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Abstract 

 

Four studies were carried out in the present thesis. In the first study 65 poultry chickens were 

randomly divided into 4 groups: group A (n = 20) and B (n = 20) received the drug orally (PO), in 

group C (n = 20) the drug was injected by intravenous (IV) route, whereas group D (n = 5) was 

the control group. The analysis of plasma samples and residues in organs were performed through 

the HPLC-FL instrument. The second study was divided into 2 phases where at the same 6 lactating 

goats were given tulathromycin drug before gestation and during lactation postpartum period. In 

the first phase of the study, tulathromycin was administered at 2.5 mg/kg b.w. by IV and 

subcutaneous (SC) routes. In the second phase of the study, the same animals were administered 

with a single IV dose. The analysis of plasma samples and organs were performed through the 

HPLC-MS/MS instrument. In the third study, 20 laying hens were divided into 3 groups: group A 

(n=6), B (n=6) and C (n=8). During the first phase group A and B was administered the drug 

tapentadol by IV and PO routes at the dose of 1 and 5 mg/kg b.w. respectively. In the second phase 

of study, group C received the drug by PO at a dose of 5 mg/kg b.w. for 5 consecutive days. The 

eggs were collected for 30 days from the beginning of the experiment. Plasma, egg yolk and album 

samples were analysed using the HPLC-FL instrument. In the fourth study, 6 lactating goats were 

divided into 2 groups: group A (n = 3) and B (n = 3) where meloxicam was administered by IV 

and intramuscular (IM) routes at a dose of 0.5 mg/kg b.w. Milk samples were taken up to 168 h 

for quantification of drug residues in the organic matrix. The plasma and milk samples were 

analysed using the HPLC-DAD instrument. 



Chapter 1. 

 

1 
Dr. De Vito Virginia 
“Pharmacokinetic studies of “off-label” drugs in food producing animals. Quantification of drug residues in different organic matrices.” 

Tesi di Dottorato in Scienza Veterinarie, Qualità e Sicurezza Alimentare, Università degli studi di Sassari 

 

1. Introduction 

 

Over the last decades, animal production science supported the modernization of food animal 

husbandry in order to provide adequate food supply to meet the demands of a growing population. 

Food producing animals bred in optimized conditions supply a large amount of food derivatives 

(milk, eggs, meat, honey and fish) and produce foodstuffs that are safe for the human consumption. 

Furthermore, in the recent years, society has become progressively more concerned about food 

producing animals suffering and aware of the need of disease prevention and treatments. The use 

of veterinary drugs are necessary to meet the challenges of providing adequate amount of food but 

also to prevent and treat food producing animals diseases. However, this is not obtained without 

the risk for human health associated with drugs residues that remain in the tissues of treated 

animals at the time of slaughter or residues in animal derived products (De Vito, 2015; Giorgi et 

al., 2016; Beyene, 2016).  

In the United States of America (USA), the Food and Drug Administration (FDA) is the regulatory 

body that sets maximum permitted concentrations for veterinary drug residues, known as 

tolerances. In the European Union (EU), the equivalent regulatory body is the European Medicines 

Agency (EMA), which publishes maximum residue limits (MRLs) of the selected marker residue 

that have been set by the Committee for Medicinal Products for Veterinary Use (CVMP) (Baynes 

et al., 2016). The marker residue is usually the parent drug but can be a drug metabolite or the total 

concentration of several metabolites (Lees & Toutain, 2012). In CVMP position paper is reported 

that “substances capable of pharmacological action are substances which are 

pharmacodynamically active at the dose at which they are administered to the target animal by 

means of the veterinary medicinal product in which they are included”. While, residues are 

“pharmacologically active substances  which remain in foodstuffs obtained from animals to which 

the veterinary drug has been administered” (EMA/CVMP/SWP/355689/2006).  
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1.1 The risk analysis framework 

During the past 30 years, a risk analysis framework for food safety has been developed. It 

comprises three major elements: risk assessment, management and risk communication. 

1.1.1 Risk Assessment 

The assessment of dietary risk is  conceptualized in the present  equation (Eq. 1):  

 

Eq. 1     Risk = Hazard x Exposure 

 

Where, “risk” is the probability of harm occurring to the consumer; “hazard” refers to the chemical 

residue representing a source of potential harm attributable to its intrinsic properties; “exposure” 

refers to the dietary exposure to the chemical residue. 

It is important to underline that the above relationship highlights a fundamental difference between 

“hazard” and “risk”: 

“Hazard is the inherent property of an agent or situation having the potential to cause adverse 

effects when an organism, system, or (sub) population is exposed.”  

“Risk is the probability of an adverse effect in an organism, system, or (sub) population caused 

under specified circumstances by exposure to an agent.” 

Under the normal physiological conditions, following drug administration, most of the drugs are 

metabolized in order to facilitate the elimination. The parental drug and its metabolites are excreted 

in urine and a lesser extent via faeces. However, these substances may also be found in milk, eggs 

and meat (Beyene, 2016). Indeed, established MRLs information are needed relating to how each 

drug product is to be used. It includes the recommended dose and frequency of administration and 

application, pharmacokinetic and metabolic studies in experimental and food producing animals, 

residue depletion studies with radiolabelled drugs in target animals, a description of analytical 

methods for determination and quantification of residues, including the marker residue, and studies 
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designed to assess the impact of residues of antimicrobial agents on food processing (Reeves, 

2010). When residue levels exceed, the MRLs values consumer could develop adverse health 

effects. Potential adverse health effects can include allergic reactions, immune-depressive effects, 

blood dyscrasias, mutagenic effects, carcinogenicity, teratogenic effects and cardiovascular 

toxicity (Nebbia, 2009). Differently, residue levels that are below the MRLs are considered safe 

when food at that level is consumed daily for a lifetime. 

Derivation of the MRLs requires algorithms and several toxicological, pharmacological, and 

microbiological data packages. The risk assessment process is a standard battery of safety studies 

in animals and humans as well as in vitro studies that are used to determine the acceptable daily 

intake (ADI). The resulting toxicological ADI is often determined from the lowest no-observable-

adverse-effect level (NOAEL) and lowest-observable-adverse-effect level (LOAEL) obtained 

from the animal and human studies. These NOAELs and LOAELs are often adjusted by 

uncertainty factors to account for species differences (10 for animal to human extrapolations 

respectively) and intra-species differences (10 for variability within a population). The ADI is then 

adjusted with food consumption values for various organic matrices (300 g for muscle, 100 g for 

liver, 50 g for kidney, 50 g for fat, and if a dairy approval,1500 g for milk) to obtain MRLs for 

each matrix (Table 1). This requires kinetic data for each matrix, to be sure that the total food 

basket of residues at each matrix results in less than the ADI. (EMA/CVMP/SWP/355689/2006; 

Baynes et al., 2016).  
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Table 1. Values of ADI (gr or mL) for the MRL evaluations (EMA/CVMP/SWP/355689/2006) 

Mammals Birds Fish 

Muscle 300 Muscle 300 Muscle+Skin 300 

Fat 50 Fat+Skin 90   

Liver 100 Liver 100 Bee 

Kidney 50 Kidney 10 Honey 20 

Milk 1500 Eggs 100   

 

 

1.1.2 Risk management 

Good practice in the use of veterinary drugs is defined as the official recommended or authorised 

usage, including withdrawal periods, approved by national authorities (Codex Alimentary  

Commission Procedural Manual, 18th edition, 2008). The withdrawal period (also referred to as 

withdrawal time or withholding period) is the interval between the time of the last administration 

of a veterinary drug and the time when the animal can be safely slaughtered for food, or collected 

milk and eggs safely for the human consumption. Compliance with the withdrawal period provides 

an high degree of assurance to both producers and consumers that the concentration of residues in 

foods derived from treated animals will not exceed the MRLs. Withdrawal periods are typically 

assigned on the basis of results of a residue depletion study using non-radiolabelled drug in which 

the veterinary drug product proposed for marketing is administered at the highest label rate, the 

shortest dosing interval and for the longest duration. These conditions represent a worst-case 

scenario for residue depletion (Reeves, 2010). 

1.1.3 Risk communication 

Evaluation reports are necessary to document the risks and the proposed approaches to manage the 

identified risks. Based on these reports and dialogue with the risk assessors, risk managers gain a 

clear understanding of the involved hazards and risks, the basis of decisions taken in the risk 
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assessment, and the implications of the proposed strategy for managing the risks. The regulator 

must ensure that producer organizations and consumers understand the identified risks and the 

proposed risk mitigation strategy. Consumer engagement, including the presentation of 

programmes that provide an understanding of the regulatory processes, serves to assure consumers 

that drug residues in animal derived foods do not pose a health risk (Reeves, 2010).  

 

1.2 Major and minor animal species in veterinary medicine 

One of the most important challenge of veterinary medicine is the necessity to treat many types of 

animals including livestock, companion animals, working animals, sport animals, laboratory 

animals etc. This leads to the necessity of a rational dosing regimen of each species influenced by 

anatomy, biochemistry, physiology and behaviour of a given species. Moreover, some species 

show considerable differences within and between breeds in pharmacokinetic (PK) and 

pharmacodynamic (PD) profiles (Toutain et al., 2010). 

Concerning livestock species, nowadays it has been identified more than 40 domestic species. The 

World Watch List for Domestic Animal Diversity (WWL-DAD:3) issued by FAO (2000) provides 

inventories of the species and breeds of the domestic animals used for food production. Thirteen 

species contribute to most of the world’s food and agricultural production and are considered of 

veterinary interest (Figure 1).  
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Figure 1. Species of veterinary interest with the worldwide size (x106) 
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For these reasons, some species are classified as major and others as minor species by the 

regulatory agencies in Europe and the US (Table 2). 

