as well as 

expressed higher levels of CD163, and MHC II-DR than monocytes (Figure 4.1B 

and 4.2). No differences in terms of dimension (FSC) and granularity (SSC) were 

observed between macrophage subsets, whereas these populations differed in terms 

of surface markers expression. In accordance with previous studies (Garcia-Nicolas 

et al., 2014), classical  activation induced increase in the MHC II-DR expression, and 

IL-4 pre-treatment resulted in a little reduction of the MFI of CD163 (Figure 4.1B).  
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Figure 4.1. Differentiation of monocytes into macrophage subsets. Blood derived 

monocytes were analysed directly or differentiated into macrophages using hM-CSF. 

Un-activated macrophages (moM) were left un-treated or activated for 24 hours in 

a classical (IFN- and LPS, moM1) or alternative (IL-4, moM2) way. Differentiation 

of monocytes into macrophages and their activation was morphologically assessed 

by confocal microscopy (original magnification 40X) (A). Differences between 

monocytes and derived macrophage subsets in terms of FSC (forward scatter), SSC 

(side scatter) and expression of CD163 and MHC II-DR were assessed by flow 

cytometry (B). The mean data +/- SD from three independent experiments utilizing 

different animals are shown. Values were compared using a one-way ANOVA 

followed by a Kruskal-Wallis test; ***p<0.001, **p<0.01, *p<0.05.  
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Figure 4.2 Representative dot plots of monocytes and derived macrophage 

subsets. Differences between monocytes and monocyte-derived macrophage subsets 

in terms of FSC (forward scatter), SSC (side scatter) and expression of CD163 and 

MHC II-DR were assessed by flow cytometry. In panel A gating strategy used to 

investigate surface marker expression on monocytes/macrophages are displayed: 

cells with FSC and SSC typical for monocytes/macrophages and viable (Live/Dead 

Fixable Dead Cell Stain-) were analysed for surface expression of surface markers. 

Gating were set by comparing staining with an isotype control mAb. In panel B 

representative dot plots of monocytes and macrophage subsets are displayed. Below 

each plot, MFI values for SSC/FSC or surface markers are reported, while inside 

each plot % of CD163+ or MHC II-DR+ cells are indicated. 
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4.3 Monocytes and macrophage subsets susceptibility to ASFV infection 

Susceptibility of monocytes and macrophage subsets to ASFV infection was assessed 

by quantification of the intracellular levels of the late protein p72 by flow cytometry, 

using the gating strategy displayed in Figure 4.3A. Cells were mock-infected or 

infected with the tissue-culture adapted BA71V or the virulent Sardinian isolate 

22653/14, using a MOI of 1. As displayed in Figure 4.3, for both isolates, 

macrophages were more susceptible to ASFV infection than freshly isolated 

monocytes. Classical activation resulted in a higher resistance to ASFV infection, 

with differences between isolates varying in virulence, whereas for both BA71V and 

22653/14 similar levels of p72 proteins were observed between moM and moM2. 

22653/14 presented greater ability to infect monocytes and moM1 than the avirulent 

strain, in fact only 5-10% of p72+ monocytes and moM1 were detected after BA71V 

infection (Figure 4.3). Using a MOI of 1, after 22653/14 infection, statistically 

significant differences between moM and moM1 were observed only in some of 

the pig analysed (data not shown). In order to check if the differences observed 

between 22653/14 and BA71V in monocytes and moM1 were due to inhibition to 

viral protein synthesis, levels of the early protein p30 in monocytes and macrophage 

subsets were evaluated (Figure 4.4). Despite differences observed between BA71V 

and 22653/14 infected monocytes in terms of p72, the same levels of p30+ cells were 

detected in monocytes infected with these strains. Whereas, as displayed in Figure 

4.4, 22653/14 infection resulted in higher levels of p30+ moM1 than BA71V.  
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Figure 4.3. Susceptibility to infection by monocytes and derived macrophage 

subsets. Monocytes and macrophage subsets were infected with the avirulent 

BA71V or virulent 22653/14 ASFV strain using a MOI of 1, alongside mock-

infected control. 18 hours post-infection cells were harvested and % of p72+ cells and 

MFI of p72 were evaluated using flow cytometry. In Panel A gating strategy used to 

investigate ASFV infection on live monocytes/macrophages is displayed: cells with 

FSC and SSC typical for monocytes/macrophages and viable (Live/Dead Fixable 

Dead Cell Stain-) were analysed for their intra-cytoplasmic levels of late viral ASFV 

protein p72; gating were set by comparing staining with mock-infected controls. In 

