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SUMMARY  

 

The Vietnamese population is ethnically highly heterogeneous and the spectrum of β-thalassemia 

alleles is slowly defining. On the whole, six mutations of the β
0
- and a mutation of the β

+
-

thalassemia have been identified and observed with distinct incidence in the different areas. 

Interaction between these mutations and the rather common Hb E leads to a variety of 

thalassemia syndromes, in particular to the severe forms of homozygous β-thal and Hb E-β-thal 

diseases. Nonetheless, epidemiological data is still insufficient and fragmented. 

In this Doctoral Thesis, a screening program for hemoglobinopathies was carried out in the 

central provinces of Vietnam as part of the ongoing cooperation between the Universities of Hue 

and Sassari.  

A study group of 160 subjects referred to Hue Medicine and Pharmacy College and PhuVang 

District Hospitals for hematological and clinical evaluation and a control group of 193 

individuals were included in the study. A total of 89 samples showed abnormal hematological 

parameters and have undergone to Hbpathies screening. About 30% of them, having qualitative 

or quantitative alteration in Hb profiles,  were investigated by DNA analysis. 

Several mutated β-alleles were identified by nucleotide sequencing. Some of them were already 

described also in other countries of the Southeast Asia with different incidence. On the contrary, 

the β
+
 promoter mutation -72 (T→A), found in a 5-year old child and in his relatives, has never 

been described before. In vitro expression studies were performed into K562 cells. The 

transcriptional activity of the mutated promoter is roughly half that of the wild type promoter. 

Although this is a mild thalassemic mutation, it is impossible to predict the severity of the 

phenotype and its clinical implications in the interaction with severe β-thalassemic allele. Indeed, 

because of the extremely high gene frequency for HbE and the widespread occurrence of β-

thalassemia in Vietnam, the incidence of β
E
/β

Thal
 or β

Thal
/β

Thal
 compounds is very high. 

This result underline the importance of identifying and characterizing new or rare β-thalassemic 

alleles in carrier screening and prenatal diagnosis in order to reduce the burden of thalassemias, 

avoid unnecessary transfusions in TI and start early transfusions in TM.  
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INTRODUCTION 

1. Structure and function of hemoglobin 

 

Hemoglobin (Hb) is the iron-containing protein within the red blood cells that is responsible for 

the transport and exchange of oxygen. Hb is a tetrameric protein composed of four polypeptide 

chains, two α-globin and two β-like globin polypeptide chains encoded by individual specific 

genes. The α- and β-globin chains are very similar in structure. Both of them contain primarily α-

helix secondary structure with no β-sheets. Each α- or β-globin chain folds into 8 α-helical 

segments (A-H) which, in turn, fold to form globular tertiary structures. The folded helices form 

a pocket that holds the heme group. The heme group is composed of a heterocyclic ring, named 

as porphyrin, which contains a charged iron molecule. The porphyrin ring includes four pyrrole 

molecules cyclically linked together by methene bridges with the iron ion bound in the center 

(Figure 1). The nitrogen atoms of the pyrrole molecules form coordinate covalent bonds with 

four of the iron's six available positions which all lie in one plane.  

The  iron is bound to the globular protein via the imidazole ring of the  F8 histidine residue (also 

known as the proximal histidine) below the porphyrin ring. A sixth position can reversibly  bind 

oxygen by a coordinate covalent bond, completing the  

octahedral group of six ligands. 

 

Figure 1. The heme prosthetic group. The iron atom of heme has six coordination bonds: four in the plane of, and 

bonded to, the flat porphyrin ring system, and two perpendicular to it. 

 

The iron ion may be either in the Fe
2+

 or in the Fe
3+

 state, but ferriHb (Fe
3+

), also called metHb, 

cannot bind oxygen. In binding, oxygen temporarily and reversibly oxidizes Fe
2+

 to Fe
3+

 while 

http://en.wikipedia.org/wiki/Heterocyclic_compound
http://en.wikipedia.org/wiki/Porphyrin
http://en.wikipedia.org/wiki/Pyrrole
http://en.wikipedia.org/wiki/Methine
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oxygen temporarily turns into superoxide, thus iron must exist in the +2 oxidation state to bind 

oxygen. If superoxide ion associated to Fe
3+

 is protonated the Hb iron will remain oxidized and 

incapable to bind oxygen. In such cases, the enzyme metHb reductase will be able to eventually 

reactivate metHb by reducing the iron center.   

In binding, oxygen molecules leading to the whole Hb molecule undergoing a conformational 

shift from the low oxygen affinity T-state to the high affinity R-state (Figure 2). The shift 

initiates when the bound oxygen changes the heme's electronic state, resulting in the Fe-

porphyrin bonds together. This causes the heme to flatten out into a nearly planar molecule. 

When the heme flattens, the proximal histidine is pulled along, for appoximately 0.6 Å. This is 

only possible with an accompanying rearrangment of the attached F-helix; it is translated about 

1Å along the heme plane (Voet & Voet, 2011). The change between the T and R structures is the 

result of a rotation of 15 degrees between the two αβ dimmers. This rotation changes the bonds 

between the side chains of the αβ dimers in the F helix and therefore causes the heme molecule 

to change positions. In the T structure, the iron ion is pulled out of the plane of the porphyrin 

ring and becomes less accessible for oxygen to bind to it, thus reducing its affinity to oxygen. In 

the R structure the iron atom is in the plane of the porphyrin ring and is accessible to bind 

oxygen, thus increasing its oxygen affinity.   

Figure 2. The T → R transition. The transition from the T state to the R state shifts the subunit pairs substantially, 

affecting certain ion pairs. Most noticeably, the His HC3 residues at the carboxyl termini of the β subunits, which 

are involved in ion pairs in the T state, rotate in the R state toward the center of the molecule, where they are no 

longer in ion pairs. Another dramatic result of the T → R transition is a narrowing of the pocket between the β 

subunits. 
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The capacity of Hb to take up oxygen molecules in the lungs and then release them in the tissues 

is regulated by several factors both within the Hb molecule itself and through external chemical 

factors. One of the most enormous regulators of the oxygen affinity of the Hb is the presence of 

oxygen itself. In the lungs where the oxygen levels are high, the Hb has a higher affinity for 

oxygen and this affinity increases disproportionately with the number of molecules it already has 

bound to it (Figure 3).  In other words, after the oxyHb binds one molecule of oxygen, its affinity 

for oxygen increases until the Hb is fully saturated. In the same way, the deoxyHb has a lower 

affinity for oxygen and this affinity decreases disproportionately with the number of molecules it 

already has bound. Thus, the loss of one oxygen molecule from the deoxyHb lowers the affinity 

for the remaining oxygen. This regulation is known as cooperativity and is essential to the 

functioning of the Hb because it allows the oxyHb to carry the maximum amount of oxygen to 

the tissues and then allows the deoxyHb to release the maximum amount of oxygen into the 

tissues. Cooperativity is a function of the Hb's unique structural characteristics, and it was found 

that the cooperative effects of the Hb totally disappear if the Hb is split in half . Essentially, Hb 

is an allosteric protein that has more than one shape and can undergo conformational changes in 

its structure based on environment conditions. 

Figure 3. The sigmoid (cooperative) binding curve of human Hb. The sigmoid binding curve can be analyzed as a 

hybrid curve reflecting the transition from a low-affinity to a high-affinity state. Because of its cooperative binding, 

as manifested by a sigmoid binding curve, Hb is more sensitive to the small differences in O2 concentration between 

the tissues and the lungs, allowing it to bind oxygen in the lungs (where pO2 is high) and release it in the tissues 

(where pO2 is low). 
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The oxygen affinity of Hb can also be regulated by external chemical factors including pH, 

carbon dioxide, and BPG (2,3-bisphosphoglycerate) (Figures 4,5). In general any chemical 

agents that strengthen the bonds between the α subunits and prevent the rotation to the R 

structure decrease the oxygen affinity of the Hb.  

When CO2 is released into the blood from the tissues it acidifies the blood by increasing the 

concentration of hydrogen ions. This lowering in pH causes the oxygen affinity of the Hb to 

decrease, which is known as the Bohr effect. The molecular basis behind the Bohr effect is that 

the T structure of Hb binds hydrogen more readily than the R structure, so under a condition of 

low pH (high hydrogen ion concentration) the T structure, which has a decreased oxygen 

affinity, dominates.  

Figure 4. Effect of pH on oxygen binding to Hb. The pH of blood is 7.6 in the lungs and 7.2 in the tissues.  

 

CO2 has a similar effect on the Hb, but instead of binding to the heme molecule like oxygen, CO2 

binds to the N-terminus of the α-globin molecule. The CO2 binds better to the globin in the T 

structure, so the release of oxygen in the tissues by the T structure of Hb facilitates the uptake of 

CO2. Then in the lungs, the uptake of oxygen causes the Hb to change to the R structure, which 

causes the release of the CO2 into the lungs, because CO2 does not bind as well to the R 

structure.  
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Finally, BPG is an allosteric effector that changes the oxygen affinity of Hb by binding to the Hb 

itself. BPG can bind to the T structure of Hb, because of the change in structural conformation 

which allows it to fit, but cannot bind to Hb in the R structure. Therefore, the presence of BPG 

lowers the oxygen affinity by keeping the Hb in the T structure longer.  

 

Figure 5. Effect of BPG on oxygen binding to Hb. 

The allosteric regulation of deoxyHb-mediated nitrite reduction can yield bioactive NO (Nitric 

oxide). Moreover, Hb cross-linking and conformational locking can dramatically impact on 

nitrite-reduction kinetics, NO-formation and bioactivity thereby resulting in Hbs that can more 

effectively couple nitrite-reduction to stimulation of NO-bioactivity. Nitrite reduction kinetics 

measured by deoxyHb consumption do not necessarily reflect the yield of NO. In this regard, the 

determination of NO gas production and assessment of NO-dependent signaling provides a more 

accurate indicator of the ability of different Hbs to produce bioactive NO from nitrite reduction. 

This observation might be of particular relevance when assessing the ability of different HBOCs 

(Hb-based oxygen carrier) to function as nitrite reductase under physiological condition (Cantu-

Medellin et al., 2011). 
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2. The human globin genes  

 

Hematopoiesis during mammalian development is characterized by the progressive appearance 

of distinct populations of cells at stage-specific sites within the embryo. In concert with the 

progression from primitive to definitive hematopoiesis, the developing erythroid system 

expresses stage-specific forms of Hb in a process known as Hb switching. 

In humans, six different Hb types are produced: Hb Gower I (δ2ε2), Gower II (α2ε2), and Portland 

(δ2γ2) are found in the embryo; fetal Hb (HbF; α2γ2) is present mainly in the fetus, but also in the 

embryo and adult, whereas HbA (α2β2) and HbA2 (α2δ2) are seen in adults. Also, all Hbs undergo 

post–translational modification forming minor Hb such as HbF1 (acetylated form of HbF) or 

HbA1C (non–enzymatic glicated form of HbA). 

Embryonic Hb are expressed in primitive erythroblasts developing in the yolk sac during the first 

several weeks after conception. The first major Hb switching event occurs as δ- and ε-globin 

expression ceases and α- and γ-globin synthesis begins, leading to production of HbF (Figure 6). 

These events are coincident with the transition of the site of erythropoiesis from the yolk sac to 

the fetal liver. The second switch involves the perinatal decline of HbF synthesis coupled with 

the increased synthesis of the adult form HbA. After 2 years of age, HbF is present as a minor 

component of total Hb
 
in only a few percentage of mature red blood cells in healthy persons 

(Steinberg et al., 2009). 

Figure 6. Switch of the human globin genes and location of erythropoiesis. 
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The genes encoding the different globin chains of Hb are members of an ancient gene family and 

they share a common structural organization. 

Before the precise knowledge of globin gene organization, it was clear that there must exist at 

least one gene for each of the different globin chain (δ, α, ε, γ, β, δ). Further studies based on 

HbF heterogeneity and globin variants showed that α and γ genes are duplicated and structurally 

different: the two α genes encode the same protein, while γ genes are different only for one 

amino acid (136 Gly/Ala: 
G
γ and 

A
γ, respectively) (Steinberg et al., 2009).  

The coding region of each globin gene in humans and other vertebrates is interrupted at two 

positions by stretches of noncoding DNA called intervening sequences (IVSs) or introns 

(Tilghman et al., 1978). In the β-like globin genes, the introns interrupt the sequence between 

codons 30 and 31 and between codons 104 and 105; in the α-globin gene family, the IVSs 

interfere the coding sequence between codons 31 and 32 and between codons 99 and 100 (Figure 

7). Despite the precise codon position numbers at which the interruption occurs differ between 

the α- and β-like globin genes, the introns occur at precisely the same position in the aligned 

primary sequence of the α- and β-globin chains. The first intervening sequence (IVS-1) is shorter 

than the second intervening sequence (IVS-2) in both α - and β -globin genes, but IVS-2 of the 

human β -globin gene is much larger than that of the α -globin gene (Steinberg et al.,2009). 

Figure 7. A) General structure of globin genes. B) The pathway for maturation and expression of mRNA of the 

globin genes. 
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The α–like and β–like genes map on different chromosomes: the so called  

“β–globin or HBB cluster" maps on chromosome 11 (11p15.5), while “α–globin or  HBA 

cluster” locates on chromosome 16 (16p13.3), 150 kb from the telomere of its short arm (Figure 

8).  

 

Figure 8. Basic organization of human β- (A) and α-globin (B) gene clusters and composition of Hb produced 

(C). 

 

The conceptually simple pattern of globin gene expression during development is the result of a 

complex series of regulatory events. Numerous epigenetic and transcriptional regulators are 

necessary for switching to occur, in what remains an incompletely understood process, despite 

several decades of research.  

The synthesis of the α–like and β–like globin chains are balanced throughout human 

development. Imbalanced globin chain synthesis caused by the reduction of one of the globin 

chains results in thalassemias. 
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To facilitate their coordinately regulated transcription, the α- and β-globin loci are structurally 

similar with a series of evolutionarily conserved regulatory elements that direct tissue-specific 

transcription of far-downstream globin genes. Furthermore, the genes are arranged in the order of 

their developmental expression with primitive (embryonic) globin genes followed by definitive 

(fetal/adult) globin genes. To account for their similarity in genomic structure, the α and β loci 

arose by duplication of an ancestral locus at an early stage of vertebrate evolution ~500 million 

years ago and have been constrained by purifying selection (Steinberg et al., 2009).  

In the globin gene clusters, there was the presence of additional gene-like structures with 

sequence homology and an exon–intron structure similar to the actively expressed globin genes. 

These DNA segments have been called pseudogenes. One, called β1, is in the HBB cluster 

between the γ- and - globin genes. At least two (and possibly four) are in the HBA cluster. The 

two clear examples are 1 and α1, located between the active -globin and α-globin genes. 

All three (β1, 1 and α1) are characterized by the presence of one or more mutations that 

render them incapable of encoding a functional globin chain. This inability to encode a 

functional globin polypeptide does not necessarily render the pseudogenes inactive for 

transcription. The pseudogene β1 is transcribed and spliced, as shown by several spliced 

expressed sequence tags, whereas no evidence has been provided that α1 is transcribed. These 

pseudogenes appear to have arisen by gene duplication events within the globin gene clusters 

followed by mutation and inactivation of the duplicated gene and subsequent accumulation of 

additional mutations through loss of selective pressure. Two other α-like globin genes have been 

identified and characterized in the HBA cluster, but their roles, if any, in encoding globin 

polypeptides are still uncertain (Steinberg et al., 2009). 

