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ABSTRACT

This thesis focuses on two studies concerning some aspects of cell proliferation and

development in plants. The first part describes additional results completing the

characterization of the three AtDRTS genes of Arabidopsis thaliana, which code for

bifunctional dihydrofolate reductase/thymidylate synthase enzymes whose activity is

fundamental in proliferating cells. These analyses allowed the identification of different

AtDRTS isoforms, some of which are expected to encode monofunctional dihydrofolate

reductases, and revealed common and distinctive patterns of expressions that suggest

redundant as well as specific roles of the three genes. The characterization of the AtDRTS

promoters revealed distinctive features and an E2F-dependent repression of both AtDRTS2

and AtDRTS3. Moreover, evidence has been obtained that the first intron of AtDRTS2 and the

intragenic region containing the second intron of AtDRTS1 play crucial roles in the control of

promoter activity in the root meristems. Moreover, analyses conducted within this thesis

revealed that the first intron of AtDRTS2 is able to confer strong activity in root apical

meristem to a non-meristematic plant promoter. The second part of this thesis describes

studies conducted to evaluate the regulation in planta of a synthetic promoter, named E2F-

Minimal-35S (EM35S), that is expected to be specifically activated by E2F factors, important

regulators of cell cycle progression in both plants and animals. Transgenic Arabidopsis plants

harboring a construct in which the synthetic promoter drives the expression of the GUS

reporter allowed the detection of the E2F-dependent transcriptional activation in different

tissues. Moreover, these plants have been used to investigate the cell cycle-dependent

regulation of the EM35S promoter activity as well as the effects of epigenetic mechanisms

and phosphorylation/dephosphorylation events.
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LIST OF ACRONYMS AND ABBREVIATIONS

APH,             Aphidicolin

BAM3,          β-amylase 3

CDKs,           Cyclin-Dependent Kinases

CENH3,        Centromeric Histone H3

COL,             Colchicine

CYCs,           Cyclins

DHFR/TS, Dihydrofolate Reductase/ Thymidylate Synthase (DRTS)

DPs,              Dimerisation-Partner proteins

EM35S,         E2F-Minimal-35S

eqFP611,       Red Fluorescent Protein

GEN,             Genistein

GUS, β-glucuronidase

HDACs,        Histone Deacetylases

IME,             Intron-Mediated Enhancement

OKAD,         Okadaic acid

pRB,             Retinoblastoma protein

PP1/2A,         Protein Phosphatase 1 and 2A

RAM,            Root Apical Meristem

RBR, Retinoblastoma-Related protein

SAM,            Shoot Apical Meristem

SFH,             Sec14-like gene family

STAU,           Staurosporine

THF,              Tetrahydrofolate

TSA,              Trichostatin A



Author: Antonio Maniga
Title: Studies on the meristematic and E2F-dependent gene expression in Arabidopsis thaliana plants

PhD Thesis in: Life Sciences and Biotechnologies
Università degli Studi di Sassari

6

CHAPTER 1.

Studies on the DRTS genes of Arabidopsis thaliana

1. INTRODUCTION

1.1 Folates and C1-metabolism in plants

Reactions involving the addition or removal of one-carbon units (C1-metabolism), are

essential to all organisms, including plants. The majority of the C1 transfer reactions are

mediated by tetrahydrofolate (THF) and its derivatives, commonly named folates or vitamin

B9. Folates act as coenzymes in several cellular pathways, including the synthesis of purines

and thymidylate, amino acid metabolism, pantothenate synthesis and the synthesis of

methionine (Met). Furthermore, because methionine is the direct precursor of S-adenosyl-Met

(Ado-Met), folates are indirectly required for the synthesis of molecules such as choline,

chlorophyll or lignin, as well as ethylene and polyamines [Cossins, 2000; Hanson and Roje

2001]. THF derivatives are also key compunds necessary to support the massive

photorespiratory fluxes that occur in green leaves of C3 plants. Photorespiration, in fact, relies

on two THF-dependent enzymes present in  leaf mitochondria, the glycine decarboxylase

complex (GDC) and serine hydroxymethyltransferase (SHMT) [Oliver, 1994; Douce et al.,

2001]. These enzymes use up to the 30% of the folate pool for the conversion of glycine to

serine [Gambonnet et al., 2001]. Moreover, folates are also involved in the synthesis of

pantothenate (vitamin B5) because the first enzyme of this pathway, ketopantoate

hydroxymethyltransferase, uses 5,10-methylene tetrahydrofolate as a cofactor [Smith et al.,

2007].

1.2 THF structure and biosynthesis

THF (figure 1) is a tripartite molecule, composed of pterin, p-aminobenzoate (pABA) and

glutamate moieties. The one-carbon units at various oxidation levels are attached at N5 of the

pteridine ring, N10 of the PABA unit, or bridged between the two nitrogens. Folates are

synthesized de novo by plants, fungi, most bacteria and protozoa, whereas in animals folate

supply is ensured by the diet. As for humans, plant-derived food products are the most

relevant source of folates [Scott et al., 2000].
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Fig. 1 Chemical structures of
tetrahydrofolate and its C1-
substituted derivatives [From:
Hanson and Gregory, 2002].

In all organisms folates occur predominantly as polyglutamylated molecules, with a short γ-

linked chain of glutamyl residues attached to the first glutamate. These polyglutamylated

folates are the preferred substrates for most folate-dependent enzymes [Cossins, 2000; Scott et

al., 2000]. In plants, the biosynthesis of THF depends on the activity of enzymes that are

localized in the cytosol, plastids and mitochondria (figure 2) [Neuburger et al., 1996; Rebeillé

et al., 1997].

Fig. 2 Folate synthesis pathway in

plant cells, enzymes are:1, GTP

cyclohydrolase I; 2, dihydrofolate

aldolase;3, ADC synthase; 4/5,

HPPK/DHPS; 6, DHFS; 7,

dihydrofolate

reductase/thymidylate synthase;

8, folylpolyglutamate synthetase

[From: Hanson and Gregory,

2002].
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Cytosolic steps: synthesis of the pterin branch.

The initial reactions of the THF de novo synthesis in plants occur in the cytosol, where

dihydropterin (or hydroxymethyldihydropterin, HMDHP) is synthesized from GTP in three

steps. In the first reaction, GTP-cyclohydrolase I (GTPCHI) catalyzes the formation of

dihydroneopterin triphosphate (DHNTP). Then the triphosphate side chain of DHNTP is

removed to produce dihydroneopterin (DHN) in two reactions. First, the pyrophosphate group

is detached by a specific nudix hydrolase [Klaus et al., 2005], then a non-specific phosphatase

[Suzuki and Brown, 1974] cleaves the remaining phosphate. In the last step, dihydroneopterin

aldolase (DHNA) removes the lateral three-carbon side chain of dihydroneopterin to release

dihydropterin.

Plastidic steps: synthesis of the pABA branch.

The synthesis of pABA occurs in the plastids and requires the conversion of chorismate to

aminodeoxychorismate, mediated by the aminodeoxychorismate (ADC) synthase. ADC is

subsequently aromatized to pABA by ADC lyase [Basset et al., 2004].

Mitochondrial steps: synthesis of THF from pterin, pABA, and glutamate moieties.

The final reactions necessary for THF synthesis occur in mitochondria, which contain all the

required enzymes. In mitochondria, dihydropterin is firstly activated into its

pyrophosphorilated form which is then combined with pABA, resulting in dihydropteroate.

These two reactions are catalysed in plants by a single mitochondrial bifunctional enzyme,

which possesses the two activity necessary for these two steps: HPPK

(hydroxymethyldihydropterin pyrophospho-kinase) and DHPS (dihydropteroate synthase)

[Neuburger et al., 1996; Rebeillé et al., 1997]. In plants, DHPS is feedback inhibited by its

own product, dihydropteroate [Prabhu et al., 1997]. The next step for THF synthesis is the

ATP-dependent glutamylation of dihydropteroate to form dihydrofolate (DHFR) in a reaction

catalyzed by dihydrofolate synthase (DHFS), which allows the attachment of the first

glutamate to the carboxyl moiety of pABA. The presence of HPPK/DHPS and DHFS

enzymes in plant mitochondria, but not in mammal cells, allow plants to be autotrophic for

folates. DHFR is finally reduced to THF by dihydrofolate reductase (DHFR) using NADPH

as a cofactor. As for the polyglutamylated derivatives of THF (polyglutamyl-THF), they are

formed through a sequential addition of γ-linked glutamate residues by the folyl-

polyglutamate synthase (FPGS) enzyme. The glutamylation increases the negative charge of
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the folates and appears to be necessary for a correct compartmentation within the cell

[Appling, 1991].

1.3 Roles of DHFR and TS enzymes in the synthesis of nucleotides

In all organisms, the enzymes thymidylate synthase (TS) and dihydrofolate reductase (DHFR)

are crucial for the synthesis of DNA precursors. In fact, the synthesis of thymidylate (figure

3), catalyzed by thymidylate synthase, requires N5,N10-methylene tetrahydrofolate to

methylate and reduce deoxyuridine monophosphate (dUMP) to dTMP, yielding 7,8-

dihydrofolate (DHF) as a secondary product. To enable efficient recycling of the resulting

DHF, the activity of TS must be linked to the activity of dihydrofolate reductase (DHFR), the

last enzyme of the biosynthetic pathway. The role of the DHFR and TS enzymes in the

synthesis of DNA precursors highlights the importance of a coordinated regulation of both

activities.

Fig. 3 Biosynthesis of
thymidylate and role of the
bifunctional DHFR/TS enzyme.
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TS and DHFR have been described as distinct monofunctional proteins in animals, fungi,

metazoa and bacteria, but plants and protozoa possess a bifunctional DHFR/TS enzyme

(DRTS). The DHFR domain of the bifunctional enzyme maintains the tetrahydrofolate level

by reducting the DHF originating from either the de novo synthesis pathway (monoglutamate

form) or the oxidation of THF by the TS activity (polyglutamate form). It is not still clear

whether bifunctionality arose independently during plant evolution or derived from a common

ancestor shared with the protozoa [Philippe et al., 2000]. Nevertheless, also monofunctional

DHFR enzymes have been identified in plants [Toth et al., 1987].

1.4 DRTS genes in higher plants

Plant DRTS genes have been described in Arabidopsis, carrot, soybean and maize [Lazar et

al., 1993; Luo et al., 1993; Wang et al., 1995; Cox et al., 1999] but additional DRTS sequences

of other species are available through genomic and EST databases, including sequences from

several primitive plants and algal species. All the DRTS proteins possess a conserved N-

terminal DHFR region separated from the conserved C-terminal TS domain by a junctional

region of variable sequence which, according to studies in Plasmodium falciparum, has been

shown to be essential for TS activity and domain-domain interaction of the bifunctional

enzyme [Chaianantakul et al., 2013]. Furthermore, plant DHFR/TS bifunctional enzymes

share conserved regions which specifically bind compounds such as metotrexate, dUMP and

folates.

Studies on the different species, revealed peculiarities of the DRTS plant genes. Analyses of

the 5'-ends of the carrot gene have demonstrated the presence of DRTS isoforms which are

expected to have a specific subcellular localization (Luo et al., 1997). These isoforms are

encoded from two distinct transcript species with differing lengths. Because the DHFR and

TS activity are essential for the biosynthesis of nucleotides, analyses have focused on their

importance in proliferating tissues or in tissues that are characterized by endoreduplication

events. In situ hybridization analyses carried out in Daucus carota revealed that DcDRTS

transcripts are particularly abundant in dividing cells of somatic embryos. In addition,

Northern blot hybridization experiments revealed a stronger accumulation of DcDRTS

transcripts in proliferating suspension cells compared to cells in stationary phase or cells

blocked with propyzamide [Albani et al., 2005]. In Zea mays, high expression of ZmDRTS

was detected during early stages of kernel formation, exhibiting developmentally controlled

endoreduplication, as well as in root tips, where cell division occurs, whereas low expression
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was found in the root elongation zone and leaves [Cox et al., 1999]. Also a recent

investigation of the expression of the four ZmDRTS genes found in the maize genome

revealed that all of them are maximally expressed at the beginning of kernel formation [Lian

et al., 2015]

1.5 DRTS genes in Arabidopsis thaliana

All the information on the DRTS genes of Arabidopsis thaliana is reported in the TAIR (The

Arabidopsis Information Resource) database at the website https://www.Arabidopsis.org/.

Arabidopsis possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3 (or,

alternatively THY1, THY2 and THY3), that show a similar genomic organization and are

located downstream of three members of the sec14-like (SFH) gene family, which suggests

their origin from evolutionary genome duplications [Jiao et al., 2012]. The SFHs are proteins

with distinct subcellular localizations and varied physiological functions related to lipid

metabolism, phosphoinositide mediated signalling and membrane trafficking.

The AtDRTS1 and AtDRTS2 genomic sequences have been described previously [Lazar et al.,

1993] and a gene model has been proposed for AtDRTS3, but information concerning the

expression and the regulation of the AtDRTS genes has not been reported so far. The AtDRTS1

gene, annotated as At2g16370 in the TAIR database, is located on the minus strand of

chromosome 2. According to the proposed gene model, the gene extends 2774 bp, from

position 7088865 to 7091639, and is divided into 10 exons that give rise to a transcript of

1924 bp. The predicted ATG start codon is located in the second exon and the resulting coding

region translates into a protein of 519 aa with a MW of 58.1 KDa. The AtDRTS2 gene,

annotated as At4g34570, based on the gene model spans 3310 bp on the minus strand of

chromosome 4, from position 16511006 to 16514316 and contains 12 exons resulting in a

1926 bp transcript. The ATG start codon is found at the end of the second exon and the

predicted coding region translates into a protein of 565 aa with a MW of 63.2 KDa. Finally,

the AtDRTS3 gene, with annotation At2g21550, is located on the plus strand of chromosome 2

and the proposed gene model is divided into 10 exons and extends 2980 bp, from the ATG

triplet at position 9234289 to the TAA stop codon at 9237269. The predicted transcript

includes an open reading frame of 1476 bp that is expected to code for a protein of 492 aa

with a MW of 55,3 KDa.

www.Arabidopsis.org/
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2. STATE OF THE ART AND AIMS OF RESEARCH

This part of my thesis describes additional data concerning the molecular characterization of

the three DRTS genes of Arabidopsis thaliana, named AtDRTS1, AtDRTS2 and AtDRTS3.

These genes play a major role in the biosynthesis of DNA precursors and, as a consequence,

are expressed in dividing cells. Previous analyses conducted by our research group [Ghisaura,

2010; Marche, 2013] have demonstrated that the three DRTS promoters present differential

profiles of activity. The results obtained, in fact, showed that the AtDRTS1 promoter was

highly active in vascular tissues but, unexpectedly, not in root meristems. As for the AtDRTS2

promoter, a strong activity in both root and shoot apical meristems has been observed,

whereas the AtDRTS3 promoter presented a meristematic expression in the shoot apex but not

in the root, were strong activity has been detected only in the columella and in the central

cylinder and not in the apical meristem. Furthermore, in silico analyses, allowed to identify

several regulatory cis elements which have been reported to be involved in gene regulation in

proliferating cells. Studies had been focusing in particular on the E2F sites contained in the

AtDRTS2 and AtDRTS3 promoters and on the HEXAMER site of the AtDRTS2 promoter.

Mutation of the E2F cis-elements increased considerably the activity of both promoters,

suggesting that the E2F transcription factors act as repressors of AtDRTS2 and AtDRTS3,

whereas mutation of the HEXAMER site determined a decrease of the AtDRTS2 promoter

activity, suggesting an activating role of this cis element. Moreover, other analyses revealed

also the importance of the first intron of AtDRTS2 for the expression in proliferating cells and

it was shown that this intron is able to confer activity in root meristems not only to AtDRTS2,

but also to the AtDRTS1 promoter [Marche, 2013].

In this respect, one of the aims of this part of my research project was to expand the molecular

characterization of the AtDRTS genes, analysing the presence of different isoforms and

extending the analysis in silico of the promoters. Experiments explaining contradictory

aspects concerning the meristematic activity of the AtDRTS1 promoter were also carried out.

Moreover, the suggested E2F-dependent repression of the AtDRTS2 and AtDRTS3 promoters

was further investigated. Finally, additional studies concerning the first intron of AtDRTS2

were performed to better define its capability to confer gene expression in proliferating cells.

.
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3. MATERIALS AND METHODS

3.1 Plant material and plant transformation

For germination and growth in aseptic conditions, wild type or transgenic Arabidopsis

thaliana ecotype Columbia seeds were surface sterilized for 8/10 hours in 2% v/v PPM®

(Plant Preservative Mixture, Plant Cell Technology) supplemented with 50 mg/L magnesium

salts (MgSO4). Seeds were imbibed for 2 days in 0,1 % agarose at 4°C in the dark and then

germinated on petri plates containing MS salts (Duchefa Biochemie), supplemented with

Sucrose (10g/l) and Phyto agar (8g/l) (Duchefa Biochemie) and incubated in a growth cabinet

at 22°C under long day conditions of 16 h of light and 8 h of dark .

The transgenic Arabidopsis lines used in this study were generated by the floral dip method

[Clough and Bent, 1998] using Agrobacterium tumefaciens EHA105 strain [Koncz and

Schell, 1986].

For transformation, a colony of Agrobacterium containing the recombinant plasmid has been

picked up to inoculate 4 ml of YEP medium(Bactotryptone 10 g/L; Yeast extract 10 g/L; NaCl

10 g/L adjusted at pH 7 with NaOH) containing the selection agents Kanamycin 40 mg/l and

Rifampicin 50 mg/l , which are specific for the plasmid and for the Agrobacterium strain

respectively. The culture was incubated O/N at 28°C with gentle shaking and then used to

inoculate 400 ml YEP medium. After a further incubation at 28°C O/N, the culture was ready

to transform plants. Each culture was transferred into 50 ml conical tubes, centrifuged at 4000

rcf for 7 minutes, at 4°C and the liquid poured away leaving a pellet. Infiltration media was

prepared as following 50 g/l sucrose, 400 μl/l silwet L-77, and kept cold. A small amount of

infiltration media was first added to the tubes to resuspend the Agrobacterium cells and then

the remaining was added up to 500 ml to perform the floral dipping. Plants were dipped into

infiltration media for 45 secs, placed on their side in a plastic bucket for 24 hours and left at

RT. The transformed plants have then been transferred in a growth chamber to grow to

maturity.

Transformed T1 and progeny plants were selected on MS plates containing the resistance

antibiotic (Hygromycin, 10 mg/l or kanamycyn, 40 mg/l). At two weeks of age, the resistant

plants were transferred to recovery plates and grown for one more week in aseptic conditions

without the selection agent.
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3.2 Generation of promoter constructs

All the primer sequences used for the production of the recombinant constructs are detailed in

Table 1.

Table 1 List of the primers used for vector construction. The restriction sites are highlighted in red.