Panel B representative dot plots of BA71V-infected or 22653/14-infected monocytes, 

moM, moM1, moM2 are displayed. In Panel C the mean data +/- SD from five 

independent experiments utilizing different animals are shown. For each virus-

stimulated conditions values of activated macrophages (moM1 and moM2) were 

compared to the corresponding un-activated control (moM), using a one-way 

ANOVA followed by a Kruskal-Wallis test; ***p<0.001, **p<0.01, *p<0.05.  
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Figure 4.4 Expression of the early protein p30 in ASFV-infected monocytes and 

macrophage subsets. Monocytes, un-activated (moM), classically (moM1) and 

alternatively (moM2) activated macrophages were infected with the avirulent 

BA71V strain or with the virulent 22653/14 field strain using a MOI of 1. Mock-

infected control cells were included for each cell type. 18 hours pi cells were 

harvested and percentages of p30+ cells and MFI of p30 were evaluated using flow 

cytometry. The mean data +/- SD from three independent experiments utilizing 

different animals are shown. Values of activated macrophages (moM1 and moM2) 

were compared to the corresponding un-activated control (moM), using a one-way 

ANOVA followed by a Kruskal-Wallis test; ***p<0.001, **p<0.01, *p<0.05. 

Differences in the p30 expression between BA71V and 22653/14 were compared 

using a Mann-Whitney test. 

  

 

 

Then it was assessed if pre-treatment of macrophages with IFN-or LPS alone was 

able to reduce susceptibility to ASFV. Activation with these cytokine alone 

decreased BA71V but not 22653/14 infection (Figure 4.5). In addition, pre-treatment 

of macrophages with M1-polarizing factors resulted in a lower expression of the 

early ASFV protein p30 in BA71V but not 22653/14 infected cells (Figure 4.5). 
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Figure 4.5 Different expression of early and late proteins in macrophages 

activated with IFN-g +/- LPS. Un-activated macrophages (moM) were left 

untreated or activated with IFN- or/and LPS for 24 hours and then mock-infected or 

infected with the avirulent BA71V or the virulent field isolate 22653/14. 18 hours 

post-infection cells were harvested and expression of p30 and p72 were assessed by 

flow cytometry. The mean data +/- SD from three independent experiments utilizing 

different animals are shown. Representative dot plots of ASFV-infected un-activated 

and activated macrophages are displayed and below the effect of macrophage 

activation with IFN- +/- LPS on expression of p30 and p72 ASFV proteins is 

reported. Values of activated macrophages were compared to the corresponding un-

activated control (moM), using a one-way ANOVA followed by a Kruskal-Wallis 

test; ***p<0.001, **p<0.01, *p<0.05.  
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4.4 ASFV growth in macrophage subsets 

A kinetic analysis of BA71V and 22653/14 replication in moM, moM1 and moM2 

was conducted by assessing the intracellular levels of p30 and p72 with flow 

cytometry and the viral copies number in cells supernatants with RT-PCR. As 

displayed in Figure 4.6, using a MOI of 0.01, 24 hours pi with the virulent 22653/14 

both moM1 and moM2 displayed lower levels of ASFV proteins than moM, but at 

48 hours pi almost all (around 90%) of the live un-activated and activated 

macrophages were p30+ or p72+. 72 hours pi it was not possible to acquire 5000 live 

macrophages in flow cytometry, since the majority of infected macrophages were 

dead. Using a MOI of 0.01, very low levels of ASFV proteins were detected after 

infection with the attenuated BA71V strain, even 48 hours pi. 24 hours pi, moM2 

displayed little but statistically significantly higher levels of both p30 and p72 

proteins than other macrophage subsets, not observed at the later time point. At each 

time points (0, 24, 48, 72 hours pi), the viral copies numbers in culture supernatants 

were evaluated. As displayed in Figure 4.6, using a MOI of 0.01 even 72 hours pi 

with the avirulent BA71V a very low number of viral copies were detected in culture 

supernatants. Nevertheless, a statistically significant higher number of viral copies 

was observed in moM2 culture supernatants at 48 and 72 hours pi. On the contrary, 

using a MOI of 0.01 the virulent 22653/14 isolate was able to actively replicate in all 

the macrophage subsets, with high levels of viral copies detected 72 hours pi. Despite 

differences in the percentages of ASFV viral proteins detected 24 hours pi using flow 

cytometry, no statistically significant differences between macrophage populations in 
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terms of viral proteins in culture supernatants were observed at any time pi (Figure 

4.6).  

 
Figure 4.6 Growth characteristic of the ASFV strains on different macrophage 

subsets. Un-activated (moM), classically (moM1) and alternatively (moM2) 

activated macrophages were infected with the avirulent BA71V or the virulent 

22653/14 ASFV strains, using a MOI of 0.01. After 1.5 hour of incubation cells were 

washed twice and cultured in fresh monocyte medium. At 0, 24, 48, 72 hours pi 

triplicate samples were collected: intracytoplasmic levels of p30 and p72 were 

assessed by flow cytometry. In parallel, at each time points the viral levels in culture 

supernatants were assessed by qPCR. The mean data +/- SD from three independent 

experiments utilizing different animals are shown. At each time-point values for 

moM1 and moM2 were compared to the corresponding un-activated control 



 