The expression pattern of globin genes depends on local cis-acting sequences at the promoter 

sequences. The globin gene promoters share a number of characteristic sequences at specific 

distances from the transcriptional start site (TSS). These sequences include TATA, CCAAT and 

CACCC which are situated at 30, 70-78, and 80- 140 bp upstream of the TSS, respectively. The 

TATA and CCAAT sequences are found in many eukaryotic promoters while the CACCC 

sequence exists predominantly in erythroid specific genes. Importance of these sequences for 

normal globin gene expression has been demonstrated by the presence of natural mutations at 

these sites that lead to down regulation of the globin genes causing thalassemia (par. 4.2.). Other 

regulatory sequences that control the globin genes include the enhancer and silencer elements 
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that interact with protein complexes to influence promoter activity and transcription of target 

genes. Remote cis-acting sequences, such as the locus control region (LCR) of the HBB cluster 

and the major regulatory element (MRE) of the HBA cluster are also crucial for the expression of 

the globin genes. The LCR spans a 16kb region which starts 5kb upstream of β-globin gene. The 

function was identified as essential for high level expression of these genes (Tuan et al., 1985; 

Forrester et al., 1986; Grosveld et al., 1987; Bender et al., 2000). Molecular experiments such as 

DNAse Hypersensitivity assays have highlighted the active parts of the β-globin locus. Genes 

that have an „open‟ chromatin structure (euchromatin) are transcriptionally active, whereas 

transcriptionally silent genes have a „closed‟ chromatin structure (heterochromatin). Open 

chromatin is hypersensitive to nuclease digestion while closed chromatin is resistant to DNase I 

digestion. Thus, transcriptionally active sites can be identified by their hypersensitivity to DNase 

I. In 1980s Tuan et al. and Groudine et al. discovered the 5 hypersensitive sites (HS1-5) that are 

located  upstream of the β-globin gene. These sites are phylogenetically conserved sequences and 

they play a crucial role in the regulation of the β-globin gene locus (Forrester et al., 1986, 

Stamatoyannopoulos et al., 2005; Stamatoyannopoulos et al., 2009). There are 2 more 

hypersensitive sites that are positioned further upstream but only HS1-5 were shown to be 

erythroid specific (Stamatoyannopoulos et al., 2005). HS1-4 are hypersensitive to DNase I in 

erythroid cells, whereas HS5 is ubiquitous in many non-erythroid cells. The hypersensitive site 

cores are 200-300 bp and contain binding sites for ubiquitous and erythroid specific transcription 

factors (Hardison et al., 1997). 

 

3. HBB cluster regulation 

 

The β-LCR has important functions, such as enhancement of transcription, remodeling the 

chromosome structure through histone modifications, acting as an insulator to regulate enhancer 

promoter interactions and enabling the correct positioning of the β-globin locus in the nucleus 

(Stamatoyannopoulos et al., 2005; Bender et al., 2006). Various studies supported the importance 

of the LCR for globin regulation; as evidenced by results that deletions of the β-LCR in 

transgenic mice leads to reduction of globin gene expression by 100-fold. Another study showed 

that deletion of individual HS sites in the β-LCR disrupts the activation of globin genes proving 

that an intact LCR is necessary for activation of the globin genes (Milot et al., 1996; Bender et 
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al., 2000). At the transcriptional level, specific sequences in the promoters compete with other 

promoters to interact with the LCR through binding of transcription factors. Binding of these 

transcription factors is regulated through remodeling of the chromatin by various histone 

modifications that enables activation of different parts of the globin locus during development. 

Acetylation and methylation are the histone modification observed at the β-globin locus. 

Acetylation mainly harbors an open state of chromatin thus acts as an activator. On the other 

hand methylation may act both as an activator and repressor depending on the site that is 

methylated.  

Several models have been proposed to explain how the β-LCR functions to activate the 

downstream globin genes and of these, the looping model is the most widely accepted (Figure 9). 

This model suggests that the HS sites of the β-LCR fold into a holocomplex, bringing the LCR 

closer to the appropriate gene and thereby the transcription factors bound to the LCR are 

delivered to the gene locus to interact with the basal transcriptional apparatus and activate globin 

gene expression (Stamatoyannopoulos et al., 2005).  

 

Figure 9. Model of transcription complex recruitment to the β-globin gene. The LCR and TS interact to form a 

chromatin hub. In the active chromatin hub, the expressed genes interact with the HS sites. The genes come in close 

proximity to the LCR holocomplex by as yet unknown mechanisms that may involve local remodeling of chromatin 

structure at the active promoters. Transcription complexes are then transferred from the LCR to high affinity 

binding sites at the globin gene promoters.  
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Studies have demonstrated the interaction of the LCR with downstream globin gene promoters 

via the looping model. Carter et al. (2002) used an RNA FISH method called RNA TRAP to tag 

and recover chromatin near the murine β-globin gene which recovered HS1, HS2 and HS3 

together with the β-globin gene. This demonstrated that the HS sites and β-globin gene were in 

close proximity. 

A further study used chromatin conformation capture to measure the proximity of LCR 

sequences and active globin genes in erythroid cells. Clustering of active regulatory elements at 

these sequences was referred to as an active chromatin hub (ACH) (Tolhuis et al., 2002).  

Transcription factors play an important part in gene regulation at the HBB locus. The HS sites all 

share a core sequence ~250 nucleotides long, which is studded with motifs for transcription 

factors. The HS sites contain binding sites for erythroid specific transcription factors NF-E2, 

GATA-1 USF, Sp1 and KLF1 (Harju et al., 2005). NF-E2 is an erythroid-specific DNA-binding 

protein that recognizes motifs (GCTGA(G/C)TCA) in the 5‟HS2 of the β-LCR (Talbot & 

Grosveld, 1991; Stamatoyannopoulos et al., 1995). Here, the NF-E2 binding sites are important 

for transcriptional activation and formation of HS sites in the LCR (Forsberg et al., 2000; Ney et 

al., 1990). Experimental evidence also shows NF-E2 binding sites are important for chromatin 

remodelling activity and necessary for ε-globin gene expression and formation of HS2 (Gong et 

al., 1996). GATA-1 is also an erythroid specific transcription factor required for globin gene 

switching and erythroid cell maturation. It is a member of the GATA zinc finger family of 

transcription factors which bind to nucleic acid consensus sequence (T/A)GATA(A/G) (Evans & 

Felsenfeld, 1989; Tsai et al., 1989). GATA-1 binds to sites in the globin gene promoters and HS 

site cores of HS1-5 which contain the GATA-1 recognition sequence (Orkin, 1992). GATA-1 

can also act as an activator when bound to the γ-globin gene promoter or HS1-5 (Jane et al., 

1993; Stamatoyannopoulos et al., 1995). GATA-1 is also an activator of the ε-globin gene but 

acts as a repressor of ε-globin when bound to the ε-globin gene silencer with transcription factor 

YY1 (Li et al., 1998). GATA-1 is known to interact with itself and other transcription factors 

like SP1 and KLF1 (Merika & Orkin, 1995). Krüppel-like factor 1, KLF1 (previously known as 

erythroid Krüppel-like factor, EKLF) was identified by subtractive hybridization and found to be 

an erythroid cell-specific transcription factor, homologous to the Krüppel family of transcription 

factors which have roles in cell proliferation, differentiation and survival (Miller & Bieker, 
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1993). KLF1 contains three zinc fingers at the C-terminus which bind to a CACCC sequence. 

CACCC sequences are repeated in erythroid enhancers and promoters, including the β-globin 

gene promoter (Miller & Bieker, 1993). This sequence is noted as a site of point mutations that 

give rise to β-thalassemia. It is reported by Feng et al. (1994) that KLF1 is unable to transactivate 

in the presence of these point mutations due to a decrease in binding affinity for these target 

sites.  

The KLF1 protein binds to the β-globin promoter with 8 fold higher affinity than to the γ-globin 

promoter (Donze et al., 1995). These studies showed KLF1 as a stage-specific, β-globin-specific 

transcription factor and proposed that it is most likely an important factor in the fetal to adult Hb 

switch. Further studies in mice revealed that KLF1 -/-  mice die around day 14-15 of gestation 

due to anemia caused by the failure to express β-globin. Moreover, the embryos showed features 

of β-globin deficiency as found in β-thalassemia. KLF1-/- embryos appeared normal during 

embryonic yolk sac stage of hematopoiesis, but became fatally anemic during early fetal life, at 

the precise time of the switch from embryonic to fetal-liver erythropoiesis (Nuez et al., 1995, 

Perkins et al., 1995).  

KLF1 binding also enhances the interaction between the β-globin promoter and the LCR and so 

the interaction between the γ-globin promoter and LCR decreases (Miller & Bieker 1993, Donze 

et al., 1995). The human β-globin locus was studied in KLF1-/-/human β-locus transgenic mice 

(Wijgerde et al., 1996). The ε and γ globin genes were expressed normally in KLF1-/- fetuses, 

with a complete lack of β-globin expression. In KLF1+/- /β-globin transgenic mice, there was a 

shift in the γ to β ratio caused by an increase in the number of actively transcribed γ genes and a 

decrease in transcribed β genes. The authors proposed that the reduction in KLF1 in the KLF1+/- 

mice reduced the time the LCR was in complex with the β-globin gene. Because KLF1 does not 

directly bind γ-globin, an increase in γ-globin is due to the LCR being less occupied with β-

globin, therefore less β-globin activation and more interaction is formed between the LCR and γ-

globin (Wijgerde et al., 1996). This was accompanied by changes in chromatin structure at the β-

globin promoter, and HS3 of the β-LCR. Following this work, KLF1 was found to be required 

for the activity of 5‟HS3 of the β-globin LCR by binding directly to the core fragment within 

HS3. Increasing levels of KLF1 lead to changes in the balance from γ to β-globin gene 

expression, which results in an earlier switch of the globin genes and the amount of KLF1 also 

influences the rate of the switching process (Tewari et al., 1998). These studies, collectively 
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demonstrate the importance of KLF1 in the γ to β globin switch and LCR-β-globin gene 

interactions.  

 

4. Disorders of hemoglobin 

To date, more than 1600 disorders of Hb synthesis and of the structure have been identified. 

These are collected, and continuously update, in the Globin Gene Server (HbVar, 

http://globin.cse.psu.edu/). 

Hb disorders can be broadly classified into two general categories: qualitative 

Hemoglobinopathies (Hbpathies) in which there is a structural defect in one of the globin 

subunits, and quantitative Hbpathies characterized by the absence or reduced output of one or 

more of the globin chains. These are called the thalassemia syndromes.  

4.1. Qualitative disorders of globin structure 

The qualitative Hbpthies class is mainly composed of missense mutations that cause single 

amino acid substitutions in the globin protein, resulting in an abnormal, or “variant” Hb tetramer. 

Less commonly, Hb variants are associated with deletions or multiple amino acid substitutions 

(Thom et al., 2013). 

The majority of human Hb mutants were discovered as an incidental finding, unassociated with 

any hematologic or clinical phenotype since most commonly the amino acid change is 

innocuous, perturbing neither the structure nor function of the Hb molecule. Occasionally, 

alteration of a single amino acid dramatically perturbs the behavior of the Hb and produces a 

disease state. The most common and medically important Hb variants include HbS 

[β6(A3)Glu→Val], HbC [β6(A3)Glu→Lys] and HbE [β26(B8) Glu→Lys]. In addition to these 

prevalent mutant proteins, there are also >1000 other known naturally occurring Hb variants, 

which are rare individually but common collectively (Forget & Bunn, 2013). 

Sickle Cell Disorders 

Sickle Hb (HbS) results from an amino acid substitution at the sixth residue of the β-globin 

subunit: β6 Glu→Val. Approximately 8% of African Americans are heterozygous for this Hb 

variant, a condition called sickle cell trait or HbAS. In equatorial Africa, where malaria is 

endemic, the prevalence of HbAS is much higher and can reach over 30% in some populations 

because of survival advantage of HbAS heterozygotes from complications of falciparum malaria. 
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RBCs of persons with HbAS typically have 40% HbS and 56%-58% HbA. Individuals with 

HbAS are typically asymptomatic; severe hypoxia is required for them to experience 

manifestations of sickle cell disease, called sickling. The basis of sickling in patients 

homozygous for the disorder, called sickle cell anemia or HbSS, is polymerization of deoxy-HbS 

resulting in the formation of multistranded fibers that create a gel and change the shape of RBCs 

from biconcave discs to elongated crescents. The polymerization/sickling reaction is reversible 

following reoxygenetion of the Hb. Thus, an RBC can undergo repeated cycles of sickling and 

unsickling.  

There are two major pathophysiological consequences of sickling: repeated cycles of sickling 

damage the red blood cell membrane leading to abnormalities of permeability and cellular 

dehydration, eventually causing premature destruction of RBCs and a chronic hemolytic anemia. 

Moreover, sickled RBCs are rigid, increase blood viscosity and obstruct capillary flow, causing 

tissue hypoxia and, if prolonged, cell death, tissue necrosis/infarction, and progressive organ 

damage (Forget & Bunn, 2013).  

The amount and type of other non-S Hb variants in the RBC can influence the extent or rate of 

sickling, and thus clinical severity. HbSC disease is associated with significant clinical 

manifestations. HbSC patients are compound heterozygotes for β
S
/β

C
 alleles. HbC is caused by a 

mutation in the sixth position of the β-globin chain, where glutamic acid is substituted by lysine.  

Two independent factors conspire to make HbSC a disease. The presence of HbC in the RBC 

greatly enhances potassium efflux and cell dehydration, which increases corpuscular Hb 

concentration (Bunn et al., 1982) and promotes polymerization. Sickling in SC patients is further 

enhanced by the fact that they have ~50% HbS, whereas HbAS individuals have ~40% HbS. 

This difference is because α-globin subunits bind more readily to negatively charged β
A
-subunits 

than to positively charged β
C
-subunits (Forget & Bunn, 2013). 

Unstable Hb variants  

A substantial minority of Hb mutants have substitutions that modify the solubility of the 

molecule in the red cell. Mutations that alter any step in globin processing, including subunit 

folding, heme interaction, dimerization or tetramerization, can destabilize Hb. Five general 

mechanisms can occur: amino acid substitutions within the heme pocket, disruption of secondary 
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structure, substitution in the hydrophobic interior of the subunit, amino acid deletions and 

elongation of the subunit (Bunn & Forget, 1986).  

The intraerythrocytic precipitated material derived from the unstable abnormal Hb is detectable 

by a supravital stain as dark globular aggregates called Heinz bodies. These intracellular 

inclusions reduce the life span of the red cell and generate a hemolytic process of varied severity 

called congenital Heinz body hemolytic anemia. When a red cell hemolysate of an affected 

individual is heated to 50°C or treated with 17% isopropanol, a precipitate usually develops. The 

Hb electrophoresis often reveals an abnormal banding pattern. Definitive diagnosis requires 

analysis of either globin structure or DNA sequence (Forget & Bunn, 2013).  