NAME SEQUENCE 5'-3' RESTR. SITE
F16F4 GTCTCTAGAGGTTTAGACTTTTGATGAAAC XbaI
F16F5 GGCGGATCCAATGCTTCCCTACACAAAT BamHI
T4L20 GTGGGATCCAGTCGCCGTCGTCTCCCGCC BamHI
T4L21 AAATCTAGACCATGGTCAGAGTGAATCTACGCA XbaI; NcoI
221.9 Rev TGGACTAGTAGATCTCCCCCGTGTTCTCTCCA SpeI; BglII
M13RV GGAAACAGCTATGACCATG
BAM3PRH AAAAAGCTTGCAGCATTCAGGCAGTCCA HindIII
BAM3PRB GAAGGATCCTTTGTGTTTGAGAGAAAGA BamHI

SFH7/DRTS1i2 construct

For the production of the SFH7/DRTS1i2 dual reporter construct the region spanning from the

start ATG codon of the AtSFH7 gene to the beginning of the third exon of the AtDRTS1gene

was amplified by PCR from Arabidopsis thaliana genome, using high fidelity Pfx Taq

polymerase (Invitrogen). This amplification was performed using the primers F16F4 (which

anneals next to the AtSFH7 start codon, at position -1420 relative to AtDRTS1 transcription

start, and creates a terminal XbaI site) and F16F5 (which anneals at the beginning of the

AtDRTS1 third exon, at position +760 relative to AtDRTS1 transcription start, and creates a

BamHI site). The resulting DNA fragment was XbaI/BamHI digested and cloned into

pBlueScript-KS plasmid (also digested with XbaI/BamHI ), giving rise to the F16F45

plasmid, which has been sequenced to verify the fidelity. The F16F45 plasmid was then

digested with XbaI/BamHI and the resulting fragment cloned into the SFH7/DRTS1 plasmid

(digested with XbaI/BglII) [Ghisaura, 2010], replacing the fragment which comprises the

intergenic region spanning from the start codon of the AtSFH7 gene to the ATG codon of

AtDRTS1 (located at the beginning of the second AtDRTS1 exon). In this dual reporter

construct, named SFH7/DRTS1i2, the AtSFH7 promoter directs the expression of the

eqFP611 reporter gene, whereas a large portion of the amino-terminal DHFR domain of the

AtDRTS1 protein is fused in frame with the GUS reporter coding sequence. The backbone of

this plasmid is the pCambia 1301 binary vector, suitable for Agrobacterium-mediated plant

transformation.
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BAM3/DRTS2i1 construct

The β-amylase 3 (BAM3) promoter (TAIR accession number: At4g17090) was isolated by

PCR from A. thaliana genome with high fidelity Pfx Taq polymerase (Invitrogen), using the

BAM3PRH primer, which includes a HindIII restriction site and pairs at position -794

respective to the BAM3 transcriptional start, together with the BAM3PRB primer, which

anneals at position +9 respective to the BAM3 transcription start and contains a BamHI site.

The resulting fragment was HindIII/ BamHI digested and cloned into the HindIII and BamHI

sites of the TL2021 plasmid, positioning the BAM3 promoter upstream of the AtDRTS2 5'-

UTR, giving rise to the B3TL2021 plasmid. The BAM3 promoter/AtDRTS2 5'-UTR region

was then isolated digesting the B3TL2021 plasmid with HindIII and NcoI and cloned

upstream of the GUS reporter gene into the pBI221.9 plasmid (cut HindIII/NcoI) producing

the pBI221.9/B3TL2021. Finally, the pBI221.9/B3TL2021 was digested with HindIII and

EcoRI to isolate the BAM3 promoter/AtDRTS2 5'-UTR/GUS fragment which was cloned into

the HindIII and EcoRI sites of pBI121 binary vector, thus producing the BAM3/DRTS2i1

reporter construct.

BAM3 construct

For the production of the BAM3 reporter construct, firstly the B3TL2021 plasmid was

digested with HindIII and BamHI and the resulting HindIII/BamHI fragment was cloned into

the polylinker of a pCambia 1301 binary vector cut HindIII/BamHI, producing the

pC13/BAM3 construct. The pC13/BAM3 plasmid was then digested with HindIII and NcoI to

obtain a BAM3 promoter fragment suitable for cloning into the HindIII and NcoI sites of the

pBI221.9 vector, upstream of the GUS reporter gene, to give rise to the pBI221.9/B3 plasmid.

Finally, the BAM3 promoter/GUS region of pBI221.9/B3 was isolated as a HindIII/SacI

fragment and cloned into the HindIII/SacI sites of the pBI121 binary vector, thus giving rise

to the BAM3 reporter construct.

DRTS2i1/M35S construct

For the production of the DRTS2i1/M35S reporter construct the plasmid pGemT4L20

[Ghisaura, 2010] was digested with PstI and BamHI and the resulting fragment was cloned

into the PstI/BamHI sites of the pBI221.9 vector, inserting the 5’-UTR containing the first

intron of AtDRTS2 upstream of the -60 CaMV35S minimal promoter/GUS/ Nos PolyA

region, thus creating the pBI221.9-DRTS2i1/M35S plasmid. This vector was then digested



Author: Antonio Maniga
Title: Studies on the meristematic and E2F-dependent gene expression in Arabidopsis thaliana plants

PhD Thesis in: Life Sciences and Biotechnologies
Università degli Studi di Sassari

16

with HindIII and EcoRI and the resulting fragment cloned into the pBI121 binary vector

(digested Hind III/ Eco RI), suitable for Agrobacterium-mediated plant transformation, giving

rise to the DRTS2i1/M35S reporter construct

M35S/DRTS2i1 construct

For the production of the M35S/DRTS2i1 reporter construct the 5'-UTR region of AtDRTS2,

containing the first intron, was amplified by PCR (using high fidelity Pfx Taq polymerase-

Invitrogen) from Arabidopsis genome using the T4L20 primer, which anneals at the beginning

of the AtDRTS2 5'-UTR (at position +5 relative to the transcription start) and introduces a

BamHI restriction site, together with the T4L21 primer, which pairs at the beginning of the

first non-coding exon of AtDRTS2 (at position +222 relative to the transcription start) and

contains a NcoI site overlapping a XbaI site. The resulting fragment was digested with

BamHI/XbaI and cloned into pBlueScript-KS plasmid (also cut with BamHI/XbaI), giving rise

to the TL2021 plasmid. Subsequently, the minimal -60 CaMV35S promoter was amplified

from the pBI221.9/E2F plasmid [Albani et al., 2000], using the M13-REV universal primer

and the 221.9 REV primer (which introduces a SpeI site and a BglII site). The fragment

obtained was HindIII/BglII digested and cloned into the  TL2021 plasmid (cut with HindIII

and BamHI), upstream of the AtDRTS2 5'-UTR. The resulting plasmid, named M35S/TL2021,

was then cut with HindIII/NcoI to isolate the minimal -60 CaMV35S/AtDRTS2 5'-UTR

fragment, which was cloned into the pBI221.9 vector digested with HindIII/NcoI, upstream of

the GUS reporter gene, to give rise to the pBI221.9-M35S/TL2021 construct. Finally, the

minimal -60 CaMV35S/ AtDRTS2 5'-UTR/ GUS fragment was isolated by digestion with

XbaI/SacI and cloned into the XbaI and SacI sites of pBI121 binary vector, suitable for

Agrobacterium-mediated plant transformation, thus producing the M35S/DRTS2i1 reporter

construct.

3.3 Nucleic acids extraction and qPCR analyses

Total RNA extractions were performed using the Qiagen RNeasy mini-kit. The RNA samples

were digested with DNase I during the extraction using the Qiagen RNase-free DNase set, to

efficiently remove also small amounts of DNA during the on-column purification, as

recommended by the manufacturer. RNA concentration and quality have been evaluated by

spectrophotometry using A260/A280 ratio and by electrophoresis on denaturing formaldehyde

gel. For qPCR analyses, 1μg of RNA has been reverse transcribed using the Invitrogen
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SuperScript® III Reverse Transcriptase with a combination of hexamers and oligo dT

primers. Quantitative real-time PCR was performed on the BioRad iCycler iQ ™, using the

Qiagen QuantiTect SYBR® Green PCR Kit. Triplicate PCR reactions have been performed,

following the manufacturer's recommended amplification conditions. For all the analyses the

amplification 18S RNA has been used as a reference for normalization. Quantification was

calculated following the ΔΔCt method. The PCR primers were designed using the Primer3

online software (http://primer3.ut.ee/) and all their sequences are detailed in Table 2.

Table 2 List of the primers used for qRT-PCR analyses.

NAME SEQUENCE 5'-3'
RT-DRTS1-F AAGTGTCGCCATTGAAATCC
RT-DRTS1-R GCGAGTTTTCTGGAGAGGTG
RT-DRTS2-F GAACAAGATCGCAGACGTGA
RT-DRTS2-R ATGCCACATGTTTGCACAGT
RT-DRTS3-F CACATGGCACGCTTATATCG
RT-DRTS3-F TCTAGCTGCCACAACATTGC
RT-18S-F CCTGCGGCTTAATTTGACTC
RT-18S-R TTAGCAGGCTGAGGTCTCGT

3.4 GUS assays

Histochemical detection of GUS activity was performed on transgenic plants using 5-bromo-

4-chloro-3-indolyl- β-D-glucuronide (X-Gluc) [Jefferson et al., 1987]. Plants at different

developmental stages were incubated overnight at 37 °C in the GUS solution (50 mM pH 7

phosphate buffer, 1 mg/mL X-Gluc, 1 mM potassium ferricyanide). After staining,

chlorophyll interference was removed treating the samples in 70% ethanol.

For quantitative analyses, the level of GUS activity was detected fluorimetrically using the

fluorogenic substrate MUG (4-methyl umbelliferil–glucuronide). Seedlings of the same

developmental stage were ground in GUS extraction buffer (50 mM NaPO4 pH 7, 10 mM

EDTA, 0.1% Triton, 0.1% Sodium Lauryl Sarcosine, 10 mM β-Mercaptoethanol). An aliquot

of 44 μl of the extracts was added to 396 μl of assay buffer (50 mM NaPO4 pH 7, 10 mM

EDTA, 0.1% Triton, 0.1% Sodium Lauryl Sarcosine, 10 mM b-Mercaptoethanol, 1mM MUG)

and the reactions were incubated at 37 °C. At four different time points, 100 μl of the reaction

mix were added to 900 μl of stop buffer (0.2 M Na2CO3) and the  amount of 4MU produced

was measured using a fluorimeter (BioRad). The protein concentration of each extract was

assayed using the Bradford method [Bradford, 1976] to allow calculation of the specific GUS

activities.

http://primer3.ut.ee/
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3.5 Treatments with cell cycle inhibitors

To perform the treatments with cell cycle inhibitors, 30 seeds of selected homozygous

transgenic lines harbouring the SFH7/DRTS1i2 construct were imbibed in sterile water alone

(as control) or in water containing 5 µg/ml aphidicolin (Fisher Scientific) or 5 mg/ml

colchicine (Apollo Scientific). After 72 h of imbibition in growth chamber at 22 °C under a

regimen of 16 h of light at and 8 h of dark, proteins were extracted and fluorimetric assays of

GUS activity were performed.



Author: Antonio Maniga
Title: Studies on the meristematic and E2F-dependent gene expression in Arabidopsis thaliana plants

PhD Thesis in: Life Sciences and Biotechnologies
Università degli Studi di Sassari

19

4. RESULTS

4.1 Molecular characterization of the AtDRTS genes

Database sequences and experimental analyses of the transcripts revealed the existence of at

least two isoforms of each AtDRTS gene, some of which are potentially coding for truncated

proteins lacking most of the TS domain (Fig. 4A and B). In this respect, although the genomic

structure of AtDRTS1 and AtDRTS2 was supported by cDNA sequences, cDNA clones

confirming entirely the predicted gene model of AtDRTS3 have not been reported. The only

AtDRTS3 cDNA sequence available in databases (accession number BX820604) confirms the

predicted position of the first three exons but extends the fourth exon into part of the

following intron, that contains a transposon-like element in which an in frame stop codon

interrupts the coding sequence (Fig. 4A). Thus, it appears that the presence of the transposon-

like element in the fourth intron of AtDRTS3 can cause premature termination of the primary

transcripts and yields a mRNA that retains part of the fourth intron and codes for a protein of

311 aa, with a predicted mass of 35 kDa, that is expected to possess only DHFR activity.

However, although AtDRTS3 cDNA sequences including all the TS coding region have not

been reported, microarray analyses (ATH1 Probe Set 263546_at) suggested the expression of

transcripts spanning over the 3' end of the putative AtDRTS3 gene model. To verify whether

full length AtDRTS3 transcripts corresponding the proposed gene model can be actually

produced, RT-PCR reactions were performed using a forward primer that overlaps the ATG

start codon in the first exon and a reverse primer that overlaps the predicted TAA terminating

triplet, which is located in the tenth exon of the gene. These RT-PCR reactions were

performed with high fidelity Taq polymerase, using retrotranscribed RNA isolated from

Arabidopsis seedlings, and allowed the amplification of a cDNA containing the entire

predicted coding region of the AtDRTS3 gene model. Although the resulting sequence did not

show any nucleotide change compared to the exonic sequences reported in the TAIR database,

the 5' splicing site of the sixth intron appears to occur 9 bp upstream of the predicted one and

yields a mRNA that is coding for an AtDRTS3 protein of 489 aa, with a predicted MW of 54.9

kDa that is slightly smaller than the protein proposed by the gene model. Thus, in spite of the

transposon element in the fourth intron, it appears that the AtDRTS3 gene can give rise to a

full length transcript encoding a bifunctional DHFR/TS protein (Fig. 4B). Based on these

results, the large isoform, corresponding nearly exactly to the gene model, has been called

AtDRTS3.1, whereas AtDRTS3.2 is the name of the smaller one, terminating at the fourth
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intron and coding for a protein that lacks most of the C-terminal TS domain. Interestingly, a

similarly truncated protein appears to be encoded also by an alternatively spliced transcript of

AtDRTS1 corresponding to the cDNA clone reported in databases with the accession number

BX820156. This isoform, called AtDRTS1.2, retains the third intron, containing an in frame

stop codon, and the interrupted open reading frame is predicted to code for a protein of 270

aa, with a predicted MW of 30 kDa. Compared to the 519 aa long AtDRTS1.1 protein of 58,1

kDa, the AtDRTS1.2 isoform lacks most of the TS domain and, similarly to AtDRTS3.2, is

expected to display only DHFR activity (Fig. 4B). Also concerning the AtDRTS2 gene two

isoforms have been detected but both are coding for bifunctional DHFR/TS proteins (Fig.

4A). In this respect, 5’RACE analyses previously performed in our laboratory have revealed

the existence of alternatively spliced AtDRTS2 transcripts lacking the second exon that

contains the proposed ATG start codon of the gene. Its absence in the alternative transcripts

results in the translation of a smaller isoform, named AtDRTS2.2, that begins from the in-

frame ATG codon located in the fourth exon originally proposed as a start codon by Lazar et

al. (1993).

As described in table 3, a comparison of the larger isoforms of the AtDRTS proteins reveal a

close homology between AtDRTS1 and AtDRTS2, showing over 86 % amino acid identity,

whereas AtDRTS3 appears to have partially diverged, with 56,8 and 57,4 % identity to

AtDRTS1 and AtDRTS2, respectively. This divergence is further highlighted by comparison of

the highly variable hinge region separating the two functional domains, that shows as much as

64,7 % identity between AtDRTS1 and AtDRTS2 whereas for AtDRTS3 shows only 33,3 and

38,7 % identity compared to AtDRTS1 and AtDRTS2. Remarkably, as shown in figure 5,

compared with the DRTSs of other angiosperms described in literature and databases,

AtDRTS3 groups together with a subset of the plant DRTS sequences. Moreover, although the

cysteine corresponding to the active site in the TS domain is conserved in all three AtDRTS

large isoforms, nearly all the substrate binding sites are perfectly conserved between AtDRTS1

and AtDRTS2 but, as shown in figure 4B, several amino acid substitutions characterize most

of the substrate binding sites of AtDRTS3 and could reflect functional peculiarities of this

protein.

Compared to AtDRTS2.1, the AtDRTS2.2 isoform lacks the first 47 aa and could potentially

lack a signal peptide or could possess an amino-terminal region allowing a different

organellar targeting of the enzyme. To investigate this possibility, predictions of the

subcellular localization of the AtDRTS isoforms were performed with 10 different platforms
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available online. As shown in Table 4, AtDRTS1.1 was predicted to be cytosolic by 8 of the

platforms while the truncated AtDRTS1.2 isoform was predicted to be cytosolic by only 5 of

the softwares and additional predictions, including cell membrane, chloroplast, and

extracellular locations, were proposed by some of the programs. Interestingly, the localization

of AtDRTS2.1, which possesses a N-terminal extension that is absent in the other AtDRTSs,

was predicted mostly as plastidial and/or mitochondrial whereas the smaller AtDRTS2,2

isoform was largely predicted as cytosolic. For AtDRTS3.1 a prevalence of cytosolic over

plastidial localization was reported while the truncated AtDRTS3.2 isoform was predicted

more as plastidial or membrane bound rather than cytosolic. Thus, different  subcellular

localizations of the AtDRTS proteins and of some of their isoforms are likely to occur.

Table 3 Percent Identity Matrix of the AtDRTS large isoforms and of their Hinge region (H).
AtDRTS1 AtDRTS2 AtDRTS3 AtDRTS1/H AtDRTS2/H AtDRTS3/H

AtDRTS1 100.00
AtDRTS2 86.85 100.00
AtDRTS3 56.82 57.41 100.00
AtDRTS1/H - - - 100.00

AtDRTS2/H - - - 64.71 100.00
AtDRTS3/H - - - 33.33 38.71 100.00

Table 4 Predicted subcellular localization of the AtDRTS isoforms. The consensus indicates the most
common predicted localization(s).

Platform AtDRTS1.1 AtDRTS1.2 AtDRTS2.1 AtDRTS2.2 AtDRTS3.1 AtDRTS3.2

iPSORT PL PL M PL PL PL

SubLoc CY EX CY CY CY NU

WoLFPSORT CY NU/CY M/PL M/PL PL PL

CELLO CY PM M/PL CY PM PM

EuLoc CY PM CY CY CY NU/PM

iLoc-Plant NU CY NU NU CY CY

PSI predictor CY CY/PL M/PL CY CY/PL PM/PL

PProwler CY CY M CY CY CY

YLoc CY EX PL CY NU CY

Plant-mPLoc CY PM/PL/CY/M
/PX

CY/PL CY CY PM/PL

CONSENSUS CY CY PL/M CY CY PL/PM

Legend: CY = cytosol    PL = plastid    M = mitochondrion     NU = nucleus    PX = peroxisome
PM = plasma membrane     EX = extracellular
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Fig. 4 AtDRTSs gene structure and protein isoforms. (A) Genomic organization of the AtDRTS gene
paralogs and of the upstream AtSFH members. The exons are indicated as boxes with the UTR regions
shown in gray and the coding portions in light blue. The portions corresponding to the DHFR and TS
domains are indicated above the structure of the longest isoforms. The position of transposable
elements is shown as dark red boxes below the gene structures. (B) Amino acid sequence comparison
of the AtDRTS isoforms. The functional sites are indicated as described in the legend.
The Matrix was created by Clustal2.1 and the sequence alignments were performed using the T-Coffee
program (http://www.ebi.ac.uk/Tools/msa/tcoffee/).

http://www.ebi.ac.uk/Tools/msa/tcoffee/
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Fig. 5 Evolutionary relationships of angiosperm DRTS proteins. The Phylogenetic Tree was created
aligning the aminoacid sequences with Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The
branches including monocots, fabaceae and brassicaceae are pointed out. The AtDRTSs are indicated
with red boxes.

http://www.ebi.ac.uk/Tools/msa/clustalo/
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4.2 Patterns of activity of the three AtDRTS promoters

Previous studies, conducted by our research group, were carried out to define the patterns of

expression of the AtDRTS genes by analysing by the activity of their promoters in transgenic

Arabidopsis plants. Considering that the intergenic region upstream of the AtDRTSs contains

also the promoter of the divergent AtSFH genes, dual reporter constructs had been assembled

in which the DRTS promoter was controlling the expression of the GUS reporter gene while a

gene coding for the red fluorescent protein eqFP611 [Wiedenmann et al., 2002] was placed

under the control of the SFH promoter (figure 6A). The genomic fragments of each intergenic

region, spanning from the start codon of the AtSFH gene to the ATG codon of each AtDRTS

gene, were amplified by PCR using high fidelity Taq polymerase and used for the production

of the dual reporter constructs. All these dual promoter constructs, called SFH7/DRTS1,

SFH1/DRTS2 and SFH3/DRTS3, contained the 5’ untranslated region of the genes, which in

several cases has been shown to be important for the correct activity of the promoters.