Giulia Franzoni 

‘Interaction of monocytes and derived macrophage subsets with African swine fever viruses of diverse virulence’ 

International PhD Course in Life Sciences and Biotechnologies  

University of Sassari 

 

(moM), using a one-way ANOVA followed by a Kruskal-Wallis test; ***p<0.001, 

**p<0.01, *p<0.05.  

 

4.5 Effect of ASFV infection on surface marker expression on monocytes and 

derived macrophage subsets 

The effect of ASFV infection on expression of CD16, MHC I, MHC II, CD163 was 

assessed using flow cytometry, analysing differences between BA71V and 22653/14 

strains and comparing infected cells with both uninfected bystander and mock-

infected cells (Figure 4.7). Because the levels of p72+ monocytes and moM1 after 

BA71V infection using a MOI of 1 were less than 10% (Figure 4.3), it was unreliable 

to compare infected and bystander cells for these subsets. First it was assessed the 

effect of mock-infection with a Vero cell lysate and a monocyte-macrophage cell 

lysate for 18 hours on the expression of CD16, MHC II, MHC I and CD163. No 

differences in marker expression levels between the ‘mock Vero’ or ‘mock 

monocyte-macrophage’ infection and cells cultured in monocyte medium (data not 

shown) were observed, and consequently mock-infection controls were performed 

using monocyte medium. As displayed in Figure 4.7 and 4.8, ASFV infection down-

regulated the expression of CD16 in porcine monocytes and macrophage subsets. 

Statistically significant differences in the % of positive cells were observed between 

infected and both uninfected bystander and mock-infected cells. Infected cells 

showed a lower MFI of positive cells compared to the mock-controls. MHC I levels 

on monocytes/macrophages did not change after 22653/14 infection, instead BA71V-

infected moM and moM2 had a lower expression (both percentages and MFI) of 

this marker than bystander and mock-infected cells (Figure 4.7 and 4.9). Very little 

difference in MHC II percentages were also detected between infected and bystander 
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monocytes and moM2, but not correlated with their MFI (Figure 4.7 and 4.10). As 

displayed in Figure 4.7 and 4.11, for both strains infected and bystander 

monocytes/macrophages displayed similar percentages of CD163+ cells. However 

after infection with BA71V both bystander and infected monocytes, moM and 

moM2 displayed lower levels of CD163 compared to the mock-infected controls. 

Infection with the virulent 22653/14 virus did not affect CD163 expression in 

macrophages, nevertheless little but statistically significant differences were 

observed in the MFI of positive cells between 22653/14-infected and mock-infected 

monocytes (Figure 4.7). 
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Figure 4.7. Effect of ASFV on the surface markers expression of monocytes and 

macrophage subsets. Monocytes, un-activated (moM), classically (moM1) and 

alternatively (moM2) activated macrophages were infected with the attenuated 

BA71V or the virulent 22653/14 strain using a MOI 1, alongside mock-infected 

controls. 18 hours pi, cells were harvested and expression of p72 and surface markers 

(CD16, MHC II, MHC I, CD163) were evaluated using flow cytometry. The mean 

data +/- SD from three independent experiments utilizing different animals are 

shown. Differences between mock-infected (white) and BA71V-bystader (black), 

BA71V-infected (horizontal bars), 22653/14-bystander (vertical bars), 22653/14-

infected (oblique bars) cells for each marker were evaluated. On the right, 

differences in terms of % of positive cells are displayed, while on the left MFI of 

positive cells are reported. Values for each virus-stimulated condition were compared 

to the corresponding un-stimulated control (mock) using a one-way ANOVA 

followed by a Kruskal-Wallis test; ***p<0.001, **p<0.01, *p<0.05.  
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Figure 4.8. Effect of ASFV on CD16 expression of monocytes and macrophage 

subsets. Monocytes, un-activated (moM), classically (moM1) and alternatively 

(moM2) activated macrophages were infected with the attenuated BA71V strain or 

with the virulent 22653/14 field strain using a MOI 1. Mock-infected control cells 

were included for each cell type. 18 hours pi, cells were harvested and expression of 

p72 and CD16 were evaluated using flow cytometry. For each mock or virus-

stimulated condition representative dot plots of monocytes, moM, moM1 and 

moM2 are displayed.  
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Figure 4.9. Effect of ASFV on MHC I expression of monocytes and macrophage 

subsets. Monocytes, un-activated (moM), classically (moM1) and alternatively 

(moM2) activated macrophages were infected with the attenuated BA71V strain or 

with the virulent 22653/14 field strain using a MOI 1. Mock-infected control cells 

were included for each cell type. 18 hours pi, cells were harvested and expression of 

p72 and MHC I were evaluated using flow cytometry. For each mock or virus-

stimulated condition representative dot plots of monocytes, moM, moM1 and 

moM2 are displayed.  
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Figure 4.10. Effect of ASFV on MHC II-DR expression of monocytes and 