Hb variants with altered oxygen affinity  

Over 25 Hb variants have been encountered in individuals with erythrocytosis. Amino acid 

substitutions cause an increase in oxygen affinity usually because stabilize the R state relative to 

the T state and/or inhibit responses to environmental allosteric regulators that stimulate O2 

release, including H
+
 (Bohr effect) or 2,3-BPG. Because T to R state transitions are mediated 

largely through α1β2 interactions, high affinity variants frequently result from substitutions that 

alter this interface.  

About half of the high-affinity variants can be detected by Hb electrophoresis. Definitive 

diagnosis is established by demonstration of a “shift to the left” in the oxyHb binding curve.  

Low O2 affinity Hb variants typically present with cyanosis. In general, these variants are caused 

by globin amino acid substitutions that tip the quaternary equilibrium of Hb tetramers from the R 

to the T state. This does not inhibit Hb-O2 release in tissue capillaries, but rather, interferes with 

Hb-O2 uptake if the P50 has increased to ≥50 mm Hg. Paradoxically, low O2 affinity Hb variants 

can be associated with mild anemia thought to be caused by increased O2 tissue delivery with 

reduced erythropoietic drive. In addition, some low O2 affinity mutants are unstable and 

therefore associated with not only cyanosis but also Heinz body hemolytic anemia (Thom et al., 

2013). 

MetHb (“M-Type”) variants  

Hb iron must be in its reduced (Fe
2+

, ferrous) state to bind O2. Moreover, oxidized (Fe
3+

, ferric, 

met) Hb is intrinsically unstable with a tendency to release heme. Hb reduction is maintained 
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through intrinsic features of the Hb protein and extrinsic antioxidant pathways within RBCs. 

Exposure to oxidant drugs or toxins, genetic alterations in erythroid metHb reductase enzyme 

systems, or globin chain variants can predispose to methemoglobinemia. These disorders present 

as “pseudocyanosis,”, despite adequate arterial oxygenation. 

M-type Hb variants are predisposed to spontaneous oxidation. Globin variants associated with 

metHb formation are typically caused by amino acid substitutions within the heme pocket. For 

example, several different M-Hbs occur when the α- or β-globin proximal or distal histidine 

residues are replaced. Comparative studies of the M-Hbs have contributed greatly to 

understanding the biochemical properties of the heme iron, including its interactions with various 

ligands and nearby amino acids such as the proximal and distal histidines (Thom et al., 2013).  

Globin Chain Elongation Mutants  

Antitermination and frameshift mutations that add irrelevant amino acids to the carboxyl 

terminus of globin proteins produce interesting variants that can damage erythrocytes. The most 

clinically significant example is Hb Constant Spring (HbCS: α142Stop→Gln), caused by an 

antitermination mutation at the α2 stop codon (Clegg et al., 1971; Efremov et al., 1971; Milner et 

al., 1971; Clegg & Weatherall, 1974). This elongates the protein by 31 amino acids, generating 

an unstable protein that is relatively underrepresented in hemolysates. In addition, HbCS mRNA 

is rapidly degraded in developing erythrocytes, owing to ribosomal entry into the 3'UTR, causing 

displacement of RNA-bound stabilizing proteins with a resultant thalassemia syndrome (Thom et 

al., 2013). HbCS contributes to α-thalassemia syndromes, particularly when combined with two 

α-globin deletional alleles (–/αCSα), which produces a severe form of HbH disease (par. 4.4.). 

4.2. The thalassemia syndromes 

The thalassemias are a heterogenous group of inherited disorders in which there is a quantitative 

defect in the production of one of the globin subunits, either total absence or marked reduction. 

Although there is a dearth of the affected Hb subunit, with most cases the few subunits 

synthesized are structurally normal. 

The thalassemia syndromes are most prevalent in the Mediterranean region, the Middle East, the 

Indian subcontinent and South-East Asia, representing a serious health problem in certain areas 

where gene frequencies reach 3-10% of the population. The severity of β -thalassemia is directly 

linked to the degree of imbalance in the production of α- and β-globin chains (Weatherall & 
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Clegg, 2001; Orkin et al., 1998; Thein & Wood, 2009). They can be classified at several levels. 

First, there is a clinical classification, which simply describes the degree of severity. Second, the 

thalassemias can be defined by the particular globin chain that is synthesized at a reduced rate. 

Finally, there is a molecular classification relating to the specific mutation that is responsible for 

defective globin chain synthesis. 

Under normal circumstances, the rate of synthesis of α-globin must be more or less matched by 

the total synthesis of β-, δ- and γ-globin chains. The myriad manifestations of this complex group 

of disorders result from the imbalanced synthesis of α-like and non-α-like globin chains and from 

the accumulation of unpaired counterpart.  

Unpaired globin chains are unstable: they form aggregates and precipitate within the cell, 

causing decreased deformability, membrane damage and selective removal of the damaged cell. 

Ineffective erytropoiesis and shortened red cell survival will lead to chronic anemia.  

4.3. The β-thalassemias 

In the β-thalassaemias there is absent or decreased production of β-globin. Unlike α-thalassemia, 

in which deletions in the α-globin gene cluster account for most of the mutations (par 4.4.1), the 

vast majority of β-thalassemias are caused by mutations involving one (or a limited number of 

nucleotides) within the β gene or its immediate flanking regions (Giardine et al., 2011). Rare 

deletion forms of β-thalassemia have also been described. One of these deletions is caused by 

“unequal” crossing over between the linked and partially homologous δ- and β-globin genes, 

resulting in the formation of a fusion δβ-globin gene, the Lepore gene, that has a low level of 

expression. Large deletions involving part or all of the β-globin gene cluster are responsible for 

the δβ-thalassemias and the εγδβ-thalassemias. 

The β-thalassemias can be subclassified into those in which there is total absence of normal β-

globin subunit synthesis, the β
0
-thalassemias, and those in which some structurally normal β-

globin subunits are synthesized, but in markedly decreased amounts, the β
+
-thalassemias. The 

molecular basis of the β-thalassemias are very heterogeneous, with almost 300 different 

mutations having been described (Thein, 2013). Despite the marked heterogeneity in the 

molecular basis of the β-thalassemias, the clinical phenotype of these disorders is relatively 

homogeneous because of their common pathophysiology: deficiency of HbA tetramers and 

excess accumulation of free α-subunits incapable of forming Hb tetramers (Nienhuis & Nathan, 

2012).  
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According to the severity of the phenotype, β-thalassemias can be subclassified in three different 

groups: 

 β-thalassemia trait or β-thalassemia minor (Tm) (heterozygotes for a defective β-gene). There is 

mild to moderate hypochromic microcytic (mean corpuscular Hb [MCH] 18–24 pg; normal 

values 25-35, mean corpuscular volume [MCV] 65–80 fl; normal values 80-102) anemia, 

without evidence of hemolysis. Heterozygotes are characterized by an increased proportion of 

HbA2 (normal <3.2%, β–thalassemia trait 3.5%–6.0%), and HbF levels that vary from normal 

(<1.0%) to slightly raised (1.0%–3.0%) (Forget & Bunn, 2013).  

β-thalassemia major (TM) (homozygotes or compound heterozygotes), is characterized by a 

severe transfusion-dependent hemolytic anemia associated with marked ineffective 

erythropoiesis resulting in destruction of erythroid precursor cells in the bone marrow. Clinical 

presentation of TM occurs between 6 and 24 months. Affected infants fail to thrive and become 

progressively pale. Feeding problems, diarrhea, irritability, recurrent bouts of fever, and 

progressive enlargement of the abdomen caused by spleen and liver enlargement may occur. If a 

regular transfusion program that maintains a minimum Hb concentration of 9.5 to 10.5 g/dL is 

initiated, growth and development tends to be normal up to 10 to 12 years. Transfused patients 

may develop complications related to iron overload. Complications of iron overload in children 

include growth retardation and failure or delay of sexual maturation. Later iron overload related 

complications include involvement of the heart, liver and endocrine glands. Individuals who 

have not been regularly transfused usually die before the second-third decade. Survival of 

individuals who have been regularly transfused and treated with appropriate chelation extends 

beyond age of 40 years (Galanello & Origa, 2010). 

Most patients with TM carry two thalassemic β-globin genes. However, several cases of TM are 

caused by a compound heterozygosity with a single mutant β-globin gene. For example, HbE, a 

common Hb variant in Southeast Asia, contains an amino acid substitution that renders β chains 

mildly unstable in vitro with minimal clinical significance. However, this mutation also creates 

an alternate splice site in the β-globin mRNA, leading to reduced synthesis of productive 

transcripts with resultant thalassemia (Orkin et al., 1982). HbE carriers usually have no clinical 

symptoms, but HbE is particularly deleterious when coinherited with a more severe β-

thalassemic allele. The frequency of HbE varies from region to region and differs among 

different ethnic groups. High prevalence of HbE is reported in various distinct groups in 
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Southeast Asia, ranging from 5% to 10% in the region overall, and as high as 50% in some 

groups of Cambodia and Thailand (Lithanatudom et al., 2016).  

β-thalassemia intermedia (TI) is a less common clinical phenotype. Individuals with TI present 

later than TM, have milder anemia and by definition do not require or only occasionally require 

transfusion. At the severe end of the clinical spectrum, patients present between the ages of 2 and 

6 years and although they are capable of surviving without regular blood transfusion, growth and 

development are retarded. At the other end of the spectrum are patients who are completely 

asymptomatic until adult life with only mild anemia.  

TI patients have a milder disease because there is less severe α- to non-α-globin subunit 

imbalance than in typical TM patients, resulting in less accumulation of free α–subunits that 

cause the ineffective erythropoiesis. There are different possible causes for such a lowered α- to 

non-α-globin subunit imbalance, including: inheritance of milder β
+
-thalassemia mutations with 

less severe than usual deficiency of β–globin subunit production; coinheritance of a form of α–

thalassemia; coinheritance of determinants associated with increased production of the γ–subunit 

of HbF. Most patients with TI carry two mutant β-globin genes: they have a genotype typical of 

TM, but the phenotype is modified by one of the factors listed above. However, rare cases of TI 

are caused by heterozygosity for a single mutant β-globin gene associated with the production of 

a highly unstable β-globin subunit that causes RBC damage in a fashion similar to excess free α-

subunits; this is the so-called “dominantly inherited β-thalassemia” (par. 4.3.1) (Thom et al., 

2013).  

The δβ-thalassemias (par. 4.3.1.) are associated with total deficiency of β-globin subunit 

production, but are clinically milder than typical cases of β
0
-thalassemia, because there is an 

associated persistent high level of expression of the γ-subunit of HbF that decreases the degree of 

α-subunit excess.  

The Hereditary Persistence of Fetal Hemoglobin (HPFH) syndromes (par. 4.3.1) are not, strictly 

speaking, a form of β-thalassemia because it is not associated with significant α- to non- α-globin 

subunit imbalance, but is characterized by high levels of persistent γ-globin production and is 

frequently considered within the spectrum of δβ-thalassemia (Forget & Bunn, 2013).   
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4.3.1. The molecular basis of β-thalassemia 

Transcriptional mutants  

Mutations affecting transcription involve the conserved DNA sequences that form the β-globin 

promoter (from 100 bp upstream to the TSS, including the functionally important CACCC, 

CCAAT, and ATAA boxes) and the stretch of 50 nucleotides in the 5' untranslated region (5'-

UTR). Mutations in all of the three conserved sequence motifs in the β promoter, the two 

CACCC, CCAAT and ATAA boxes, have been identified in different patients with β-

thalassemia. In general, the degree of diminished β-globin synthesis associated with mutations of 

the β-globin gene promoter within the CCAAT box is relatively minor. This finding is consistent 

with transcription studies of the mutant genes in tissue culture cells, which reveal only a mild-to-

moderate decrease in transcriptional activity of these genes (Thein & Wood, 2009.  

Of the mutations affecting transcription, the C→T change at position -101 to the β-globin gene 

appears to cause an extremely mild deficit of β-globin. The allele is so mild that heterozygotes 

are “silent” with borderline reduced/normal red cell indices (Maragoudaki et al., 1999).  

Mutations of the Splice Site Junction  

Sequences critical in the splicing process include the invariant dinucleotides GT at the 5' (Donor) 

and AG at the 3' (Acceptor) splice junctions in the introns.  

Mutations that affect either of the invariant dinucleotides in the splice junction completely 

abolish normal splicing and produce the phenotype of β
0
-thalassemia. These mutations can be 

base substitutions that change one or the other of invariant dinucleotides or short deletions that 

remove them. Genes bearing these mutations appear to transcribe normally and, although some 

alternative splicing occurs using “cryptic” donor or acceptor sites, the misspliced mRNA do not 

translate into functional β- globin. The misspliced mRNA species can sometimes be detected in 

small amounts in affected erythroid cells. They are nonfunctional because translation of the 

abnormally spliced or frameshifted mRNAs would usually stop prematurely due to the 

introduction of chain termination (nonsense) codons (Huang & Benz, 2001).   

Mutations of Splice Site Consensus Sequence  

Flanking these invariant dinucleotides are sequences that are fairly well conserved and a 

consensus sequence can be recognized at the exon–intron boundaries. They encompass the last 
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three nucleotides of the exon and the first six nucleotides of the intron for the 5' donor site; and 

the last 10 nucleotides of the intron and the first nucleotide of the exon for the 3' acceptor site. 

Mutations within the consensus sequences at the splice junctions reduce the efficiency of normal 

splicing to varying degrees and produce a β-thalassemia phenotype that ranges from mild to 

severe. For example, mutations at IVS1 position 5, G→C, T, or A considerably reduce splicing 

at the mutated donor site compared with normal. The mutations appear to activate the use of 

three “cryptic” donor sites (sequences that mimic the consensus sequence for a splice site but are 

not normally used), two in exon 1 and one in IVS1, which are utilized in preference to the 

mutated donor site. On the other hand, the substitution of C for T in the adjacent nucleotide, 

IVS1 position 6, only mildly affects normal RNA splicing even though it activates the same three 

cryptic donor sites as seen in the IVS1–5 mutants. Although the IVS1–6 T-C mutation is 

generally associated with milder β-thalassemia, studies have shown that in some cases apparently 

identical mutations can be severe; this is presumably related to the chromosomal background on 

which the mutations have arisen (Camaschella et al., 1995; Ho et al., 1998).   

 

Mutations that Create New Alternative Splice Sites in Introns  

A third category of splicing mutation is due to base substitutions in introns that generate new 

splicing signals, which are preferentially used instead of the normal splice sites. The associated 

phenotype may be either β
+
 or β

0
-thalassemia, depending on the site and nature of the mutation. 

The splicing mutation at position 110 of IVS1 is one of the most common form of  β-thalassemia 

in the Mediterranean population. The mutation is a substitution of G to A that creates an acceptor 

AG in a favorable consensus sequence environment, 19 bp 5' to the normal acceptor AG of 

IVS1. In vitro expression studies have shown that this newly created alternative splice site is 

preferentially used in 80%–90% of the transcripts, whereas the normal splice site is used in only 

10%–20% of the transcripts thus giving the phenotype of β
+
-thalassemia (Busslinger  et al., 

1981;  Fukumaki et al., 1982). 