Concerning the histochemical GUS analyses of the transgenic lines, the most consistent

patterns of GUS staining observed with each construct revealed remarkable differences in the

activity of the three AtDRTS promoters (figures 6, B to D).

Interestingly, the AtDRTS1 promoter activity was very strong in both leaf and root vascular

tissues but was not detectable in any of the root tips (fig. 6B). As for the AtDRTS2 promoter, it

showed a strong activity in the proliferating cells of both root and shoot apical meristems,

whereas its activity in differentiated tissues was practically undetectable (fig. 6C). Finally,

concerning the AtDRTS3 promoter, it showed activity in the shoot apical meristem but not in

the root apical meristems, and its activity in the root was confined to the root columella and

the central cylinder (fig. 6D) [Ghisaura, 2010].
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Fig. 6 (A) Schematic representation of the dual reporter constructs used to test the activity of the
divergent AtDRTS and AtSFH promoters; The gene coding for the GUS protein is under the control of
the AtDRTS promoters whereas the gene encoding the red fluorescent protein eqFP611 is controlled by
the AtSFH promoters. Patterns of activity of the (B) AtDRTS1, (C) AtDRTS2 and (D) AtDRTS3
promoter, in two weeks-old seedlings. In the insets is highlighted the pattern of GUS expression in the
root apices. Scale bars: 1 mm.
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4.3 The AtDRTS genes are differentially expressed in both meristematic and

differentiated tissues

The surprising result that emerged from the previous analyses was the absence of activity of

the AtDRTS1 promoter in the root apices. This feature could not be verified analysing

microarray data which are reported at the Arabidopsis eFP browser of the Bio-Array Resource

(BAR) website (http://www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi; Winter et al., 2007) and at

the Genevestigator V3 web tool (https://www.genevestigator.ethz.ch/gv/index.jsp; Hruz et al.,

2008). These expression data, in fact, are related to experiments performed using the

Affimetrix ATH1 array in which AtDRTS3 is represented by a specific probe set (263546_at)

whereas AtDRTS1 and AtDRTS2 transcripts are hybridizing to a unique probe set

(263601_s_at) and their individual patterns of expression is therefore not distinguishable.

Nevertheless, as described in figure 7 and 8A, the expression of the AtDRTS1/AtDRTS2

couple and of the AtDRTS3 gene appear to be very distinctive. More specifically, the strongest

signal for the AtDRTS1/AtDRTS2 probe set was detected in the shoot apex and in seeds 24

hours after imbibition, whereas the AtDRTS3 expression level is reported to be very strong in

columella and lateral root cap (figure 7), confirming the results obtained from analyses on the

transgenic plants, carrying the AtDRTS3 promoter reporter constructs. To further investigate

the expression of the AtDRTS genes and to verify whether, in addition to AtDRTS3, also

AtDRTS1 and AtDRTS2 can show distinctive patterns of expression, qRT-PCR analyses were

performed on Arabidopsis seedlings and organs, using pairs of primers which specifically

amplify the three AtDRTS cDNAs, as confirmed by sequencing the PCR fragments obtained.

To discern the expression of the AtDRTSs in meristematic versus differentiated cells, the

analyses were conducted with RNA isolated from root and shoot apexes, as well as leaves,

hypocotyls and cotyledons. The relative level of expression of the AtDRTSs in the various

organs compared to the leaves was calculated by the ΔΔCt method and is reported in figure 8B.

These results reveal a remarkably higher expression of AtDRTS3 in the root apex compared to

the other organs, which agrees with the high level of expression detected in root caps by

microarray analyses. A slight upregulation of AtDRTS3 occurs also in hypocotyls, whereas

similar levels of expression compared to the leaves are detected in seedlings, cotyledons and

shoot apices. Concerning the expression of AtDRTS1 and AtDRTS2, distinctive patterns were

detected which, in agreement with the microarray analyses, reveal an upregulation of both

genes in shoot apices compared to the leaves. In particular, the expression of AtDRTS2

appears to be maximal in shoot apices and is clearly upregulated also in cotyledons and

http://www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
www.genevestigator.ethz.ch/gv/index.jsp
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hypocotils, as well as in the root apices to a lower extent. Conversely, AtDRTS1 shows the

strongest expression in hypocotyls and is clearly upregulated also in shoot apices and

cotyledons but shows similar levels of expression in the root apices and in leaves. The

expression of all the AtDRTS genes in the shoot apex is likely to correlate to different extents

with cell proliferation and, at least for AtDRTS1 and AtDRTS2, this correlation probably

occurs in the root apex as well. The strong and variable expression of all three AtDRTS genes

observed in differentiated tissues could be linked in part to cellular endoreduplication, but is

likely to reflect also the involvement of the AtDRTS proteins in additional cellular processes.
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Fig. 7 Spatial patterns of accumulation of the AtDRTS1/2 and AtDRTS3 transcripts according to
Microarray analyses.
Data shown are reported at the Botany Array Resource (BAR) Browser (http://bar.utoronto.ca/).

http://bar.utoronto.ca/
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Fig. 8 Analysis of the expression of the AtDRTS genes. (A) E-Northern analysis of the expression of
the AtDRTS transcripts revealed by microarray data. Heat maps showing the expression levels of the
AtDRTS1/AtDRTS2 common gene set and of AtDRTS3 across different samples were generated using
the Expression Browser tool of the Botany Array Resource (BAR) (http://bar.utoronto.ca/). (B) qRT-
PCR analysis of the relative expression levels of the AtDRTSs in representative organs compared to
leaves. The qRT-PCR analyses were repeated three times using independent biological replicates and
quantification was normalized to 18S RNA levels. The bars show standard errors. *p<0.05, **p<0.01,
***p<0.001.

http://bar.utoronto.ca/
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4.4 Intragenic regions regulate the activity of AtDRTS1 in root meristems

The qRT-PCR analyses suggested that regions required for the correct AtDRTS1 promoter

activity in the root apex could be missing in the SFH7/DRTS1 construct. Because all the

intergenic region upstream AtDRTS1 was included in the first promoter construct,

experiments have been performed as part of this thesis to verify whether intragenic regions

could be involved in the regulation of the AtDRTS1 promoter. Several studies have previously

reported that some of the introns of various genes are able to strongly influence their

expression, an effect known as intron mediated enhancement (IME) [Rose, 2008]. This IME is

usually associated to the first intron that could be located in the 5’-untranslated region of the

gene, close to the transcription start, but examples of the influence of additional introns,

located in the coding regions, have also been described. A software programme, called IMEter

(http://korflab.ucdavis.edu/cgi-bin/IMEter_2014/web-imeter2.1.pl), has been used. This

software scores the probability of introns to act as IME elements [Parra et al., 2011]. As

described in figure 9A, according to the IMEter analysis of AtDRTS1 both the first intron of

the gene, located in the 5’-UTR and included in the SFH7/DRTS1 construct, as well as the

second intron, located 420 bp downstream of the ATG codon and past the middle of the

DHFR coding region, show remarkably high scores. Considering the lack of GUS activity in

root apices of the SFH7/DRTS1 transformants and the high IMEter score of the second intron

of AtDRTS1, an additional promoter construct was prepared that extends to the beginning of

the third exon of the gene. In this construct, called SFH7/DRTS1i2, the GUS coding sequence

is fused in frame with a large portion of the amino-terminal DHFR domain of the AtDRTS1

protein (figure 9B). Remarkably, the transgenic plants transformed with this construct

revealed a strong GUS activity in the root apices indicating that the AtDRTS1 promoter can

drive expression in the root apical meristem only when the intragenic region that includes the

second intron of the gene is present downstream of the promoter (Fig. 10A to 10E).

Interestingly a similar situation has been described for the CENH3 gene of Arabidopsis,

whose expression in root meristems, but not in other meristematic tissues, requires the

intragenic region containing the second intron of the gene [Heckmann et al., 2011].

http://korflab.ucdavis.edu/cgi-bin/IMEter_2014/web-imeter2.1.pl
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Fig. 9 (A) IMEter analysis of the introns of the AtDRTS1 and AtDRTS2 genes. (B) Schematic
representation of the new SFH7/DRTS1i2 dual reporter construct.

Thus, with the inclusion of the intragenic region, the AtDRTS1 promoter becomes able to

drive GUS expression in both apical meristems but is also broadly active in differentiated

tissues of the roots, hypocotyls and cotyledons, which show particularly strong GUS staining

of the vascular tissues (Fig. 10, D and E). The meristematic activity is already detectable in

lateral root primordia. For some of the lines, AtDRTS1 promoter activity can be detected also

in trichomes and in hydathodes (Fig. 10, inset B1). In mature flowers, the GUS staining can

be detected in the style and ovary as well as in the vascular tissues of stamen filaments,

whereas in developing flowers the promoter appears to be strongly active also in the stigmas

(Fig. 10C). Moreover, GUS activity is clearly detected also in maturing seeds and in embryos

(Fig. 10 D and E). Thus, the AtDRTS1 gene appears to be highly expressed in meristematic

tissues but is also very active in various differentiated tissues, in agreement with the pattern of

expression detected by qRT-PCR.
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Fig. 10 Localization of GUS activity in lines carrying the SFH7/DRTS1i2 construct in: one-week-old
(A) and two-week-old (B) seedlings, which show a strong activity in hydatodes (inset B1) and RAM
(inset B2); inflorescence; siliques (D); mature embryos (E). Scale bars: 1 mm in A, B and C; 3 mm in
D; 250 µm in E.
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4.5 In silico analyses of the AtDRTS promoters reveal distinctive promoter architectures

The AtDRTS genes, although with variable strength, appear to be all expressed in the shoot

apical meristem and common regulatory circuits could be involved in their control in this

specific context. However, the different patterns of expression observed in root apical

meristems and in other plant organs clearly suggest a distinctive regulation of the AtDRTS

promoters. To verify the presence of common as well as specific regulatory elements in the

AtDRTS promoters, in silico analyses were performed searching against the PLACE

(http://www.dna.affrc.go.jp/PLACE/) and PlantPAN (http://plantpan2.itps.ncku.edu.tw/)

databases, as well as using the RSAT (Regulatory Sequence Analysis Tools)

(http://rsat.ulb.ac.be/rsat/) and JASPAR (http://jaspar.genereg.net/) web platforms. Because

the 5’UTR of many genes have been shown to contain functional cis-elements, the analyses

were carried out including all the DNA sequences upstream of the ATG start codons.

Moreover, the intergenic region upstream of the AtDRTS genes contains also the promoters of

AtSFH genes. Only 1311 bp separate the coding regions of AtSFH1 and AtDRTS2, whereas

the intergenic region upstream of the AtDRTS1 ATG start codon is 1638 bp long and the

AtSFH3 and AtDRTS3 ATGs are separated by 3471 bp. Considering the presence of the two

promoters in the intergenic region, it is not possible to exclude that distant cis elements that

are involved in the regulation of the AtSFH genes could be influencing also the activity of the

AtDRTS promoters. Thus, the promoter analyses were performed on the entire intergenic

regions separating the AtSFH and AtDRTS ATG start codons, although it is plausible that

putative cis elements that are closer to the AtDRTS genes are more likely to regulate

specifically their expression. The outputs of these analyses revealed a distinctive organization

of the three AtDRTS promoters, with differences concerning the presence and the distribution

of several putative cis elements. Overall, 93 different putative regulatory elements, varying in

number and location, could be identified in at least one of the three intergenic regions (Table

5). Interestingly, only 17 of these 93 cis elements are found in all three intergenic regions and

only 9 of them are also invariably located, in one or more copies, at positions that are

suggesting their possible involvement in the regulation of the AtDRTS genes. 32 of the

remaining putative regulatory elements are shared by only two of the intergenic regions: 18

are found in the intergenic regions upstream of both AtDRTS1 and AtDRTS3 and 13 are shared

by the intergenic regions upstream of AtDRTS2 and AtDRTS3, whereas  only one cis elements

is found specifically in the AtDRTS1 and AtDRTS2 upstream regions and in both cases is

located closer to the AtDRTS genes. Interestingly, almost half of the putative regulatory

http://www.dna.affrc.go.jp/PLACE/
http://plantpan2.itps.ncku.edu.tw/
http://rsat.ulb.ac.be/rsat/
http://jaspar.genereg.net/
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elements (44) are found, in single or multiple copies, in only one of the three intergenic

regions. In this respect, 16 cis elements are found specifically in the region upstream of

AtDRTS1, with 11 of them closer to AtDRTS1, and 5 cis elements are found only in the

AtSFH1/AtDRTS2 intergenic region, with 3 of them closer to AtDRTS2, whereas 23 putative

elements are found specifically in the AtSFH3/AtDRTS3 intergenic region, 9 of which are also

located in positions that are closer to AtDRTS2 (Table 5). Moreover, considering that an

intragenic region containing the second intron of AtDRTS1 appears to be required for  full

activity of the AtDRTS1 promoter in the root apical meristem, additional in silico analyses

were performed to verify whether the proposed intron mediated enhancement could be linked

to the presence of particular cis elements in the second intron of the gene. 11 different putative

regulatory sites are found in this intron, three of which are not found in the intergenic region

upstream of the AtDRTS1 coding region (Table 6). Overall, the requirement of intragenic

regions for full activity of the AtDRTS1 promoter in root apical meristems and the diversity of

the various putative regulatory elements found closer to the AtDRTS genes in the upstream

intergenic regions suggest very different architectures of the three AtDRTS promoters, which

are likely to be controlled by distinctive transcriptional circuits.

Because all the AtDRTS promoters are able to drive expression in meristematic tissues, I

focused my attention on the presence of promoter elements that have been reported to be

involved in the control of gene expression in proliferating cells. Moreover, the balance of

auxins and cytokinins plays important roles in the control of cell proliferation and cis

elements linked to auxin and cytokinin regulation of gene expression were also taken in

consideration. The presence and the location of these putative regulatory sites in the intergenic

regions upstream of the AtDRTSs is described in figure 15. Because the E2F transcription

factors have been reported to regulate genes involved in DNA synthesis and cell proliferation

in both plants and animals [Berckmans and De Veylder, 2009], the presence of putative E2F

binding sites was investigated in detail. The E2F factors are known to bind specifically a

consensus sequence TTTSSCGSS (where S can be C or G) and an E2FAT cis element

(TYTCCCGCC) has been reported in the promoters of many potential plant E2F target genes

[Ramirez-Parra et al., 2003]. One copy of this element is actually found 199 nucleotides

upstream of the AtDRTS2 coding region but is not found upstream of AtDRTS1 and AtDRTS3

coding regions. However, according to chromatin immunoprecipitation ChIP-exo and ChIP-

seq experiments, a shorter consensus element (TCCCGCC) is recognized in vivo by E2F

factors [Yan et al., 2013; Morgunova et al., 2015]. A search for this sequence in the intergenic
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regions upstream of the AtDRTSs revealed the presence of a putative E2F binding site also

upstream of AtDRTS3 but not in the promoter of AtDRTS1. Remarkably, also using less

stringent criteria to detect E2F-like elements (TSSCGSS) no additional putative E2F sites

could be found in any of the intergenic regions upstream of the AtDRTS genes. Interestingly,

the E2F-like cis element of AtDRTS3 is located 1591 nucleotides upstream of the ATG start

codon, in the middle of a transposon-like element, and a recent study has reported that E2F

sites are relatively common in plant transposable elements [Hénaff et al., 2014].

Other cis elements linked to cell proliferation that are found upstream of some of the AtDRTS

genes include UP1ATMSD (GGCCCAWWW), which corresponds to the UP1 motif shown to

be over-represented in the promoter of several genes that are up-regulated after main stem

decapitation in Arabidopsis [Tatematsu et al., 2005]. This site contains the SORLIP2AT motif

(GGGCC), an element over-represented in light-induced promoters of Arabidopsis, and is also

overlapping with the SITEIIATCYTC element (TGGGCY), a site involved in the regulation

of the Arabidopsis Cytc-1 promoter that is strongly active in root and shoot meristems

[Welchen and Gonzalez, 2005]. Remarkably, combined UP1ATMSD/SITEIIATCYTC cis

elements are located upstream of both AtDRTS2 and AtDRTS3, 283 bp upstream of the

AtDRTS2 ATG and 1040 bp upstream of the AtDRTS3 coding region. As in the case of the

E2F-like elements, these putative regulatory sites are much closer to the AtDRTS sequences

than to the AtSFH genes and could be involved in the regulation of AtDRTS2 and AtDRTS3.

Moreover, two additional SITEIIATCYTC elements are found 1054 and 1116 bp upstream of

the AtDRTS3 coding region and could also regulate its expression. Interestingly, the intergenic

region upstream of AtDRTS1 contains only one SITEIIATCYTC element that is very close to

the AtSFH7 coding region (position -1238 bp) and is less likely to be involved in the control

of AtDRTS1 expression. Therefore, the activity of the AtDRTS1 promoter in apical meristems

is likely to be regulated differently than AtDRTS2 and AtDRTS3. This is also stressed by the

fact that the intragenic sequence including the second intron of AtDRTS1 and required for

promoter activity in root apical meristems does not contain any of the putative cis elements

reported to be involved in gene regulation in proliferating cells. Moreover, specific regulatory

circuits could control AtDRTS2 because additional cis elements that are known to be

particularly relevant for the control of genes expressed in proliferating cells are found only in

its upstream region. One of these cis elements corresponds to UP2ATMSD (AAACCCTA),

another motif found in several genes up-regulated after main stem decapitation in Arabidopsis

[Tatematsu et al., 2005], that is located at position -130 with respect to the ATG codon and
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next to the splice donor site in the first intron of AtDRTS2. The second site is

HEXAMERATH4 (CCGTCG), the hexamer motif of Arabidopsis histone H4 promoter

[Chaubet et al., 1996], that is located 208 nucleotides upstream of the AtDRTS2 coding

region. Finally, a MYBCOREATCYCB1 site (AACGG), known to control the M-phase-

specific expression of the Arabidopsis cyclin B1:1 gene [Planchais et al., 2002], is found at

position -196 in the AtDRTS2 gene. This putative cis element is also seen twice, although

closer to the AtSFH3 gene, in the intergenic region upstream of AtDRTS3 but is not detectable

upstream of AtDRTS1 (figure 15).

Concerning the distribution of putative cis elements linked to auxin and cytokinin control of

gene expression, sequences of four elements associated to auxin-dependent promoter

regulation and of one element associated to cytokinin-dependent expression are found in the

intergenic regions upstream of some of the AtDRTS genes. Interestingly, auxin-related cis

elements can be detected upstream of AtDRTS1 and AtDRTS3 but none of them is found

upstream of AtDRTS2. In particular, upstream and close to AtDRTS1 coding region there is

one NTBBF1ARROLB site (ACTTTA), at position -377, one ARFAT site (TGTCTC), at

position -392, and one CATATGGMSAUR site (CATATG), 108 bp upstream of the ATG

codon. Upstream of AtDRTS3, four of the five NTBBF1ARROLB sites and two of the three

CATATGGMSAUR sites are close to the AtDRTS gene and could be influencing its

expression whereas a D1GMAUX28 site is close to the AtSFH3 gene and is less likely to be

involved in AtDRTS3 regulation. Moreover, the cis element CPBCSPOR (TATTAG),

corresponding to a sequence critical for the cytokinin-dependent binding of a nuclear protein

to the CsPOR promoter of cucumber [Fusada et al., 2005], is found twice upstream of

AtDRTS2 and three times upstream of AtDRTS3 but is absent upstream of AtDRTS1.