macrophage subsets. Monocytes, un-activated (moM), classically (moM1) and 

alternatively (moM2) activated macrophages were infected with the attenuated 

BA71V strain or with the virulent 22653/14 field strain using a MOI 1. Mock-

infected control cells were included for each cell type. 18 hours pi, cells were 

harvested and expression of p72 and MHC II-DR were evaluated using flow 

cytometry. For each mock or virus-stimulated condition representative dot plots of 

monocytes, moM, moM1 and moM2 are displayed.  
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Figure 4.11. Effect of ASFV on CD163 expression of monocytes and 

macrophage subsets. Monocytes, un-activated (moM), classically (moM1) and 

alternatively (moM2) activated macrophages were infected with the attenuated 

BA71V strain or with the virulent 22653/14 field strain using a MOI 1. Mock-

infected control cells were included for each cell type. 18 hours pi, cells were 

harvested and expression of p72 and CD163 were evaluated using flow cytometry. 

For each mock or virus-stimulated condition representative dot plots of monocytes, 

moM, moM1 and moM2 are displayed.  
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4.6 Production of cytokines in ASFV-infected monocytes/macrophage subsets 

Finally, the cytokine responses of monocytes and macrophage subsets to BA71V and 

22653/14 were investigated. First it was assessed if mock-infection with clarified 

Vero cell or monocyte-macrophage cell lysates for 18 hours induced cytokine 

responses. Since no differences between co-culture with ‘mock Vero’ or ‘mock 

monocyte-macrophage’ and monocytes medium in the levels of GM-CSF, IL-1, IL-

1, IL-2, IL-4, IL-6, IL-10, IL-12, IL-18, TNF- (data not shown) were detected, 

monocyte medium was used as the negative control in subsequent experiments. No 

statistically significant GM-CSF, IL-2, IL-4, IL-6, IL-10, IL-12 or TNF- responses 

were observed from monocytes and derived macrophage subsets infected with either 

strain (data not shown). Instead differences were observed in the levels of IL1-, IL-

1 and IL-18: moM1 released higher levels of IL1-, IL-1 and IL18 in response to 

BA71V infection compared to uninfected control (Figure 4.12). Differences were 

also observed in the levels of IL-1 between mock-infected and BA71V-infected 

monocytes and in the levels of IL-1 between mock-infected and BA71V-infected 

moM2 and monocytes, albeit the latter difference was without statistical significance 

(Figure 4.12).  
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Figure 4.12. Investigation of cytokines release by monocytes and macrophage 

subsets in response to ASFV infection. Monocytes, un-activated (moM), 

classically (moM1) and alternatively (moM2) activated macrophages were infected 

with the attenuated BA71V strain or with the virulent 22653/14 field strain using a 

MOI of 1. Mock-control cells were included for each cell type. 18 hours pi, the levels 

of IL-1, IL-1 and IL-18 in culture supernatants were evaluated. The mean data +/- 

SD from three independent experiments utilizing different animals are shown. Values 

for MOCK (white), BA71V (black) and 22653/14 (horizontal bars) were compared 

using a one-way ANOVA followed by a Kruskal-Wallis test; ***p<0.001, **p<0.01, 

*p<0.05.  
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CHAPTER 5. DISCUSSION 
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As previously stated, the first phase of the work focused on the identification of the 

optimal method to in vitro differentiate porcine monocyte into moM. MoMΦ have 

been utilised in numerous studies of the porcine immune system, especially in the 

context of myelotropic viruses such as ASFV and PRRS (Thacker et al., 1998, 

Sanchez-Torres et al., 2003, Vincent et al., 2005, Fishbourne et al, 2013, Garcia-

Nicolas et al., 2014, Singleton et al, 2016), but currently there is no standardized 

protocol for their generation. The availability of a reliable standard technique would 

add value to efforts to both understand basic porcine macrophage biology and to 

study pathogen interactions with this cell population. To address this need, in the first 

phase of the work a comparison of commonly described methods to in vitro generate 

moM was performed: addition of porcine plasma (10 or 20 or 30 % v/v) or hM-

CSF (50 or 100 or 200 ng/ml). 

Clear phenotypic differences between moMΦ produced under the different 

conditions were found. moM generated using autologous plasma presented 

increased granularity compared to those differentiated using hM-CSF, as estimated 

by their SSC properties in flow cytometry analysis, particularly evident when using 

plasma concentrations of 30%. moM generated with porcine plasma displayed a 

more elongated phenotype and, as already noted by other authors (Sànchez et al., 

1999), were characterized by the presence of numerous cytoplasmic projections. 