 

Table 2. Major and minor food producing species (EMEA/CVMP 2003) 

Major food producing species  Cattle 

Sheep 

Pigs 

Chickens  

Turkeys 

Salmonidae 

Minor food producing species Caprine 

Deers 

Reindeers 

Sheep 

Avian species  

Fish species 

Rabbits 

Horses 

Dromedaries 

Bees 

 

 

1.2.1 Off-label drugs and dosage regimens 

Veterinary pharmacology still presents a reduced drug armamentarium for both major and minor 

animal species. Off-label drugs represent an opportunity to treat more and more new categories of 

disease. They refer to the use of an approved drug in a manner that is not in accordance with the 

approved label directions; they occur when a drug, only approved in human medicine, is used in 

animals; when a drug, approved for one species of animal, is used in another one; when a drug is 

used to treat a condition for which it was not approved, or the use of drugs at levels in excess of 

recommended dosages. Off-label drugs in food-producing animals present particular conditions. 

The veterinarian may not use an approved human drug if an animal drug approved for use in food-

producing animals can be used. Finally, if scientific information on the human food safety aspect 

of the use of the drug in food-producing animals is not available, the veterinarian must take 
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appropriate measures to assure that the animal and its food products will not enter the human food 

supply (Beyene, 2016).  

It is clear that the lack of new innovative therapies in veterinary medicine and the multiplicity of 

species of veterinary interest with their large interspecies differences in PK and PD profile requires 

some modelling tools to extrapolate PK and PD parameters between species. Allometric scaling is 

one of these approaches based on the influence of physiological properties of body size, 

metabolism and PK data ; on the contrary, PD data are considered negligible. It is a useful method 

to provide a first estimation of a dosage regimen, but it is predictive only if the differences between 

animal species are qualitative rather than quantitative. Especially for some minor species, excluded 

from the major drug companies that do not wish to grant a local marketing authorization, it is 

possible to extrapolate the dose from major species thanks to PK data. It consists to scale the 

approved dose in the major species against ratio of clearance of the two species in question (Eq.2) 

(Toutain & Bousquet-Melou, 2009): 

 

Eq. 2   Dose new specie = Dose reference specie x 
Clearance new specie

Clearance reference specie 
 

 

Another approach to determine the optimal dosage regimens are PK/PD studies which calculate 

the effective dose (Eq 3.): 

 

Eq. 3     ED = Cl x
EC

Bioavailability
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Where “ED” is an efficacious dose, “Cl” is the plasma (total) clearance, bioavailability is referred 

to a particular route of administration and “EC” is the efficacious plasma concentration. This 

approach can predict the optimal rational dose, but also predicts the rate of depletion of residues 

from foods derivate (Toutain et al., 2010). 

1.2.2 Species variabilities in poultry 

Although, some poultry species such as chicken and turkey are considered as a major food-

producing animals, PK and PD variability among poultry species (major and minor species) is 

large enough to consider that each species must be treated in its own right.  

Taking in consideration the poultry medications, most of the drugs approved or given in off-label 

manner to these animal species are administered orally (90% of all treatments). To achieve an 

effective collective treatment in poultry, special attention must be given to poultry feeding and 

drinking behaviours and to the species characteristics of digestive tract physiology. Drinking water 

is the preferred mode of drug administration, especially for antibiotics, because diseased birds tend 

to stop eating but usually continue to drink. The alternative to the drinking administration is the 

added of drug in food by a pre-mix formulation. On the other hand, additional biological 

information such as  body weight, age, and gender, but also environmental (lighting period and 

temperature) and managerial factor such as the composition of the diet, are necessary to determine 

an appropriate dosage regimen and to predict the rate of depletion of residues from meat and eggs 

(Toutain et al., 2010). 

1.2.2.1 Drug residues in eggs. 

Figure 2 show the anatomy of the avian eggs. Eggs are constituted by three mainly components: 

yolk, albumen, and shell. Yolk has the longest development time. Precursors to yolk lipoproteins 

are produced in the liver and transported through circulation to the yolk follicles in the ovary. In 

an actively laying hen, several follicles at varying developmental stages reside simultaneously in 
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the ovary. Before an egg is laid, the yolk undergoes a stage of rapid growth, in which it increases 

in size exponentially over 10 days. Drugs that deposit in the yolk are rapidly accumulate during 

this time and can be present in successive eggs for 10 or more days following treatment. Following 

yolk maturation, the albumen is laid down over a period of 2-3 h and can also serve as a residue 

accumulation site. The egg shell is added, after that albumen proteins are deposited and diluted 

with water. The egg development process is similar across species of poultry and game birds, 

although the rates of development vary (Montesissa & Nebbia, 2009; Goetting et al., 2011).  

 

 

Figure 2. Illustration of egg anatomy 

 

Concerning drug residues, many drugs deposit preferentially in the yolk or albumen, depending 

on the drug’s physicochemical properties. Some characteristics that affect the distribution of 

residues are the drug’s affinity to bind to plasma proteins, hydrophobicity or hydrophilicity, and 
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the ability to move through different tissue types. However, a drug’s kinetic properties cannot 

always be predicted from its chemical properties (Montesissa & Nebbia, 2009; Goetting et al., 

2011). 

1.2.3 Species variabilities in caprine 

As previously observed in Table 2 caprine are considered as minor species, though domestic goat 

(Capra aegagrus hircus) has many characteristics that make it a valuable livestock species. First 

of all, goats can survive on range land and plant species that other ruminants cannot. According to 

the Food and Agriculture Organization of the United Nations, over 90% of the world's goats are 

in developing countries with world’s goat population over 861,000,000 head (Clothier, 2010). 

Actually, this animal species is considered as a minor species by the regulatory agencies in Europe 

and USA, but goats present a worldwide population large enough to confer a status of major 

species (Toutain et al., 2010). Indeed, while goats represent a growing segment of agriculture, 

their numbers are far lower than those of other livestock species and many of their health issues 

cannot be addressed with EMA or FDA-approved medications (Clothier, 2010). Consequently, 

many drugs are administered to goats in an extra-label manner with no scientific information on 

drug behaviour, with a potential toxicity and with an inadequate withdrawal periods for drug 

removal from products marketed for human consumption. 

Goats have many unique differences in anatomy, physiology and product biochemistry, from sheep 

and cattle which support the contention of many unique qualities of dairy goat products for human 

nutrition. Goat milk and its products of yogurt, cheese and milk-powder have three-fold 

significance in human nutrition:  

• Feeding more starving and malnourished people in the developing world than from cow milk. 
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• Treating people afflicted with cow milk allergies and gastro-intestinal disorders, which is a 

significant segment in many populations of developed countries. 

• Filling the gastronomic needs of consumers, which is a growing market share in many 

developed countries. 

The physiological and biochemical facts of the unique qualities of goat milk are just barely known. 

The high levels in goat milk of short and medium chain fatty acids have recognized medical values 

for many disorders and diseases of people. Moreover, the enrichment of short and medium chain 

fatty acids in goat butter, and their greater concentration compared to cow butter, could have 

become a valued consumer item supporting the idea of promoting goat butter (Haenlein, 2004). 

Species differences in drug action and effect reflect differences in target functions (anatomy, 

physiology, pathology) and/or target receptors (Toutain et al., 2010). For example, goats are 

frequently used as models for studying respiratory disease in cattle due to the similarity of these 

two species in susceptibility to inciting causes, bacterial pathogens, and mechanisms of pathology 

but differences in serotype, capsular type, and species of recovered bacteria (Clothier, 2010). 

Moreover, goats have generally a more active metabolism than sheep or cattle. This is linked to 

their respective feeding behaviour where goats are natural browsers that can stand on their hind 

legs or even climb trees. They preferably eat leaves, shrubs, flowers and fruits, thus choosing the 

most nutritious available food but also the portions of plants containing many toxic alkaloids that 

need to be metabolised by a hepatic first pass effect. In contrast, cattle are a non-selective bulk 

feeder that grazes non-selective grass, generally low in term of alkaloid content. 

  



Chapter 1. 

 

13 
Dr. De Vito Virginia 
“Pharmacokinetic studies of “off-label” drugs in food producing animals. Quantification of drug residues in different organic matrices.” 

Tesi di Dottorato in Scienza Veterinarie, Qualità e Sicurezza Alimentare, Università degli studi di Sassari 

 

1.3 Pharmacokinetics and drug residues 

Pharmacokinetics is the science that describes quantitative changes in drug concentration in the 

body over time as a function of administered dose. It is usually based on subjecting serum/plasma 

concentration-time data to mathematical models in order to determine quantitative terms, which 

describe absorption, distribution, metabolism, and excretion of the drug and its metabolites. 

Residue depletion profiles are linked to administered doses of drugs through their pharmacokinetic 

profiles (Lees & Toutain, 2012).  

Several fundamental parameters are critical to establishing valid models from which other 

parameters can be determined. Clearance (Cl), is the amount of drug removed per unit of time; it 

is the most important parameter to determine since it dictates the dose and frequency of drug 

administration needed to reach a steady-state concentration. The volume of distribution (Vd) 

dictates how broadly the drug mobilizes throughout the body and is proportional to the amount of 

drug in the body; it is generally small if most of the drug is retained in the blood stream and large 

if the drug disseminates to tissues. Bioavailability (F%) is the percentage of drug that will reach 

the intended destination, which is generally the blood stream. Physiochemical traits of a drug such 

as size, lipid solubility, degree of ionization, and protein binding properties determine how it will 

traverse cell membranes and arrive at a target location, how it will persist at that location, and how 

it will be removed from that location. F% is considered complete for drugs administered 

intravenously, but must be determined for those administered by other routes (intramuscular, 

subcutaneous and oral routes). In this case, F% will influence Vd and Cl; consequently, they will 

become apparent clearance (CL/F) and apparent volume of distribution (Vd/F). Moreover, the area 

under the time-concentration curve (AUC) gives an estimation of total drug exposure. Half-life 

(t½) is the time needed to remove half of the drug from the compartment under study (usually 

plasma but can also be applied to a specific tissue), and is dependent on both CL and Vd. The 
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elimination rate of a drug is estimated by the determining the terminal slope (λz) of the time-

concentration curve. Finally, the maximum drug concentration (Cmax) and time to reach maximum 

drug concentration (Tmax) are derived directly from the time-drug concentration plot (Bauer, 2004; 

Gabrielsson & Weiner, 2000; Goodman & Gilman, 2006; Rescigno, 2003). 