Nevertheless, the three CPBCSPOR sites in the AtSFH3/AtDRTS3 intergenic region are very

close to the AtSFH3 coding region and are less likely to be involved in AtDRTS3 regulation

whereas one of the two sites found upstream of AtDRTS2 is very close to the AtDRTS coding

region, at position -388, and could be involved in the control of its expression.
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Fig. 11 Map of the most relevant cis elements identified in the intergenic regions separating the

diverging AtDRTS and AtSFH coding sequences. The E2F sites found upstream of AtDRTS2 and

AtDRTS3 are indicated with red boxes. The map was created using the drawing tool of the RSAT

(Regulatory Sequence Analysis Tools) platform (http://www.rsat.eu/). The green asterisks show

proliferation-related cis elements.

http://www.rsat.eu/
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Table 5 Presence and location of cis elements in the SFH/DRTS intergenic region. The distance from
DRTSs ATG codon is reported.
Sites which are closer to AtDRTS than to AtSFH coding regions are shown in red.
Sites associated to cell proliferation, endosperm expression or hormonal responses are highlighted in
different colours as reported in the legend.
CIS element Sequence DRTS1 DRTS2 DRTS3

OSE1ROOTNODULE AAAGAT

-1607, -1497,
-1046,

-959, -520,
-216 -1244, -1141

-2395, -384,
-89

MYBST1 GGATA

-1061, -974,
-718,

-465, -454,
-122 -543 -2891, -912

REALPHALGLHCB2
1 AACCAA

-1372, -925,
-837,

-800, -730 -633, -592

-2985, -1022,
-634,

-570, -20

PYRIMIDINEBOXO
SRAMY1A CCTTTT

-903, -314,
-163 -313

-3350, -2961,
-2879,

-2819, -2801,
-645

DPBFCOREDCDC3 ACACNNG
-1554, -1342,

-92 -372

-2709, -865,
-666,
-270

MYBCORE CNGTTR -810, -773 -293

-3442, -2562,
-2358,

-2096, -1006,
-121, -55

RAV1AAT CAACA -559 -1254, -784

-3442, -2059,
-1771, -1556,
-1002, -52

SURECOREATSULT
R11 GAGAC -393, -75 -204, -143

-3287, -2010,
-1232

CCA1ATLHCB1 AAMAATCT -1594, -631 -1075, -979
-1320, -1290,

-512

SITEIIATCYTC TGGGCY -1238 -286
-1116, -1054,

-1043

CCA1-B AGATAYR -1302 -492 -2392, -238

MYCATERD1 CATGTG -1343, -688 -524, -372 -667

-300CORE TGTAAAG -128, -179 -1246 -386

PREATPRODH ACTCAT -1524 -1300, -1175 -823
ACGTATERD1 ACGT -389 -156 -799, -213

SEF1MOTIF ATATTTAWW -591 -835, -625 -1384, -1302

SEF3MOTIFGM AACCCA -257 -747 -3204

LTRE1HVBLT49 CCGAAA
-900, -713,

-663 -301

EECCRCAH1 GANTTNC

-868, -582,
-83, -44,

-4

-3327, -2857,
-2524,

-2500, -715,
-452

NTBBF1ARROLB ACTTTA
-1230, -1181,

-377

-3463, -1856,
-1035,

-790, -655,
-244
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SP8BFIBSP8BIB TACTATT -625, -603

-2566, -2452,
-1242,
-840

GT1CORE GGTTAA -802

-3466, -3413,
-1791,

-1720, -1134,
-632

CIACADIANLELHC CAANNNNATC -126

-3223, -1408,
-1025,
-396

PYRIMIDINEBOXH
VEPB1 TTTTTTCC -1544

-2803, -878,
-831

AACACOREOSGLUB
1 AACAAAC -1368

-2336, -1865,
-1268

LTRECOREATCOR1
5 CCGAC -430

-2182, -1984,
-347

ARFAT TGTCTC -392 -3286, -2010

GAREAT TAACAAR -1428 -3192, -1864

CATATGGMSAUR CATATG -108 -673, -446

LECPLEACS2 TAAAATAT -1162 -2588, -1640

IBOX GATAAG -1417, -332 -1910

WBOXNTCHN48 CTGACY -189, -99 -718

CANBNNAPA CNAACAC -89 -543

S1FBOXSORPS1L2
1 ATGGTA -1493 -2622

SV40COREENHAN GTGGWWHG -464 -435

MYBPLANT MACCWAMC -728 -3110

CBFHV RYCGAC
-774, -268,

-69

-1984, -959,
-891,
-347

CPBCSPOR TATTAG -811, -388
-3050, -2569,

-2403

MYB2CONSENSUSA
T YAACKG -293

-2562, -2096,
-121,
-55

SORLIP2AT GGGCC -310, -287
-1116, -1055,

-1044

NAPINMOTIFBN TACACAT -672, -373 -665

RBCSCONSENSUS AATCCAA -915

-3385, -2854,
-805,
-27

MYBPZM CCWACC -1263
-3152, -3112,

-1590

TBOXATGAPB ACTTTG -330
-2212, -1737,

-1684

BOXLCOREDCPAL ACCWWCC -1263 -3111, -333

MYBCOREATCYCB1 AACGG -196 -2700, -2165

-10PEHVPSBD TATTCT -345 -1873
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UP1ATMSD GGCCCAWWW -283 -1040

E2F-LIKE NNTSSCGSS -199 -1591

TATCCAOSAMY TATCCA
-1061, -974,
-465, -122

ASF1MOTIFCAMV TGACG -1262, -1108

EMHVCHORD TGTAAAGT -1228, -1179

BOXIINTPATPB ATAGAA -1274, -410

SREATMSD TTATCC -1060, -973

AMMORESIIUDCRN
IA1 GGWAGGGT -1504

SURE1STPAT21 AATAGAAAA -1272

MYC2 ELEMENT TCACATG -688

TATCCACHVAL21 TATCCAC -465

REBETALGLHCB21 CGGATA -454

CAREOSREP1 CAACTC -308

ABRE-LIKE BACGTGKM -388

GADOWNAT ACGTGTC -389

BS1EGCCR AGCGGG -336

NRRBNEXTA TAGTGGAT -466

2SSEEDPROTBANA
PA CAAACAC -89

BOXIINTPATPB ATAGAA -937

MYB1LEPR GTTAGTT -852

GCN4OSGLUB1 TGAGTCA -218

HEXAMERATH4 CCGTCG -208
UP2ATMSD
TELOBOXATEEF1A
A1 AAACCCTA -130

CCA1-A AATATCY
-2889, -2684,

-1478

SEBFCONSSTPR10
A YTGTCWC -3438, -2010

AMYBOX1 TAACARA -3192, -1864

CTRMCAMV35S TCTCTCTCT -2906, -2845

ELRECOREPCRP1 TTGACC -2794, -1773

ERELEE4 AWTTCAAA -2208, -1890

MARABOX1 AATAAAYAAA -3353, -2128

MYBGAHV TAACAAA -3192, -1864
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P1BS GNATATNC -3135, -2997

QELEMENTZMZM13 AGGTCA -2973, -1774

PALBOXAPC CCGTCC -2957, -1585

CGCGBOXAT VCGCGB -2711, -1715
HDZIP2ATATHB2 TAATMATTA -2238, -845

ANAERO2CONSENS
US AGCAGC -943, -760

WUSATAg TTAATGG -2823

WBBOXPCWRKY1 TTTGACY -2794

ABRERATCAL MACGYGB -2710

D1GMAUX28 ACAGTTACTA -2561

L1BOXATPDF1 TAAATGYA -2364

SORLIP1AT GCCAC -1252

SORLIP5AT GAGTGAG -825

RHERPATEXPA7 KCACGW -797

RYREPEATLEGUMI
NBOX CATGCAY -669
AUXIN
CYTOCHININ
GIBBERELLIN
JASMONATE
ABA
ETHYLENE
ENDOSPERM
CELL PROLIFERATION
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Table 6 Presence and location of cis elements in the intragenic 5' region of AtDRTS1. The distance
from DRTSs ATG codon is reported.
Position from ATG is the bp distance downstream from the ATG codon.
Sites located within the second intron of the AtDRTS1 gene are shown in red.

CIS element Sequence
Position from ATG

DPBFCOREDCDC3 ACACNNG
34

TBOXATGAPB ACTTTG
160

ELRECOREPCRP1 TTGACC
163

GT1GMSCAM4 GAAAAA
186

LTRE1HVBLT49 CCGAAA
248

LTRECOREATCOR15 CCGAC
254

ACGTATERD1 ACGT
263

SEF3MOTIFGM AACCCA
285

GAREAT TAACAAR
348, 391

SREATMSD TTATCC
444

MYBST1 GGATA
445

REALPHALGLHCB21 AACCAA
475, 492, 496

MYBPLANT MACCWAMC
494

BOXLCOREDCPAL ACCWWCC
494
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4.6 The meristematic expression of  AtDRTS1 in germinating seeds is cell cycle-regulated

Considering the crucial role played by the DRTS enzymes in DNA synthesis, the expression

of the AtDRTS genes in proliferating cells is expected to be preferentially linked to the G1/S

phase of the cell cycle. As shown from my previous results, AtDRTS1 is strongly expressed in

the proliferating cells of embryos and also in root apical meristems. In this respect, I carried

out experiments using cell cycle inhibitors in germinating seeds which are characterized by

synchronous cell cycle progression during the early stages of germination [Barroco et al.,

2005]. In dormant dry seeds most of the cells of the embryo are known to be blocked at the

G1 phase. Upon seed imbibition, cells in the radicle progress into S phase and start the

synthesis of DNA, which terminates approximately 42 hours after imbibition (HAI), when the

radicle starts to protrude. Then the cells complete the cell cycle, passing through the G2 and

M phase, which occurs 48 HAI. The imbibition and germination of the seeds in the presence

of aphidicolin appears to block the cells in S phase, while the germination in the presence of

colchicine allows the completion of the first S phase and blocks the cells at the M phase

[Varadarajan et al, 2010]. To analyse the activity of the AtDRTS1 promoter during seed

germination, seeds of a representative SFH7/DRTS1i2 line that show a clear GUS activity

from the beginning of germination, were imbibed for 72 hours in the dark at room

temperature with or without cell cycle inhibitors. In the absence of inhibitors, this length of

time would allow the meristematic cells to complete two divisions. The extracts from the

germinated seeds were then analyses fuorimetrically to quantify the level of GUS activity. As

shown in figure 12, germination in the presence of colchicine decreased the GUS activity in

the seeds of the transgenic lines, whereas incubation with aphidicolin did not change

significantly the level of GUS activity compared to control seeds germinated without the

inhibitors. Although it is known that the GUS protein is relatively stable and can persist

during cell cycle progression in proliferating cells [Adachi et al., 2006], these results suggest

that the activity of the AtDRTS1 promoter in germinating seeds is cell cycle-regulated, being

high in G1/S but low or absent in G2/M.
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Fig. 12 Results of the fluorimetric analysis of
GUS activity, carried out on extracts obtained
from germinating seeds of the transgenic line
harbouring the AtDRTS1 construct. The
extracts were incubated 72 h without (ctr) or
with cell cycle inhibitors (Aph, Col). The bars
show standard errors. *p<0.05.
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4.7 E2F transcription factors are able to repress the activity of the AtDRTS2 and AtDRTS3

promoters

Previous analyses conducted by our research team have demonstrated that the mutation of

E2F cis elements contained within the AtDRTS2 and AtDRTS3 promoters increased the

activity of both promoters, suggesting a likely repressive role of the E2F sites [Ghisaura,

2010]. To better evaluate the influence of E2F factors on AtDRTS gene expression,

Arabidopsis plants overexpressing the AtE2Fa factor were produced and the expression of the

three AtDRTS genes was analysed by qRT-PCR in two lines showing strong overexpression of

the AtE2Fa transcripts (Table 7). These lines, in agreement with previous reports concerning

the overexpression of AtE2Fa or AtE2Fb [De Veylder et al., 2002; Sozzani et al., 2006],

display a significant increase in cotyledonary epidermal cell number compared to wild type

plants (Table 7). Interestingly, increased expression of AtDRTS1 can be detected in both

AtE2FaOE lines whereas the expression of AtDRTS2 and AtDRTS3 clearly diminished (figure

13). These results confirm an E2F-dependent repression of the AtDRTS2 and AtDRTS3

promoters, which could be direct targets of E2F factors, but reveal a positive influence of

AtE2Fa overexpression on the expression of AtDRTS1 which, however, is not necessarily

reflecting a direct regulation but could be linked to the increased cell proliferation observed in

the AtE2FaOE lines.
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Table 7. Features of the two Arabidopsis lines overexpressing the AtE2Fa factor.

AtE2FaOE #1 AtE2FaOE #5 Wild Type

Fold overexpression 113,74 ± 11,83 158,37 ± 12,73 -

Cotyledon size (mm2) 4,4 ± 0,5 5,4 ± 0,3 3,1 ± 0,2

Cotyledon cell size (µm2) 2976,19 ± 106,3 3215,43 ± 175,8 5494,51 ± 211,3

Cotyledon cell number 1478,4 ± 168,0 1679,4 ± 93,3 564,2 ± 36,4

The accumulation of the AtE2Fa mRNA in one week-old seedlings was quantified by qPCR following
the Ct method using the18S RNA as a reference for normalization. The qPCR analysis was carried
out using three biological replicates. The mean level of expression with the SE is reported. The
phenotypic analysis of the cotyledons was carried out on 12 day-old plants using 8 to 12 samples. The
size of the adaxial epidermal cells was calculated counting the number of cells contained in an area of
100,000 μm2 . The total epidermal cell number was estimated dividing the cotyledon size by the cell
size. The mean values with the SE are reported.

Fig. 13 qRT-PCR analyses performed on transgenic lines overexpressing the AtE2Fa activating factor
revealed that AtDRTS2 and AtDRTS3 are downregulated, whereas AtDRTS1 shows an increased
expression.
The qRT-PCR analyses were repeated three times using independent biological replicates and
quantification was normalized to 18S RNA levels. The bars show standard errors. ** p<0.01,
***p<0.001.
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4.8 The first intron of AtDRTS2 can confer meristematic activity to a promoter that is not

active in plant meristems

As for the AtDRTS2 promoter, previous functional analyses conducted in our laboratory have

demonstrated that the mutation of several cis elements, connected to cell proliferation, such as

the UP1ATMSD, UP2ATMSD, Hexamer and E2F elements, did not alter the pattern of activity in

the meristematic root apices [Ghisaura, 2010; Marche, 2013]. Moreover, experiments

demonstrated the importance of the first AtDRTS2 intron, contained in the 5’-UTR of the

gene, for the activity of the AtDRTS2 promoter in root meristems. In Arabidopsis plants

transformed with a AtDRTS2 promoter construct lacking the region containing the first intron,

in fact, the promoter lost its activity in root apical meristems (figure 14), whereas in seedlings

harboring a reporter construct which includes the AtDRTS2 promoter and the 5’-UTR, up to

the beginning of the first non-coding exon of the gene, a strong GUS activity in the root

apices was observed (figure 15) [Ghisaura, 2010].

Importantly, additional analyses also revealed that this intron, when placed within the 5’-UTR

of AtDRTS1, is able to activate the AtDRTS1 promoter in root meristems [Marche, 2013]. As

previously described in this chapter, it is clear that the second intron of AtDRTS1 is necessary

for its meristematic expression in root apices and, therefore, the previous data indicate that the

first intron of AtDRTS2 is able to functionally substitute the second intron of AtDRTS1 when

placed downstream of the AtDRTS1 promoter.
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Fig. 14 Activity of the AtDRTS2 promoter construct lacking the first intron of the gene, in seedlings of
one, two and three weeks of age and the enlarged view of a root apex [from: Ghisaura, 2010].

Fig. 15 Activity of the AtDRTS2 promoter construct which includes the first intron of the gene, in
seedlings of one, two and three weeks of age and the enlarged view of a root apex [from: Ghisaura,
2010].
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Considering these experimental evidences, further investigations were conducted with this

thesis to verify whether the activation in root meristems conferred by the first AtDRTS2

intron, could be obtained also using the promoter of a gene which, contrarily to AtDRTS1, is

not expressed in root meristems. To this purpose, I engineered a new GUS reporter construct,

called BAM3/DRTS2i1 (figure 16A), in which the 5’-UTR containing the first intron of

AtDRTS2 (from position +5 to +222, respective to the AtDRTS2 transcription start), is placed

downstream of a non-meristematic promoter, such as the β-amylase 3 (BAM3) promoter,

which is strongly active in leaves but not in meristems [Francisco et al., 2010]. As control,

plants have also been transformed with a reporter construct in which only the BAM3 promoter

controls the GUS gene expression (figure 17A). Histochemical analyses of these plants

revealed strong GUS staining limited to the vascular tissue of the leaves (figure 17B),

confirming the expected pattern of activity of the BAM3 promoter. Remarkably, the

histochemical GUS assays performed on 14 T2 transgenic lines obtained by transformation

with the BAM3/DRTS2i1 reporter construct showed that the presence of the AtDRTS2 5’-

UTR altered drastically the pattern of activity of the BAM3 promoter, which, instead of being

confined only in leaves, spread out in the root, including also the root apical meristems (figure

16B). These results clearly indicate that the first intron of AtDRTS2 is necessary and sufficient

to confer a strong activity in root meristems to a non-meristematic promoter.

In consideration of these remarkable results, additional experiments have been carried out to

evaluate whether the first AtDRTS2 intron by itself, and not in combination with the

additional cis elements of a complete promoter, is able to determine the activation in root

apical meristems also of a minimal promoter, which contains only the TATA box as a

regulatory element. For this investigation, two new GUS recombinant constructs, named

DRTS2i1/M35S and M35S/DRTS2i1, have been produced. In these constructs, the region

containing the first intron of AtDRTS2 is inserted respectively upstream and downstream of

the minimal -60 CaMV35S promoter (figure 18A and B). After transforming Arabidopsis

thaliana plants with the constructs, several transgenic lines have been selected and

histochemical analyses of the GUS reporter activity have been performed on the T2 progeny

plants. According to this analysis, however, GUS activity could not be detected in any of the

plant lines (figure 18C and D). These results indicate that the first intron of AtDRTS2 is not

sufficient to activate a minimal promoter in root meristems and its ability to confer

meristematic activity thus requires the presence of the additional regulatory regions that

constitute the architecture of a complex promoter.
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Fig. 16 (A) Schematic representation of the BAM3/DRTS2i1 construct. (B) Localization of GUS
activity in two-week-old seedlings carrying the BAM3/DRTS2i1 construct; the inset B1 shows the
strong GUS expression in the root apex, which includes the meristematic cells of the RAM.
Scale bar: 1 mm.
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Fig. 17 (A) Schematic representation of the BAM3 promoter construct. (B) The BAM3 promoter is
strongly active in leaves whereas no GUS activity is detected in the root apices, as highlighted in the
inset B1. Scale bar: 1 mm.
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Fig. 18 Schematic representation of the (A) DRTS2i1/M35S and (B) M35S/DRTS2i constructs.
No GUS activity has been detected in two-week-old seedlings carrying the DRTS2i1/M35S (C) and
M35S/DRTS2i1 (D) constructs. The insets C1 and D1 highlight the lack of GUS staining in the root
meristematic apex. Scale bars: 1 mm.
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5. DISCUSSION

This chapter of the thesis expands the molecular characterization of the three members of the

DRTS gene family of Arabidopsis thaliana, revealing the existence of remarkable isoforms

and of distinctive promoter features that reflect differential patterns of expression. The DRTS

genes are peculiar to plants and protists and code for bifunctional proteins characterized by

the union in a single molecule of the domains specifying two enzymatic activities,

dihydrofolate reductase (DHFR) and thymidylate synthase (TS), which in animals, fungi and

bacteria are encoded by separate genes. DHFR catalyses the last reaction in the synthesis of

tetrahydrofolate (THF), whereas TS uses N5,N10-methylene THF to reduce and methylate

deoxyuridine monophosphate (dUMP) to dTMP, yielding 7,8-dihydrofolate (DHF) as a

secondary product. Because DHFR activity is needed to recycle the resulting DHF, TS relies

on DHFR activity and the presence of both enzymes in the same polypeptide, known as

metabolic channelling, clearly increases the efficiency of thymidylate synthesis. Being

involved in the synthesis of nucleotide precursors, the DHFR/TS bifunctional enzyme is

essential in proliferating cells.