Using autologous plasma, a greater inter-animal variability was observed, whereas 

the use of hM-CSF produced macrophage populations characterized by phenotypic 

homogeneity. Differentiation of monocytes into macrophages is accompanied by the 

acquisition of new cell surface antigens, whose detection has been widely employed 

to identify different maturation stages within the monocyte/macrophage lineage. In 
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particular the expression of CD163 (Sanchez et al, 1999), a 120kD single pass type 1 

transmembrane cell surface glycoprotein, and CD203a, previously clustered as SWC 

9 (Dominguez et al., 1998), helps to identify mature macrophages (Sánchez-Torres et 

al., 2003). Previous studies reported that CD163, CD203a and MHC II-DR are up-

regulated during in vitro MoMΦ differentiation (Kristiansen et al., 2001, Chamorro 

et al., 2004, Wang et al., 2011) and we observed up-regulation of these surface 

markers with each of the protocols tested. Nevertheless, the use of higher 

concentrations of porcine plasma led to a reduced expression of CD163, whereas no 

significant differences were observed in the levels of CD203a and MHC II-DR 

between moMΦ populations. A pronounced individual variability in terms of cell 

surface markers expression, especially evident when analysing CD163 expression, 

was observed in moM differentiated using porcine autologous plasma. These 

results suggest that hM-CSF is able to promote the production of a more 

homogeneous cell population. 

Addition of plasma or hM-CSF was able to promote porcine monocyte/macrophage 

survival in culture, as previously reported by other authors (Wang et al., 2011). A 

lower number of metabolically active cells were detected when cells were grown in 

monocyte medium (RPMI + antibiotics + 10% FSB) alone rather than in media 

supplemented with porcine plasma or h-MCSF. Supplementation with hM-CSF 

resulted in a higher number of metabolically active cells, particularly evident using 

the highest concentration tested (200ng/ml). These results are in accordance with 

previous publications, where the mitogen activity of hM-CSF for porcine monocytes 

was described (Fairbairn et al., 2013). Monocytes cultured in un-supplemented 
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serum-free RPMI did not survive, as previously reported in humans (Becker et al., 

1897) and pigs (Basta et al., 1999). 

Then the susceptibility of moMΦ differentiated with different techniques to ASFV 

infection was assessed, analysing the intracellular levels of the late ASFV p72 

protein. Using flow cytometry, it was evaluated if the differentiation method 

influenced viral tropism. In accordance with previous publications, moMΦ were 

more susceptible to ASFV infection than freshly isolated monocytes (Basta et al., 

1999, McCullough et al., 1999, Sanchez-Torres et al., 2003), but moMΦ showed 

similar permissiveness to ASFV infection notwithstanding the different media in 

which they were grown. MoMΦ differentiation was also assessed by analysing TNF-

 release in response to LPS (Gessani et al., 1993). Previous work reported that 

moM released high levels of this cytokine in response to LPS stimulation with no 

differences between various pig breeds (Kapetanovic et al., 2013). In our study 

macrophages differentiated using all 6 protocols released higher levels of TNF- 

than freshly isolated monocytes, suggesting that with all the methods cells acquire a 

macrophage-like functionality. Differences were detected between different 

concentrations of porcine plasma (10 vs 20 vs 30%) and hM-CSF (50 and 100 vs 200 

ng/ml), nevertheless these were probably related to the higher number of viable 

moMΦ present in culture at time of stimulation.  

Then, basal release of cytokines from moMΦ populations and ability to respond to 

activation were assessed. Using different protocols, small differences were detected 

in the basal levels of IL-10 and IL-12 in culture supernatants, although IL-12 was 

also detected in the background plasma control. Despite the immunosuppressive role 

of IL-10, the levels detected were extremely low and they might not influence the in 
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vitro responses of macrophages to external stimuli. In fact, moM differentiated 

using hM-CSF responded efficiently to classical activation. Greater differences were 

detected in the levels of IL-1RA; moM differentiated using porcine plasma release 

higher levels of this cytokine although diversity amongst pigs was observed. IL-1RA, 

a member of the IL-1 family and inhibitor of the pro-inflammatory effect of IL-1 

and IL1β, is stimulated by many substances including adherent IgG, other cytokines 

and bacterial or viral component (Arend et al, 1998). In humans and mice it is 

implicated in the polarization of macrophages in moM2b, in combination with LPS, 

immune complexes and apoptotic cells (Duque et al., 2014). Our results suggest that 

some plasma components induce IL1-RA release which might affect macrophage 

phenotype and potentially skew their response to external stimuli. Few studies have 

described classical and alternatively macrophage activation in pigs (Garcia-Nicolas 

et al., 2014, Sang et al., 2014, Singleton et al., 2016). As previously stated, in pigs 

classical activation induced release of inflammatory cytokines and IL-12. In response 

to activation with IFN- and LPS, moM differentiated using hM-CSF released 

higher levels of IL-1, IL-1β and TNF- compared to those generated with 

autologous plasma and in the latter a pronounced inter-animal variability in terms of 

IL-12 was observed. Considering the important role of moM1 in host defence to 

viruses, intracellular bacteria and protozoa (Mosser and Edwards, 2008), our data 

suggest that in studies on macrophages-intracellular pathogens interactions the use of 

recombinant hM-CSF for moM generation might be the more suitable protocol. As 

previously stated, in humans exposure to IL-4 polarize cells toward an M2a 

phenotype, with production of high levels of IL-10, TGF-, IL-1RA and chemokines 

that promotes recruitment of Th2 cells (Mosser, 2003; Duque et al., 2014). In pigs, 
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independently of the protocols used to mature macrophages, no release of IL-10 or 

IL-1RA from moM2 was detected. Further studies should be performed to analyse 

alternative macrophage activation in pigs, but that was beyond the scope of the 

present work. 