Pharmacokinetic analysis is used to estimate parameters that characterize the behaviour of a drug 

and can be done experimentally or through the use of modelling. Pharmacokinetic modelling 

attempts to match drug behaviour with mathematical equations that can be used to predict drug 

activity in other populations. Non-compartmental PK models of experimental results consider the 

entire body as a single “vessel” into which the drug is administered and from which the drug is 

removed. These models make the fewest assumptions about how the drug is distributed without 

the need to describe movement from one location to another. On the contrary, compartmental 

analysis uses kinetic models to predict the time-concentration plot and considers drug entry and 

elimination from various segments of the body, such as blood, fat, or central nervous system 

(Bauer, 2004; Gabrielsson & Weiner, 2000; Goodman & Gilman, 2006; Rescigno, 2003). 

Anti-microbial and anti-inflammatory drugs are used extensively in farm animal species for 

prophylaxis (administration to prevent disease), metaphylaxis (treatment of animals not showing 

clinical signs of disease but in contact with those which are), and therapy (treatment of animals 

displaying clinical signs of disease). For regulatory purposes, pharmacokinetic profiles are 

established in healthy animals; small numbers of animals, usually of a single breed, of similar age, 

and possibly of the same gender are used with an intensive sampling schedule (Lees & Toutain, 

2012). However, it is clear that the PK behaviour is influenced by chemistry properties of the drug, 

dose, route of administration, but also age, gender and pathological conditions and the animals of 

interest. The absorption and distribution processes, the bioavailability of the drug and its 

metabolites in different organs and tissues and finally the elimination and depletion of the drug are 

used to evaluate the persistence of the residue in the inoculum site, tissues, organs and other 
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organic matrices used for the production of foodstuffs (Montesissa, 2009). Moreover, 

concentrations of veterinary drug residues depend on a range of properties such as lipid solubility 

and acidic/basic characteristics, which influence the passive diffusion of drugs across cell 

membranes. High lipid solubility drugs (for example fluoroquinolones and macrolides) cross cell 

membranes readily by passive diffusion to penetrate into intra- as well as extracellular 

compartments of tissues. Moderate to high lipid solubility drugs, similarly, generally enter readily 

into all water compartments of tissues. On the other hand, drugs of low lipophilicity generally do 

not readily enter cells, so that these drugs are located mainly or solely in the extracellular 

compartment of tissues. Concerning the acid/base characteristics of the molecule, take in 

consideration that intracellular fluid pH is lower than extracellular fluid pH (7.0 versus 7.4), weak 

bases penetrate readily into cells, by the classical Henderson-Hasselbalch mechanism of 

ion/diffusion trapping, whereas weak acids do not.  

The CVMP (CE n. 2377/90) has issued specific guidelines for pharmacokinetics studies and 

residues depletion to define the behaviour of the different drugs in animal species and to establish 

rules of experimental design. All these information are needed to establish a maximum residue 

tolerable to ensure safety to the consumers in a day-to-day exposure condition and to harmonized 

the MRLs of the different countries of EU to a maximum required performance limit of the 

analytical methods (Montesissa, 2009). The concept “zero tolerance” is equivalent to the idea of 

total absence of residual amounts. Obviously, because of the improvement of analytical 

techniques, the value of zero becomes smaller and smaller that depicts the limits corresponding to 

the sensitivities of part per million (ppm), part per billion (ppb) and part per trillion (ppt). As a 

result, by using the high efficacy analytical methods such us the high performance liquid 

chromatography, it can be concluded that there are nearly always detectable residues but an 

extremely low concentrations that are not inevitably toxic for consumers (Beyene, 2016). 
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1.4 Analytical methods 

The analytical methods for the determination of residues in different matrices are conventionally 

subdivided in 3 levels: 

- The third level provides qualitative information. These level represent the screening method used 

to determine the presence/absence of drug to a concentration of interest. These methods are 

characterized by a high productivity, low cost, ease of use and not high technologies. An example 

of analytical method that belongs to this level is the test ELISA. 

- The second level provides quantitative information. The analytical methods that belong to this 

level are confirmatory tests. These methods are characterized by a high technology, validation of 

methods and preparation of samples depending to the chemistry properties. Example of the present 

method is the high performance liquid chromatography (HPLC) with different detector 

(ultraviolet, spectrofluorometric and diode array detectors) 

- The first level provides information with elevate significance. The analytical methods that belong 

to this level are confirmatory test. Example of analytical methods are gas chromatography and 

liquid chromatography with mass spectrometry detector (GC-MS/MS and LC-MS/MS) 

(Nachtmann, 2009). 

The analytical methods utilized in the present thesis are: 

- High performance liquid chromatography with spectrofluorometric detector (HPLC-FL) and 

diode array (HPLC-DAD). The spectrofluorometric detector, is used to determine fluorescent 

substances by a chromatographic curve obtained recording a signal at a specific emission and 

excitation wavelengths. The diode array detector allows to scan simultaneously at discrete 

intervals and  a predefined electromagnetic range.  
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-Liquid chromatography mass spectrometry (LC-MS/MS). The mass spectrometry detector is able 

to provide information on the structure of the molecule under examination on the basis of the 

fragmentation products obtained under controlled and reproducible conditions. 
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2. Chemical and pharmacological properties of drugs of interest 

 

2.1 Antibiotic drugs 

As mentioned in chapter 1, it’s necessary to have greater knowledge of the pharmacokinetics of 

drugs in different animal species, but also are needed more information about the biological and 

toxic effects induced by these molecules in both the animal and human (Odore & Badino, 2009). 

Pharmacodynamics is the study of the relationship between drug exposure and the biological 

effects of  the drug on the host or, in the case of an antibiotic, on the bacterial target.  

Parameters used to evaluate PD effects of antibiotics include the minimum inhibitory 

concentration (MIC) against specific bacterium in vitro, the post-antibiotic effects (PAE) and 

kinetics of bacterial killing (Figure 3) (Gabrielsson & Weiner, 2000; Rescigno, 2010; Godinho et 

al., 2005; Wise, 2001).  

The MIC is defined as the lowest concentration of antimicrobial that suppresses bacterial growth 

in a defined incubation period (Catry et al., 2007). The MIC determination involves an incubation 

of a bacterial suspension with a range of doubling antibiotic concentrations for a specified time 

and how their growth is inhibited. The MIC is considered the “gold standard” of susceptibility test. 

Depending on the quantitative antimicrobial susceptibility as indicated by the MIC value, bacteria, 

in relationship with the drug, are categorized into “clinically susceptible (S),” “intermediate (I),” 

or “resistant (R)” (Mouton et al., 2012). Moreover, the mean bactericidal concentration (MBC) 

can be identified by sub-culturing the bacterial antibiotic suspension used in MIC testing onto 

antibiotic-free media to determine what concentration of antibiotic is required for a complete 

bacterial killing. Bactericidal antibiotics have MBC that are very close to MIC values, since their 

mode of action results in irreversible damage to the bacterium; bacteriostatic drugs have MBC that 
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are much greater than MIC. Kill-kinetic assays are an established method to determine the degree 

of bacterial killing. The most common chosen levels of killing are MBC90 (90% killed), MBC95 

(95% killed), and MBC99 (99% killed) (Andrews, 2001; Firsov et al., 1997; Stratton et al., 1987). 

 

 

Figure 3. PK and PD parameters 

 

Antibiotics are traditionally classified into each one of the following three categories: time-

dependent, concentration-dependent, and time-dependent with a post-antibiotic effect, based on 

PK/PD activity (Figure 3 and 4). The activity of time-dependent antimicrobials relies on the length 

of time that drug levels are at or above the MIC (T>MIC) of the specific pathogen being treated. 

More the drug levels persist above the MIC, more effective is the antibiotic treatment. Common 

time-dependent antibiotics include penicillins, cephalosporins, and older macrolides. 

Concentration-dependent antimicrobials depend on the maximum level of antimicrobial above the 

MIC (Cmax/MIC) of the pathogen being treated. An effective treatment is based upon maximizing 

plasma or tissue concentrations of the drug and benefits from the suppression of bacterial growth 

that continues for a period even after drug levels fall below the MIC. Aminoglycosides, 
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tetracyclines, and fluoroquinolones are members of this category. The concentration-effect 

relationship is empirically described by the sigmoidal Emax model (Hill equation Eq. 4): 

 

Eq. 4      E(t) =  E0 +
Emax∗C(t)

EC50 H+C (t)
 

 

Where “E(t)” is the effect observed for a given concentration (C) at time (t). “Emax” is the maximal 

effect attributable to the drug. “EC50” is the plasma concentration producing 50% of Emax; “H” is 

the Hill coefficient which describes the steepness of the sigmoidal relationship between the  

concentration and the effect. “E0” is the rate of background response in the absence of drug (such 

us that achieved by the host immune response) (McKellar et al., 2004; Martinez et al., 2013).  

The third category of antibiotics, which includes streptogramins, ketolides, and newer macrolides, 

has characteristics of both, with time-dependent killing mechanisms and PAE. PAE is based on 

the concentration of drug, the time that bacteria is in contact with the drug, and its mechanism of 

action. Total drug exposure is evaluated by the area under the time-concentration curve (AUC) 

and represents a mathematical summation of drug concentrations in the compartment being 

assessed. The AUC/MIC ratio is frequently used to determine the drug efficacy (Toutain et al., 

2002; Martinez et al., 2013; McKellar et al., 2004; Van Bambeke & Tulkens, 2001; Gabrielsson 

& Weiner, 2000; Li & Zhu, 2002). 

The AUC/MIC ratio may be used to compute a dose using the following equation (Eq. 5): 

 

Eq. 5   𝐷ose( pre day) =
Cl x (

AUC

MIC
)breakpoint x MIC 90 

fu x F
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where “Dose (per day)” is the daily maintenance dose at steady state; “Cl” is the plasma clearance 

expressed as L/h. “(AUC/MIC)breakpoint” the targeted AUC/MIC value (e.g. 125 h) provides a 

dose achieving an average plasma concentration over 24 h in the steady state equal to 

approximately five times MIC (125h/24h). “MIC90” the 90th percentile of the MIC distribution. 