All three DRTS genes of Arabidopsis are downstream of divergently oriented members of the

AtSFH gene family and could derive from successive genome duplications that occurred

during Brassicaceae evolution. The AtDRTS1 and AtDRTS2 proteins are more similar to each

other than to AtDRTS3 and form a clade together with other Brassicaceae DRTSs. On the

contrary, AtDRTS3 groups with a subset of DRTSs conserved also in other eudicots. It

appears, therefore, that AtDRTS1 and AtDRTS2 could derive from a recent duplication event

that occurred after the separation of Brassicaceae from other plant families and before the

divergence of the Arabidopsis and Brassica lineages [Bowers et al., 2003]. In all the plant and

protist DRTS proteins the amino-terminal DHFR domain and the carboxy-terminal TS domain

are separated by a linker region whose variable structure reflects evolutionary changes and

has been used as marker for phylogenetic classification [O’Neil et al., 2003]. Although length

and sequence of the linker region have been shown to be critical for TS activity and domain-

domain interaction of the bifunctional enzyme [Chaianantakul et al., 2013], the two enzymatic

activities appear to be largely autonomous and inhibition of each one with specific drugs does

not affect the other activity [Neuburger et al., 1996]. In this respect, because the synthesis of

THF is not needed only for TS activity but is necessary for a myriad of other metabolic

pathways, it is not surprising that DHFR activity in plant cells has been reported to be at least
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20 to 30 folds higher than TS activity. Moreover, the domain responsible for TS activity

appears to be much more sensitive to protease action than the DHFR domain [Neuburger et

al., 1996]. Interestingly, earlier studies have suggested the existence in plants of

monofunctional DHFRs, associated with TS in a large multimeric enzyme complex [Toth et

al., 1987].

The analysis of the Arabidopsis DRTS gene family reveals that alternatively spliced isoforms

of AtDRTS1 and AtDRTS3 are potentially coding for truncated proteins that are expected to

possess only DHFR activity. The differential splicing of AtDRTS3 transcripts is likely to be

associated to the presence of a transposon-like element in the fourth intron of the gene,

causing a termination of the primary transcripts before reaching the regular 3' splicing

acceptor site of the intron. Alternative splicing has been detected also for the AtDRTS2

transcripts and is expected to results in the use of two different ATG codons, giving rise to

protein isoforms possessing different amino-terminal regions. According to various targeting

predictions, these AtDRTS2 isoforms could be localized to different sub-cellular

compartments and the larger one is mostly expected to be targeted to mitochondria and/or

plastids, whereas the smaller one is mainly predicted to be cytosolic. A similar scenario has

been reported also for a carrot DRTS gene showing alternative transcription starts that give

rise to two isoforms, one of which possesses a N-terminal region with the features of a transit

peptide that could target the protein to the plastids [Luo et al., 1997]. Mitochondrial

localization of plant DRTSs is very likely because a huge pool of THF is needed for the

photorespiratory process in leaf mitochondria of C3 plants and folate and thymidylate

synthesis in plants have been shown to occur predominantly in mitochondria [Neuburger et

al., 1996]. Nevertheless, compartmentalization of plant DRTSs is still an open question and,

as predicted for the smaller AtDRTS2 isoform, a cytosolic localization is mostly proposed also

for the AtDRTS1 and AtDRTS3 proteins. Thus, it is possible that in particular cellular or

developmental contexts some of the AtDRTSs could be localized, to various extents, not only

in mitochondria but also in plastids and in the cytosol as well.

Expression analyses, conducted by qRT-PCR and evaluating the activity of the AtDRTS

promoters in transgenic plants, revealed that the DRTS genes of Arabidopsis are variously

expressed in meristematic and differentiated cells. Interestingly, previous data indicated that

the first intron of AtDRTS2 is required for meristematic expression of the gene and

experiments performed with this thesis revealed that the presence of the intragenic region that

includes the second intron of AtDRTS1 is necessary for the activation of its promoter in the
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root meristematic apex, similarly to what described also for the CENH3 gene of Arabidopsis

[Heckmann et al., 2011]. Moreover, additional investigations of the role played by the first

intron of AtDRTS2, conducted during this work of thesis, revealed that this intron, when

placed downstream to a plant promoter, is able to confer strong meristematic activity also to

the promoter of a gene that is highly expressed in leaves and not in plant meristems. This

feature does not appear to be autonomous but requires other functional promoter elements

because is not observed when the intron is placed either downstream or upstream to a minimal

35S promoter.

The distinctive patterns of expression of the three AtDRTS genes in differentiated tissues

suggest specific roles not necessarily linked to cell proliferation or endoreduplication. In this

respect, AtDRTS1 appears to be the most widely expressed gene and its promoter is strongly

active in the vascular tissues, whereas AtDRTS2 and AtDRTS3 show narrower and more

specific patterns of expression. The strong expression of AtDRTS1 in vascular tissues

emphasizes the important roles played by folates in the synthesis of lignin and of other cell

wall components [Srivastava et al., 2015]. Of all three genes, AtDRTS2 is the only one that is

predominantly expressed in meristematic tissues. Meristematic expression is clearly linked to

the need of thymidylate for DNA synthesis in proliferating cells, whereas the expression in

many differentiated cells could be associated to DNA endoreduplication or to the synthesis of

the folate cofactors required for various biochemical reactions. With respect to the

meristematic expression, all three genes appear to be expressed in shoot apices, with

AtDRTS1 and AtDRTS2 showing considerably higher expression compared to AtDRTS3. Also

developing ovaries, in which cell proliferation occurs, show weak activity of all three AtDRTS

promoters, whereas the expression of the AtDRTSs in other tissues and organs appears to be

shared by only two of the genes or is rather specific for AtDRTS1 or AtDRTS3. Interestingly,

root apical meristems exhibit strong expression of both AtDRTS1 and AtDRTS2 but there is no

evidence of the expression of AtDRTS3, which in the root apex is strongly and specifically

expressed only in the columella and in the lateral root cap. Thus, although strong

meristematic expression of AtDRTS1 and AtDRTS2 is evident in both shoot and root apical

meristems, meristematic expression of AtDRTS3 appears to be restricted to the shoot apex

only. Moreover, according to their promoter activities, AtDRTS1 and AtDRTS2 are expressed

widely in developing embryos, whereas the  expression of AtDRTS3 appears to be confined to

a narrow region at the very tip of the embryonic root. These results suggest that AtDRTS1 and

AtDRTS2 are consistently expressed in all the cells that undergo proliferation, whereas the
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expression of AtDRTS3 in proliferating cells occurs but is restricted to particular

developmental or spatial contexts. In addition, the effects of cell cycle inhibitors on the

activity of the AtDRTS1 and AtDRTS2 promoters in germinating seeds revealed that both

genes are cell cycle-regulated in root meristems, showing higher expression at the G1/S phase

in accordance with their importance for DNA synthesis.

Although the activities of the AtDRTS1 and AtDRTS3 promoters are partially overlapping in

hydathodes, the AtDRTS1 and AtDRTS3 promoters show specific patterns of activity in other

parts of the plant. The promoter of AtDRTS1 appears to be active in trichomes and in the

developing stigmatic papillae of flower buds, but not in mature stigmas of open flowers. The

expression of AtDRTS1 in these cell types could be linked to endoreduplication, which has

been shown to occur during both trichomes and stigmatic papillae development [Martin and

Glover, 2007]. Conversely, the AtDRTS3 promoter appears to be specifically active in the

stipules and in few cells at the adaxial base of inflorescence branches. This expression recalls

the activity of two PECTATE LYASE-LIKE (PLL) promoters, PLL15 and PLL24, that have

been shown to drive GUS gene expression within a restricted region on the adaxial side of the

base of pedicels and, as most other PLL promoters, are active also in the stipules of

Arabidopsis plants [Sun and van Nocker, 2010] The function of stipules is still unclear but,

together with hydathodes, they are believed to be primary sites for the synthesis of indole-3-

acetic acid (IAA) associated with vascular differentiation and leaf morphogenesis [Aloni et

al., 2003]. The transcription of AtDRTS1 and AtDRTS3 genes at sites of IAA synthesis could

reflect an auxin-dependent upregulation of their promoters, also supported by the presence of

several auxin-responsive cis elements. However, the expression of AtDRTS genes in stipules,

hydathodes and root caps could also imply links between folates and IAA biosynthesis. Auxin

distribution and signaling have been recently shown to be modulated by interactions between

folate biosynthesis and Sucrose signaling [Zolman et al., 2008]. Moreover, it is known that

5,10-CH2-THF is a methyl donor for the synthesis of CoA molecules that, in addition to their

engagement in various metabolisms, are also necessary for the β-oxidation of the auxin

precursor indole-3-butyric acid (IBA) [Stokes et al., 2013]. Interestingly, expression in lateral

root cap cells of the IBR3 gene, encoding a protein involved in the conversion of IBA into

IAA, has been shown to create a local auxin source that stimulates LR formation [Xuan et al.,

2015].

The strong and specific expression of AtDRTS3 in the columella and lateral root cap could

support also other functions. Root caps protect the RAM and play important roles in root
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growth allowing gravity perception. High metabolic activity is known to occur in root cap

cells, which secrete mucilage to facilitate root penetration in the soil and release diverse

secondary metabolites that influence rhizosphere microbiota composition [Bais et al., 2006].

Root border cells also produce antimicrobial phenolic compounds important in the defence

against fungal pathogens and DHFR activity in root cap cells could be involved in the

production of these defensive molecules. A recent study of Arabidopsis root exudates has

revealed the release of a large array of compounds, including thymidine and degradation

products of methionine-derived glucosinolates [Strehmel et al., 2014]. Moreover, DNA

synthesis has been reported to occur in root cap border cells [Clowes, 1968; Phillips and

Torrey, 1971] and the release of large amounts of extracellular DNA (exDNA) by root tips has

been shown to play important defensive roles [Wen et al., 2009]. Together with secreted

proteins, the released exDNA forms traps that are able to block pathogens and protect

growing root tips from invasion. The defensive role of the exDNA is fully demonstrated by

the loss of resistance upon treatments with DNaseI and by the capacity of  bacterial strains to

release nucleases to increase their virulence. Although the release of exDNA by root border

cells has not been investigated in Arabidopsis, this feature has been described in different

plant species and is likely to be widespread. Thus, it is possible that the strong expression of

AtDRTS3 in root caps is associated to the occurrence of this phenomenon also in Arabidopsis.

Interestingly, important involvements of folate metabolism with plant defence have been

already suggested. Folate content in rice seeds is associated with the induction of defence-

related genes [Blancquaert et al., 2013] and folic acid has been shown to induce local and

systemic SA-mediated defence in Arabidopsis [Wittek et al., 2015]. Moreover, in a study

carried out in maize, two QTL that relate to brown plant-hopper (BPH) resistance have been

shown to be associated with ZmDRTS genes [Ramalingam et al., 2003]. Although redundancy

of the AtDRTS genes could support vital functions related to general metabolism and cell

proliferation, functional analyses of the individual AtDRTS genes will be useful to assess

whether AtDRTS1 or AtDRTS3 can be involved in auxin distribution and signaling and to

verify whether AtDRTS3 can play important roles in plant defense from pathogens.

According to the distinctive patterns of expression observed, the three AtDRTS genes appear

to be differentially regulated to a large extent. In agreement with this finding, in silico

analyses of the AtDRTS promoters revealed remarkably different distributions of several

putative cis elements. Focusing my attention on cis elements reported to be involved in the

regulation of gene expression in proliferating cells and in response to auxin and cytokinin, I
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found clear differences among the AtDRTS promoters. Several proliferation-related elements

are found upstream and closer to the AtDRTS2 and AtDRTS3 coding regions whereas the only

putative site found upstream of AtDRTS1 is much closer to the AtSFH gene than to the

AtDRTS coding region and is less likely to be involved in AtDRTS1 regulation.

The AtDRTS2 promoter, which shows mostly meristematic activity, is particularly enriched in

proliferation-related regulatory sites and contains six different cis elements that are associated

to expression in proliferating cell and are all grouped closely upstream of the ATG codon. In

comparison, the AtDRTS3 promoter contains four diverse proliferation-related cis elements

that are more dispersed and distant form the AtDRTS coding region. Considering the presence

of auxin- or cytokinin-responsive cis elements, it is notable that various sites related to auxin

regulation are found only in the AtDRTS1 and AtDRTS3 promoters, that are strongly active at

sites of auxin production, and are absent in the AtDRTS2 promoter, whereas two and three

copies of a cis element responsive to cytokinin are seen upstream of AtDRTS2 and AtDRTS3,

respectively, but are absent in the AtDRTS1 promoter. Thus, the expression of AtDRTS1 and

AtDRTS3, but not AtDRTS2, is likely to be regulated by auxin whereas cytokinin could

control AtDRTS2 and AtDRTS3 expression. Although overlapping patterns of expression are

seen in some meristematic tissues, the remarkably distinctive promoter architectures of the

three AtDRTS genes suggest that their expression in proliferating cells is likely to be

controlled to a large extent by different regulatory circuits. Moreover, as seen already with the

AtCENH3 promoter [Heckmann et al., 2011], results obtained with this work of thesis

revealed that the meristematic expression of AtDRTS1 is controlled differently in the RAM

compared to the shoot apical meristem.

Among proliferation-related cis elements, the E2F sites are believed to play particularly

important roles and have been shown to be required for meristematic expression of some plant

genes. However, functional analyses of the E2F-like sites in the AtDRTS2 and AtDRTS3

promoters suggested previously that both genes are negatively regulated  by endogenous E2F

factors. An E2F-dependent regulation of DRTS genes has never been described before and the

control of mammalian DHFR and TS genes by E2F factors appears to be controversial

because various studies have shown contrasting results and strong regulation at the post-

transcriptional level [Abali ET AL., 2008; Le Francois et al., 2007]. The E2F-mediated

repression of AtDRTS genes was confirmed also in this thesis by analysing plants

overexpressing AtE2Fa, in which AtDRTS2 and AtDRTS3 are downregulated whereas

AtDRTS1, which lacks putative E2F sites, appears to be upregulated. However, AtDRTS1 is
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not expected to be an E2F target but is strongly expressed in proliferating cells and its

upregulation in AtE2FaOE plants could simply reflect the increased cell proliferation caused by

AtE2Fa overexpression.

The activity of typical E2Fs is finely controlled by post-translational modifications and

through their association with Retinoblastoma-Related (RBR) proteins. Free typical E2Fs can

function as activators, but the interaction with RBRs confers them repressive roles [Balck and

Azizkhan-Clifford, 1999]. Among the typical AtE2Fs, AtE2Fa and AtE2Fb have been

proposed to act mainly as transcriptional activators that are able to upregulate the expression

of several cell cycle genes. On the contrary, AtE2Fc, the third typical E2F of Arabidopsis, as

well as the three atypical E2Fs, AtE2Fd to AtE2Ff, are believed to act mainly as repressors of

E2F-regulated genes [Ramirez-Parra et al., 2007]. However, repressive roles of AtE2Fa and

AtE2Fb have been also reported. In apical meristems AtE2Fa was shown to be mostly

associated with AtRBR1, to repress genes involved in endoreduplication and cell expansion,

whereas AtE2Fb is believed to interact with RBR1 only in elongating and differentiating cell,

repressing cell cycle genes in cells leaving the meristems [Magyar et al., 2012]. The

downregulation of AtDRTS2 and AtDRTS3 in AtE2FaOE plants could be linked to a repressive

role exerted by AtE2Fa on genes involved in DNA synthesis in proliferating cell.

Nevertheless, the overexpression of AtE2Fa has been shown to upregulate AtRBR1 and

remarkable interplays are known to occur among E2F genes, many of which appear to be

E2F-regulated [De Veylder et al., 2002]. Thus, we cannot rule out the possibility that the

downregulation of AtDRTS2 and AtDRTS3 in AtE2FaOE plants is not exerted directly by

AtE2Fa, but could result from an upregulation of repressive E2Fs caused by AtE2Fa

overexpression. In any case, our results clearly show that AtDRTS2 and AtDRTS3, but not

AtDRTS1, are negatively controlled by E2F factors. Remarkably, also the AtCNH3 gene has

been proposed to be downregulated by E2F factors in Arabidopsis protoplasts, even if its

expression appeared to increase in plants overexpressing AtE2Fa or AtE2Fb [Heckmann et

al., 2011].
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CHAPTER 2.

Visualization of the E2F-dependent transcriptional activation in planta

1. INTRODUCTION

1.1 Plant development

In all organisms a fine coordination between cell proliferation, growth and differentiation is

fundamental for the normal development. The main feature of plants is that the process of

organogenesis occurs during the entire life of the organism, whereas in animals the formation

of new organs takes place during embryogenesis. This peculiarity of plants is the reason of

their indefinite growth via cell division and elongation, which can be maintained thanks to

two niches of stem cells, that constitute the root and the shoot apical meristems named RAM

and SAM, respectively (figure 1). These tissues are localized at the end of the main

embryonic body axis and provide a pool of undifferentiated, pluripotent and highly

proliferating cells that, after their exit from the meristem and differentiation, allow the

formation of the adult organs and tissues. Each meristem, in fact, has a distinct organization

and cell types that arise from it. The SAM is responsible for the formation of stem, leaves and

buds, whereas the RAM provides cells that will originate the complex system of radical

tissues

.

Fig. 1 Simplified representation
of the structure of shoot and root
apical meristems [Adapted from:
Sparks et al., 2013].
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1.2 The plant cell cycle and its regulators

Growth and development of multicellular organisms are based on cell proliferation which

occurs following a minutely regulated process, called cell cycle (figure 2). The cell cycle is

divided in four sequential phases, which end up in the formation of two daughter cells. The

first phase is G1 (Gap phase 1), which begins when cells commit for a new division, G1 is

followed by the S phase, where the DNA synthesis occurs. The G2 phase (Gap-phase 2)

separates the S phase from the M phase, which embraces the karyo- and cytokinesis, where

the duplicated genome and cellular components, are divided into the newborn cells. The

principal mechanisms that regulate the progression trough the cell cycle are highly conserved

across evolution. In eukaryotes, the cell cycle is coordinated, at multiple points, by a class of

serine/threonine protein kinases, called cyclin-dependent kinases (CDKs). The CDKs activity

is regulated by different proteins, called cyclins (CYCs), like as the D-type cyclins (CYCD),

which are essential during the G1 to S phase transition, and the A-type (CYCA) and B-type

(CYCB) cyclins, which control the progression through the S phase and the G2 to M phase

transition, respectively [De Veylder et al., 2007]. Plants contain different types of CDK,

involved in the control of the cell cycle, that have been initially identified in Arabidopsis

thaliana. The two major CDKs, which control the cell cycle in higher plants, are the CDKAs

and CDKBs. The A-type CDKs all contain the conserved amino acid sequence PSTAIRE in

their cyclin-binding domain, whereas plant CDKBs could show either a PPTALRE or a

PPTTLRE sequence [Joubès et al., 2000]. The CDKBs are present in higher plants in two sub-

types called CDKB1 and CDKB2. A. thaliana genome includes two genes, which encode for

each CDKB sub-type: CDKB1;1, CDKB1;2, CDKB2;1, and CDKB2;2, whereas the CDKAs

are encoded by a single gene called CDKA;1 [Boudolf et al., 2001]. As mentioned before, the

complexes CDKs-cyclins are essential for the progression through the cell cycle, in fact, the

CDKs have no activity if not associated with the cyclins. Arabidopsis genome encodes 10 A-

type cyclins, 11 B-type cyclins, 10 D-type cyclins and 1 H-type cyclin. Phylogenetic analyses

of A- and B-type plant cyclins shows that cyclin classes are conserved between animals and

plants[Renaudin et al., 1996].