In conclusion, data generated in the first phase of the work suggest that all the 

protocols tested can be considered as suitable to differentiate porcine monocytes into 

moM. However, the adoption of autologous porcine plasma, especially at high 

concentrations, yielded to a pronounced cell pleomorphism and the use of 30% of 

porcine plasma produced moM with basal release of IL-1RA, reduced expression 

of CD163, and lower ability to respond to classical activation, suggesting that these 

cells are developing toward a M2b-like phenotype. Instead supplementation with 

hM-CSF produced macrophage populations characterized by phenotypic and 

functional homogeneity, provided a better reproducibility between experiments and a 

slightly higher responsiveness to M1 polarization, even if a little but statistically 

significant basal release of IL-10 was detected. Nevertheless, the higher proliferation 

rate found in macrophages cultured in media supplemented with high concentration 

of hM-CSF could impair in vitro study where a constant number of cells is required. 

The information generated suggested the adoption of low concentration of hM-CSF 

for porcine moM generation, so in the second part of the work moM were 

generated using 50 ng/ml of hM-CSF. 

The second phase of the work aimed to provide a better understanding of the 

interaction of monocytes and derived macrophage subsets with ASFV. We consider 

crucial to better caracterise the interaction of ASFV with the porcine immune system, 

and its target cells in particular, in order to generate information useful to underpin 
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vaccine development efforts. An efficient vaccine against ASFV would be an 

important tool to fight this disease, which is now threatening the pig industry in 

Russia and Europe. 

Differences in the expression of functional surface markers and cytokine release on 

monocytes and derived macrophage subsets after in vitro infection with ASFV 

isolates of differing virulence was performed. Few studies have described classical 

and alternatively macrophage activation in pigs (Singleton et al., 2016, Garcia-

Nicolas et al., 2014, Sang et al., 2014) and no investigation of the interaction of 

ASFV with activated macrophage subsets was conducted.  As previously stated, 

macrophages in antithetic polarize status might react differently to ASFV infection, 

with differences between isolates of diverse virulence, influencing the development 

of disease rather than acquisition of protective immunity.  

First, the susceptibility of monocytes and derived macrophage subsets to ASFV 

infection was determined. Differentiation of monocytes into macrophages resulted in 

an increased susceptibility to ASFV infection, in accordance with previous 

publications (Sánchez-Torres et al., 2013, McCullough et al., 1999, Basta et al., 

1999). 22653/14 displayed greater ability to infect monocytes than the avirulent 

BA71V, with differences in the levels of late (p72) but not early (p30) proteins. 

These results suggest that BA71V replication in these cells is inhibited in the early 

stage of replication, whereas the virulent isolate has developed mechanisms to 

promote its growth in monocytes, which in vivo probably results in its ability to 

disseminate in the host. 22653/14 presented also greater ability to infect moM1 than 

the avirulent strain and pre-treatment of porcine macrophages with IFN- or LPS 

alone resulted in an increased resistance to BA71V but not 22653/14 infection. Also 
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a previous study reported that IFN- reduced ASFV replication in porcine monocytes 

and alveolar macrophages, with inhibition of expression of late (p220 and p72) but 

not early (p27) proteins (Esparza et al., 1988). The authors did not observe 

differences in the anti-viral potencies of type II IFN between a virulent (CC83) and 

an avirulent (BA71V) strains, whereas our data revealed differences between strains 

varying in virulence. A recent study reported similar results in the sensitivity of 

ASFV strains to another IFN: IFN-α. Pre-treatment with IFN-α of alveolar 

macrophages reduced replication of attenuated isolates containing MGF 360/530 

deletions but not virulent ASFV strains (Golding et al., 2016). BA71V and other 

attenuated strains present deletions in the region containing 360/530 MGFs (Zsak et 

al., 2001), which suppress type I IFN responses (Afonso et al., 2004, Correia et al., 

2013) and might also interfere with antiviral genes induced by type II IFN. Our data 

also showed that pre-treatment of porcine macrophages with LPS alone resulted in an 

increased resistance to BA71V-infection. Pre-treatment of macrophages with LPS 

can affect macrophage phagocytotic activity, and thus susceptibility to ASFV 

infection (Basta et al., 2001), but differences were observed between the avirulent 

BA71V and the virulent 22653/14 strains. It may be hypothesised that LPS 

engagement with TLR4 leads to IFN- expression (Malmgaard, 2014), inducing an 

antiviral state whose effects are significantly stronger against the avirulent isolate. 