“fu” (from 0 to 1) the free (unbound) fraction (only the free antibiotic plasma concentration is a 

relevant plasma surrogate of the free antibiotic concentration at the biophase level) and F the 

absolute bioavailability (from 0 to 1) (Toutain et al., 2007; Lees et al., 2015) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. PK/PD analysis 

 

When PK/PD indexes are not in these values, mutated bacterial strains exhibit resistance, as the 

mutated species typically has MIC values 4 to 8 times higher than the MIC of the Wild type species 

(Papich & Rivere, 2009). 

  



Chapter 2. 

 

22 
Dr. De Vito Virginia 

“Pharmacokinetic studies of “off-label” drugs in food producing animals. Quantification of drug residues in different organic matrices.” 

Tesi di Dottorato in Scienza Veterinarie, Qualità e Sicurezza Alimentare, Università degli studi di Sassari 

2.1.1 Quinolones and fluoroquinolones  

 

Figure 5. Fluoroquinolones chemical structure 

 

Quinolones and fluoroquinolones, comprise a large and expanding group of synthetic 

antimicrobial agents. The first drug of this class, nalidixic acid, was discovered in 1962 and was a 

modification of a compound isolated during the production of the anti-malaria drug, chloroquine. 

Its antibacterial spectrum of activity was restricted to the Enterobacteriaceae and, because of 

limitations in absorption and distribution, the drug was effective solely for the treatment of urinary 

tract infections. In the 1980s, the addition both of a fluorine molecule at the 6-position of the basic 

quinolone structure and a piperazine substitution at the 7-position was found to enhance quinolone 

antibacterial activity, gaining effectiveness against Pseudomonas aeruginosa and Gram-positive, 

cocci, and to increase the extent of oral drug absorption and tissue distribution. Products possessing 

this fluorine molecule are known as the fluoroquinolones (Figure 5).  

Fluoroquinolones belongs to the third generation class of quinolones. This class of drugs exhibited 

an increased antibacterial activity against the Enterobacteriaceae and other Gram-negative 

bacteria (such as P. aeruginosa) compared to the first and second generation of quinolones. It had 

some activity against certain Gram-positive cocci. Structural changes associated with the third 

generation increased their oral bioavailability and systemic distribution. Quinolones fitting into 

this category include norfloxacin, ciprofloxacin, enrofloxacin, danofloxacin, difloxacin and 
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marbofloxacin. Likewise, the fourth generation drugs belonging to the quinolones, maintained the 

favourable characteristics of the third generation drugs while exhibit an increase activity against 

Gram-positive bacteria, anaerobes and mycobacteria. These compounds also exhibited excellent 

oral bioavailability, a prolonged terminal elimination half-life, lower central nervous system 

toxicities and exhibit fewer interactions with the cytochrome P450 (CYP 450) system (Ball, 2000). 

Fluoroquinolones are a class of bactericidal drugs and have of a concentration-dependent nature, 

showing a rapid and profound killing over a wide range of concentrations (Martinez et al., 2013). 

Therefore, the action is evaluated by Cmax/MIC ratios greater than 10 and AUC/MIC whose value 

must be between 100 and 125, in order to have a good antibacterial activity and to limit the 

development of peripheral resistances. (Toutain et al., 2002; Wright et al., 2000). 

2.1.1.1 Chemical properties  

Fluoroquinolones are amphoteric molecules weakly soluble in water for the presents of a 

zwitterion form with the carboxylic acid and the basic amine. The pKa values range from 5.5 to 

6.3 for carboxylic acid and 7.6 to 9.3 for amine group. In acid pH condition both groups are 

protonated, while at  a basic pH condition the carboxylic acid is in the form of anion. For this 

reason, the fluoroquinolones tend to be more water-soluble with acid or basic pH, while at 

physiological pH they exhibit minimum water solubility. Finally, fluoroquinolones have a high 

melting point, generally greater than 200 ° C, so the crystallized form is very stable (Papich & 

Riviere, 2009; Brighty & Gootz, 2000). 

  



Chapter 2. 

 

24 
Dr. De Vito Virginia 

“Pharmacokinetic studies of “off-label” drugs in food producing animals. Quantification of drug residues in different organic matrices.” 

Tesi di Dottorato in Scienza Veterinarie, Qualità e Sicurezza Alimentare, Università degli studi di Sassari 

2.1.1.2 Structure–activity relationship 

 

Figure 6. Structure–activity relationship of fluoroquinolones 

 

Figure 6 shows the general structure-activity relationship of the fluoroquinolones. The carboxyl 

group in position 3 and the ketone at position 4 are essential for antibacterial activity. Fluoride in 

position 6 gives a wider spectrum action, a greater power, a greater input capacity in the bacterial 

cell. The N substitution in position 1 with an ethyl, cyclopropyl, fluorophenyl, leads to a wider 

spectrum of action. Substitution at position 7, with a piperazine, increases antibacterial activity 

against Pseudomonas. At position 8, it is preferable to have carbon instead of nitrogen to limit side 

effects at the central nervous system level and increase activity against staphylococci, while 

substitutions with a methoxy or cyan group, in this position, can increase the activity against 

anaerobic bacteria (Papich & Riviere, 2009). 
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2.1.1.3 Mechanism of action 

 

Figure 7. Fluoroquinolones mechanism of action 

 

Figure 7 shows the fluoroquinolones mechanism of action. Fluoroquinolones damage bacterial 

DNA and lead to defects in negative supercoiling. This effect was linked to inhibition of DNA 

gyrase activity, an enzyme found in all bacteria. In concert with other proteins, gyrase catalyzes 

changes in the degree of double-stranded DNA supercoiling. In this capacity, it plays a vital role 

in DNA packing, replication and transcription.  

The effect of fluoroquinolones on bacterial proliferation suggests three mechanisms of cell killing:  

1. Mechanism A: common to all quinolones. This requires RNA and protein synthesis and is only 

effective against dividing bacteria. Mechanism A appears to involve the blocking of replication by 

the gyrase–quinolone complex on DNA. 

2. Mechanism B: does not require RNA and protein synthesis and can act on bacteria that are 

unable to multiply. Mechanism B (chloramphenicol insensitive) can be correlated with dislocation 

of the gyrase subunits that constrain the ternary complex.  
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3. Mechanism C: requires RNA and protein synthesis but does not require cell division. 

Mechanism C may correlate with trapping of topoisomerase IV complexes on DNA. 

Moreover, survival curves show that when the fluoroquinolone concentration is near the minimal 

inhibitory concentrations (MIC) of the bacterium, the drug has a static effect on bacterial growth 

(bacteriostatic). As the drug concentration increases relative to the MIC of the bacterium, bacterial 

killing increases up to a certain drug concentration (termed the optimum bactericidal 

concentration). As concentrations exceed the optimum bactericidal concentration, further 

increases in drug concentration can lead to a decrease in bacterial killing (Martinez et al., 2006). 

2.1.1.4 Pharmacokinetics of fluoroquinolones 

Fluoroquinolones show to be well absorbed and distributed in tissues and body fluids after oral 

subcutaneous and intramuscular administrations in different animal species. However, food intake 

and tissue binding can decrease its absorption. High and major concentrations of fluoroquinolone 

are found in the kidney and liver. This can be due to the fluoroquinolones high lipophilicity, 

passing well the cell membranes and are not easily expelled. In addition, fluoroquinolones show 

the ability to be concentrate more on leukocytes that allows them to be transported to the site of 

infection, acting more on infected tissues than healthy ones (Papich & Riviere, 2009). 

The main metabolites of fluoroquinolones are the 3-carboxylated derivatives that are produced by 

kidney and the hydroxylated derivatives. The letter compounds are more water-soluble, and 

therefore more easily eliminated than the parental drug. This type of metabolism produces both 

active and inactive products.  

The main route of elimination of the fluoroquinolones is kidney. This drug having a partially acidic 

feature, are eliminated for active tubular secretion, reaching higher urinary concentrations than 

serum. They are re-absorbed in a higher percentage in the animal species that have acid urine, 

while in herbivores the urine alkalinity conditions give a faster elimination. Finally, 
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fluoroquinolones and their metabolites can also be eliminated by the bile duct (Odore & Badino, 

2009). 

2.1.1.5 Antimicrobial resistance  

Antimicrobial resistance is a complex problem that is likely to require attention at many levels. 

The most frequently developed resistance to fluoroquinolones is related to: 

 i) modification of the target structure, that is, the mutation of the gyrA gene, which encodes for 

the subunit A of DNA-gyrase, resulting in the transcription of a different subunit that is not 

recognized by fluoroquinolone; ii) mutation of the paro-gene (responsible for breaking DNA) of 

Topoisomerase IV. This type of alteration is common in Gram positive bacteria; iii) alteration of 

the outer membrane permeability, which involves the bacterial cell, a cross-resistance with other 

antibiotics that use porinic channels to enter the periplasmic space. This mechanism is typical of 

some Gram negative strains (Ferrero et al., 1995). 

Issues concerning the optimal dose to administered are addressed by the mutant selection window 

hypothesis. This hypothesis maintains that drug-resistant mutant subpopulations present prior to 

initiation of antimicrobial treatment are enriched and amplified during therapy when antimicrobial 

concentrations fall within a specific range (the mutant selection window). The upper boundary of 

the mutant selection window is the MIC of the least drug susceptible mutant subpopulation, a value 

called the mutant prevention concentration (MPC). The lower boundary of the mutant selection 

window is the lowest concentration that exerts selective pressure, often approximated by the 

minimal concentration that inhibits colony formation by 99% (MIC99) (Drlica & Zhao, 2007). 