The levels of cyclins are regulated during transcription, as well as by specific protein-turnover

mechanisms. A- and B-type cyclins possess “destruction box” sequences, which have been

reported to mediate protein degradation by an anaphase-promoting complex (APC) during M

phase [Glotzer et al., 1991]. D-type cyclins are conjugated to ubiquitin by an SCF complex

and then degraded by the proteasome pathway [Dewitte and Murray, 2003].
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The activity of CDKs is positively regulated by phosphorylation, carried out by a CDK-

activating kinase (CAK). In plants, the phosphorylation of a conserved threonine residue,

equivalent to Thr-160 of human CDK2,  which is within a loop of the protein named T-loop,

induces a conformational change that enables substrate binding by the CDKs catalytic site

[Dewitte and Murray, 2003] . Mechanisms of negative regulation of CDK activity have also

been described. A family of  proteins, named CDK inhibitors (CKIs), inhibits CDKs activity

by tight association with the cyclin/CDK complexes. In Arabidopsis, seven genes have been

identified, which encode for Kip-related proteins (KRPs), which present an homology with

the KIP proteins, a class of mammal CKIs [De Veylder et al., 2001].

CDKs activity is additionally controlled by inhibitory phosphorylation. To ensure an

appropriate continuance of mitosis in eukaryotic cells, CDKs are negatively  regulated by the

inhibiting WEE1 and MYT1 kinases, which phosphorylate the sites equivalent to human Thr-

14 and Tyr-15 of CDK2. WEE1 and MYT1 activity is balanced by the dual-specificity

phosphatase CDC25, which dephosphorylates both the Thr-14 and Tyr-15 residues [Kumagai

and Dunphy, 1991]. WEE1 and CDC25 analogues have been identified in Arabidopsis

[Landrieu et al., 2004; Sorrell et al., 2002].

Fig. 2 Simplified view of the
plant cell cycle, which requires
several regulators [From: Scofield
et al., 2014].
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1.3 Cell cycle and E2F/RB pathway

During G1 to S transition, at a  point called START in yeast and restriction point in mammals,

cells either continue through the cell cycle or stop to differentiate. The response to various

hormones, like as abscisic acid and auxin, is able to lead cells to a new division cycle

[Gutierrez et al., 2002]. The regulatory pathways that control cell cycle progression are

conserved in animal and higher plants and include the CycD/RB/E2F pathway, a major

regulator of cell proliferation that plays a key role in the G1 to S transition. The D-type

cyclins, associated with CDKs, interact with a tumour-suppressing protein, called

retinoblastoma protein (RB), through a short LxCxE sequence (x = any aminoacid) contained

near the CycD N-terminal region. Phosphorylation of RB is essential for regulating the

activity of the E2F transcription factors, which are necessary for the transcriptional activation

of a wide range of genes that are essential for the G1 and S phase progression of the cell

cycle. These activating E2F factors act as heterodimers together with the Dimerisation Partner

proteins (DPs). Beside their role in cell cycle progression, the E2Fs have been involved also

in the control of other cellular processes.

1.4 The Retinoblastoma protein

The human RB, is a nuclear phosphoprotein of approximately 100 kDa and shares about 40%

sequence identity with its counterpart in plants, called Retinoblastoma-related (RBR). Its

structure shows three protease-resistant domains that are the N-terminal domain and the A-

and B-domains, which form the “pocket domain” responsible for the interaction with the E2Fs

[Hensey et al., 1994]. In plants, the RBRs have been first identified in maize [Grafi et al.,

1996; Ach et al., 1997] and, subsequently, in many plant phyla. Arabidopsis contains only a

single retinoblastoma-related gene (RBR1).

RB activity is regulated by phosphorylation/dephosphorylation events (figure 3). At the end of

mitosis, the Ser/Thr Protein Phosphatases PP1 and PP2A are responsible for the activation of

RBs by dephosphorylation. When hypophosphorylated, RBs bind the E2Fs through a so

called “pocket domain” and block their activity. Subsequently to mitogenic stimuli,

phosphorylation by the CDK-CYCD complexes dissociates RBs from the E2F-DP

heterodimers, which are thus activated. Because the lack of RBR function in Arabidopsis is

gametophytic lethal [Ebel et al., 2004; Johnston et al., 2008; Johnston and Gruissem, 2009],

functional studies on the Retinoblastoma Related protein have been performed through virus-

induced gene silencing [Park et al., 2005; Jordan et al., 2007] or RNAi experiments
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[Wildwater et al., 2005; Borghi et al., 2010]. RBR is not involved only in the control of cell

cycle progression but it acts also as a transcription regulator via epigenetic mechanisms

[Gutzat et al., 2012]. Moreover, it has been reported that a local reduction of RBR expression

in Arabidopsis roots, is connected to an increase of the stem cells population by preventing

their differentiation in columella cells and in lateral root cap tissues [Wildwater et al., 2005].

On other hand, RBR overexpression in tobacco reduced the population of stem cells pool in

shoot apical meristems [Wyrzykowska et al., 2006].

Fig. 3 Simplified view of the
CyclinD/Retinoblastoma/E2F pathway
[Adapted from: De Veylder et al., 2007].

1.5 The E2F transcription factors in plants

The E2Fs have been first described as transcription factors able to bind and activate the E2

promoter in Adenovirus [Kovesdi et al., 1986]. This family of transcription factors can

activate a wide range of genes by binding a specific consensus sequence TTTSSCGSS (where

S can be C or G).

Most of the information on E2F factors derives from studies on animal E2Fs since they have

been identified first in mammals and only later in higher plants. As for plants, studies of

promoters containing E2F consensus sites concerned the RNR1, RNR2 and PCNA promoters

of tobacco and the CDC6 and MCM3 promoters of Arabidopsis thaliana [Chaboutè et al.,

2000; Kosugi and Ohashi, 2002; De Jager et al., 2001].

E2F factors have been identified in several plant species like tobacco, wheat, carrot and

Arabidopsis [Ramirez-Parra et al., 1999; Sekine et al., 1999; Albani et al., 2000; Magyar et

al., 2000]. In particular, the Arabidopsis genome encodes six E2Fs (named AtE2Fs) that can



Author: Antonio Maniga
Title: Studies on the meristematic and E2F-dependent gene expression in Arabidopsis thaliana plants

PhD Thesis in: Life Sciences and Biotechnologies
Università degli Studi di Sassari

65

be classified into two classes: typical and atypical E2Fs. The first group includes the AtE2Fa,

AtE2Fb and AtE2Fc factors that possess all the canonical regions conserved in other typical

E2Fs, organized similarly to the mammalian E2F1 to E2F5 factors [Shen, 2002]. All the

typical E2Fs possess a DNA-binding domain closed to the N-terminus that is followed by a

DP heterodimerization domain, a marked box and a transactivation domain, in the C-terminal

region, that includes the retinoblastoma (RB) binding region. In Arabidopsis, the typical

AtE2Fs are able to dimerize with two Dimerisation Partner proteins, called AtDPa and

AtDPb. It has been shown that both AtE2Fa and AtE2Fb factors are able to transactivate a

synthetic E2F-responsive promoter, confirming their ability to act as positive transcriptional

regulators, whereas AtE2Fc has been shown to function as a transcriptional repressor, in

association with the RBR1 protein [Mariconti et al., 2002; Del Pozo et al., 2002]. On other

hand, the three atypical E2Fs of Arabidopsis, which are called also DP-E2F-Like (DEL), are

AtE2Fd/DEL2, AtE2Fe/DEL1 and AtE2Ff/DEL3, and contain duplicated DNA-binding

domains that enable these proteins to bind their cis elements without the formation of

heterodimers with AtDP proteins [Lammens et al., 2009]. Moreover, the atypical E2F factors

have no transactivating ability and are believed to be transcriptional repressors which are able

to compete with the typical E2Fs for binding to the same consensus sites [Mariconti et al.,

2002]. This feature is confirmed by studies in which the knockout of the atypical E2F genes

leads to an overexpression of genes activated by typical E2Fs [Li et al., 2008; Ramirez-Parra

et al., 2004]. Nevertheless, the atypical E2Fs lack the RBR binding domain, suggesting that

they repress transcription independently from the RBR protein [Lammens et al., 2009].

Both AtE2Fa and AtE2Fb are regulated by CYCD3;1. It has been demonstrated that the

CYCD3;1 overexpression results in an increase of cell proliferation, whereas its knockout

compromises cell division [Dewitte et al., 2003; Dewitte et al., 2007]. When released from

RBR upon phosphorylation of the retinoblastoma protein by CYCD3;1/CDKA;1 complex, the

AtE2Fb factor is able to stimulate cell proliferation by activating genes involved in cell cycle

progression.
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Fig. 4 Structural organization and DNA-binding
properties of the Arabidopsis E2F factors. [From:
Shen, 2002].

Further studies in Arabidopsis showed that the overexpression of the AtE2Fa factor is able to

induce cell proliferation in normally differentiated tissues, such as in hypocotyls and

cotyledons [De Veylder et al., 2002], and the AtE2Fa/AtDPa heterodimer is able to stimulate

cell divisions, inducing protoplasts from mature leaves to re-enter S phase [Rossignol et al.,

2002]. Arabidopsis plants overexpressing AtE2Fb showed a deeply modified morphological

structure such as shorter primary roots, larger cotyledons and absence of trichomes in leaves

[Sozzani et al., 2006].

The plant E2Fs are also controlling the endoreduplication (alternatively named endocycle),

which is considered a modified cell cycle in which the chromosomes replicate several times

without mitosis, giving rise to polyploid cells. Transgenic Arabidopsis plants overexpressing

the AtE2Fa-DPa complex show either augmented ploidy levels, or ectopic cell division. This

result indicates a likely involvement of AtE2Fa in the regulation of the endoreduplication [De

Veylder et al., 2002]. It has been proposed a dual role of AtE2Fa which allows to control,

separately, cell proliferation and endoreduplication. In proliferating cells, in fact, AtE2Fa

forms a stable repressor complex with RBR1, necessary to inactivate the expression of genes

responsible for endocycle onset. Upon dissociation from RBR1, through an unclear

mechanism, AtE2Fa activates the endocycle in cells committed for differentiation [Magyar et

al., 2012]. A role in the regulation of endocycle have been described also for AtE2Fc whose

overexpression forces cells to endoreduplicate [del Pozo et al., 2006].

Recent studies showed how the AtE2Fs are involved in other processes as well, such as the

Effector-Triggered Immunity (ETI), the first mechanism of defense from pathogens carried

out by plants. During ETI, hyperphosphoryation of AtRBR through an unknown kinase results

in over-activation of the typical AtE2Fs and effector-triggered PCD and disease resistance

[Wang et al., 2014]. Furthermore, it has been demonstrated the importance of the plant E2Fs
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in secondary wall synthesis. In Arabidopsis, in fact, AtE2Fc appears to be a regulator of

VND7 (VASCULAR-RELATED NAC DOMAIN 7), which is involved in xylem vessels

formation [Taylor-Teeples et al., 2015]. In addition, the atypical AtE2Fe/DEL1 of Arabidopsis

has been reported as a regulator of the production of salicylic acid (SA), which is an activator

of the immune response in plants [Chandran et al., 2014].

1.6 Synthetic promoters in plant biology

Synthetic promoters are nowadays widely used in scientific research. Plant promoters, thanks

to their modular structure, can be easily manipulated so as to modify the architecture of their

cis-acting elements. This cis-engineering allows to create unique combinations of  regulatory

promoter elements that can be positioned, in any order, upstream to the TATA box, the

element to which the TATA box-Binding Protein (TBP) of the TFIID complex can associate to

initiate the transcription in eukaryotes [Rushton et al., 2002]. The principal feature of the

synthetic promoters is that they can provide patterns of expression that do not exist in nature.

In the scientific literature, numerous strategies to create synthetic promoters have been

reported and, thanks to bioinformatic tools, the design of the different combinations of cis

elements has recently become more simple. One widely used approach is the intramolecular

hybridization used to join important regulatory elements of a promoter to the core element of

another one, thus giving rise to a chimeric synthetic promoter [Ranjan et al., 2011]. This

strategy could be used also to ligate two different promoters, oriented in different direction, to

create a bidirectional promoter.  Further common approaches are used to mutate a promoter

by adding and/or deleting repetitions of a regulatory element. For example, the DR5 promoter

is a highly active synthetic promoter that contains repeats of the auxin responsive element and

has been used to study auxin response in plants [Ulmasov et al., 1997]. Similarly, the

CaMV35S promoter, which is commonly used to increase gene expression in transgenic

plants, possesses a duplicated enhancer within a synthetic sequence [Guerineau et al., 1992].

A considerable number of synthetic promoters has now been devised and described in studies

in planta, and may be classified considering their specific functional features. Several

synthetic promoters have been used to evaluate the plant response to biotic and abiotic

stresses, allowing the characterization of different cis elements involved in the activation of

anti-pathogen genes [Pastuglia et al., 1997; Matton et al., 1993], or of genes required for

adaptation to stress conditions such as temperature variations or altered accessibility to water.

Other synthetic promoters have been essential in understanding hormone-responsive
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processes [Ulmasov et al., 1997; Muller and Sheen, 2008; Zheng et al., 2011], whereas tissue-

specific synthetic promoters have been designed to drive the expression of foreign genes in

different tissues [Lam and Chua, 1991; Van der Meer et al., 1992].

Fig. 5 Simplified representation of different plant synthetic promoter which are able to respond to

different biotic and/or abiotic stimuli [From: Dey et al., 2015].
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2. STATE OF THE ART AND AIMS OF RESEARCH

The purpose of this part of my research work was setting up a system which is expected to

enable the visualization of the E2F-dependent transcriptional activation in Arabidopsis

thaliana plants. Through the so called Cyclin D/E2F/Retinoblastoma pathway, the E2F

transcription factors play a key role in the regulation of the expression of a wide range of

genes that are essential for the G1 and S phase progression through the cell cycle. For this

reason the E2F factors are fundamental in controlling cell proliferation as well as

endoreduplication. However, in both plants and animals, the E2Fs have been shown to

regulate other processes as well. The three typical E2Fs of Arabidopsis, named AtE2Fa,

AtE2Fb, AtE2Fc, bind their cis elements together with the Dimerisation Partner proteins

AtDPa and AtDPb, whereas three atypical E2Fs, called AtE2d, AtE2Fe and AtE2Ff, possess

duplicated DNA-binding domains which allows DNA binding independently of an AtDP

protein. Several studies have demonstrated that both AtE2Fa and AtE2Fb factors act as

positive transcriptional regulators, whereas AtE2Fc has been shown to function as a

transcriptional repressor in association with the RBR1 Retinoblstoma-related protein. The

atypical E2Fs have no transactivating ability but are believed to act as repressors by

competing with the activating E2Fs for the binding to the same cis elements. Moreover, the

atypical E2F lack the RBR-binding domain, suggesting that they repress transcription

independently from the RBR protein [Lammens et al., 2009].

Previous experiments of transient expression have demonstrated that a synthetic E2F-

regulated promoter can be trans-activated by the typical AtE2Fs in plant protoplasts

[Mariconti et al., 2002]. The aim of this part of my thesis was to evaluate in planta the activity

and the regulation of this synthetic promoter, named E2F-Minimal-35S (EM35S), that is

expected to be specifically activated by E2F factors also when stably integrated in the plant

genome. The analysis of Arabidopsis plants transformed with a construct in which the EM35S

promoter drives the GUS reporter gene can easily allow the identification of tissues in which

strong E2F-dependent transcriptional activation is likely to occur. Moreover, these plants can

be used to verify the cell cycle-dependent regulation of the EM35S promoter activity as well

as its dependence on epigenetic mechanisms of regulation such as DNA methylation, histone

acetylation or phosphorylation/dephosphorylation events.
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3. MATERIALS AND METHODS
3.1 Plant material and plant transformation

For germination and growth in aseptic conditions, wild type or transgenic Arabidopsis

thaliana ecotype Columbia seeds were surface sterilized for 8/10 hours in 2% v/v PPM®

(Plant Preservative Mixture, Plant Cell Technology) supplemented with 50 mg/L magnesium

salts (MgSO4). Seeds were imbibed for 2 days in 0,1 % agarose at 4°C in the dark and then

germinated on petri plates containing MS salts (Duchefa Biochemie), supplemented with

Sucrose (10g/l) and Phyto agar (8g/l) (Duchefa Biochemie) and incubated in a growth cabinet

at 22°C under long day conditions of 16 h of light and 8 h of dark .

The transgenic Arabidopsis lines used in this study were generated by the floral dip method

[Clough and Bent, 1998] using Agrobacterium tumefaciens EHA105 strain [Koncz and

Schell, 1986]. For transformation, a colony of Agrobacterium containing the recombinant

plasmid has been picked up to inoculate 4 ml of YEP medium(Bactotryptone 10 g/L; Yeast

extract 10 g/L; NaCl 10 g/L adjusted at pH 7 with NaOH) containing the selection agents

Kanamycin 40 mg/l and Rifampicin 50 mg/l , which are specific for the plasmid and for the

Agrobacterium strain respectively. The culture was incubated O/N at 28°C with gentle

shaking and then used to inoculate 400 ml YEP medium. After a further incubation at 28°C

O/N, the culture was ready to transform plants. Each culture was transferred into 50 ml

conical tubes, centrifuged at 4000 rcf for 7 minutes, at 4°C and the liquid poured away

leaving a pellet. Infiltration media was prepared as following 50 g/l sucrose, 400 μl/l silwet L-

77, and kept cold. A small amount of infiltration media was first added to the tubes to

resuspend the Agrobacterium cells and then the remaining was added up to 500 ml to perform

the floral dipping. Plants were dipped into infiltration media for 45 secs, placed on their side

in a plastic bucket for 24 hours and left at RT. The transformed plants have then been

transferred in a growth chamber to grow to maturity.

Transformed T1 and progeny plants were selected on MS plates containing the resistance

antibiotic (Kanamycin, 40 mg/l). At two weeks of age, the resistant plants were transferred to

recovery plates and grown for one more week in aseptic conditions without the selection

agent before transferring them to soil. Plants were grown to maturity in growth cabinets set at

long day conditions of 16 h of light (22±3°C) and 8 h of dark (22±3°C), with 70% relative

humidity.
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3.2 Generation of  EM35S construct

For the production of the E2F/Minimal -60 CaMV35S (EM35S) reporter construct, the

plasmid pBI221.9/E2F [Albani et al., 2000] was first digested with NheI/EcoRI and the

fragment cloned into the pBI221.9 vector digested with XbaI/EcoRI, replacing the -60

CaMV35S promoter/GUS/Nos Poly A region with the 10xE2F/-60 CaMV35S promoter/

GUS/ Nos Poly A fragment, thus giving rise to the pBI221.9/EM35S construct.

Secondly the pBI221.9/EM35S plasmid was digested with HindIII/EcoRI and the fragment

(10xE2F/-60 CaMV35S promoter/ GUS/ Nos Poly A) was cloned into the pBI121 binary

vector (digested with HindIII/EcoRI), suitable for Agrobacterium-mediated plant

transformation,  giving rise to the EM35S binary construct.

3.3 GUS assays

Histochemical detection of GUS activity was performed on transgenic plants using 5-bromo-

4-chloro-3-indolyl-β-D-glucuronide (X-Gluc) [Jefferson et al., 1987]. Plants at different

developmental stages, or specific tissues, were incubated overnight at 37 °C in the GUS

solution (50 mM pH 7 phosphate buffer, 1 mg/mL X-Gluc, 1 mM potassium ferricyanide).