Another β-thalassemic gene with a T→G substitution in position 116 of IVS1, leads to a newly 

created 3' acceptor site. In this case, the normal acceptor sequence, although intact, is not used, 

and little or no normal β mRNA is produced resulting in a β
0
-thalassemia phenotype (Metherall  

et al., 1986).  
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Mutations that Create Alternative Splice Sites in Exons  

Four mutations have been identified in exon 1 that are associated with activation of cryptic or 

alternative splice sites (Thein & Wood, 2009; Weatherall & Clegg, 2001; Thein, 1998). Three of 

these mutations modify the cryptic splice site spanning codons 24–27 in exon 1 so that it more 

closely resembles the consensus splice sequence AAGGTGAGT and activates it. The codon 24 

GGT-GGA mutation is translationally silent (Hattori et al., 1988), whereas codon 26 GAG-AAG 

and codon 27 GCC-TCC result in the β
E 

and β
Knossos

 variants, respectively (Orkin et al., 1982, 

Orkin et al., 1984). The mutation in codons 26 and 27 lead to a minor use of the alternative 

pathway so that there is a reasonable level of normally spliced products that result in the mild β
+
-

thalassemic phenotype of the β
E
 and β

Knossos
 alleles, respectively. The reduction in normal 

splicing is the molecular basis for the mild β
+
-thalassemic phenotype of these variants, including 

the β
E
 allele. The β

E
 allele is particularly prevalent in southeast Asia where it can reach up to a 

frequency of 75% in northeast Thailand. Its interaction with β-thalassemia accounts for a large 

proportion of the TM in southeast Asia (Weatherall & Clegg, 2001).  

Mutations Causing Abnormal Posttranscriptional Modification 

An increasing number of mutations in the 5'-UTR have been characterized since the original 

CAP +1 A→C allele (Wong et al., 1987). The defects include single base substitutions and 

minor deletions distributed along the stretch of 50 nucleotides. As in the −101 C→T mutation, 

heterozygotes for this class of mutations are silent; the extremely mild phenotype is exemplified 

in a homozygote for the +1 A→C mutation who has the hematological values of α-thalassemia 

carrier. It is not known whether the CAP mutation causes β thalassemia by decreasing β-globin 

gene transcription or by decreasing the efficiency of capping (posttranscriptional addition of 

m
7
G) and mRNA translation. In vivo and in vitro studies show that the +33 C→G mutation leads 

to a reduction of β mRNA that is 33% of the output from a normal β gene, milder than the 

mutations involving the promoter elements. Compound heterozygotes for these transcriptional 

mutations and the more severe β thalassemia alleles tend to have a milder disease (Ho et al., 

1996).   

Mutations affecting the consensus AATAAA sequence at the 3'UTR include seven base 

substitutions at different locations; two short deletions of 2 and 5 bp each, and one deletion of the 

total AATAAA sequence. These mutations markedly decrease the efficiency of the cleavage-
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polyadenylation process and only about 10% of the mRNA is properly modified. Therefore, the 

associated phenotype is that of β
+
-thalassemia of moderate severity. The remainder of the 

transcripts extend far beyond the normal polyadenylation site and are probably cleaved and 

polyadenylated after the next AATAAA consensus sequences, which occur about 0.9–3 kb 

downstream (Orkin et al., 1985).  

Mutations affecting other sites in the 3‟ UTR, a C→G substitution at nucleotide 6, and a 13 bp 

deletion at nucleotides 90 downstream from the termination codon, also result in β
+
-thalassemia 

(Rund et al., 1992; Hamid & Akbari, 2011).  

Mutants resulting in premature termination of translation  

Approximately half the β-thalassemia alleles result from the introduction of premature 

termination codons, either because of direct mutations creating a stop codon or a change in the 

reading frame by insertion or deletion of a single to a few nucleotides. These frameshifts lead to 

premature termination further downstream when the next nonsense codon is reached (Thein & 

Wood, 2009). One of the first nonsense mutations to be characterized and extensively studied 

was the mutation at β
0
39 CAG→TAG (Humphries et al., 1984; Takeshita et al., 1984; Huang & 

Benz, 2001). This mutation is the second most common cause of β-thalassemia in the 

Mediterranean population and accounts for most of the cases of β-thalassemia in Sardinia (95%) 

(Masala et al., 1988; Rosatelli et al., 1987; Rosatelli et al., 1992). In homozygous β
0
(39)-

thalassemia TM is the most frequent phenotype, although rare TI can be found (10%) (Galanello 

et al., 1989). HbF, when present, is the only useful Hb tetramer synthesized and this is mostly the 

principal cause of the intermediate phenotype. 

Dominantly inherited β-thalassemia  

The syndrome comprises a distinct set of structural mutations affecting the HBB gene that are 

associated with typical hematological features of β-thalassemia (i.e., increased HbA2 levels and 

imbalanced α-/β-globin-chain biosynthesis in heterozygotes). In these variants, the mutated β–

globins are so unstable that they undergo very rapid post-synthetic degradation. The 

hyperunstable β-chains act in a dominant negative way, causing a disease phenotype even when 

present in the heterozygous state, and hence have been referred to as “dominantly inherited β-

thalassemia” (Steinberg et al., 2009). Unlike the common recessive forms of β-thalassemia, 

which are prevalent in malaria endemic regions, dominantly inherited β-thalassemia has been 



29 
 

Dr. Nguyen Quynh Chau: Study on hemoglobinopathies in central province of Vietnam  
                             Ph.D thesis in Biochemistry and Molecular Biology  
Ph.D Course in Life Sciences and Biotechnologies - University of Sassari 

described in dispersed geographical regions. The clinical manifestations are related both to 

functional deficiency of β globin and to precipitation of the β-chain variants with the 

concomitant excess α chains overload the proteolytic intracellular mechanisms increasing 

ineffective erythropoiesis. Indeed, the large intraerythroblastic inclusions, that are so 

characteristic of this form of β-thalassemia, have subsequently been shown to be composed of 

both α- and β-globin chains (Ho et al., 1997). In contrast, the inclusion bodies in homozygous β-

thalassemia consisted only of precipitated α-globin. The molecular mechanisms underlying the 

instability include: substitution of the critical amino acids in the hydrophobic heme pocket 

displacing heme leading to aggregation of the globin variant; disruption of secondary structure 

because of replacement of critical amino acids; substitution or deletion of amino acids involved 

in αβ dimer formation; and elongation of subunits by a hydrophobic tail. The molecular defects 

include missense mutations, deletions or insertion of intact codons, nonsense mutations causing 

premature termination codons in exon 3. Frameshifts may also result in aberrant splicing 

producing elongated or truncated β-globin-chain variants with abnormal carboxy-terminal ends.  

 

Deletional forms of β-thalassemia 

 

The β-thalassemias are rarely caused by major gene deletions: a group includes deletions that are 

restricted to the β-globin gene and a second group contains larger deletions involving part or all 

of the β-globin gene cluster. 

Deletions Restricted to the β-globin gene 

These deletions, ranging from 105 bp to approximately 67 kb in size, involve only the β-globin 

gene and its flanking DNA without affecting any of the other neighboring β-like globin genes. 

The phenotype associated with these deletions is that of β
0
-thalassemia.   

These conditions are associated with unusually high levels of HbA2 and variable increases of 

HbF in heterozygotes (Thein & Wood, 2009).  

It has been proposed that deletion of the β promoter removes competition for the upstream β-

LCR and limiting transcription factors, allowing greater interaction of the LCR with the cis δ and 

γ genes, thus enhancing their expression. Although the increases in HbF are variable and modest 

in heterozygotes for such deletions, they can be sufficiently increased to partially compensate for 

the complete absence of β globin in homozygotes; two individuals homozygous for different 
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deletions in this group showed a mild disease not transfusion dependent (Schokker et al., 1966; 

Gilman, 1987; Craig et al., 1992).  

εγδβ-thalassemia 

Clinically, the εγδβ-thalassemias are characterized in newborns by anemia and hemolysis, which 

is self-limited, and in adults by the hematological phenotype of β thalassemia trait with normal 

levels of HbA2 and HbF (Weatherall & Clegg, 2001). The severity of anemia and hemolysis may 

be variable (even within a family) and in some cases, blood transfusions are necessary during the 

neonatal period. Only heterozygotes have been identified; homozygotes, presumably, would not 

survive early gestation. At the molecular level, the deletions fall into two categories: group I 

removes all or a greater part of the β-globin complex, including the β-globin gene; group II 

removes extensive upstream regions leaving the β-globin gene itself intact, despite which, its 

expression is silenced because of absence of the upstream β-LCR (Thein & Wood, 2009; Rooks 

et al., 2012). The associated phenotypes of the two groups are similar.  

HPFH syndromes and δβ-thalassemia  

HPFH and δβ-thalassemia are descriptive terms used for a range of disorders that are 

characterized by decreased or absent β-globin production and a variable compensatory increase 

in γ-chain synthesis. In both the 
G
γ

A
γ(δβ)

0
-HPFHs (or simply deletional HPFH, dHPFH) and the 

G
γ

A
γ(δβ)

0
-thalassemias (shortly δβ-thalassemias) the deletions remove both the δ and β genes and 

extend a variable degree 3‟ to the cluster, in some cases for up to 100 kb. The 
G
γ(

A
γδβ)

0
-

thalassemias differ in that the 5‟ end of the deletion partially or totally removes the 
A
γ gene in 

addition to the δ and β genes. The broad classification of the deletion conditions into these two 

groups, although useful, is rather arbitrary: in fact there is a continuum between δβ-thalassemia 

and the dHPFHs and that not all conditions fit neatly into one of these groups. dHPFH and δβ-

thalassemia were originally distinguished on hematological and clinical grounds. Heterozygous 

δβ-thalassemia had a similar red cell picture to β-thalassemia, with hypochromic and microcytic 

erythrocytes, but a normal level of HbA2 (<3.0%). In addition, there was a raised level of HbF 

(5%-15%) that had a heterogeneous intercellular distribution. Homozygotes or compound 

heterozygotes with β-thalassemia had a clinical picture of TI or TM. In contrast, dHPFH 

heterozygotes, had essentially normal red cell indices, a normal level of HbA2 and even higher 

levels of HbF (15%-30%) with a more homogeneous, pancellular distribution. HPFH 
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homozygotes were clinically normal, albeit with reduced MCV and MCH, whereas compound 

heterozygotes with β-thalassemia were clinically very mild. As more and more cases and 

different molecular types of the two conditions were described, these differences became 

indistinct and it is now clear that there is considerable overlap in many of the parameters that 

were initially used to differentiate them (Steinberg et al., 2009).  

 

4.4. The α-thalassemias 

In contrast to the β-thalassemias, which are usually caused by point mutations of the β-globin 

gene, the α-thalassemia syndromes are usually caused by the deletion of one or more α-globin 

genes. Non-deletional forms of α-thalassemia have also been characterized but are relatively 

uncommon. More than 100 genetic forms of α-thalassemia have thus far been identified, with 

phenotypes ranging from asymptomatic to lethal. Despite this complexity, the severity of this 

disorder is  usually well correlated with the number of non-functional copies of the α-globin 

genes. On the basis of the numbers of α-globin genes lost by deletion or totally or partially 

inactivated by point mutations, the α-thalassemias are classified into two main subgroups: α
+
-

thalassemia (formerly called α-thalassemia 2), in which one of the genes is deleted or inactivated 

by a point mutation (-α/αα or αα
ND

/αα, with ND denoting nondeletion), and α
0
-thalassemia 

(formerly called α-thalassemia 1), in which both the α-globin genes on the same chromosome are 

deleted (--/αα). 

In the fetus, defective production of α-chains is reflected by the presence of excess γ-chains, 

which form γ4 tetramers, called Hb Bart‟s; in adults, excess β-chains form β4 tetramers, called 

HbH. Because of their very high oxygen affinity, both tetramers cannot transport oxygen, and, in 

the case of HbH, its instability leads to the production of inclusion bodies in the red cells and a 

variable degree of hemolytic anemia.   

The homozygous state of α
+
-thalassemia and the heterozygous state of α

0
-thalassemia (grouped 

under the term “α-thalassemia minor”) are associated with a substantial reduction in the MCV 

and MCH. In α
+
-thalassemia heterozygotes, the MCV and MCH are usually reduced, but there is 

a small overlap with normal values. In contrast to β–thalassemia minor, HbA2 levels do not raise, 

so its identification is based mainly on hematological parameters. Milder forms of α-thalassemia 

are often misdiagnosed as iron deficiency, although the exact frequency of misdiagnosis is 
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unknown. Clinically relevant forms of α-thalassemia usually involve α
0
-thalassemia, either 

coinherited with α
+
-thalassemia (-α/-- or αα

ND
/--) and resulting in HbH disease or inherited from 

both parents and resulting in Hb Bart‟s hydrops fetalis (--/--), which is lethal in utero or soon 

after birth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HbH disease is often considered to be a relatively mild disorder. Studies have nevertheless  

highlighted clinically severe phenotypes, notably  in non-deletional variants of the disease 

(Fucharoen & Viprakasit, 2009; Lal et al., 2011). HbH disease is characterized by a wide range 

of phenotypic characteristics. The form that results from deletions (-α/--) usually follows a 

relatively mild course, with moderate anemia and splenomegaly. Aside from episodes of 

intercurrent infection, this form of HbH disease does not require blood transfusions. However, 

the variety that results from the interactions of a non-deletional α-globin gene mutation together 

with α
0
-thalassemia (αα

ND
/--) follows a much more severe course. This is particularly true when 

the non-deletional mutation is the α-globin chain termination mutant HbCS (par. 4.1), which is 

very common in many Asian countries.  

Embryos with Hb Bart's hydrops fetalis succumb to severe hypoxia either early in gestation (e.g., 

in the case of --FIL/--FIL) or during the third trimester (e.g., in the case of --SEA /--SEA). The 

acronyms FIL and SEA refer to two different deletions that cause α
0
-thalassemia and that are 

Figure 10. Classification of α-thalassemia defects. 
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prevalent among Filipinos and persons from Southeast Asia, respectively (Weatherall & Clegg, 

2001).  

A few children who received an intrauterine transfusion or a transfusion immediately after 

delivery have survived to 5 years of age. These children require regular transfusions and, when 

appropriate, iron chelation therapy; they usually have serious clinical complications, congenital 

anomalies, and delays in cognitive and motor functions (Chui & Waye, 1998).   

The hydrops fetalis syndrome is often accompanied by a variety of congenital malformations and 

maternal complications, including severe anemia of pregnancy, preeclampsia, polyhydramnios, 

and extreme difficulty in delivery of both the fetus and the hugely enlarged placenta (Weatherall 

& Clegg, 2001).  

Milder variants of α-thalassemia act as genetic modifiers of other inherited conditions, as 

illustrated by epistatic interactions between α-thalassemia and β-thalassemia (Thein, 2005) or 

between α-thalassemia and HbS (Williams et al., 2005). Conversely, triplications and 

quadruplications of the α-globin gene, frequently observed in many populations, can interact 

with β-thalassemia variants to produce more severe phenotypes. (Ma et al., 2001; Giordano et al., 

2009)  

4.4.1. Molecular basis of α-thalassemia 

 

All reported α
0
-thal deletions remove both linked α-globin genes interstitially along with 

different lengths of the adjacent chromosomal contents, from subtelomere to the region beyond 

the α1 gene. Only a few individuals and families have been found to have the phenotype of α
0
-

thal due to deletions of 40 to 33 kb upstream DNA sequences (including the δ-globin gene) and 

minimal consensus sequences (MCS). MCS are highly conserved throughout evolution and are 

denoted as hypersensitive site HS-40 and -33. This minimal region of 13 kb is thought to contain 

a remote regulatory element encompassing most, but not all, cognate binding sites for erythroid-

specific transcription factors critical for full α-globin gene expression, and removal of this DNA 

region has been shown to cause a down-regulation of the downstream α-globin genes (Viprakasit 

et al., 2006). 