Figure 8 shows the mutant selection window (MSW) characterized by three discrete 

concentrations. A: The MIC of the wild-type bacteria 
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B: Concentration above the MIC of the wild-type bacteria, where there is a plateau in killing due 

to the survival of the least susceptible microbial subpopulation of the first-step resistant variant. 

C. Concentrations at which even the least susceptible organism are killed (MPC). Above MPC all 

bacteria are inhibited or eliminated. The concentration of the administered drug should therefore 

remain as low as possible in this range (MSW) and pass over the MPC threshold to obtain good 

therapy with excellent results (Martinez et al., 2013; Canton et al., 2006) 

 

 

 

Figure 8. Mutant selection window (MSW) 
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2.1.1.6 Levofloxacin 

 

Figure 9. Levofloxacin 

 

Levofloxacin belongs to third generation fluoroquinolones (Figure 9). It is an optical isomer of 

ofloxacin having two-fold higher antimicrobial activity than the parent compound. Compared with 

other fluoroquinolones it has more pronounced bactericidal activity against Pseudomonas, 

Enterobacteriaceae and Klebsiella,spp, several species of staphylococci, streptococci including S. 

pneumoniae, bacteroides, clostridium, haemophilus, moraxella, legionella, mycoplasma and 

chlamydia (North et al., 1998). The bactericidal effect of levofloxacin is obtained through a 

reversible linkage with DNA excretion and subsequent inhibition of bacterial DNA replication 

(Figure 10) (Fu et al., 1992).  

 

 

Figure 10. Mechanism of action of levofloxacin 
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Levofloxacin distributes well in all body tissues and fluids of the respiratory tract, skin, urine and 

prostrate, and its uptake by cells makes it suitable for use against intracellular pathogens. However, 

it penetrates poorly into the central nervous system. Like all fluoroquinolones, levofloxacin shows 

a concentration-dependent killing mechanism, whereby the optimal effect is attained by the 

administration of high doses over a short period of time. This concentration-dependent killing 

profile is associated with a relatively prolonged postantibiotic effect. The drug undergoes a limited 

metabolism in rats and humans and is primarily excreted by kidney mainly as active drug. Inactive 

metabolites (N-oxide and demethyl metabolites) represent <5% of the total dose (Goudah & Abo-

El-Sooud, 2008) The pharmacokinetics of levofloxacin has been fully investigated in humans 

(Chulavatnatol et al., 1999), rabbits (Destache et al., 2001), cats (Albarellos et al., 2005) and calves 

(Dumka & Srivastava, 2006, 2007). Currently, Levofloxacin is successfully used in human 

medicine for the treatment of infections of upper and lower respiratory tract, genitourinary system, 

skin and soft tissue (Patel et al., 2009).  

2.1.2 Macrolides 

The macrolide class of antibiotics contain a 14-, 15-, or 16-membered macrocyclic lactone ring to 

which amino sugars are attached (Odore & Badino, 2009). The unique structure of macrolides 

facilitates rapid dissemination from the central compartment to lung tissues which make them 

useful in the treatment of bacterial pneumonia (Clothier, 2010). Macrolides are classified in natural 

macrolides, originally isolated from Streptomyces such as erythromycin and semi-synthetic 

macrolides like clarithromycin and azithromycin. 

Macrolides present a bacteriostatic action for the binding to the 50S ribosomal subunit, preventing 

translocation of the growing peptide and blocking protein synthesis (Figure 11).  
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Figure 11. Mechanism of action of macrolides 

 

Due to its mechanism of action the spectrum of action includes Gram positive bacteria, 

mycoplasma, rickettsia, chlamydia, some protozoa such as amoeba, toxoplasmosis and 

cryptosporidium. Due to its basic nature and liposolubility, macrolides are generally well absorbed 

orally. The percentage of plasma protein binding is not high (about 20-40%) in different animal 

species. Macrolides distribute well in all organs and tissues except the SNC, spreading 

intracellularly to reach concentrations higher than plasma concentrations. The basic nature of this 

class of drugs led to higher concentrations in saliva and liquids with acidic pH such as milk where 

they reach levels up to 3 times higher compared to plasma concentrations. In the peripheral 

compartment, macrolides concentrations are elevated, particularly in the lung, liver, kidney and 

spleen. Macrolides are bio-transformed in different percentages through N-demethylation 

cytochrome P450 dependent reactions. The metabolites are eliminated predominantly by bile 
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(about 80%) in conjugated compound forms and may undergo the entero-hepatic uptake (Odore 

& Badino, 2009). This class of drugs is used in farm animals for respiratory disease, streptococcal 

and staphylococcal mastitis in ruminants, arthritis in bovine, enteritis haemorrhagic in the pig and 

oral cavity infections (Odore & Badino, 2009). 

2.1.2.1 Tulathromycin 

 

Figure 12: Tulathromycin 

 

Tulathromycin (Figure 12) is an antimicrobial drug belongs to the class of semi-synthetic 

macrolide consisting of a regioisomeric, equilibrated mixture of a 13-membered ring azalide 

(10%) and a 15-membered ring azalide (90%) but in aqueous media the drug exists as an 

equilibrated mixture. The drug molecule has three nitrogen/amine functional groups representing 

the first member of a novel sub–class of macrolides known as triamilides. Tulathromycin is a basic 

molecule with a pKa in a range from 8.6 to 9.6 and it is approximately 50 times more soluble in 

hydrophilic than hydrophobic media. This physicochemical feature allows the unionized fraction 

of the drug to easily penetrate into tissues from plasma and to accumulate in compartments with 

acidic conditions (a phenomenon known as ion trapping). This may explain, at least in part, the 
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large volume of distribution of the drug and the accumulation of the drug in alveolar epithelial 

lining fluid and bronchoalveolar lavage cells. This activity can provide unique therapeutic 

advantage in treating bacterial respiratory infections in livestock species (Villarino et al., 2013a). 

Finally, tulathromycin has been shown to accumulate in leukocytes (primarily macrophages and 

neutrophils) in greater amounts than older macrolides (Evans, 2005). 

As a macrolide, tulathromycin exerts its mechanism of action through binding to the 50S subunit 

of bacterial ribosomes and blocking peptidyl transferase which results in dissociation of transfer 

RNA (tRNA), cessation of peptide translocation, and blockage of protein synthesis (Benchaoui et 

al., 2004; Evans, 2005). Although this drug, like other macrolides, is classified as bacteriostatic 

agent when tested against Staphylococcus aureus and E. coli (Pfizer, 2004), it can also exhibit 

bactericidal activity at higher concentrations (Benchaoui et al., 2004; Evans, 2005; Nowakowski 

et al., 2004). This effect is dictated by the microorganism involved in the infection and the 

concentration-time profile of the drug at the site of infection. In particular, tulathromycin present 

a bactericidal effect at 4x and 8x the MIC against M. haemolytica, A. pleuropneumoniae and P. 

multocida (Villarino et al., 2013b). 

The pharmacokinetics of tulathromycin, have been studied in different animal species such us 

mice, cattle, pigs, goats and foals. At label dose (2.5 mg/kg) in cattle and swine species, 

tulathromycin is characterized by a rapid rate of absorption and large systemic availability (90%) 

after IM and SC administration. In plasma, tulathromycin has a long terminal half-life, ranging 

across domestic species from 60 to 140 h and a remarkable large volume of distribution (>10 L/kg). 

In pigs, most of the dose is eliminated as unchanged by biliary and renal excretion. Protein binding 

studies indicate that the unbound fraction of tulathromycin ranges from 53% to 68%. Lung 

pharmacokinetic studies in cattle, pigs and horses reveal an extraordinary capacity of 

tulathromycin to accumulate in lung tissue, where the lung homogenate concentrations showed to 

be 50-fold higher than in plasma concentration. Finally, the antimicrobial efficacy of 
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tulathromycin has been addressed in several published studies including data on cattle, swine, 

horses, and goats.  

Tulathromycin is safe when used according to label directions (Pfizer, 2005) but studies of toxicity 

in bovine, swine and caprine species have revealed minor clinical and injection site 

histopathological changes that have been  resolved over time (Pfizer, 2005; Clothier et al., 2010). 

Moreover, hypersalivation, head shaking, and pawing at the ground have been reported at 

therapeutic doses (Pfizer, 2005). 

 

2.2 Pain relief drugs 

Pain is a sensory process that results from tissue damage and is intended to prevent further tissue 

damage that follows the injury. Pain activates numerous physiological reactions that often induce 

negative effects on well-being and behaviour, as well as on the growth and reproduction of the 

animals. However, the main obstacle to the pain management, in farm animals, is to recognise, 

quantify and evaluate the pain status of each individual and treat without disturbing the whole 

group of animals (Guatteo et al., 2012). In veterinary medicine, recently, pain has been shown to 

affect animal welfare and production, and the interest in the field of analgesia has been drastically 

increasing (Lee et al., 2014). Therefore, the desirable medication associated with the pain status 

of each individual will be important to treat pain in farm animals. A similar specific approach 

designed to minimize pain in laboratory animals is also required in farm animals. Nowadays, the 

concepts of “Replacement, Reduction and Refinement”, called the ‘3Rs’ (Russell & Burch, 1959), 

used in the design of animals experiments to minimise unnecessary pain, is the basis of a new 

approach the ‘3S’ “Suppress, Substitute and Soothe pain”. This approach is used to review existing 

practical solutions and find new solutions to eliminate or alleviate pain in farm animals. It is based 

on the possibility to “suppress” the procedures or environments that are a source of pain, to 
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“substitute” such procedures by others causing less pain and to “soothe” pain when it cannot be 

avoided (Guatteo et al., 2012). 

Animal welfare issues in food production are now being driven by animal activists, food 

companies and consumers. Consequently, animal welfare assurance programs have been 

developed and are encoded in non-mandatory codes or guidelines, government regulations, inter-

governmental agreements and corporate programs (Fraser, 2006). One of the measures aimed at 

improving animals welfare is pain management by using anti-inflammatory drugs. These 

substances can be effective in suppressing or preventing inflammation, treating allergy, lowering 

fever and reducing pain. The classes of anti-inflammatory drugs differ because of their actions 

towards the biochemical mediators that are released during inflammation and that propagate the 

inflammatory response (De Vito, 2015).  