After staining, chlorophyll interference was removed treating the samples in 70% ethanol. For

quantitative analyses, the level of GUS activity was detected fluorimetrically using the

fluorogenic substrate MUG (4-methyl umbelliferil–glucuronide). Seedlings of the same

developmental stage were ground in GUS extraction buffer (50 mM NaPO4 pH 7, 10 mM

EDTA, 0.1% Triton, 0.1% Sodium Lauryl Sarcosine, 10 mM β-Mercaptoethanol). An aliquot

of 44 μl of the extracts was added to 396 μl of assay buffer (50 mM NaPO4 pH 7, 10 mM

EDTA, 0.1% Triton, 0.1% Sodium Lauryl Sarcosine, 10 mM β-Mercaptoethanol, 1mM MUG)

and the reactions were incubated at 37 °C. At four different time points, 100 μl of the reaction

mix were added to 900 μl of stop buffer (0.2 M Na2CO3) and the  amount of 4MU produced

was measured using a fluorimeter (BioRad). The protein concentration of each extract was

assayed using the Bradford method [Bradford, 1976] to allow calculation of the specific GUS

activities.
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3.4 Treatments with inhibitors of: DNA methylation, HDACs, phosphatases and kinases

The following inhibitors have been used for these experiments:

 Genistein (Sigma-Aldrich), which inhibits the DNA-methyltransferases

 Trichostatin A (Sigma-Aldrich), a histone deacetylases (HDACs) inhibitor

 Okadaic acid (Santa Cruz Biotechnology), a phosphatases inhibitor

 Staurosporine (Santa Cruz Biotechnology), a kinases inhibitor

The treatments have been performed with seedlings grown on MS/sucrose/Phyto agar plates

for 10 days in growth chamber at 22 °C under a regimen of 16 h of light at and 8 h of dark.

Three seedlings per treatment were then transferred, in a 24-multi well plate, to 1 ml

MS/sucrose liquid medium supplemented with the inhibitors at final concentrations of 50µM

Genistein, 1µg/ml Trichostatin A, 100 nM Okadaic acid or 50 µM Staurosporine. As untreated

control, seedlings have been transferred to liquid MS/sucrose medium addictioned with

DMSO as the inhibitors are solubilized in this solvent. The treatments have been performed in

growth chamber set at the same conditions. After 24 h of treatment protein were  separately

extracted from aerial parts and roots and fluorimetric assays of GUS activity were performed.

Histochemical GUS assays have been performed on 10 days-old treated and untreated

seedlings. All the treatments have been performed in triplicate.

3.5 Treatments with cell cycle inhibitors

To perform the treatments with cell cycle inhibitors, 30 seeds of selected homozygous

transgenic type A lines were imbibed in sterile water alone (as control) or in water containing

5 µg/ml aphidicolin (Fisher Scientific) or 5 mg/ml colchicine (Apollo Scientific). After 72 h

of imbibition in growth chamber at 22 °C under a regimen of 16 h of light at and 8 h of dark,

proteins were extracted and fluorimetric assays of GUS activity were performed. The

treatments have been carried out in a biological triplicate.

3.6 qRT-PCR analyses on seedlings treated with Trichostatin A

WT Arabidopsis seedlings were grown for 10 days on MS/sucrose/Phyto agar plates in growth

chamber set a at 22 °C under a regimen of 16 h of light at and 8 h of dark. Thereafter, 20

seedlings were transferred for 24 hours on MS/sucrose/Phyto agar plates supplemented with

1µg/ml Trichostatin A. As untreated control 20 seedlings were transferred for 24 hours on

MS/sucrose/Phyto agar plates supplemented with DMSO. Total RNA was extracted from the
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root and shoot apical regions using the Qiagen RNeasy mini-kit. The RNA samples were

digested with DNase I during the extraction using the Qiagen RNase-free DNase set.

RNA concentration and quality were evaluated by spectrophotometry using A260/A280 ratio

and by electrophoresis on denaturing formaldehyde gel. For qPCR analyses, 1μg of RNA has

been reverse transcribed using the Qiagen QuantiTect Reverse Transcription Kit with a

combination of hexamers and oligo dT primers. Quantitative real-time PCR was performed on

the Qiagen Rotor-Gene® Q, using the BioRad iTaq™ Universal SYBR® Green Supermix kit.

Triplicate PCR reactions were performed following the manufacturer's recommended

amplification conditions. For all the analyses, the amplification of Actin transcripts has been

used as a reference for normalization. Quantification was calculated by comparative

quantitation using the Rotor-Gene® Q analysis software. The PCR primers were designed

using the Primer3 online software (http://primer3.ut.ee/) and all their sequences are detailed in

Table 1.

Table 1 List of the primers used for qRT-PCR analyses.

Name 5’-3’Sequence

AtE2FA-F TGATAGCCGTCAAAGCTCCT

AtE2FA-R TCGATGTCATGGTGTCCTGT

AtE2FB-F AAGCACCGAAAGAAACATGG

AtE2FB-R GTTTGTGGCTGCTCCAAGAT

AtE2FC-F GAGTCTCCCACGGTTTCAGA

AtE2FC-R CTTGTTTCCGCACTGTCTCC

AtE2FD-F CTCACCATCTCCCAGACCTG

AtE2FD-R GCAATGTCGTAAAGGCGTCT

AtE2FE-F CACACTGAGCAGCGATTTGT

AtE2FE-R CCTGGTGCAAAAGGTCCAAA

AtE2FF-F GGAATCGAAACCAGCTGCAA

AtE2FF-R CCATTTCTTCCATGCCTCCG

GUS-F AAGCGTGGTGATGTGGAGTA

GUS-R GTTCAGGCACAGCACATCAA

Actin-F ACATTGTGCTCAGTGGTGGA

Actin-R CTGAGGGAAGCAAGAATGGA

http://primer3.ut.ee/
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4. RESULTS

4.1 The EM35S promoter shows two distinct patterns of activity

In the second part of this thesis, Arabidopsis plants have been stably transformed with a GUS

reporter construct controlled by a E2F-regulated synthetic promoter, named E2F Minimal-35S

(EM35S), in which repetitions of a canonical E2F binding site are placed upstream to a

minimal –60 CaMV35S promoter. The same promoter construct has been already tested in

transient-expression experiments in plant protoplasts but its sequence had not been

determined. Sequencing was performed before assembling the binary vector and revealed that

the EM35S promoter contains 10 repetitions of the canonical E2F binding sites TTTCGCGC.

The sequence of the 10XE2F fragment is reported in figure 6, which shows the schematic

representation of the construct. The transient-expression experiments have already

demonstrated that this promoter can be trans-activated by the typical E2F transcription factors

[Mariconti et al., 2002].

Fig. 6 Schematic representation of the EM35S reporter construct and sequence of the synthetic
promoter. The ten repetitions of the E2F consensus elements are highlighted in blue, whereas the
TATA box of the minimal -60 CaMV35S promoter is boxed in red.

Following Agrobacterium-mediated floral transformation, 18 transgenic EM35S Arabidopsis

T1 lines were selected and grown to maturity. Surprisingly, histochemical analyses of the

GUS reporter activity performed on one- and two-week-old seedlings of the T2 progeny

revealed two distinct patterns of activity of the synthetic promoter. In 9 of the transgenic lines

(50%), named type A lines, strong GUS activity was localized in the root apical meristems
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(figure 7, A and B), a pattern predictable for an E2F-activated promoter, and weak staining

could be seen in the root vascular cylinder. However, no evidence could be found of promoter

activity in aerial parts, including the shoot apical meristem. The strong GUS staining detected

in the type A lines could be observed also in the lateral root primordia of two-week-old

seedlings (figure 7B, inset B1). The pattern of activity of the EM35S promoter, in type A

lines, is consistent with an E2F-dependent transcriptional activation in proliferating cells,

presumably driven by the typical AtE2Fa and AtE2Fb factors [Mariconti et al., 2002; De

Veylder et al., 2007].

Fig. 7 Localization of GUS activity in type A lines: one-week-old (A) and two-week-old (B) seedlings,
which show a strong activity in the root apical meristems (inset A1) as well as in the lateral root
primordia (inset B1). GUS staining has been observed also in the developing stamens of young floral
buds (C). As for the activity detected in the root vascular tissue, transverse root sections highlighted
GUS localization also in the pericycle cells (D). Scale bars: 1 mm in A, B and C; 250 µm in D.
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On the other hand, in the remaining 50% of the transgenic lines, named type B lines, the

EM35S promoter does not appear to be active in the meristematic cells. The GUS activity,

instead, was detected strongly in cotyledons (figure 8, A and B), in which the early growth

mainly involves cell enlargement rather than cell proliferation.

Fig. 8 Localization of GUS activity in type B lines: one-week-old (A) and two-week-old (B)
seedlings, in which GUS expression is detected only in the vascular tissue of cotyledons, with a
stronger accumulation of GUS staining in the cotyledons tips. In the inflorescence (C), a weak activity
has been observed in the vascular tissue of petals. Scale bars: 1 mm.

Additional histochemical analyses, performed on the inflorescences of mature T2 plants,

allowed the detection of GUS activity in the developing stamens of immature flowers of type

A lines (figure 7D), whereas a weak GUS staining could be observed in the vascular tissue of

the petals in type B lines (figure 8C). Further analyses on root sections of type A lines,



Author: Antonio Maniga
Title: Studies on the meristematic and E2F-dependent gene expression in Arabidopsis thaliana plants

PhD Thesis in: Life Sciences and Biotechnologies
Università degli Studi di Sassari

77

allowed to better describe the profile of activity of the EM35S promoter in the root vascular

tissue. As shown in figure 7D, GUS staining appears to be localized in the floematic sieve

elements and in pericycle cells as well. To verify whether the two patterns described are

linked to the presence of multiple copies of the transgene in the lines analyzed, qPCR

analyses have been performed to determinate the transgene copy number in each line. As

shown in figure 9, the type A lines possess predominantly less copies of the transgene,

whereas the type B are mostly characterized by a high number of copies. Nevertheless,

exceptions are observed in the type A line #22, showing the highest copy number, as well as

in the type B lines #12 and #18, which suggest that the correlation between the transgene copy

number and the two patterns observed is only partial.

Fig. 9 Quantification by qPCR of the GUS transgene copy number performed on gDNA extracts,
obtained from the 18 EM35S lines studied. The quantification was normalized to the AtE2Fe gDNA
amount. Bars show standard errors.



Author: Antonio Maniga
Title: Studies on the meristematic and E2F-dependent gene expression in Arabidopsis thaliana plants

PhD Thesis in: Life Sciences and Biotechnologies
Università degli Studi di Sassari

78

4.2 Role of epigenetic mechanisms on the control of EM35S promoter activity

Considering that only 50% of the lines showed a clear activity of the EM35S promoter in root

meristems, predictable for a E2F-activated promoter, analyses were carried out to verify

whether the unexpected pattern observed in type B lines, could reflect an inactivation of the

EM35S promoter in the cells of the RAM of these transgenic lines. In this respect, it was

possible that the synthetic promoter could be epigenetically silenced. In fact, the E2F cis-

element (TTTCGCGC) contains CpG dinucleotides and it is possible that the 10 repetitions of

this element could be a hot spot for DNA methylation, which is known to be associated to

transcriptional repression. Moreover, several studies in mammalian cells have implicated a

role of histone deacetylases (HDACs) in the repression of E2F-regulated promoters [Brehm et

al., 1998; Ferreira et al., 1998]. Thus, to verify the influence of epigenetic mechanisms, the

role of DNA methylation as well as the possible effects of histone acetylation on the

activation of the EM35S promoter were investigated.

To verify the effects of DNA methylation, 10 days-old seedlings of two homozygous type A

and B lines were treated with Genistein (GEN), an inhibitor of cytosine methylation that is

known to hinder the activity of the methyl-transferase MET1, the enzyme responsible for the

maintenance of DNA-methylation in plants [Arase et al., 2012]. Moreover, to analyze the role

of histone acetylation, the same transgenic lines were treated with Trichostatin A (TSA), a

widely used inhibitor of histone deacetylases (HDACs) whose effects are rapid and position-

independent [Yoshida et al., 1990; Xu et al., 2005]. After 24 hours of treatment, GUS

histochemical assays performed on whole treated and untreated seedlings showed that, in both

type A and B lines, inhibition of DNA methylation or histone deacetylation did not alter the

spatial pattern of activity of the EM35S promoter (figure 10, A to C and figure 11, A to C).

These results suggest that epigenetic mechanisms are not responsible for the dual pattern of

activity of the promoter but do not exclude possible effects of DNA-methylation or histone

deacetylation on its activity in different plant organs. To better verify this possibility, GUS

fluorimetric analyses of the lines treated for 24 hours with the two inhibitors were carried out

to quantify the level of activity of the EM35S promoter. Following the treatments, proteins

were separately extracted from the roots and from the aerial parts (which include the shoot

apical meristem, the cotyledons, the first couple of leaves and the hypocotyl) and GUS

fluorimetric analyses, comparing treated and untreated seedlings, were carried out. As

revealed in figures 10 and 11, the activity of the EM35S promoter appears to be partly under

epigenetic control.
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Fig. 10 GUS histochemical analyses performed on ten days old type A seedlings, untreated (A), treated
with Trichostatin A (B) and geinistein (C). Scale bars: 1 mm.
Results of the fluorimetric analysis of GUS activity, carried out on extracts obtained from the aerial
parts (D) and root (E) of the ten days old type A seedlings, untreated and treated with the two
inhibitors. The bars show standard deviations. *p<0.05.

The experiment carried out with the type A line revealed that the TSA treatment decreased the

activity of the EM35S promoter in the aerial parts (figure 9D), whereas increased activity was

observed in the roots (figure 9E). The Genistein treatment, instead, had no significant effects.

The variation of GUS activity observed in the type A line after TSA treatment suggests that

histone hyperacetylation of the EM35S promoter in the meristematic cells of the root may

directly affect its activity. However, indirect affects cannot be excluded because it is also

possible that the TSA treatment can increase the expression of activating E2Fs in the root

apical meristems. In the aerial parts the results were different. Here the EM35S promoter

confers very low levels of GUS expression but its activity is further decreased by the TSA

treatment (figure 9D). Because HDACs inhibition can lead to a transcriptional activation of

silenced deacetylated promoters, the decreased activity of the EM35S promoter in the aerial

parts of the A type line observed after TSA treatment suggests that histone hyperacetylation

cannot have direct effects on the activity of the promoter, but is rather increasing, possibly in



Author: Antonio Maniga
Title: Studies on the meristematic and E2F-dependent gene expression in Arabidopsis thaliana plants

PhD Thesis in: Life Sciences and Biotechnologies
Università degli Studi di Sassari

80

the shoot apical meristem, the expression of repressing E2F factors that can downregulate the

EM35S promoter.

Fig. 11 GUS histochemical analyses performed on ten days old type B seedlings, untreated (A), treated
with Trichostatin A (B) and geinistein (C). Scale bars: 1 mm.
Results of the fluorimetric analysis of GUS activity, carried out on extracts obtained from the aerial
parts (D) and root (E) of the ten days old type B seedlings, untreated and treated with the two
inhibitors. The bars show standard deviations. **p<0.01, ***p<0.001.

Concerning the type B line, which show strong activity of the EM35S promoter in the

cotyledons, significant variations of the promoter activity after the treatment with either

Genistein and TSA were observed only in the aerial parts of the plants (figure 11D), whereas

the background activity of the EM35S promoter in the roots was not affected (figure 11E). In

the aerial parts, Genistein treatment produced a relevant increase of the GUS activity but, as

in the type A line, decreased promoter activity could be detected after treatment with TSA

(figure 11D). The effects of Genistein suggests that, in the aerial parts of type B line, the

EM35S promoter may be downregulated by DNA methylation and, similarly to what

observed also in the type A plants, its activity is clearly not affected directly by histone

acetylation. In fact, also in the aerial parts of the type B line, the histone hyperacetylation

caused by TSA treatment may activate the expression of repressing factors, underlining an

indirect control of the EM35S promoter.

To verify whether the TSA treatments can actually alter the transcription of AtE2F genes in
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Arabidopsis plants, possibly increasing the expression of repressing AtE2Fs in the aerial parts,

qRT-PCR analyses were performed with RNA samples isolated from both the shoot and root

apical regions of seedlings treated for 24 hours with the HDACs inhibitor. As shown in figure

12, compared to the untreated samples, the expression of all the three atypical AtE2Fs

increased significantly in the shoot apices of TSA treated plants, whereas in the root apical

regions only AtE2Fb appears to be upregulated after the TSA treatment. These results confirm

that the downregulation of the EM35S promoter associated to histone hyperacetylation in the

aerial parts, including the shoot apical meristems, is likely linked to the upregulation of

repressing atypical AtE2Fs.

Fig. 12 qRT-PCR analysis of the AtE2F genes expression, in response to the TSA treatment.
The analysis has been carried out on RNA samples obtained from RAM and SAM of WT seedlings
treated with TSA for 24 h, comparing the expression levels of the AtE2F genes to untreated controls.
The quantification was normalized to Actin RNA levels. The bars show standard errors. ** p<0.01,
***p<0.001.
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4.3 Phosphorylation/dephosphorylation events affect differently the EM35S promoter

activity in the two types of lines

The activity of the typical E2Fs, which are expected to activate the EM35S promoter, is

controlled by their interaction with the RBR protein. In the RB/E2F pathway the

phosphorylation and dephosphorylation of the RBR protein are key events involved in the

regulation of the activating E2Fs. Thus, to confirm that the EM35S promoter activity can be

activated by AtE2Fa or AtE2Fb, analyses of the effects of phosphatase or kinase inhibitors

have been performed.  To this purpose, ten-day-old seedlings of two selected homozygous

type A and B lines were treated with Okadaic acid (OKAD), which is known to inhibits

phosphatases involved in RBR regulation, and with Staurosporine (STAU), which is a kinase

inhibitor commonly used in cell cycle studies. After 24 hours of treatment with the two

inhibitors, the EM35S promoter activity in the root of the type A line and in the aerial parts of

type B line, the organs in which the EM35S promoter shows a strong activation, was

quantified by fluorimetric GUS analyses, comparing treated and untreated seedlings. Also

histochemical GUS assay were carried out on both treated and untreated seedlings. As shown

in figures 13 (A to C) and 14 (A to C), the treatment with either inhibitors did not alter the

spatial pattern of the EM35S promoter, whose activity remained confined in the root apices of

the type A line and in the cotyledons of the type B line. Interestingly, however, the

fluorimetric analysis shown in figure 12D revealed that treatment with either Okadaic acid or

Staurosporine increased dramatically the activity of the EM35S promoter in the root of the

type A line compared to untreated controls. The increased activity associated to Okadaic acid

agrees with an E2F-dependent regulation of the EM35S promoter because the inhibition of

phosphatases is expected to lead to a hyperphosphorylated state of the RBR protein, which

allows the release of activating E2Fs and upregulation of the synthetic promoter.
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Fig. 13 GUS histochemical analyses performed on ten days old type A seedlings, untreated (A), treated
with Okadaic acid (B) and Staurosporine (C). Scale bars: 1 mm.
Results of the fluorimetric analysis of GUS activity, carried out on extracts obtained from root of the
ten days old type A seedlings (D), untreated and treated with the two inhibitors. The bars show
standard deviations. ***p<0.001, ****p<0.0001.

On other hand, an opposite effect on the E2F-activated promoter should be obtained upon

treatment with Staurosporine which, by blocking the kinases, should maintain RBR in an

hypophosphorylated form that can repress the E2F factors. This results is not clear but a

possible explanation of this discrepancy could be a direct and dominant negative regulation of

the activating E2Fs by phosphorylation. Hampering this inhibitory phosphorylation with the

kinase inhibitor would increase the activity of at least some of the activating E2Fs even if the

RBR protein remains in its hypophopshorylated form. Therefore, the possible inhibitory

phosphorylation of the activating E2F factors may have a stronger effect on the EM35S

promoter activity than the RBR-dependent negative regulation.

A partially different situation was observed in the aerial parts of the type B line studied (figure

14D). In this case, the EM35S promoter activity appears to be affected only by the treatment

with Staurosporine which, as in the case of the line A roots, yielded increased activity whereas

the Okadaic acid treatment did not determine any effect. The latter result is of considerable
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importance because it suggests a possible explanation for the EM35S promoter behavior in

the type B lines. In fact, if also in these lines the EM35S promoter were effectively regulated

by activating E2Fs, treating the seedlings with a phosphatases inhibitor leading to

hyperphosporylation of the RBR protein would be expected to increase its activity, similarly

to what observed in the type A line roots. Thus, the absence of a relevant effect of Okadaic

acid on the activity of the synthetic promoter in the type B lines suggests that an RBR-

dependent regulation is unlikely to occur in these plants. In this respect, it is plausible that the

activation of the EM35S promoter in the type B lines may not be caused by E2Fs but could be

mediated by a different class of transcription factors.