Therefore, the molecular basis of α
0
-thal can be classified into two categories: (1) interstitial 

deletional α
0
-thal caused by deletions that remove both linked α-globin genes and (2) upstream-

deletional α
0
-thal with both α-globin genes intact.  
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Since deletional α
0
-thal is highly prevalent in the Far East, particularly in the southern part of 

China, Thailand, the Malaysian peninsula and even in the remote islands of the Philippines with 

carrier rates of 15%, 2.2% to 9%, 4.5% and 5%, respectively, homozygosity of these deleted 

alleles is not uncommon (--/--) (Wasi et al., 1974; Chan et al., 1988; Fucharoen et al., 1988; 

Galanello et al., 1992). 

In Southeast Asia and the southern part of China, α
0
-thal  mostly occurs from a deletion of about 

19.3 kb of the DNA, removing both linked α-globin genes but leaving the δ gene intact (--SEA). 

Another form of α
0
-thal found in this region is the THAI deletion (--THAI), which removes a 

larger DNA segment (33.5 kb) including the embryonic δ-globin genes with a significant lower 

frequency (SEA:THAI = 99:1). Although the different forms of α-thalassemia alleles have a 

worldwide distribution, the occurrence of Hb Bart‟s hydrops fetalis is almost solely confined to 

this region where the highest incidence of α
0
-thal exists (Higgs, 2009). 

Two common types of deletional α
+
-thal  have been identified, one involving a deletion of 4.2 kb 

of DNA (leftward type, -α4.2) and another of 3.7 kb (rightward type, -α3.7). The -α4.2 deletion 

is present at low frequency in Thailand and Southeast Asian countries, but it is more frequent in 

Papua New Guinea and Vanuatu in Melanesia. The high frequency and worldwide distribution of 

both deleted alleles suggested that these mutations are quite ancient in the modern human 

history, and they have aged enough to acquire additional nucleotide mutations causing several α-

globin chain variants occurring on the chromosomes with the -α3.7 or -α4.2 type deletions. Of 

these, Hb Q-Mahidol (Thailand) in Thai and Chinese, Hb G-Philadelphia in the African-

American population and Hb J Tonkarigi in the Pacific Islands were found at a higher frequency 

than other α-globin variants linked with the α-thal 2 deletion.  

The molecular cause of deletional α-thalassemia is explained by DNA sequence analysis: the α–

globin genes are embedded within two highly homologous, 4–kb duplication units whose 

sequence identity appears to have been maintained throughout evolution by gene conversion and 

unequal crossover events. These regions are divided into homologous subsegments (X, Y, and Z) 

by non–homologous elements (I, II, and III). Reciprocal recombination between Z segments, 

which are 3.7 kb apart, produces chromosomes with the α
–3.7

 deletion and chromosomes with 

three α–genes (ααα
anti 3.7

). Recombination between homologous X boxes, which are 4.2 kb apart, 

also gives rise to the α
–4.2 

 gene and a ααα
anti 4.2

 chromosome (Figure 11). Further recombination 
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events between the resulting chromosomes may give rise to quadruplicated and quintuplicated α–

genes (αααα
anti 3.7

, αααα
anti 4.2

). 

 

 

 

 

Figure 11. Deletions that cause α+-thalassaemia. The homologous duplication units X, Y and Z in which the α-

genes are embedded are indicated as colored boxes. A cross-over between the mis-paired Z boxes during meiosis 

gives rise to the -α3.7 and αααanti 3.7 chromosomes. Cross-over between misaligned X-boxes give rise to -α4.2 and 

αααanti 4.2. 

 

Nearly 70 different types of non-deletional α
+
-thalassemia have been reported, most of which are 

extremely rare and have been reported only in sporadic families. The majority of these mutations 

have been found to involve the α2 genes located in closer proximity to the regulatory region 

(HS-40 and HS-33), resulting in a higher expressed output than its downstream counterpart (α1 

gene) with a ratio around 3:1. More preferential mutations occurring on α2 genes might not 

imply that this leftward-most allele is more susceptible to mutagenesis since both α genes are in 

close proximity, sharing a similar chromosomal context, but it is plausible that due to a higher 

contribution of the α2 gene on globin synthesis, mutated alleles could have a larger effect on 

phenotypic expression as affected individuals will present with more severe hematological 

phenotypes. Although most non-deletional α+-thalassemias are rare, several mutations have been 
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found to be prevalent within specific populations  (Galanello et al., 1992; Ma et al., 2001b; 

Viprakasit et al., 2002).   

Non-deletional mutations, in general, affect the fundamental processes of globin gene 

expression, from mRNA transcription, splicing and protein translation through creating novel 

truncated or elongated globin peptides. For example, polyadenylation (poly A) signal mutations 

(due to different base substitutions or base deletions) in the α2-globin gene are found at high 

frequencies in Greece, Saudi Arabia and Turkey. Other non-deletional α-thal 2 mutations found 

at low frequencies in various populations include Hb-CS, Hb Koya Dora and Hb Paksé, which 

are caused by mutations in the termination codon of the α2-globin gene that result in an 

elongated polypeptide.  

 

5. Distribution of Hbpathies in Southeast Asia and in Vietnam 

Southeast Asia consists of 10 countries with a total population of about 400 million. The ethnic 

origins of people living in these countries are very heterogeneous. The Mon-Khmer and Tai 

language-speaking people occupy Thailand, Laos, Cambodia and some parts of Vietnam, 

Myanmar and Malaysia. The west includes the Burmese (Tibeto-Burman) and the Northeast is 

the Vietnamese (Austro-Asiatic). The Malayopolynesians (Austronesian) live in Malaysia, 

Indonesia, Brunei, the Philippines and a number of Pacific island nations. Chinese and Indians 

are relatively newcomers spread throughout the region.  

In Southeast Asia α-thal, β-thal, HbE and HbCS are prevalent. The most common Hbpathy is 

HbE which is unique to this region. The highest frequency of this variant gene is found in the 

"HbE triangle" at the borders of Cambodia, Laos and Thailand. In Northeast Thailand, HbE 

carriership reaches 54%. The severe forms of β-thal are almost equally divided between the β-

thal homozygous state and the compound heterozygousity for HbE\β-thal, which reflects the 

extremely high frequency of these disorders throughout Southeast Asia. The gene frequencies of 

α-thal reach 30-40% in Northern Thailand and Laos, 4.5% in Malaysia and 5% in the remote 

island of the Philippines. The frequence of β-thal varies between 4 and 10% reaching 5-8% in 

Northern Thailand, 3-9% in Laos, 6-10% in Indonesia and 4% in Myanmar. HbCS gene 

frequencies vary between 1 and 8%.  

These abnormal genes in different combinations lead to over 60 different thalassemia syndromes, 

making Southeast Asia the locality with the most complex thalassemia genotypes. The four 



37 
 

Dr. Nguyen Quynh Chau: Study on hemoglobinopathies in central province of Vietnam  
                             Ph.D thesis in Biochemistry and Molecular Biology  
Ph.D Course in Life Sciences and Biotechnologies - University of Sassari 

major thalassemic diseases are Hb Bart‟s hydrops fetalis, homozygous β-thalassemia, β-

thalassaemia/Hb E and Hb H diseases (Filon, 2000; Fucharoen & Winichagoon, 2011).  

Vietnam is situated along the east coast of the Southeast Asian peninsula, between China in the 

north, Laos in the northwest and Cambodia in the southeast. Three-quarters of the population of  

75 million are of the Kinh ethnic group, and the remainder is divided into 55 different ethnic 

minority groups (Filon et al., 2000; Blackwell, 1965; Fucharoen & Winichagoon, 1987). 

In Vietnam, both β-thalassemia and HbE are prevalent and represent one of the most common 

forms of hemolytic anemia. The carrier rate for β-thalassemia varies between 1.5% and 25%. 

The higher incidence is in the ethnic minority groups, especially Tay (11%) and Moung (25%) in 

the north and Pako (8.33%) and Cotu (14%) in the central region of the country. The prevalence 

of HbE in Kinh groups is not much different throughout the country, 1–9%. The highest 

frequencies of HbE were found in the minority groups, Ede (41.7%), Pako (6%), and Vaˆn Kieˆv 

(23%) who live in the central plateau.  

The incidence of β-thalassemia and HbE was less studied in the South of Vietnam. The 

frequency of β-thalassemia studied in the Kinh people and the Vietnamese refugees in the United 

States was between 1% and 2%, and HbE in Saigon was about 3.2% (Svasti et al., 2002).  

The first screening for β-thalassemia in Vietnam was performed in the North of Vietnam, 

situated between China in the north and Laos in the northwest (Filon, 2000). Later, the spectrum 

of β-globin mutations has been investigated in Ho Chi Minh City, South Vietnam (Svasti et al., 

2002).  

Different β-thalassemia mutations have been so far identified: the most commons, both in the 

South than in the North of Vietnam, are the frameshift mutation at codons 41/42 (−TCTT), the 

nonsense mutation at codon 17 (A→T) and the frameshift mutation at codon 95 (+A), which is 

known as the “Vietnamese” mutation. Other mutations, although less frequent, are present in 

these countries: the -28 (A→G), the IVS-I-1 (G→T), the frameshift mutation at codons 71/72 

(+A) and the IVS-II-654 (C→T) (Svasti et al., 2002).  

The prevalence of α-thalassemia it was at first analyzed by O'Riordan et al. (2010) in patients 

belonging to different ethnic groups (Kinh, Nung, Tay, S'Tieng) from southern and southern 

central Vietnam. The highest frequencies of α-thalassemia were found among the S‟Tieng, in 

whom the deletions -α3.7 and --SEA were present at frequencies of 0.22 and 0.03, respectively. 
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The -α3.7  and --SEA deletions were also found in all ethnic groups studied, but at lower 

frequencies. Only one individual, of Tay background, was found to carry the -α4.2 deletion. 

The HbCS variant was also found and showed the higher gene frequency (0.03) in the S‟Tieng 

minority (O'Riordan et al., 2010).  

More recent data derived from a community-based survey conducted in the Nam Dong 

mountainous district, located 60 km westwards of the provincial capital of Hue city. A total of 

298 unrelated Cotu ethnic women were randomly recruited. HbCS resulted markedly high with a 

gene frequency of 0.143. This is the highest frequency of HbCS ever reported in world 

populations (Nguyen et al., 2014). 
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AIM OF THE STUDY 

In many Asian countries the α- and β-thalassemias and their interaction with several structural 

Hb variants are producing an increasingly severe health burden. It is therefore important to 

accurately identify carriers of these disorders and offer the option of preventive measures by 

prenatal diagnosis to couples at risk of having a child with severe disease. Rapid genotype 

characterization is fundamental in the diagnostic laboratory and the ability to perform DNA 

analysis has become an increasingly important requirement. The acquisition of such skills 

requires the development of suitable training programs involving hematologists, pediatricians, 

biologists and technical staff. A start has been made in developing and low-income countries and 

there is already considerable evidence that much more can still be done, including the further 

development of partnerships between countries where expertise in this field has been developed 

and countries where no such expertise exists. 

This PhD project is part of a longstanding cooperation between Huè College of Medicine and 

Pharmacy and the University of Sassari which has started in 2001. The purpose of the 

collaboration was and still is to create positive synergies between the different stakeholders, 

manage scientific and cooperation interventions and coordinate training and research. 

In Vietnam, most of researches on Hbpathies were mainly conducted in the North and the South 

regions. Recently, Nguyen et al. (2013) performed a preliminary study restricted to a limited 

number of pregnant women in Thua Thien Hue Province, the central area of Vietnam. 

Epidemiologic researches of Hbpathies are, in general, not systematic and molecular studies 

concerning Vietnam are incomplete.  

Many of the patients residing in rural areas receive only limited care because of the lack of 

adequate medical facilities. Prevention is the only way to control the increase in the number of 

patients. To ensure feasibility of prenatal diagnosis it would be useful to apply simple and 

inexpensive molecular assay for the detection of mutations.  

The aim of the PhD training has been to develop professional skills and competences directed at 

the avoidance and better management of the Hbpathies in central Vietnam and to provide the 

groundwork for screening programs. 

The main objectives have been as follows:  
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- acquire professional skills aimed to determine the Hb profile in newborn and adult, to 

characterize quali-quantitative Hbpthies, to carry out a correct diagnosis of rare Hb variants or 

complicated associated forms,  

- develop and spread the acquired techniques towards Vietnamese medical and biology students 

for further evolution of education and screening programs; 

- determine the spectrum of β-thalassemia mutations in patients and their relatives from Hue 

province of Vietnam. 
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MATERIALS AND METHODS  

6. Samples collection 

Study was done on 353 individuals: a study group of 160 subjects referred to Hue 

Medicine and Pharmacy College and PhuVang District Hospitals for hematological and clinical 

evaluation and a control group of 193 individuals, who displayed normal hematology and 

hemoglobin profile.  

Information including age, gender, anamnesis and clinical examination was collected.  

In our study group, 89/160 samples (55,6%) showed abnormal hematological parameters 

and have undergone to Hbpathies screening. Twenty seven of them, which showed qualitative or 

quantitative alteration in Hb profiles, were included in the DNA analysis. 

The discovery of a novel β-thalassemic mutation has been supported by a family study 

performed on additional five samples. 

7. Samples preparation 

7.1.Whole blood preparation 

Blood samples were collected in EDTA tubes. They should be 50-60% full and not 

overfill. Specimens were mixed gently by inverting 5-10 times and placed on a rocker for up to 

30 minutes, then refrigerate at 2-8°C.  Clotted or hemolyzed specimens are unacceptable.  

7.2.Preparation of hemolysates 

The blood aliquot was washed through centrifugation at 1300 g for 5‟ in physiological 

solution (NaCl 0.9%) until the supernatant appeared clean and clear. The addition of one volume 

of ipotonic solution (tridistilled H2O, mQ) causes the hemolysis and the consequent suspension 

of Hb (hemolysate), directly used for electrophoretic analysis. An additional step was required to 

remove cell membranes: half of the volume of CCl4 was added to the solution. After 

centrifugation (20000 g for 2‟), the supernatant was recollected and contained Hb in water could 

be readily used for HPLC analysis or stored at -20°C for a long time. Hb solutions were 

quantified by spectrophotometric analysis at 576 nm. 

8. Hematology and Hemoglobin analysis  

Hematological parameters were measured by the Blood Analyzer SYSMEX KX-21 and 

SYSMEX 800i (Japan Care, CO., LTD). 
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Hb tetramers separation was carried out by either cation-exchange high-performance 

liquid-chromatography (CE-HPLC), with the Chromsystems Instrument and Chemicals (GmbH, 

Germany) and by isoelectric focusing (IEF).  

8.1. CE-HPLC analysis 

The CE-HPLC analysis was performed by the supports of staffs at Genetic Department of 

Hue University of Medicine and Pharmacy.  

The total analysis is carried out on a binary HPLC gradient system by means of a UV/VIS 

detector. It has been designed to separate and determine in 5–9 min the area percentages for 

HbA2 and HbF and to provide qualitative and quantitative determinations of normal and 

abnormal Hbs. 