2.2.1 Opioid receptor agonists 

One of the main classes of anti-inflammatory drugs most used in veterinary medicine for food-

producing animals are opioid receptor agonists. Unfortunately, the drugs in these classes range 

present typical side effects. Compounds that activate opioid receptors, in particular the Mu Opioid 

Receptor (MOR) subtype has been used for decades in the treatment from moderate to severe pain 

(Meldrum, 2003). Extensive clinical experience with the prototypical MOR agonist morphine 

indicates that, although this compound is very effective against acute pain, it may be less effective 

for conditions precipitating chronic pain, especially neuropathic pain or pain of inflammatory 

origin. This reduced effectiveness for chronic pain is due to the MOR down regulation with long-

term therapies; a substantial increase in dosing is required in order to maintain a clinically 

satisfactory analgesic effect (Dickenson & Suzuki, 2005). Furthermore, morphine has a limited 

therapeutic window, its analgesic effect generally coincides with several side effects (nausea, 

emesis, constipation and respiratory depression) which limit its usefulness especially in cases of 
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chronic pain. Another therapeutic approach has been to combine the MOR activation with an 

additional compound that provides analgesia via a different mechanism of action, resulting in an 

opiate-sparing effect. Activation of the noradrenergic descending pain inhibitory pathway could 

be considered a candidate for such an additional mechanism (Wang et al., 2008). Active 

ingredients that inhibit the reuptake of noradrenalin (NA) are effective analgesics, particularly in 

chronic pain conditions. The first molecule showing this dual mechanism of action was tramadol. 

It produces MOR activation as well as inhibition of serotonin (5HT) and NA reuptake. Nowadays, 

tramadol is widely used in veterinary clinical practice but its efficacy is still controversial for its 

faster metabolism to inactive metabolites N-desmethyl tramadol (M2) and O,N-didesmethyl 

tramadol (M5), from different animal species such as goats, dogs, horses, lamas, alpacas, peafowl, 

hawks than in cats (Giorgi, 2012). 

2.2.1.1 Tapentadol 

 

Figure 13. Tapentadol 

 

Tapentadol is a novel opioid drug launched at the end of 2011on the European market for human 

use (Figure 13). This drug, like tramadol, presents a dual mechanism of action: the mu-opioid 

receptor agonism and the inhibition of noradrenaline-reuptake. Based on its unique mechanism of 

action, it has been proposed as the first representative of a new pharmacological class of centrally 

acting analgesics: the MOR agonist, NA Reuptake Inhibitor (MOR-NRI) (Kress, 2010). 

Interestingly, even though its MOR affinity is 50-fold lower than that of morphine, this reduces to 
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a 2-3-fold difference after systemic administration. This finding, consistent across different pain 

relief evaluation models, may be due to a better brain penetration of tapentadol, but also suggests 

that the NA reuptake-inhibitory property, contributes to a more potent analgesia that would be 

expected solely from its MOR agonism (Tzschentke et al., 2006). Given the moderate affinity of 

tapentadol at the MOR and the opioid sparing effect of tapentadol NRI component, it seems logical 

that this drug would produce fewer opioid-related side effects than classical MOR agonists, such 

as morphine. Indeed, compared to morphine, tapentadol produces much less nausea and vomiting 

in ferrets, the duration of these side effects was also shorter (Tzschentke et al., 2009). Furthermore, 

the threshold dose for these effects was 100 times higher for tapentadol than for morphine. In vivo 

and in vitro preclinical pharmacological studies demonstrated that tapentadol displays weak 

anticholinercic activity and a negligible 5HT reuptake inhibition but a pronounced NA reuptake 

inhibition (Tzschentke et al., 2006). Following its chronic administration, tolerance development 

took much longer compared with morphine (Ahlbeck, 2011). The PK features of tapentadol have 

been tested in rodents and humans. In summary, the drug is almost completely absorbed after oral 

administration but undergoes high levels of phase II metabolism glucuronidation, limiting oral 

bioavailability at 8 and 32% in rats and humans, respectively. Phase I biotransformation is 

negligible and does not produce active metabolites. Finally, tapentadol has shown no potential for 

CYP450 induction or inhibition (Terlinden et al., 2007). However, tapentadol still has some 

disadvantages. It has weak anti-muscarinic activity, which produces a well known adverse effects. 

Tapentadol is a weak blocker of 5-HT3 receptor (e.g., as mirtazapine, metoclopramide and 

ondasteron), as yet it has not been determined whether this property is helpful or harmful. It has 

very low oral bioavailability although animal species deficient of glucuronic acid, might be much 

higher (Giorgi, 2012). 
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2.2.2 Non steroidal anti Inflammatory drugs  

Another major classes of anti-inflammatory drugs most used in veterinary medicine for food-

producing animals are the non-steroidal anti-inflammatory drugs (NSAIDs). The NSAIDs are 

widely used because of their ability to reduce inflammatory process. NSAIDs can be classified 

into several groups according to their chemical structure. The propionic acid derivatives 

(Ketoprofen, Carprofen, Vedaprofen , Naproxen); the anthranilic acid derivatives (Tolfenamic 

acid, Mefenamic acid); the nicotinic acid derivatives (Flunixin); the pyrazolones 

(Phenylbutazone]) and the acetic acid derivatives (Diclofenac); the class of oxicams 

(Meloxicam) (Dubreil-Chéneau et al., 2011). In veterinary practice, NSAIDs are used in the 

treatment of musculoskeletal disorders, coliform mastitis, pulmonary diseases and enteritis in 

several animal species. NSAIDs, however, because of their toxicity, can affect the gastro-

intestinal, hematopoietic and renal systems. Gastro-intestinal ulcerations are the most common 

and serious side effect of NSAIDs, especially in cases of overdose or chronic abuse (Kim et al., 

2014; 2015).  

2.2.2.1 NSAID mechanism of action 

The major mechanism of action by which the NSAIDs elicit their therapeutic effects (antipyretic, 

analgesic, and anti-inflammatory activities) is inhibition of prostaglandin (PG) synthesis. 

Specifically NSAIDs competitively (for the most part) inhibit cyclooxygenases (COXs), the 

enzymes that catalyze the synthesis of cyclic endoperoxides from arachidonic acid to form. Two 

COX isoenzymes have been identified: COX-1 and COX-2. COX-1, expressed constitutively, is 

synthesized continuously and is present in all tissues and cell types, most notably in platelets, 

endothelial cells, the GI tract, renal microvasculature, glomerulus, and collecting ducts. Thus 

COX-1 is important for the production of prostaglandins of homeostatic maintenance, such as 

platelet aggregation, the regulation of blood flow in the kidney and stomach, and the regulation of 

gastric acid secretion. Inhibition of COX-1 activity is considered a major contributor to NSAID 
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gastrointestinal toxicity. COX-2 is considered an inducible isoenzyme, although there is some 

constitutive expression in the kidney, brain, bone, female reproductive system, neoplasias, and 

gastrointestinal tract. The COX-2 isoenzyme plays an important role in pain and inflammatory 

processes. Generally, the NSAIDs inhibit both COX-1 and COX-2. Some of the NSAIDs are 

mainly COX-1 selective (eg, aspirin, ketoprofen, indomethacin, piroxicam, sulindac). Others are 

considered slightly selective for COX-1 (eg, ibuprofen, naproxen, diclofenac) and others may be 

considered preferentially selective for COX-2 (eg, etodolac, nabumetone, and meloxicam) 

(DeRuiter, 2002). A benefit of this latter class is that it seems to lower the adverse effects triggered 

by the classical NSAID drugs. On the other side, the COX-2 inhibitor drug pharmacokinetic and 

pharmacodynamic profiles can change from species to species. 

2.2.2.2 Meloxicam 

 

Figure 14. Meloxicam 

 

Meloxicam (Figure 14) is a potent anti-inflammatory drug belonging to enolic acid group of the 

oxicam class, having analgesic and antipyretic properties. The acidity of the oxicams (pKa=6.3). 

is attributed to the 4-OH with the enolate anion being stabilized by intramolecular H-bonding to 

the amide N-H group. Also, the presence of the carboxamide substituent at the 3-position of the 

benzothiazine ring contributes toward acidity by stabilizing the negative charge formed during 

ionization (resonance stabilization) (DeRuiter, 2002). Meloxicam, if compared to the common 

non-steroidal anti-inflammatory drugs (NSAIDs), shows to be more preferential to inhibit COX-2 
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(12 times more selective COX-2 inhibitor in the dog) than COX-1 isoenzyme, preventing the 

occurrence of inflammation by the inhibition of prostaglandin production that sensitize the afferent 

nociceptors at peripheral sites of inflammation (Kay et al., 2000). This mechanism of action results 

in a lower ulcerogenic side effect and gastrointestinal irritation (Wani et al., 2013; Wani et al., 

2014). 

The pharmacokinetic profile of meloxicam, if compared to the common NSAIDs, showed a good 

absorption, longer elimination half-life and high extravascular bioavailability in different animal 

species: dogs (Hare et al., 2012; Montoya et al., 2004; Busch et al., 1998), cats (Lehr et al., 2010; 

Giraudel et al., 2005), horses (Lees et al., 1991; Toutain and Cester, 2004; Toutain et al., 2004; 

Burns et al., 2010), rabbits (Turner et al., 2006; Carpenter et al., 2009), turtles (Di Salvo et al., 

2015), green iguana (Divers et al., 2010), piglets (Alassane et al., 2010; Fosse and Spadavecchia, 

2011), cattle (Johnn et al., 2011; Coetzee et al., 2007; Coetzee et al., 2012), camels (Wasfi et al., 

2012), Ilama (Amanda et al., 2012) and small ruminants (Shukla et al., 2007; Ingvast-Larssom et 

al., 2010; Wani et al., 2013; Wani et al., 2014). 
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3. Ex vivo antibacterial activity of levofloxacin against E. coli and its 

pharmacokinetic profile following intravenous and oral administrations in 

broilers 

  

Nowadays, farms are organized in cluster breed system, an intensive breeding technique that 

requires specific prevention and treatment strategies to prevent and manage infectious diseases 

(chapert 2) (Landoni & Albarellos, 2015). Few drugs are approved and labelled for poultry species 

and, if the animals are mistakenly or intentionally treated with a drug that is prohibited from extra-

label drug use, the exposed animals should not enter the food chain unless permission is granted 

from the proper authorities. The inappropriate dosage regimens or extra-label use of drug leads to 

edible tissues containing veterinary drug residues that can pose risks to human health, including 

direct toxic effects and allergic reactions (Goetting et al., 2011). Moreover, off-label drugs can 

contribute to the development of bacterial resistance in animals and humans. Thus, it has been 

suggested that the optimal dosing regimen should be determined to maximize the therapeutic 

efficacy and to minimize the risk of resistance emerging during treatments (Ambrose et al., 2007; 

Toutain & Lees, 2004).  