Fig. 14 GUS histochemical analyses performed on ten days old type B seedlings, untreated (A),
treated with Okadaic acid (B) and Staurosporine (C). Scale bars: 1 mm.
Results of the fluorimetric analysis of GUS activity, carried out on extracts obtained from aerial parts
of the ten days old type B seedlings (D), untreated and treated with the two inhibitors. The bars show
standard deviations. ***p<0.001.
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4.4 The constitutive expression of an exogenous activating E2F reveals that only type A

lines are E2F-responsive

Because the experiments with phosphatase and kinase inhibitors revealed that the EM35S

promoter could be under the control of activating E2Fs only in the type A lines, studies have

been carried out to verify whether the constitutive expression of an exogenous activating E2F,

such as the carrot DcE2F factor which has been reported as a strong trans activator [Albani et

al., 2000], can increase the GUS activity in these lines but not in the type B ones. For this

analysis, homozygous type A and type B lines were stably transformed with a recombinant

construct carrying the carrot DcE2F cDNA sequence under the control of the double 35S

promoter [Perrotta, 2012], which is able to give rise to a constitutive expression of the DcE2F

transcripts. Histochemical GUS analyses of the double transformants derived from the type A

line revealed a remarkable change in the pattern of the EM35S promoter activity in 16 of the

18 double transgenic lines. As shown in figures 15A and 15B, in these plants strong GUS

activity was not anymore confined to the root apex, as in the original type A line, but extends

to the shoot apical meristem and to the vascular tissues of roots, leaves and cotyledons, with a

particularly strong staining in the cotyledonary veins.

The extended spatial pattern observed after transformation with the DcE2F construct confirms

that the activity of the synthetic promoter is regulated by E2F factors in the type A lines and

demonstrates that, in vascular cells as well as in the proliferating cells of the SAM, the

EM35S promoter is fully responsive to an exogenous activating E2F factors.



Author: Antonio Maniga
Title: Studies on the meristematic and E2F-dependent gene expression in Arabidopsis thaliana plants

PhD Thesis in: Life Sciences and Biotechnologies
Università degli Studi di Sassari

86

Fig. 15 Localization of GUS activity in two-week-old seedlings of: (A) type A lines; (B) type A
re-transformed with the DcE2F. The constitutive expression of the DcE2F drastically alters the spatial
pattern of activity of the EM35S promoter, which is not anymore confined only to the root apex,
as in the original line (inset A1), but it is strongly active in both root and shoot meristematic cells
(insets B1 and B2) and in the vascular tissue of root and cotyledons. Scale bars: 1 mm.
(C) Results of the fluorimetric analysis of GUS activity, carried out on extracts obtained from two
distinct pools of type A lines and type A lines constitutively expressing the DcE2F factor. The bars
show standard deviations. ***p<0.001.
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On the contrary, as shown in figures 16A and 16B, none of the 14 double transformants

derived from the homozygous type B line revealed significant changes in the pattern of GUS

staining. These results further indicate that in the type B lines the synthetic promoter is

unlikely to be regulated by E2F factors and other unknown transcription factors could be

involved in its activation in the aerial parts of the plants.

Fig. 16 Localization of GUS activity in two-week-old seedlings of: (A) type B lines; (B) type B lines
re-transformed with the DcE2F. The constitutive expression of the DcE2F is not able to alter the
pattern of activity of the EM35S promoter, which remains inactive in proliferating cells. Scale bars: 1
mm.
(C) Results of the fluorimetric analysis of GUS activity, carried out on extracts obtained from two
distinct pools of type B lines and type B lines constitutively expressing the DcE2F factor. The bars
show standard deviations.
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To fully confirm that the EM35S promoter is responsive to the carrot factor in the A type line

but is not activated by DcE2F in the type B line, fluorimetric GUS assays have been

performed and the level of GUS activity measurable in pools of the double transformants

were compared to the activities observed in the original type A and type B lines. As shown in

figure 15C, the constitutive expression of DcE2F increased significantly the activity of the

EM35S promoter in the type A line, whereas in the type B line the promoter activity was not

affected (figure 16C). These results confirm the hypothesis that in type A lines E2F-dependent

activation of the synthetic promoter occurs and is particularly efficient in the root apical

meristem, whereas in the proliferating cells of the shoot apical meristem the activation of the

EM35S promoter could be limited by low levels of endogenous activating E2Fs. On the

contrary, in the type B lines the EM35S promoter is clearly not E2F-responsive even if the

seedlings are ectopically expressing a strong activating E2F factor, and the pattern of activity

observed is likely associated to an activation of the synthetic promoter by unknown

endogenous transcription factors that are preferentially active in the vascular tissue of the

cotyledons.
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4.5 The E2F-dependent activation of the EM35S promoter in proliferating cells of type A

lines occurs mainly during the G1/S transition

Further analyses have been carried out to investigate the likely cell cycle-dependent

regulation of EM35S synthetic promoter, in the type A lines. To this purpose, experiments

using the cell cycle inhibitors aphidicolin and colchicine were performed in germinating

seeds. In dormant dry seeds most of the cells of the embryo are quiescent at the G1 phase

[Barroco et al., 2005] but, upon seed imbibition, cells in the radicle enter the cell cycle and

progress into S phase, which terminates approximately 42 hours after imbibition (HAI), when

the radicle starts to protrude. Then the cells pass through the G2 and M phase that occurs

approximately 48 HAI and is followed by a new cell cycle in the daughter cells. The

imbibition and germination of dry seeds in the presence of aphidicolin blocks the cells in S

phase whereas the germination in the presence of colchicine allows the completion of the first

S phase and blocks the cells in the M phase [Varadarajan et al., 2010]. For this experiment,

dry seeds of a selected homozygous type A line were imbibed with or without cell cycle

inhibitors for 72 hours, a length of time which, in the absence of the cell cycle inhibitors, can

allow cells to complete two divisions. After the treatment, the proteins extracted from treated

and untreated germinated seeds have been used for the GUS fluorimetric analyses, necessary

to evaluate variations of the activity of the EM35S promoter in response to the cell cycle

inhibitors.

As shown in figure 17, compared to the untreated controls, the activity of the synthetic

promoter increased significantly in seeds treated with aphidicolin and decreased upon

colchicine treatment. This result clearly indicated that in type A lines the EM35S promoter is

subjected to a cell cycle-dependent regulation and is mainly activated by the E2F factors

during the G1/S transition, whereas its activity is lower or absent during the G2 and M phases

of the cell cycle.

Fig. 17 Results of the fluorimetric analysis
of GUS activity, carried out on extracts
obtained from germinating seeds of a
representative type A line.
The extracts were incubated 72 h without
(ctr) or with cell cycle inhibitors
(Aphidicolin, Colchicine). The bars show
standard deviations. *p<0.05, **p<0.01.



Author: Antonio Maniga
Title: Studies on the meristematic and E2F-dependent gene expression in Arabidopsis thaliana plants

PhD Thesis in: Life Sciences and Biotechnologies
Università degli Studi di Sassari

90

5. DISCUSSION

This section of the thesis is focused on the setup of a system that, using a synthetic E2F-

responsive promoter, can enable the visualization in planta of the transcriptional activity of

the plant E2F factors. This system can be a valuable tool for the analysis of the roles of E2F

factors in plant development and physiology.

The regulatory pathways that control cell cycle progression are conserved in animal and

higher plants and include the cyclin D/Retinoblastoma /E2F pathway, which is fundamental in

controlling cell proliferation. In this pathway, the D-type cyclins interact with the

retinoblastoma protein, whose counterpart in plants has been called Retinoblastoma-Related

(RBR), which controls the activity of the E2F transcription factors. The E2Fs are responsible

for the transcriptional activation of a wide range of genes whose expression is required during

the transition through the G1 and S phase of the cell cycle.

The genome of Arabidopsis thaliana encodes three typical E2Fs, named AtE2Fa, AtE2Fb,

AtE2Fc, that dimerize with the DP proteins AtDPa and AtDPb, and three atypical E2Fs called

AtE2Fd, AtE2Fe, AtE2Ff. AtE2Fa and AtE2Fb have been reported as activators of

transcription, whereas AtE2Fc has been shown to function as a transcriptional repressor in

association with the RBR1 protein. Conversely, the atypical E2Fs are not able to transactivate

and are believed to be competitive inhibitors of the activating E2Fs. These factors possess a

duplicated DNA-binding domain which allows to bind the E2F cis elements independently of

an AtDP protein. Moreover, the atypical E2Fs lack the RBR-binding domain, suggesting a

repressive role independently from the RBR protein [Lammens et al., 2009]. The activity of

the RB proteins, is regulated by phosphorylation/dephosphorylation events. In its

hypophosphorylated form RBR binds the E2F-DP dimers, hindering their activity, whereas, in

response to mitogenic stimuli, phosphorylation by the CDK–CYCD complex dissociates RBR

from the E2F-DP heterodimers, which are thus activated and are able to induce the

transcription of genes required for cell cycle progression and DNA replication. As for the

typical E2Fa and E2Fc proteins, they are also regulating the expression of endocycle-related

genes [De Veylder et al., 2002; Magyar et al., 2012; del Pozo et al., 2006].

With the work carried out for this thesis, a construct containing a synthetic E2F-responsive

promoter, named EM35S (E2F Minimal-35S), driving the expression of the reporter GUS,

was introduced in a suitable vector and tested in stably transformed Arabidopsis plants. This

promoter is composed of ten repetitions of the E2F consensus sites (TTTCGCGC) placed
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upstream to the -60 CaMV35S minimal promoter. Transient expression experiments have

already demonstrated that this synthetic promoter can be trans-activated by the activating E2F

factors in plant protoplasts [Mariconti et al., 2002]. Thus, the EM35S promoter was expected

to be E2F-responsive also when stably integrated in transformed Arabidopsis plants.

Surprisingly, the histochemical analyses of GUS activity carried out on 18 transgenic

Arabidopsis lines harboring the EM35S construct allowed us to detect two distinct and

alternative patterns of expression of the reporter gene. In 50% of the transgenic lines, named

type A lines, a strong GUS staining was mainly localized in the highly proliferating cells of

the root apical meristem and in lateral root primordia. In the remaining 50% of the transgenic

lines, called type B lines, the GUS accumulation was mainly detected in cotyledons, but never

in the meristematic tissues. The presence of the two distinctive patterns of promoter activity is

only partly correlated to the copy number of the transgene, which is generally lower in the

type A lines.

As for the type A lines, the spatial pattern of activity is consistent with an E2F-dependent

transcriptional activation of the EM35S promoter in cells that undergo proliferation. In fact,

considering their role as S-phase inducers, the activating E2Fs are expected to be highly

active in dividing cells [Mariconti et al., 2002; De Veylder et al., 2007]. Confirming a cell

proliferation-related activation of the EM35S promoter, in the type A lines GUS activity can

be observed in pericycle cells as well. The pericycle, in fact, contains a population of stem

cells that contribute to the formation of the lateral root primordia at the xylem poles [Inzè,

2008; Dubrovsky et al., 2000; Beeckman and De Smet, 2014]. Weak GUS staining was

observed also in the inflorescence, in particular in the developing stamens, and could be due

to the activation of the EM35S promoter by AtE2Fb which, according to the microarray data

reported at the Arabidopsis eFP browser of the Bio-Array Resource (BAR) website

(http://www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi; [Winter et al., 2007]), is more expressed

than AtE2Fa in the stamens of immature flowers. Concerning the type B lines, the activity of

the EM35S promoter, observed in cotyledons, appears unlikely to be related to cell

proliferation. The cotyledons of light-grown seedlings, in fact, increase their dimensions

mostly through cell expansion rather than cell divisions [Stoynova-Bacalova et al., 2004].

Moreover, additional analyses conducted on the seedlings of the two types of lines and the

effects caused by the constitutive expression of the carrot DcE2F transcriptional activator

confirmed that the EM35S promoter is E2F-regulated in the type A lines, but its activity is

likely to be under the control of other transcription factors in the type B lines.

http://www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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Considering that most of the type B lines are characterized by high copy number of the

transgene, initial analyses were performed to understand whether epigenetic mechanisms,

such as DNA methylation or histone acetylation, could affect the activity of the EM35S

promoter. These two epigenetic modifications may be responsible for the loss of

transcriptional activity of transgenes and could explain, at least in part, the dual pattern of

activity. Moreover, being rich in CpG dinucleotides, the ten repetitions of the E2F cis-element

of the synthetic promoter could be subjected to DNA methylation, leading to gene silencing.

In fact, in both plant and in mammalian genomes, cytosine methylation in the context of CG

dinucleotides is the most frequent DNA modification and is strongly associated to

transcriptional repression. In addition, the acetylation of the lysine residues of histones is

necessary to switch the chromatin to a permissive state accessible to transcription factors.

This covalent modification of histones is a reversible process and it is carried out by the

histone acetylases (HATs) and histone deacetylases (HDACs). In both mammals and plants,

the histone deacetylases are recruited by the Rb/E2F complex through the Rb-associated

protein RbAp48 so that the transcription of E2F-target genes is repressed [Shen, 2002; Brehm

et al., 1998; Ferreira et al., 1998]. In this respect, type A and B lines have been treated with

Genistein, an inhibitor of the MET1 DNA-methyltransferases, and with Trichostatin A (TSA),

which inhibits the HDACs. The two inhibitors are expected to re-activate the expression of

genes that are epigenetically silenced. The results obtained with these treatments revealed that

epigenetic mechanisms are not responsible for the two distinct patterns of activity of the

EM35S promoter, which remained unaltered in both type A and B lines after treatment with

the two inhibitors. Nevertheless, alterations of DNA methylation and histone acetylation

appeared to affect the activity of the synthetic promoter in both lines. Inhibition of DNA-

methylation produced a significant effect in the aerial parts of the type B line investigated, in

which decreased activity of the EM35S promoter indicates that the methylation of the CpG

dinucleotides may influence directly its activation. Concerning the TSA treatment, decreased

activity of the EM35S promoter was observed in the aerial parts of both type A and type B

lines, but a significant increase of the promoter activity was observed in the root of type A

lines, in which strong GUS activity is restricted to the root meristematic apices. These results

indicate that acetylation of the histones may play a direct role in the regulation of the EM35S

promoter activity in the proliferating cells of the type A line roots, but is not affecting directly

the activity of the synthetic promoter in the aerial parts of the transgenic seedling analyzed. In

this respect, qRT-PCR analyses have revealed that the hyperacetylation of the histones due to
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the TSA treatment can rather activate the transcription in the shoots apical regions of atypical

E2Fs that can negatively regulate the synthetic promoter.

Additional information concerning the regulation of the EM35S promoter in the two lines was

obtained evaluating the effects of phosphatase and kinase inhibitors. These treatments, in fact,

indicate a possible involvement of RBR in the control of the EM35S promoter activity in type

A lines only. The phosphorylation and dephosphorylation of RBR are expected to be able

control the activity of the E2Fs regulating the EM35S promoter. Thus, experiments using

inhibitors of phosphatases and kinases, such as Okadaic acid and Staurosporine, have been

carried out. In mammalian cells, Okadaic acid can hinder the activity of the PP1 and PP2A

phosphatases, which are the principal activators of the Retinoblastoma protein at the end of

mitosis [Yan and Mumby, 1999]. On other hand, Staurosporine is able to block the activity of

the CDKs during the G1/S transition [Orr et al., 1998], so that the hypophosphorylated

Retinoblastoma protein is able to bind and repress the E2Fs. Although the histochemical GUS

analyses on the EM35S lines revealed that both Okadaic acid and Staurosporine could not

alter significantly  the spatial pattern of the EM35S promoter, whose activity remained

confined in the root apices of the type A lines and in the cotyledons of type B lines, a drastic

increase of the activity of the EM35S promoter in the roots of type A seedlings treated with

Okadaic acid indicates that the activity of the EM35S promoter in these lines is likely to be

regulated by the RBR/E2F pathway. In fact, the inhibition of  phosphatases should lead to the

hyperphosphorylation of RBR that releasing activating AtE2Fa or AtE2Fb allows them to

bind and upregulate the EM35S promoter. Interestingly, although an opposite result should

have been observed blocking the kinases, an increase of the EM35S promoter activity was

detected after treatment with Staurosporine in the type A line roots as well as in the type B

line aerial parts. A possible explanation of this result could be linked to a direct control of the

activity of the E2Fs by phosphorylation. In human cell models, in fact, a repressive role of the

Cyclin A/CDK2 complex has been described, which by direct phosphorylation inhibits the

activity of the E2F1 factor [Xu et al., 1994; Krek et al., 1994; Dynlacht et al., 1994].

Therefore, a similar scenario could be hypothesized in the type A seedlings studied, in which

the removal of this inhibitory phosphorylation on the E2Fs could have a predominant effect

respect to the RBR-dependent regulation, thus increasing the EM35S promoter activity.

The constitutive expression of an exogenous activating E2F factor, such as the DcE2F of

Daucus carota [Albani et al., 2000], fully confirmed that the EM35S promoter is thoroughly

subjected to an E2F-dependent regulation only in the type A lines. Conversely, a constitutive
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expression of DcE2F in type B lines did not produced significant modifications, supporting

the hypothesis that the synthetic promoter is not E2F-regulated in these lines. Moreover, the

increased activity of the EM35 promoter in the aerial parts of the type A line constitutively

expressing the DcE2F factor indicates that the E2F-dependent activation of the synthetic

promoter in the shoot apical meristem could be limited by the amount of activating E2Fs.

Moreover, as emerged from analyses performed using inhibitors of cell cycle progression, the

E2F-mediated activation in proliferating cells of the A lines occurs primarily at the G1/S

phase of the cell cycle, confirming the important roles played by the E2Fs in the control of

cell cycle progression.

It is not clear why in half of the lines transformed with the EM35S promoter construct the

synthetic promoter does not appear to be E2F-regulated, but is likely to be under the control

of another class of transcriptional activators. Because DcE2F cannot overcome their activity,

these unknown transcription factors are unlikely to compete with the E2Fs for binding to the

same cis elements and, possibly, can recognize other sequences inadvertently contained,

singularly or in multiple copies, in the synthetic promoter fragment. The transgenic lines were

obtained by Agrobacterium-mediated transformation and the integration of the T-DNA in

different locations can give rise to unexpected patterns of expression, reflecting what is

known as the “position effect”. However, this effect is expected to give rise, at lower

frequency, to multiple misregulated patterns of expression of the transgene and the possibility

that two distinct but equally frequent patterns of expression can occur has never been

reported. Thus, although a position effect could justify the lack of the E2F-dependent

regulation in half of the lines, the misregulated expression in the remaining lines would not be

expected to be uniform and, instead, should be highly variable, if not absent, in many of the

transgenic lines. Moreover, although it is possible that mutations in the repetitive sequence of

the promoter could have occurred in the bacterial culture or in the plant cells during DNA

integration, it is not reasonable that this could yield with the same frequency two distinctive

patterns of expression in the transformed lines. Although the dual regulation of the EM35S

promoter remains enigmatic, the equal frequency of E2F-regulated and E2F-unresponsive

lines and the stability of this feature in their progeny suggests that two different and mutually

exclusive states of the promoter may exist and could have been imprinted with the same

frequency in the transgenic lines. It is not clear whether this could reflect an acquisition of

these two states during the process of plant transformation or could reflect alternative

conformational features of the promoter structure associated to differential integration in the
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genome. In any case, the isolation of type A lines, which have been clearly demonstrated to be

regulated by E2F factors, will open the way to further studies concerning the RB/E2F

pathway in Arabidopsis that will increase our comprehension of its roles in the control of

plant development and of important physiological activities.
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