8.2. IEF analysis 

IEF was performed on a polyacrylamide slab gel (%T:%C = 5.2%:3%) where a pH 

gradient is formed through ampholytes; every protein was separated according to its isoelectric 

points (pI), it will move to the position on the gel at which the pH is equal to its pI. 

The gel was prepared in a sandwich of treated glass: the mold was brushed with a “Repel 

solution” (5% dimethyldichlorosilane, in chloroform); the support instead was treated with a 

“Bind solution” (0.2% Silane A174 in acetone). 

The mixture for the gel was prepared by adding ampholytes at pH 6.7 to 7.7 (6.2%), 

ampholytes at pH 3–10 (0.5%), TEMED (0.15%) and ammonium persulfate (APS, 0.56 mg/ml), 

and it was casted into the prepared sandwich for 1 h at room temperature.  

A pre–run was necessary to form the pH gradient: strips of absorbent paper were wetted 

with the specific electrolyte (40 mM glutamic acid for anode, 0.1 M NaOH for cathode) and 

placed onto the gel. A voltage of 400 V at 4°C was applied to the gel until the amperage went 

below 4 mA. 

A total of 20 µg of Hb were loaded and run for 2 h at 1600 V at 4°C.  

At the end of the run, the Hbs were fixed in Tricloracetic Acid (20% TCA) for 10‟; the gel 

was then stained for 30‟ with a BBF staining solution (0.1% BBF, 50% EtOH, 5% Acetic Acid).  

Destaining was performed in 30% Ethanol and 6% Acetic Acid (Masala and Manca, 1991).  

Yellow stained bands were turned into blue by soaking the gel into water: this allowed a 

semi–quantitative densitometric analysis at 600 nm. 
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9. Molecular analysis  

Through the information obtained from hematology and hemoglobin profile, direct DNA 

sequencing of specific PCR products was performed in order to identify the abnormality 

involved, which may consist in single point mutations or microinsertions/deletions.  

The search for large deletions (e.g. β-thalassemias or deletional α-thalassemias) has been 

allowed by the multiplex ligation–dependent probe amplification (MLPA). 

9.1. DNA extraction 

DNA extraction was performed either with commercial kits (Invisorb
®
 Spin Blood Midi 

Kit, STRATEC Biomedical AG) or Salting out method (Miller et al., 1988). The salting out 

protocol was the following: 

 

add cold Lysis Buffer (0.32 M Sucrose, 10 mM Tris/Cl pH 7.5, 5 mM MgCl2, 1% Triton  

X–100) to 2 ml of whole blood in EDTA, up to a volume of 10 ml. Gently shake. Incubate at 4°C 

for 15’–30’ to lyse the red blood cells. 

Spin at 1500 g for 20’. A pellet of white cells should form at the bottom of the tube. Remove the 

supernatant. 

 

Resuspend the pellet in Physio Buffer (75 mM NaCl, 25 mM EDTA) up to a volume of 10 ml. 

Spin at 1500 g for 10’. Discard the supernatant. Repeat 2 more times to get a 

cleaner/whiter/purer pellet. 

 

Lyse the white blood cells in 3 ml of WBC lysis solution (10 mM Tris/Cl pH 8.0, 2 mM EDTA). 

Add 100 µl of 10% SDS and 400–600 μl of proteinase K (10 mg/ml). Pipette up and down a few 

times. Incubate 37°C overnight.  

 

Add to the solution 1 ml of NaCl 6 M. Shake vigorously for 15’’. Spin at 1500 g for 15'. Transfer 

the supernatant into a clean tube. Add 1 volume of isopropanol 100%. and gently shake to 

precipitate the DNA. Spin at 2200 g for 15' and discard the supernatant. Add 1 ml of ethanol 

70%. Spin at 2200 g for 15' and discard the supernatant. Air-dry the pellet until all the ethanol 

has evaporated off.  

Dissolve the pellet in an appropriate volume of TE 1X pH 8. 

 

Extracted DNA was quantified with NanoDrop 8000 Spectrophotometer (Thermo 

Scientific). 
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9.2. Multiplex Ligation-Dependent Probe Amplification (MLPA) analysis 

MLPA analysis is a recent technique developed by the MRC-Holland company for the 

relative quantitation of up to 40 to 45 nucleic acid targets. The uses of MLPA include detection 

of aneuploidies, common microdeletion syndromes and subtelomeric copy-number changes, 

identification of marker chromosomes, and detection of familial copy-number changes in single 

genes.  

The entire assay is performed in a single tube, can be completed within 24 to 48 hours and 

consists of following steps: hybridization of the probes to the complementary target sequences, 

ligation of the bound probes, PCR amplification of the ligated probes, followed by capillary 

electrophoresis and analysis.  

The results are analyzed by normalization to internal control fragments followed by 

normalization to the control samples.  

Peak ratios between 0.7 and 1.3 are considered normal. Ratios above 1.3 indicate the 

presence of a gain of the target sequence while ratios below 0.7 indicate loss of a target. 

Theoretical ratios for a heterozygous deletion and duplications are 0.5 and 1.5, respectively, 

although the actual values may range 0.3 to 0.7 for heterozygous deletions and 1.3 to 1.7 for 

heterozygous duplications.  

MLPA P102 HBB or P140 HBA probemix (MRC-Holland) was used for copy number 

quantification on the β- and α-cluster, respectively.  

MLPA reactions were performed according to the provided protocol, by using 80 ng of 

DNA and a 20 h hybridization step.  

Ligation and amplification were carried out on an GeneAmp® PCR System 2700 thermal 

cycler (Applied Biosystem, Foster City, CA, USA).  

MLPA products were separated by ABI PRISM 3130 Genetic Analyzer (Applied 

Biosystems, Foster City, CA, USA), quantified with the Coffalyser software (MRC-Holland), 

and compared with a DNA pool from normal subjects. 

 

9.3.PCR and Sequencing Analysis of the β-globin gene  

 

The complete β gene was amplified from genomic DNA with 3 different PCRs, each with 

its own Chemical and Thermal protocol. 
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P1 (GCCAAGGACAGGTACGGCTGTCATC)  –P2 

(CCCTTCCTATGACATGAACTTAACCAT) primers amplify a 706 bp region (–140 to +566), 

encompassing a region from the proximal promoter to the beginning of IVS2. 

Chemical Protocol: 1X Buffer, 3.5 mM MgCl2, 250 μM dNTPs, 0.3 μM of each primer, 0.3 μg 

of genomic DNA, 2.5 U of polymerase. 

Thermal file: 3‟ at 95°C; 35 cycles of 1‟ at 95°C, 45‟‟ at 65°C and 1‟ at 72°C; additional final 

extension was added (4‟ at 74°C). 

β7 (TCCTGATGCTGTTATGGGCAA) –β8 (AAAAGCAGAATGGTAGCTGGA) primers 

amplify a 923 bp region (+333 to +1255), including part of exon 2 and IVS2. This fragment 

contains also the Ava II polymorphism for Orkin haplotypes. 

Chemical Protocol: 1X Buffer, 3 mM MgCl2, 250 μM dNTPs, 0.3 μM of each primer, 0.3 μg of 

genomic DNA, 2.5 U of polymerase. 

Thermal file: 3‟ at 95°C; 35 cycles of 1‟ at 95°C, 1‟ at 60°C and 1‟ at 72°C; additional final 

extension was added (4‟ at 74°C). 

β9 (AAAAACTTTACACAGTCTGCC) –β10 (ATTAGCTGTTTGCAGCCTCA) primers 

amplify a 956 bp region (+799 to +1764), from IVS2 to 3‟UTR of β–gene. 

Chemical Protocol: 1X Buffer, 1.5 mM MgCl2, 250 μM dNTPs, 0.3 μM of each primer, 0.3 μg 

of genomic DNA, 2.5 U of polymerase. 

Thermal file: 3‟ at 95°C; 35 cycles of 1‟ at 95°C, 1‟ at 55°C and 1‟ at 72°C; additional final 

extension was added (4‟ at 74°C).  

 The HS2 region of the β-LCR was amplified using the primers HS2-BamHI 

(ggatccTAAGCTTCAGTTTTTCCTTAGT) and HS2-SalI 

(gtcgacTAGATCTGACCCCGTATGT 

GAGCAT), engineered to contain BamHI and SalI restriction site, respectively. 

Chemical Protocol: 1X Pfu Buffer, 2 mM MgCl2, 200 μM dNTPs, 0.3 μM of each primer, 0.3 μg 

of genomic DNA, 3 U of Pfu. 

Thermal file: 3‟ at 95°C; 35 cycles of 1‟ at 95°C, 1‟ at 64°C and 2‟ at 72°C; additional final 

extension was added (5‟ at 74°C). 

All amplified products were electrophoresed through a 1-1.2% agarose, 1X TAE, etidium 

bromurated gel at 7.5 volts/cm for 45‟ in the presence of a molecular weight marker.  
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DNA was recovered from agarose by means of the Montage Gel Extraction Kit (Merck 

Millipore). The purified fragments were sequenced by terminator chemistry (BigDye Terminator 

v3.1 Cycle Sequencing Kit, Applied Biosystem). Reaction mix was purified through the Sigma 

Spin Post-Reaction Clean-Up Columns (Sigma-Aldrich) and subjected to capillary 

electrophoresis on an ABI PRISM 3130 Genetic Analyzer (Applied Biosystem). Another 

Plasmid Editor APE (http://biologylabs.utah.edu/jorgensen/wayned/ape/) was used to align the 

obtained sequences with the reference (AC #: U01317). 

9.4. Plasmid constructions and mutagenesis  

The β-globin gene promoter was first cloned in pBluescript II SK (shortly pSK) to 

perform mutagenesis and then transferred in pGL2 plasmid for luciferase assays. Both plasmids 

confer ampicillin resistance to the transformed bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to clone the fragment containing the β-globin gene promoter in the pSK vector, 

β_KpnI (ggtaccATCCAGTTTCTTTTGGTTAACCT) and β_XhoI 

(ctcgagTCTGTTTGAGGTTGCTAGTGAACAC) primers, engineered to contain both KpnI and 

XhoI restriction site, respectively, were used.  

The PCR reaction mix consisted in: 1X Pfu Buffer, 300 ng of DNA, 300 µM of dNTPs, 0.3 

µM of each primer, 3 U of Pfu in a total reaction volume of 50 μl. Thermocycle parameters were:  

Figure 12: Plasmids used for mutagenesis (pBluescript; pSK) and for lucifearse assay (pGL2 Basic). 
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3‟ at 94°C; 35 cycles of 1‟ at 94°C, 1‟ at 66°C and 4' at 72°C; additional final extension was 

added (10‟ at 74°C).  

Two digestions were necessary to prepare the PCR fragment and the plasmid for the ligase 

reaction. The entire quantity of purified PCR product and 3 μg of plasmid were digested with 3 

U of the restriction enzyme (Kpn I) for 1 h at 37°C, then purified with phenol:chloroform 

precipitation and digested again with the second enzyme (Xho I).  

The phenol:chloroform precipitation protocol was the following: 

 

add mQ water up to 200 μl to the solution containing DNA to be precipitated. Add 200 μl of 

phenol:chloroform:isoamyl alcohol (25:24:1). Vortex for a few seconds to obtain a 

homogeneous emulsion. Spin at 20000 g for 5’. Carefully remove the upper aqueous phase and 

transfer it  to a fresh tube. Add the following reagents to the aqueous phase: CH3COONa 3M, 

pH 5.5 (0,1 μl x volume of sample), 100% EtOH (2–2.5 volumes), glycogen 10 mg/ml (1 μl).  

Incubate at -80° C for 30’ or –20°C overnight to precipitate the DNA.  Spin at 20000 g  for 10’. 

Carefully remove the supernatant without disturbing the DNA pellet. Add 500 μl of 70% EtOH. 

Resuspend the pellet. Spin at 20000 g for 5’. Remove as much of the remaining ethanol as 

possible. Air-dry the pellet and resuspend it in an appropriate volume of sterile mQ water.  

 

The restriction enzyme with the most alkaline pH (Xho I) was chosen for the second 

digestion in order to have a pH at which the alkaline phosphatase works.  

The double digested plasmid was incubated 1 h at 37°C with Calf Intestinal Alkaline 

Phosphatase (CIAP or CIP) simply adding 1 unit of CIAP directly to the second digestion tube. 

CIAP removes phosphate groups from the 5‟ end of the vector so that it cannot ligate, preventing 

the recircularization of the linearized vector and improving the possibility to transform only with 

the vector that contains the appropriate insert.  

Both double digested insert and dephosphorylated vector were electrophoresed for 30‟ in a 

1% agarose TAE gel. Bands were excided with sterile scalpel and DNA was purified with 

Wizard SV Gel and PCR Clean–Up System (Promega). 

Purified DNA was quantified by means of NanoDrop and a ligation was set in a 10 μl 

volume; 25 ng of vector were ligated to the insert (vector:insert 1:3) with 3 units of T4 DNA 

Ligase by incubating at 16°C overnight. Also a negative ligase control was set, at the same 
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conditions described above except for the absence of insert. Competent E. coli DH5α were 

transformed, plated on a LB Agar (Sigma) in presence of ampicillin and incubated overnight at 

37°C. Also a negative ligase control was used to transform DH5α. It produced colonies only if 

the recircularized vector was present.  

Transformation protocol for DH5α was: 

 

Thaw competent DH5a cells on ice. Gently mix cells with the pipet tip and aliquot 100 μl of cells 

for each transformation into 1.5 ml tubes that have been pre-chilled on ice. Add  ½ volume of the 

ligase reaction. Incubate on ice for 30’. Heat shock at 37°C for 3'. Incubate for 10’ at room 

temperature. Add 500 μl of LB broth (without antibiotic) using sterile procedures. Incubate at 

37°C for 50’. Spin at 1900 g for 5’. Remove 500 μl of supernatant. Resuspend the pellet with the 

remaining volume of LB. Spread the cells onto LB plates with appropriate antibiotic. Allow 

plates to dry and incubate inverted at 37°C overnight. 

 

Grown monoclonal colonies were inoculated in 2 ml of LB Broth in presence of ampicillin 

and incubated overnight at 37°C, in agitation. 1 ml of the mini–inoculum was used to recover 

circular plasmid DNA with an alkaline lysis combined with SDS technique:  

Transfer 1 ml of mini–inoculation in a 2 ml tube. Spin at 20900 g for 1’ and remove the 

supernatant. Resuspend the pellet in 200 μl of Solution I (50 mM glucose, EDTA10 mM Tris/Cl 

pH 8 25 mM. Add 200 μl of Solution II (200 mM NaOH, 1% SDS). Mix gently by inversion. 

Incubate exactly  5’ at room temperature. Add 200 μl of cold Solution III(7.5 M NH4–acetate). 

Incubate on ice 10’. Spin at 20900 g for 10’. Recover the supernatant. Add 2 volumes of 100% 

EtOH and incubate 10’ at room temperature. Centrifuge at 20900 g for 15’. Resuspend the pellet 

with 500 μl of 80% EtOH. Centrifuge at 20900 g for 5’. Resuspend in 50 μl of TE containing 

RNase A (20 mg/ml. Incubate at 37°C for 10’. 

 

Recovered plasmid DNA was double digested and electrophoresed to confirm the positive 

transformation: 2 bands are expected and their length should be the same as vector and insert, 

respectively. 