Both isolates were able to infect moM2, without statistically significant differences 

using an MOI of 1. Similar results were observed in the other two studies on 

activated monocyte-derived macrophages: IFN- activation almost completely 

prevented moM infection by a low virulent PRRSV, but not or only partially to 

virulent field isolates (Garcia-Nicolas et al., 2014), whereas M2 polarization did not 
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interfere with PRRSV replication (Singleton et al., 2016, Garcia-Nicolas et al., 

2014).  

Using an MOI of 0.01, the ability of the two ASFV strains to grow in macrophage 

subsets was evaluated. Macrophage activation, especially classical, resulted in an 

initial reduction of 22653/14 replication; nevertheless 48 hours pi almost all (>90%) 

of the live moM1 and moM2 were p30+/p72+ and no differences between 

macrophage subsets were observed in the levels of viral copies number at any time 

points, suggesting that activation only delayed and did not inhibit 22653/14 

replication in these cells. Interestingly, using an MOI of 0.01 only little levels of 

ASFV viral proteins were detected after BA71V-infection. Probably using a low 

MOI the replication of the avirulent strain in macrophages is inhibited soon after 

infection, before the synthesis of early viral proteins, whereas after high MOI 

infection BA71V is able to perform initial stages of replication, but then infected 

cells undergo apoptosis, preventing the production of infectious viral progeny. Little 

but statistically significant differences were observed between macrophage subsets in 

the intracellular levels of ASFV proteins 24 hours pi with the avirulent strain. moM2 

display higher permissiveness to BA71V-infection that moM and moM1, 

suggesting that alternative macrophage activation is negatively correlated with ASFV 

resistance.  

The effect of ASFV-infection on cell surface markers was next investigated. In 

accordance with previous publication, our results showed that ASFV down-regulates 

CD16 expression on monocytes and macrophages (Sanchez-Torres et al., 2003, 

Lithgow et al., 2014). CD16 is a low-affinity receptor for the IgG Fc, that mediates 

phagocytosis and antibody-dependent cellular cytotoxicity (Dato et al., 1992). Both 
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isolates down-regulated the expression of this marker, so this effect has not been lost 

during BA71V attenuation. Our data suggested that down-regulation is a direct 

consequence of ASFV infection and occurs after late protein synthesis. Down-

regulation of CD16 could impact the function of infected cells and ASFV might 

modulate the expression of surface markers on these cells in order to reduce their 

anti-microbial/viral activity, promoting the distribution of cellular sources to 

synthesize new viral proteins. The effect of ASFV on MHC class I and II expression 

was assessed. MHC II present antigenic peptides to CD4 T cells, whereas CD8 T 

cells recognize antigens presented by MHC I (Trombetta and Mellman, 2005), so 

modulation of their expression can thus affect antigen presentation and development 

of adaptive immune responses.  

22653/14-infected monocytes/macrophages presented similar MHC-I levels to 

bystander or mock-infected cells, instead BA71V-infected moM and moM2 

displayed a lower percentage of MHC I+ cells than uninfected cells. This down-

regulation might be due to a general blockade of the protein synthesis, a consequence 

of pro-apoptotic signals that occurs after infection with the avirulent strain, or by 

other mechanisms commonly used by viruses to inhibit MHC class I expression, such 

as cellular transport inhibition or active removal from the cell surface (Tortorella et 

al., 2000). In a previous study ASFV infection was associated with down-regulation 

of IFN-α-induced MHC class I expression on aortic endothelial cells, where 

activation of the apoptotic pathway occurred rapidly after infection (Valee et al., 

2001). Probably in the absence of the mechanisms developed by virulent ASFV 

strains to survive in myeloid cells, ASFV-infected cells undergo apoptosis and down-

regulate MHC class I, activating NK cell killing (Lanier, 2005). Another hypothesis 

http://jvi.asm.org/content/75/21/10372.long#ref-44
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might be that infection with BA71V and not with 22653/14 leads to a higher release 

of some IFN- subtypes, with inhibitory action on MHC class I expression. Even if 

the release of type I IFN in response to ASFV infection was not assessed, a previous 

study reported that a low virulent ASFV isolate induced enhanced expression of IFN-

than virulent one (Gil et al., 2008) and some IFN- subtypes have shown 

inhibitory control on MHC I expression on porcine cells (Zanotti et al., 2015). The 

absence of MHC class I down-regulation in moM1 might be due to the fact that viral 

replication is inhibited soon after infection, so the signals that induce MHC class I 

down-regulation in BA71V-infected moM do not occur. Extremely little 

differences were observed in the MHC-II expression of monocytes/macrophages, 

suggesting that ASFV does not modulate the expression of this marker, as previously 

described for monocytes, alveolar (Sánchez-Torres et al., 2003) and bone marrow 

derived macrophages (Lithgow et al., 2014). Finally, we analysed the effect of ASFV 

on CD163. A role of this molecule in the process of infection of porcine 

monocytes/macrophages by ASFV has been suggested, but a recent study suggested 

that this marker was not essential in ASFV infection (Sánchez-Torres et al., 2013, 