In poultry, antibiotics are used extensively for disease prevention and treatment. In the United 

States, antibiotics are also used for growth promotion, although this type of use has been prohibited 

in the EU since 2006 (Goetting et al., 2011). Levofloxacin (LEVO) is a third generation 

fluoroquinolone labelled for use in humans, and it has excellent anti-bacterial activity. Although 

this antibacterial is not registered in veterinary medicine, several PK studies recently demonstrated 

that it could be successfully used in calves, goats and poultry (Dumka, 2007; Goudah & Abo El 

Sooud, 2009; Kumar et al., 2009; Ram et al., 2008; Varia et al., 2009). 
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3.1 Aim of the study 

The aim of the study was to:  

i) Evaluate pharmacokinetics and tissues disposition of LEVO after intravenous (IV) and oral (PO) 

administrations at the dose of 5 mg/kg in broilers.  

ii) To calculate the MIC and MBC in two matrices (serum and broth) of LEVO against E. coli, 

iii) To assess in vivo and ex vivo antibacterial effects of LEVO against E. coli using time kill 

experiment,  

iiii) To predict the optimal doses corresponding to bacteriostatic, bactericidal and eradication 

effects basing on AUC24h/MIC parameter for PK/PD modelling.  

 

3.2 Material and methods 

3.2.1 Chemicals, reagents and solutions 

Pure LEVO and enrofloxacin considered as internal standard (IS) (standards purity >99.0%), were 

purchased from Sigma-Aldrich. 

Singular stock solutions of LEVO and IS in MeOH were diluted to prepare a 6-point calibration 

curve at the following concentrations 5, 1, 0.500, 0.250, 0.100, 0.050 μg/mL and 2, 1, 0.500, 0.250, 

0.100, 0.050 μg/mL, of LEVO in plasma and organs respectively. The analyte was stable for at 

least 10 weeks if stored at 4°C 

3.2.2 Animal experiments 

The animal experiment was performed at the University of Agriculture, Faculty of Veterinary 

Medicine, Jelgava, Latvia. Sixty-five healthy broiler chickens, 35 days old, with an average weight 

of 2.2 ± 0.3 kg were supplied by a local farm. Regular veterinary checks, based on daily physical 
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examination through observation of behavior, appetite and the absence of drug treatment and 

parasites assessed that animals were in good health status. Animals were acclimated for a 2-weeks 

prior to beginning of the study. During this period, chickens were housed in an indoor area all 

together on the floor. Animal care and handling were performed according to the EC council 

Directive 2010/63 and also according to Institutional Animal Care and Use directives issued by 

the Animal Welfare Committee of Latvia (authorization n° 025564), which approved the study 

design. The day before the commencement of the experiment, animals were randomly divided (65 

slips of paper marked with the numbers 1 to 65 selected blinded from a box) into 4 groups: groups 

A, B and C with 20 subjects and group D with 5 subjects. A ring with an identification code was 

applied to the right leg of each animal. Animals were then moved to cages (4 chickens/cage) until 

the end of the experiment. Water was provided ad libitum. Standard management practices were 

followed to keep animals free from stress. Groups A, B and C received LEVO at the dose rate of 

5 mg/kg of body weight (Levofoxacin Kabi 5 mg/mL, Kabi) according to a randomized, parallel 

study design. Group. After overnight fasting, A and B groups received LEVO orally directly into 

the chickens' crop using a 18-gauge metal ball-tipped gavage connected to a 2.5 mL syringe. Group 

C received the drug intravenously through the vein of the right wing using a 2.5 mL syringe and 

26- gauge needle. Group D received saline solution by oral administration thought the same 

method reported for the administration of drug by oral route (groups A and B). Concerning blood 

collections, samples (0.7 mL) were collected in group A and C at time 0 (prior drug administration) 

5, 30 min, and 1, 4, 6, 8, 10, 24, 48 h using IV catheter (Venflon 24Gx25mm) fixed into the left 

wing vein. After centrifugation at 400xg for 10 min plasma and serum were separated and split 

into two aliquots, for PK and PD analysis, respectively, and stored at -20 °C until use within 30 

days from collection. Animals in group B were divided in 5 sub-groups (n = 4) and euthanized 

through cervical dislocation at 1, 6, 10, 24 and 48 h after the administration of the drug for organs 

collections. Pectoralis muscle, liver, lung and kidney were separated from each carcass, promptly 
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washed in saline and stored at -80 °C until analysis. In order to get control blood and organs for 

analytical purposes, animals in group D (control group) were bleed and organs collected at 1, 6, 

10, 24 and 48 h (one animal for each point) (Figure 15). 

 

 

Figure 15. Animal experiments 

 

3.2.3 Analytical method 

3.2.3.1 Instrumentation and chromatographic conditions 

The analytical method was performed at the University of Pisa, Department of Veterinary 

Sciences, Italy. The HPLC system was an LC system (Jasco Inc.) consisting of a high-pressure 

mixer pump (model PU 980 Plus), spectrofluorometric detector (model 2020 Plus), and a loop of 

50 μL. Data were processed using Borwin software. Chromatographic separation assay, based on 

a method previously described by Giorgi et al., (2013) with slight modifications, and performed 
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using a Gemini C18 analytical column (250 x 4.6-mm inner diameter, 5-μm particle size, 

Phenomenex) maintained at 25 ° C. The mobile phase consisted of acetonitrile:aqueous solution 

(20:80 v/v%) at a flow rate of 1mL/min. The aqueous solution consisted of potassium dihydrogen 

phosphate (0.02 M), and 860 µL of tetraethylamine (0.012 M) in water adjusted to pH 4 with 

orthophosphoric acid (0.006 M). Excitation and emission wavelengths were set at 295 and 490 

nm, respectively. 

3.2.3.2 Sample preparation 

The procedure of LEVO extraction from plasma and organs was based on that previously reported 

by Giorgi et al., (2013) with slight modifications. Concerning plasma samples, aliquots (0.2 mL) 

of plasma were added to 0.1 mL of IS (10 µg/mL) diluted with 800 mL of 0.1M phosphate buffer 

at pH 7.1. After adding 4 mL of a mixture of trichloromethane : isopropanol (5:1 v/v), the samples 

were shaken at 200 oscillations/min for 10 min and centrifuged at 4000 x g for 5 min. Three mL 

of the organic layer was transferred into a clean tube and dried at 40 ° C under nitrogen stream. 

The residue was dissolved in 0.2 mL MeOH, vortexed, and an aliquot was injected onto the 

chromatographic system. About the organ extractions, liver, kidney, lung and muscle were 

defrozen and immediately dissected into small pieces. A total of 1 g per each sample was placed 

into 10 mL glasses tubes and was added to 3 mL of homogenization reagent consisting of 0.1M 

phosphate buffer at pH 7.1. The suspension was homogenized using an Ultra Turrax for 1 min. 

Internal standard aliquots of 0.1 mL of IS (10 µg/mL) was added to 500 µL of suspension and 

vortexed for 1 min. Four mL of a mixture of trichloromethane:isopropanol (5:1 v/v) was added 

and the samples were shaken at 200 oscillations/min for 10 min and centrifuged at 4000 x g for 5 

min. Three mL of the organic layer was transferred into a clean tube and dried at 40°C under 

nitrogen stream. The residue was dissolved in 0.2 mL MeOH, vortexed, and an aliquot was injected 

onto the chromatographic system. 
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3.2.3.3 Sample quantification 

Standard curves were constructed with standard LEVO concentrations vs. ratio of LEVO /internal 

standard peak areas. Linearity of the regression curves in the range 50-5000 ng/mL and 50-2000 

ng/mL for plasma and organs respectively were assessed on the basis of the residual plot, the fit 

test and the back calculation (within 20% of known amount). Limit of detection (LOD) and limit 

of quantitation (LOQ) were determined as analyte concentrations giving signal-to-noise ratios of 

3 and 10, respectively. The quantitative HPLC method for plasma and each organs were validated 

by examining the measurement of consistency of results (within-run and between-run), correlation 

(coefficient of determination of the standard curve), and extraction efficiency of the assay. The 

within-run precision was calculated from similar responses from six repeats of three control 

samples (10, 500, and 1000 ng/mL) in one run. The between-run precision was determined by 

comparing the calculated response (in ng/mL back-fit of the standard curve) of the low (10 ng/mL), 

middle (500 ng/mL), and high (1000 ng/mL) control samples over three consecutive daily runs 

(total of six runs). The assay accuracy for within-run and between-run was established by 

determining the ratio of calculated response to expected response for low (10 ng/mL), middle (500 

ng/mL), and high (1000 ng/mL) control samples over six runs. The extraction efficiency was 

determined by comparing the response (in area) of low, middle, and high standards, and the 

internal standard, spiked into blank plasma eluent before evaporation, to the response from 

equivalent extracted standards. 

3.2.4 Pharmacokinetic analysis 

Pharmacokinetic parameters for IV and PO administration were determined individually as a non-

compartmental model using WinNonlin 5.3.1 software (Pharsight).  