When the mini-inoculum had been confirmed to be positive, a midi–inoculum was 

performed: 5 μl of mini-inoculum were inoculated in 50 ml of LB Broth (Sigma) in presence of 

ampicillin and incubated overnight at 37°C, in agitation. 1 ml of midi-inoculum was used for a 

pure mini-preparation with the commercial kit Wizard Plus SV Miniprep DNA Pur System 
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(Promega) and 450 ng of insert were sequenced (with the same primers used in PCR) to confirm 

that no mutations were inserted during the cloning process. A midi-preparation was performed 

on the midi–inoculum with PureLink HiPure Plasmid Midiprep Kit (Life Technologies) to 

recover a large number of copies of construct. 

By cloning, two different constructs were obtained: the pSK_βWT containing wild type 

promoter and the pSK_β-72 containing the -72(T→A) mutated one.   

Two mutated constructs were also generated by site-directed mutagenesis starting from 

the pSK_βWT: the pSK_β-87 and the pSK_β-71, containing the -87 C→G and -71 C→T 

mutation, respectively. The mutagenesis reaction mix consisted in: 1X Pfu Buffer, 20 ng of 

pSK_βWT, 200 µM of dNTPs, 125 ng of each primer (β87G_F 5'-

CTCACCCTGTGGAGCCACACGCTAGGGTTGGCCAATCTAC-3' 

β87G_R 5'-GTAGATTGGCCAACCCTAGCGTGTGGCTCCACAGGGTGAG-3'  

β71T_F 5'-CTAGGGTTGGCCAATTTACTCCCAGGAGCAGG-3'  

β71T_R 5'CCTGCTCCTGGGAGTAAATTGGCCAACCCTAG-3'), 3U of Pfu in a total 

reaction volume of 50 μl. Thermocycle parameters were: 30‟‟ at 95°C; 18 cycles of 30‟‟ at 95°C, 

1‟ at 55°C and 90‟‟/kb at 72°C; additional final extension was added (10‟ at 72°C).  

PCR products were subsequently incubated 1 h at 37 °C with 3 U of DpnI to digest the 

metilated parental plasmid.  

All the plasmid constructions were verified by automated sequencing.  

 

9.5. Cell culture and Luciferase assays 

To perform the luciferase assay, wild type and mutated promoters were transferred into the 

pGL2-Basic Luciferase Reporter Vector containing the HS2 region. We generated the 

recombinant plasmid pGL2-HS2 inserting the HS2-locus control region into the BamHI and SalI 

restriction sites of pGL2-Basic. 

Transient transfection was chosen for the luciferase assay: K562 erytroleukaemia cell line 

was used. 

K562 cells were grown and maintained approximately from 1 to 5·10
5
 cells/ml in RPMI 

1640 GlutaMAX™ medium (Gibco, Thermo Fisher Scientific), containing 10% fetal bovine 

serum, 100 mg of streptomycin, 100 U/ml of penicilin at 5% CO2 and 37°C.  



50 
 

Dr. Nguyen Quynh Chau: Study on hemoglobinopathies in central province of Vietnam  
                             Ph.D thesis in Biochemistry and Molecular Biology  
Ph.D Course in Life Sciences and Biotechnologies - University of Sassari 

A liposome transfection or lipofection was performed with the Lipofectamine LTX reagent 

(Life Technologies) according to the manufacturer‟s protocol; briefly 500 ng of total plasmid 

DNA were added to 0.5 μl of Plus in 100 μl of Opti–MEM serum and antibiotic free medium 

(Life Technologies) and incubated for 5‟ at room temperature; 1.25 μl of LTX was then added. 

After a 30‟ incubation, the mixture was added to 1⋅10
5
 cells/500 μl in a 24–well plate and 

incubated for 36–48 h at 37°C. Cationic lipids are used to convey the DNA inside the cells: they 

create artificial membrane vesicles (liposomes) that bind plasmid DNA molecules; these 

complexes adhere to and fuse with the negatively charged cell membrane, bringing the DNA 

within the cell.  

Dual Luciferase Assay (Promega) was performed: basically the inserted β promoter 

upstream the Firefly luciferase gene can drive the expression of the enzyme in K562. Mutations 

on the cloned promoter were tested to understand their ability to decrease luciferase‟s expression 

and hence luminescence. The Renilla luciferase expression vector pRL–TK (Promega) was 

cotransfected with the proband pGL2 construct (1:20 pRL:pGL2) for normalization of 

transfection efficiency and to provide an internal control for lipofection. Also a negative control 

(with no pGL2 construct) were used in the experiments. 

Cells were then lysed and Firefly (from pGL2) and Renilla (from pRL) luciferase gene 

activities were measured through a luminometer (Victor X5, PerkinElmer).  

 

 

 

 

 

 

 

 

 

 

 

Figure 13: pRL-TK vector used as coreporter in the Dual Luciferase Assay. 
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The luminescence from the Firefly luciferase of each well was normalized to the relative 

luminescence from the Renilla one, in order to obtain comparable values among experiments. 

The value of the wild type promoter was set as 100% of luminescence. 

 

 

 

 

 

 

 

 

 

 

 

10. Statistical analysis 

Data are presented as the mean ± SD. Results were subjected to the Student‟s t-test. Differences 

between groups with p<0.05 were considered to indicate a statistically significant. All 

experiments were performed independently in quadruplicated. 

 

 

Figure 14: Dual Luciferase Reporter Assay and its bioluminescent reactions catalyzed by firefly 

and Renilla luciferases. 
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RESULTS 

Out of 160 subjects belonging to the study group, 71 (44,4%) showed hematological indices 

overlapping to the control group, whereas 89 (55,6%) were found to have hypocromic microcytic 

anemia (Table I).  

 

 

 

 

NS = non-significant 

*Reference values 

 

After selection, the 89 samples have undergone to Hbpathies screening and 27 of them, which 

showed abnormal qualitative or quantitative Hb profiles, were included in the DNA analysis. 

 

 

  

Samples Hematological indices 

 

RBC  

(x 10
12

/l) 

*4-5.5 

Hb (g/dl) 

*12-15 

MCV (fl) 

*80-100 

MCH (pg) 

*28-32 

RDW (%) 

*12-15 

Control group 

(N = 193) 

4.79 ± 0.29 13.07 ± 0.84 85.9 ± 3.17 29.4 ± 0.87 13.85 ± 0.74 

 

Study group 

(N = 89) 

5.1 ± 0.49 

 

10.43 ± 2.39 

 

80.13 ±7.12 

 

26.22 ±1.58 

 

16.34 ± 3.32 

 

P value 

(Student t-test) 

NS P<0.001 P<0.001 P<0.001 NS 

Table I: Hematological indices for study and control groups 
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*supposed according to hematology and Hb profiles; Tm: thalassemia minor; TI: thal intermedia 

 

 

HbE variant was observed in 21 of 27 samples; this is the only structural Hbpathy identified in 

the study. The Figure 15 shows the chromatographic profile (panel a) and the isoelectrophoretic 

pattern (panel b) observed in 18 individuals carrying from 22.8 to 27% of the mutated tetramer.  

 

 

 

 

 

 

 

SAMPLES 

Study group (N. 27) 
Control 

group 

 N = 18  N = 3 N = 6 N = 193 

β-genotype * β
E
β β

E
β

0 
(ββ

0
) Tm or TI 

RBC (x10
12

/l) 4-5.5 4.97± 0.53 5.94; 5.88; 5.76 5.4 ± 0.72 4.79 ± 0.29 

Hb (g/dl) 12-15 12.5 ± 1.1 8.5; 8.1; 7.8 10.3 ± 2.09 13.23 ± 0.98 

MCV (fl) 80-100 82.8 ± 6.33 71; 62.5; 60.4 69.3 ± 11.97 85.9 ± 3.17 

MCH (pg) 28-32 25.6 ± 1.5 21; 18.4; 20.2 24.2 ± 2.82 29.4 ± 0.87 

RDW (%) 12-15 14.1 ± 1.23 24.3; 21.7; 19.5 15.9 ± 1.78 13.85 ± 0.74 

HbA2 (%) ≤3.5 3.8 ± 0.38 5.3; 5.8; 6.3 3.9 ± 0.43 2.7 ± 0.3 

HbE (%) 24.9 ± 2.13 60.1;  59.2; 58.4 - - 

HbF (%) < 1.5 34.6; 35; 35.3 1.8 ± 1.2 - 

Table II: Hematology and Hb profiles for 27 patients stratified by phenotype or supposed β-genotype. 
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These data were in agreement with the β
E
β genotype, which was confirmed by sequencing.   

 

 

 

 

 

 

 

HbE was the predominant circulating Hb fraction in 3 samples (Table II), the remaining being 

the HbF (~35%). The HbA tetramer was not present.  

 

 

 

 

 

G G T G G T N A G G C C C T G  

Figure 16: nucleotide sequencing of a region of the β-globin gene from one of the 18 HbE carriers. The GAG(Glu) 

→AAG(Lys) heterozygosity at codon 26 is shown. 

Figure 15: panel a): CE-HPLChromatogram of Hbs in a carrier for HbE variant. Panel b): 

Isolectrofocusing of Hbs: lanes 1,4 carriers for HbE; lanes 2,3 controls. 
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This Hb profile, with a greatly increased production of HbF, is mostly noted in the presence of 

the β
E
β

0
 compound state rather than the HbE homozygousity.  

Sequencing of the β gene confirmed a compound condition in all 3 cases. In 2 of these, the β
E
 

and the thalassemic β
017

 alleles are coinherited (Fig. 18). 

  

 

 

 

 

 

 

The third sample resulted heterozygous for both the β
E
 variant and the -TTCT deletion at codons 

41/42, which is responsible for a frameshift β
0
 mutation resulting in a stop codon at the new 

codon 59 terminating translation. 

Figure 18: nucleotide sequencing of a region of the β-globin gene showing the AAG (Lys)→TAG (stop) 

heterozygosity at the 17 codon. 

C T G T G G G G C N A G G T G A A  

Figure 17: CE-HPLChromatogram of Hbs in a patient supposed as being β
E
β

0
 compound. 
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All of the 6 samples suspected of having β-thalassemia variants (Table II) were undergone to the 

β-globin gene sequencing. Table III lists the hematological parameters and the assessed β-

genotype. 

 

 

 

 

 

 

 

2 out 6 patients (samples 1 and 2) showed normal β gene sequence, identical to the reference 

except for several common polymorphisms, listed in Table IV, previously described (Orkin et 

al., 1984) and not reported as functional changes.  

Samples Hb HbA2 MCV MCH β-genotype* 

1  6.8 3.4 81.2 25.6 normal 

2  12.4 3.46 73.5 22.4 normal 

3   10.0 4.5 52.3 26.5 ββ
017

 

4 12.3 4.17 62.7 19.3 ββ
017

 

5   9.31 3.7 63.2 25.2 ββ
-TTCTdel41/42

 

6 10.8 3.96 83 26.3 ββ
-72

 

Figure 19: nucleotide sequencing of a region of the β-globin gene showing the frameshift resulting 

from the -TTCT deletion at codons 41/42.  

Table III: Hematology and β-genotype in n. 1-6 samples. 
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The homozygosity state observed for all  four polymorphisms, the presence of a hypocromic 

microcytic anemia and borderline HbA2 levels, prompted us to further investigate the 

chromosomal arrangement.  

The MLPA results have highlighted a normal HBB cluster, both in structure and copy number. 

The HBA cluster was also investigated and a triplication resulted in the sample n.1 (Figure 16). 

The presence of Hb Constant Spring was excluded in both patients (HBA MUT CS 135 nt 

probe). 

 

 

 

 

Samples SNPs 

 Codon 2 IVS II nt 16 IVS II nt 74 IVS II nt 666 

1  CAT G T C 

2  CAT G G C 

Samples HBB cluster HBA cluster CS MUT 

1 normal triplicated Excluded 

2 normal normal Excluded 

Table IV: Polymorphisms observed in the β-globin gene 

Figure 20: Bar chart for sample n. 1 analyzed with SALSA MLPA kit P140–B4 HBA. In red and green 

the heterozygous triplicated region. 
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As indicated in the blue box of Figure 21, the expected probe ratios in the presence of a 

triplicated HBA cluster are 1.2 or 1.4. According to this, the 142, 160, 241, and 166 probes (red 

bars in Figure 15) reach a level of 1.2, and the 196, 190, 220, 256 and 337 probes (green bars in 

Figure 20) showed an increased value of 1.4.  

The normal ratio observed for the 229 probe, which differs from the expected 1.4, denotes that 

the 5' breakpoint of the triplication is different from that shown in Figure 21. 

As shown in Table III, 2 patients (samples 3 and 4) resulted heterozygous for the β
017

 allele, 

whereas 1 sample (n. 5) showed heterozygosity for the -TTCT deletion at codons 41/42. 

Moreover, sequence analysis performed in the n. 6 sample revealed heterozygosity for the novel 

mutation T→A at position -72 of the β-globin gene promoter, within the conserved CCAAT box.  

 

  

 

Figure 21: The grid shows the expected probe ratios in the presence of deleted or triplicated HBA cluster (from 

SALSA MLPA kit P140–B4 HBA product description, MRC-Holland). 
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The index case was a 5-year-old child having red blood cells indices close to normal and slightly 

increased level of HbA2 (3.96%).  

His relatives have been also analyzed: the father's and grandfather's showed similar HbA2 levels 

(4.01 and 3.82%, respectively), whereas the other family members displayed normal 

hematological parameters and Hb components. The hematology data of the proband and his 

relatives are presented in Table V.  

Sequencing revealed that his father and grandfather shared the same ββ
-72

 genotype.  

 

 

 

 

 

 

 

 

 

 

 

Samples Hematology and genotype 

 
Hb HbA2 MCV MCH 

β-

genotype* 

HBB 

cluster# 

HBA 

cluster# 

Proband 10.8 3.96 83 26.3 ββ
-72

 normal Normal 

Father 14.1 4.01 96.5 30.5 ββ
-72

 normal Triplication 

Mother 12.0 2.94 96.8 29.7 normal N.D. N.D.  

Sister 12.1 2.84 85.1 26.9 normal N.D. N.D. 

Grandfather 13.6 3.82 95.4 29.5 ββ
-72

 normal  N.D. 

Grandmother 11.9 2.69 97.5 30 normal N.D. N.D. 

Figure 22 : nucleotide sequencing of the β-globin gene promoter showing the T→A heterozygosity at 

position -72 from the Cap site, in the CCAAT box. 

Table V: hematology, β-genotype and MLPA results in the -72 T→A carrier (sample n. 6) and his family members.  

CCCTAGGGTTGGCCAANCTACTCCCAGGAGCAGGG 

* defined by sequencing, # defined by MLPA  
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The common polymorphic sites above-mentioned [codon 2 (CAC→CAT), IVS-II-16 (C→G), 

IVS-II-74 (G→T), IVS-II-666 (T→C)] were also detected and the following configuration CAT, 

G, T, C, was found in cis to the -72 mutation. 

No alteration was observed in HBB cluster of the three -72 carriers, whereas a triplicated HBA 

cluster, that seems to have no effect on the phenotype, was highlighted in the proband's father. 

The resulting bar chart was very similar to that of sample n.1 (Figure 20) except for the 229 

probe ratio which amounted to 1.55. This value was consistent with that shown in Figure 21.  