Lithgow et al., 2014). Using p72 mAb to determine the intracellular levels of ASFV, 

infected monocytes/macrophages expressed similar percentage of CD163 to 

bystander cells, supporting the results of Lithgow et al. (2014). Levels of CD163 on 

BA71V-infected cells were always lower than the mock-infected control, perhaps 

because its synthesis was inhibited, as a consequence of pro-apoptotic signals, or 

because its extracellular portion was released after infection, in response to 

inflammatory or other stimuli (Ezquerra et al., 2009). 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Lithgow%20P%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lithgow%20P%5Bauth%5D
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In the final part of the study the cytokine responses of porcine 

monocyte/macrophages to ASFV infection were characterised. Previous studies 

reported that macrophage infection with ASFV resulted in an enhanced expression of 

mRNA levels of pro-inflammatory cytokines (TNF-, IL-1, IL-6, IL-15) (Gómez 

del Moral et al., 1999, Gil et al., 2003, Zhang et al. 2006), with differences between 

isolates of different virulence (Gil et al., 2008). Contrasting results were reported on 

the levels of TNF- in culture supernatants: Gomez del Moral et al. (1999) observed 

an increased in the levels of this cytokine in culture supernatant after infection with 

the virulent E-75, instead Zhang et al. (2006) could not detect it, despite the increase 

of its mRNA in the cells soon after infection with the virulent Malawi LIL120/1 and 

the low virulent OURT88/3. Authors speculated that post-transcriptional events 

involved in protein stability could affect the levels of the protein accumulated. In 

accordance to the latter study no TNF- release in response to ASFV infection was 

detected in our work. These differences might be related to the different strains 

adopted. In accordance with Zhang et al. (2008) IL-1release was observed in 

response to ASFV infection, but we observed higher IL-1 levels from 

monocytes/activated macrophages mainly in response to the avirulent BA71V strain. 

Also higher levels of IL-1 were detected after BA71V infection in comparison to 

the virulent 22653/14. Both IL-1 and IL-1 are strongly pro-inflammatory 

cytokines and perform their functions through binding of the IL-1 receptor (IL-1R) 

(Duque and Descoteaox, 2014). IL-1 is synthesized as a biologically inactive 

precursor inside the cell and it is cleaved by the enzyme caspase-1 to the biologically 

active mature form that is released from cells (Arend et al., 2008). IL-1 has a pro-
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apoptotic role (Friedlander et al., 1996), so it could be speculated that the release of 

IL-1 after BA71V infection may contribute to the early apoptosis of porcine 

monocyte/macrophages, which in vivo probably limits viral replication and pro-

inflammatory dysregulation. The virulent 22653/14 might have developed 

mechanism to inhibit IL-1 release, in order to promote its replication inside 

monocyte/macrophages. Gil et al. (2008) reported an increase of the IL-12p40 levels 

in  macrophage supernatants after ASFV infection, with differences between isolates 

of different virulence (Gil et al., 2008). IL-12 release after ASFV infection of 

monocytes/macrophage subsets was not detected in our experiments, and this 

difference might due to the fact that an avirulent (BA71V) and not a low virulent 

(NH/P68) isolate was tested, or because IL-12p40 is also a subunit of IL-23 

(Oppmann et al., 2000), which might be released in response to infection with low 

virulent ASFV strains. Nevertheless, an increase in the levels of another potent IFN- 

inducer was detected in the supernatants of BA71V infected macrophages: IL-18 

(Dinarello, 1999). This cytokine is a member of the IL-1 family and, like IL-1, is 

synthesized as a inactive precursor molecule which is cleaved by caspase-1 before or 

during the released from cells (Dinarello, 1999; Arend et al., 2008). IL-18 synergizes 

with IL-12 to promote the development of a TH1 response and it activates T cells to 

synthesize IL-2, IFN- and TNF- (Dinarello, 1999). Release of IL-18 may be 

implicated in the acquisition of a TH1 cell response, correlated to protection against 

ASFV (Takamatsu et al., 2013), and the difference observed between isolates of 

different virulence might suggest that 22653/14 have developed mechanism to 

counteract the induction of this response.   
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In summary, our detailed in vitro analysis of the interaction of ASFV isolates varying 

in virulence with monocytes and derived macrophage subsets revealed that compared 

to the avirulent BA71V strain, the field isolate 22653/14 showed an enhanced 

capacity to replicate in monocytes and moM1, did not induced MHC I down-

regulation in infected moM/moM2 and induced lower release of IL-18, IL-1and 

IL-1. It is hoped that the observed strains differences will be valuable to aid our 

understanding of the pathogenesis and immunomodulation of host cell responses by 

ASFV.  
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