To assess the contribution of -72 mutation in decreasing β-globin gene expression, wild-type 

(pGL2-HS2-β-WT) and mutant (pGL2-HS2-β-72) constructs were cotransfected with the pRL 

control vector into K562 cells.  

In order to determine the ability of this system to reproduce the downregulation of the β-gene 

promoter, we generated and used as positive control the pGL2-HS2-β-87 and pGL2-HS2-β-71 

constructs, in which the mutagenized -87(C→G) and -71(C→T) β-promoters were inserted into 

the pGL2-HS2 vector, respectively. Both -87 and -71 have been already described as β-

thalassemia mutations. The β-87 C→G allele is a mild transcriptional mutant described in 

Mediterranean countries (Huisman & Carver, 1998). It alters the proximal CACCC box, one of 

the crucial elements for the expression of β-globin gene. Homozygotes (Camaschella et al, 1990) 

or compound heterozygotes for β-87 and for severe β-thalassemia mutations (Rosatelli et al, 

1989) are affected with thalassemia intermedia. Previous expression studies in K562 cells 

showed a residual activity of 20% to 30% compared with the wild-type promoter (Ristaldi et al., 

1995). The -71 C→T mutation occurs one nucleotide immediately downstream of the core 

CCAAT sequence, which has been shown to be important for the binding of GATA-1 (Al Zadjali 

et al., 2011). The β-71 allele was found in compound heterozygosity with HbS [β6(A3)Glu>Val] 

in an Omani family with almost equal expression of HbA and HbS. In addition, molecular 

screening of a set of subjects with borderline HbA2 or MCV values revealed the presence of the -

71 change in heterozygous state. These results suggested that the -71 C to T mutation may be a 

mild β-thalassemic allele, although at the time of our study results on gene expression were not 

present. 

In our experiment the expression of the mutant vectors was compared with the pGL2-HS2-β-

WT, which was considered to have 100% activity.  

The results of the transfection studies are summarized in Figure 23. 
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Luciferase activities of the mutant controls (-87 and -71) resulted significantly decreased, 

demonstrating that the system is able to reproduce a down-regulation of the β-globin gene 

promoter in vitro. Relative luciferase activities of -87, -72 and -71 mutated promoters were 32,3 

± 0.7%, 53.7 ± 7.5% and 46.1 ± 4.8%, respectively (Figure 23). These results clarify that -72 

mutation, as well as described for -87 and -71, is a mild β-thalassemic allele. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

Figure 23: Relative luciferase activity of β-globin promoter in K562 cells. 
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DISCUSSION 

Although Hbpathies were the first human disorders to be characterized as molecular diseases and 

their pathophysiology understood, after 60 years of significant progress, the management of 

sickle cell disease and β-thalassemia still depends on supportive care and when required, regular 

lifelong blood transfusions and iron chelation.  

In some developing countries, where due to the lack of resources patients are untreated or poorly 

transfused, the clinical picture of thalassemia major is characterized by growth retardation, 

pallor, jaundice, poor musculature, genu valgum, hepatosplenomegaly, leg ulcers, development 

of masses from extramedullary hematopoiesis, and skeletal changes resulting from expansion of 

the bone marrow. Other complications are hypersplenism, chronic hepatitis (resulting from 

infection with viruses that cause hepatitis B and/or C), HIV infection, venous thrombosis, and 

osteoporosis (Cao & Galanello,  2010).  

Approximately 80% of the annual births of babies with severe conditions occur in low-or 

middle-income countries, many of which have extremely limited facilities for their control and 

management. Given that the population size of many of them is growing and, as social and 

public health facilities improve, increasing numbers of these babies will survive to present for 

diagnosis and treatment. Hence, the Hbpathies will constitute an increasing global health burden. 

Programmes directed at the avoidance and better management of these conditions have the 

potential to significantly improve health indicators in many developing countries (Weatherall et 

al, 2006; Modell & Darlison, 2008). Identification of new mutations and the update of the 

mutation spectrum of thalassemia in one ethnic population is a prerequisite for the development 

of these programs.  

 

In Vietnam, both β-thalassemia and HbE are prevalent and represent an important cause of 

childhood chronic disease (Svasti et al., 2002).  

The Hb E heterozygote is mildly affected and the Hb E homozygosity is a benign disorder with a 

mild β-globin chain deficit which is comparable to that seen in a β
0
-thalassemia heterozygote. 

However, compound heterozygotes β
E
/β

0
 are often severely affected. 

The Vietnamese population is ethnically highly heterogeneous and the spectrum of β-thalassemia 

alleles is slowly defining (Filon et al., 2000; Hao et al., 2001; Svasti et al., 2002; O‟Riordan et 

al., 2010; Nguyen et al., 2013). Patients included in these studies had severe clinical symptoms  
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and were transfusion-dependent. On the whole, six mutations of the β
0
 and a mutation of the β

+
 

type have been identified and observed with distinct incidence in the different areas. The most 

commons, both in the South and in the North of Vietnam, are the frameshift mutation at codons 

41/42 (−TCTT), the nonsense mutation at codon 17 (A→T) and the frameshift mutation at codon 

95 (+A), which is known as the “Vietnamese” mutation. Other mutations, although less frequent, 

are present in these countries: the -28 (A→G), the IVS-I-1 (G→T), the frameshift mutation at 

codons 71/72 (+A) and the IVS-II-654 (C→T).  

The aim of the PhD project has been to develop professional skills and competences directed at 

the avoidance and better management of the Hbpathies in central Vietnam. The project was 

focused to provide the groundwork for screening programs determining the spectrum of β-

thalassemia mutations in patients and their relatives from Hue province of Vietnam.  

A complete blood cell count has been performed on 353 individuals of which 89 showed 

abnormal hematological parameters like anemia, microcytosis and/or hypochromia.   

Hb phenotype determination led to detect altered Hb profiles in 27 samples out of 89 examined.  

Twenty one patients showed an Hb profile consistent with the presence of the HbE variant 

[β26(B8)Glu→Lys]. The mutated tetramer is resolved from the normal counterpart by both IEF 

and CE-HPLC techniques since its additional positive charge. Nevertheless, elution and 

comigration of HbE with HbA2, as occurs for other slow-moving variants, required a molecular 

DNA approach to carry out a correct diagnosis. 

Sequencing confirmed the presence of the GAG→AAG mutation at 26 codon and allowed to 

define the β-genotype which resulted β
E
β in 18 samples, and β

E
β

0
 in the remaining 3. In these 

last, sequencing revealed two previously described mutations in addition to the β
E
 allele: the 

nonsense change at codon 17 (AAG→TAG), observed in 2 samples, and the frameshift mutation 

at codon 41/42(-TTCT). The -TTCT deletion is the most common mutation in South and 

Southeast China where its frequency reaches above 40%. The β
017 

allele has a high prevalence in 

Southern Chinese provinces as well as in North Thailand (Filon et al., 2000). These  two 

mutations also had highest frequencies in North and South Vietnam (Filon et al., 2000; Svasti et 

al., 2002).  

The compound heterozygous state for HbE and β
0
-thalassemia results in a remarkably variable 

phenotype: approximately one half of the patients are phenotypically similar to patients with TM 

who require regular transfusion therapy, and the other half resembles TI (Fucharoen et al., 2000; 
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Gibbons et al., 2001). Notable are variations in anemia, growth, development, 

hepatosplenomegaly, and transfusion requirements (Fucharoen et al., 2000). 

The cause of the striking variability remains largely unknown. Despite seemingly identical 

genotypes, patients of the same family may show significant differences in clinical severity. HbF 

level is the strongest predictor of morbidity. However, the basis of increased HbF is usually 

unknown.  

In a review of 378 patients with HbE- β
0
-thalassemia from Thailand, the Hb concentrations 

ranged from 3 to 13 g/dl, with an average of 7.7 g/dl (Fucharoen et al., 2000). In our study, the 

mean value of Hb concentration was 8.13 g/dl, with HbF markedly elevated. None of the 3 

patients undergoes a regular transfusion program. They have occasionally received transfusions 

and the level of persistent HbF synthesis appears to be the most important factor in their clinical 

mildness.  

The presence of a hypocromic microcytic anemia and increased or borderline HbA2 levels was 

suggestive of β-thalassemia variants for 6 of 27 samples.  

Two of them (samples 3 and 4) resulted heterozygous for the β
017

 allele, whereas one  sample (n. 

5) showed heterozygosity for the -TTCT deletion at codons 41/42. 

Conversely, any functional mutation was observed in the β gene of samples 1 and 2, but only 

common polymorphisms were revealed: the C→T silent mutation at codon 2 (His→His), and 

three  changes in IVS II (+16C→G or Ava II − → +, +74G→T and +666T→C) (Orkin et al., 

1982; Sahoo et al., 2014). The homozygosity state observed for all polymorphisms above-

mentioned, despite their hypervariability, prompted us to further investigate the presence of a 

deletion involving the β-globin gene in trans. Indeed, deletional forms of β-thalassemia, mainly 

caused by unequal crossing over, were described (Thein, 2013). The MLPA results have 

highlighted a normal HBB cluster, both in structure and copy number. In order to check a 

possible co-inheritance of α-thalassemia triplication, the HBA cluster was also investigated. In 

fact, triplications and quadruplications of the α-globin gene, frequently observed in many 

populations, can interact with β-thalassemia determinants, to produce moderate to severe 

phenotypes. A triplicated arrangement was found in sample n.1, whereas sample n. 2 revealed a 

normal HBA. These results do not explain the clinical features of the two samples, especially for 

sample n. 1, a 7-year-old child. He showed a severe anemia state with the following Hb 
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components: HbA 92.4%; HbF 4.2%; HbA2 3.4%. After his Hb has fallen below 7.0 g/dl he was 

transfused and until now he is in regular transfusion program. 

It is noteworthy that there is emerging evidence that a set of genes, linked to the HBB cluster and 

trans-acting, contribute to Hb regulation and inherited hemolytic anemia. For example, rare 

variants in KLF1 have been described in association with borderline or increased HbA2 and HbF 

levels and/or microcytic hypochromic anemia in the absence of mutations in β-globin gene 

(Perseu et al., 2011; Huang et al., 2015). KLF1 is an essential erythroid transcription factor, 

which plays multifunctional role during erythropoiesis and Hb switching between fetal and adult 

states. 

Moreover, hereditary hemolytic anemia can involve also different genetic determinants, as RBC 

membrane disorders or RBC enzyme disorders. Further studies are warranted to elucidate the 

molecular basis of the observed phenotype. 

Sample n. 6, a 5-year-old child, presented a mild microcytic anemia with a Hb level of 10.8 g/dL, 

MCV of 83.0 fL, MCH of 26.3 pg and a slightly increased HbA2 level of 3.96%. He had never 

required transfusions. The father's and grandfather's showed similar HbA2 levels (4.01 and 3.82 

%, respectively). The other family members showed normal hematological parameters and Hb 

components. 

The proband was found to have a novel to literature T→A mutation at position -72 from the Cap 

site, in the CCAAT box of the β promoter region. Sequencing revealed that his father and 

grandfather had the same genotype β
-72

β.  

The common polymorphic sites above-mentioned (codon 2, IVS-II-16, IVS-II-74, IVS-II-666) 

were also detected and the following configuration CAT, G, T, C, was found in cis to the -72 

mutation. The coupling of specific β-globin gene mutations with neutral changes has been widely 

described (Orkin et al., 1982b; Sahoo et al., 2014); it allowed the detailed characterization of 

chromosome regions in which mutant β-globin genes reside. 

The β-globin gene cluster is a good model to study gene expression and regulation. The efficient 

transcription of the β-globin gene is dependent upon the fidelity of several conserved DNA 

motifs within the promoter regions. These motifs in the β-globin gene include a duplicated 

CACCC box: proximal at positions -90 to -86 and distal at positions -105 to -101 from the Cap 

site, the CCAAT box at -76 to -72, and the TATA box at -30 to -26. These elements, in particular 
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the CCAAT box, are important in the regulation of developmental and tissue-specific expression 

of globin genes (Thein, 2013). 

Mutations observed in these conserved sequence motifs, lead to a slight decrease in β-globin 

gene expression and are associated with relatively mild forms of β-thalassemia and borderline 

HbA2 levels (http://www.globin.cse.psu.edu/) (Orkin et al., 1984b; Agarwal et al., 2006; Chen et 

al., 2007; Basran et al., 2008; Waye et al., 2011).  

To date, one mutant at β-promoter, the -28 A→G, has been identified in Vietnam, only in the 

southern (Hao et al., 2001; Svasti et al., 2002). The same mutation was also reported in the two 

countries neighboring Vietnam, China and Thailandia (Zhang et al., 1988; Fucharoen et al., 

1997). This variant occurs in the TATA box and has been introduced into the HbVar database as 

β
+
-thalassemic allele. Indeed, the mild thalassemic phenotype observed in compound 

heterozygotes β
E
/β

-28
 from Thai population may indirectly indicate that the -28 mutation is a mild 

thalassemic allele (Fucharoen et al., 1997).  

The -72 mutation, identified in our study for the first time, occurs in simple heterozygous state so 

its responsibility in causing a β-thalassemia phenotype and the mutation type (β
0
 or β

+
) cannot be 

deduced. In order to measure the degree of reduction in the promoter activity in vitro expression 

studies were performed. 

We used as positive controls two mutant constructs in which the mutagenized -87(C→G) and -

71(C→T) β-promoters were inserted into the basic vector, respectively. The β-87 C→G allele is 

a mild β-thalassemia mutant that alters the proximal CACCC box. Previous expression studies in 

K562 cells have showed a residual activity of 20% to 30% compared with the wild-type 

promoter (Ristaldi et al., 1995). The -71 C→T mutation occurs one nucleotide immediately 

downstream of the core CCAAT sequence. Based on hematological phenotypes in simple 

heterozygotes, as well as in compound heterozygotes with HbS, the mutation was assigned as a 

mild β
+
-thalassemic allele (Al Zadjali et al., 2011). 

Our in vitro experiments shows that the transcriptional activity of the mutated promoter is 

roughly half that of the wild type promoter. This finding suggests that the -72 mutation can be 

classified as a β
+
-thalassemic allele. However, the absence of homozygous or compound 

heterozygous states does not allow us to precisely predict its clinical impact and, consequently, 

its relevance in management programs. Indeed, association of β
+
-thalassemia with β

0
 or β

E
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mutations results in a markedly heterogeneous hematological picture, ranging in severity from 

that of the β-thalassemia carrier state to that of TM (Thein, 2005).  

Furthermore, it has been noted that even in the case of mild disease, β-TI patients may still suffer 

from many complications including a hypercoagulable state and subsequent thrombotic events 

(Cao & Galanello, 2010; Musallam & Taher, 2011).  

The ability to predict phenotype from genotype has important implications for the screening of β-

thalassemia carriers, for genetic counseling and prenatal diagnosis and for planning the 

appropriate treatment regimen. This ability requires in turn a comprehensive knowledge  of the 

spectrum of β-thalassemia mutations, more so in countries, like Vietnam, in which the 

extraordinary phenotypic diversity presents particular management problems. 

Our results further underline the importance of identifying and characterizing new or rare β-

thalassemic alleles, even when mild, in carrier screening and prenatal diagnosis in order to 

reduce the burden of thalassemias, avoid unnecessary transfusions in TI and start early 

transfusions in TM patients.  
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