The oral bioavailability (F) was calculated as (Eq. 6): 
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Eq.6      F = 
𝐴𝑈𝐶 (𝑃𝑂)

𝐴𝑈𝐶 (𝐼𝑉)
 

 

3.2.5 Serum protein binding 

The ultrafiltration method was used according to Whitlam & Kenneth (1981). Five ranges of 

LEVO concentrations (10, 50, 100, 500, 1000 ng/mL) were used to determine the % of binding. 

Each experiment was run in triplicate. The EMIT free level filter system (Syva Co., Palo Alto, 

CA) was used for the ultrafiltration. One mL of serum spiked with various concentrations of LEVO 

was placed in the filter. The samples were centrifuged for 10 min at 2000 x g, 37° C. The obtained 

ultra-filtrate containing free LEVO underwent HPLC analysis.  

3.2.6 Pharmacodynamic analysis 

The PD analysis was performed at the, University of Turin, Department of Veterinary Sciences, 

Turin, Italy. 

3.2.6.1 Isolation of Escherichia coli 

Two field Escherichia coli isolates were collected from cloacal swabs of healthy broiler chickens. 

Animals were housed in a poultry farm near Turin (Italy) and no pharmacological treatments have 

been administered in the previous two months. The samples were cultured on MacConkey agar 

(Oxoid) and incubated at 37 °C overnight. Lactose-fermenting, indole-positive colonies were 

evaluated using the BBL Crystal test (Becton Dickinson). Then, the identified E. coli colonies 

were stored in Luria-Bertani broth (Oxoid) containing 15% glycerol at -80 °C until further testing. 

American Type Culture Collection (ATCC) strain of E. coli 25922 was also used in this study as 

reference strain.  
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3.2.6.2 Determination of MIC and MBC values in broth and in serum 

Minimal inhibitory concentration (MIC) was determined in broth and in serum obtained from 

healthy broiler chickens using the microdilution method according to Clinical and Laboratory 

Standards Institute (CLSI) guidelines (CLSI, 2009). Briefly, E. coli strains were seeded on 

Trypticase Soy Agar (TSA) (Oxoid). Colonies from overnight growth were directly suspended in 

Mueller-Hinton broth (MHB) (Oxoid) to obtain a turbidity comparable to the McFarland turbidity 

standard of 0.5. Cultures were diluted 1:100 with broth to reach a final concentration of 106 colony 

forming units (CFU)/mL. LEVO solution (final concentration of 64 μg/mL) was added either to 

MHB or to serum obtained from the control broiler chickens. Serial dilutions from this solution 

were prepared in broth and in serum to reach concentrations ranging from 32 μg/mL and 0.008 

μg/mL, and in presence of approximately 5×105 CFU/mL. Plates were incubated at 37 °C for 18 h 

and read at 600 nm, using the Ultraspec 2000 Spectrophotometer (Pharmacia Biotech, New Jersey, 

USA). The MIC was reported as the lowest concentration of tested drug able to inhibit bacterial 

growth. From the wells showing no visible sign of growth/turbidity in MIC determination, bacteria 

were transferred into TSA plates by streak plate method. The plates were then incubated at 37 °C 

for 24 h. The smallest concentration showing no growth of tested organisms was considered as the 

minimum bactericidal concentration (MBC). MIC and MBC of LEVO against E. coli ATCC 

25922 were determined only in MHB, whereas the same parameters were evaluated for the 

sensitive field strains both in MHB and in serum. All experiments were performed in triplicate. 

3.2.6.3 In vitro bacterial killing curves 

Twenty blood samples were obtained from no treated healthy broiler chickens. The animal samples 

were collected in a poultry farm near Turin (Italy). Samples were collected prior the slaughtering. 

Blood samples were placed at room temperature for 60 min and then centrifuged at 2000 g for 

10 min, and immediately frozen at −20  °C until further analysis. Eight colonies from 24 h TSA 
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culture of the sensitive field E. coli strains were suspended in 9 mL MHB and incubated for 20 h 

at 37 °C. Solutions of LEVO in serum (1 mL) were prepared at the following concentrations: 0.0 

μg/mL (control), 0.03 μg/mL, 0.06 μg/mL, 0.125 μg/mL, 0.25 μg/mL, 0.5 μg/mL, and 1 μg/mL. 

These solutions were added in presence of 10 μL broth culture in order to reach the final 

concentration of 2×107 CFU/mL, approximately. To determinate colony forming units, serial 

dilutions from 10–2 tо 10–6 in sterile saline were prepared (control = 10–8) and were incubated for 

3, 6 and 24 h at 37 °C. Then, 10 μL of each dilution were inoculated on TSA and colony-forming 

units were counted after 16 h. The countable dilution is the dilution that gives 3 to 30 colonies per 

10 µL drop of sample dispensed (Herigstad et al., 2001). All experiments were performed in 

triplicate. 

3.2.6.4 Ex vivo bacterial killing curves 

Eight to ten colonies from overnight growth of E. coli in TSA (as mentioned above) were used to 

inoculate 9 mL of MHB, and then incubated overnight at 37 °C. To each 0. 5 mL serum sample 

from treated animals, 5 µL of the stationary-phase bacterial cultures was added to give a final 

concentration of approximately 3×107 CFU/mL. To determine the numbers of CFU, serial 

dilutions (ranging from 10-2 to 10–6) were prepared with sterile saline and incubated at 37 °C for 

3, 6, and 24 h. Thereafter, aliquots of 10 µL were plotted on TSA plates and the numbers of CFU 

were counted after 16-h incubations. The countable dilution is the dilution that gives 3 to 30 

colonies per 10 µL drop of sample dispensed (Herigstad et al., 2001). All experiments were 

performed in triplicate. 

3.2.7 PK/PD integration and optimal dose determination 

For PK/PD integration, the indices, in vivo Cmax/MIC and AUC24h/MIC, were calculated by linking 

PK data with PD index (MIC) for serum after oral administration of LEVO in clinically isolated 

E. coli. For PK/PD modeling, ex vivo AUC24h/MIC were obtained after 24h incubation from ex 
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vivo time killing curve and fitted using the sigmoidal inhibitory Emax model following equation 

(Eq. 7): 

 

Eq. 7     𝐸 = 𝐸𝑚𝑎𝑥 −
(𝐸𝑚𝑎𝑥−𝐸0)×𝐶𝑒

𝑁

𝐸𝐶50
𝑁 +𝐶𝑒

𝑁  

 

where Emax is the log10 difference in bacterial counts in the test sample containing LEVO after 24 

h of incubation when the limit of detection is reached; E0 is the log10 difference in bacterial counts 

in control sample (without drug) after 24 h incubation compared to the initial inocula log10 count 

in samples incubated between time 0 and 24 h; Ce is the ex vivo AUC24h/MIC in the effect 

compartment; and N is the Hill coefficient which describes the steepness of the ex vivo 

AUC24h/MIC-effect curve. These PD indices were calculated using a non-linear regression 

software (WinNonlin, USA). The antibacterial effect of LEVO was quantified from the sigmoidal 

inhibitory Emax model for three levels of growth inhibition: bacteriostatic (no change in bacterial 

count from control zero time count), bactericidal effect (99.9% reduction in bacterial count) and 

bacterial eradication (the lowest ex vivo AUC24h/MIC that produced a reduction in bacterial counts 

to the limit of detection). Thus, the values of ex vivo AUC24h/MIC for bacteriostatic and 

bactericidal effect were the values which produce E = 0 and -3, respectively. 

Using PK/PD modelling, the optimal oral dose in broilers were predicted and calculated using the 

following equation (Eq. 8) (McKellar et al., 2004): 

 

Eq. 8    𝐷𝑜𝑠𝑒 𝑝𝑒𝑟 𝑑𝑎𝑦 =
𝐶𝑙×𝑒𝑥 𝑣𝑖𝑣𝑜 𝐴𝑈𝐶24ℎ/𝑀𝐼𝐶×𝑀𝐼𝐶

𝑓𝑢×𝐹×24ℎ
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where, Cl is the clearance; ex vivo AUC24h/MIC is the ex vivo AUC24h/MIC ratio for optimal 

efficacy; F is the bioavailability; MIC is the minimum inhibitory concentration; fu is the free 

fraction of drug in plasma. 

3.2.8 Statistical analysis 

PK and PD data were expressed as mean ± SD, except for PK/PD indices which were presented 

as mean ± SE. Statistical comparison of PK parameters was determined with Student’s t-test and 

performed by Excel program (Microsoft). 

 

3.3. Results 

3.3.1 Pharmacokinetic analysis  

No adverse effects were observed during the experiment. Following IV and PO administration of 

LEVO at 5 mg/kg, the plasma concentration vs. time curve is illustrated in Figure 16.  

 

Figure 16. Mean plasma concentration vs. time curve of levofloxacin after IV (—○—) 

and PO (--□--) administrations at 5 mg/kg in broilers. Bars represent the SD. 
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LEVO concentration for IV and PO were detectable in the plasma up to 24. Pharmacokinetic 

parameters of LEVO were presented in Table 3.  

After a PO administration, LEVO showed fast absorption with the mean Tmax value of 0.88 h. The 

mean values of HLλZ for IV and PO were 6.93 and 8.09 h, respectively, but not statistically 

different between the two different routes of administration. The MRT was consistent between 

two groups. The AUMC0-last in PO group was significantly higher than that in IV group. The 

bioavailability for PO administration was complete with a mean value of 123.25 %. 
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Table 3. Pharmacokinetic parameters of levofloxacin after IV and PO administration 

at 5 mg/kg in broilers. 

Parameters Units IV PO 

Mean 
 

SD Mean 
 

SD 

R2 
 

0.99 ± 0.02 0.97 ± 0.04 

λZ 1/h 0.12 ± 0.04 0.09 ± 0.02 

HLλZ h 6.93 ± 2.94 8.09 ± 1.71 

Tmax h 
 

± / 0.88 ± 0.23 

Cmax ng/mL 
 

± / 1949 ± 382 

C0 ng/mL 3543 ± 2278 / ± / 

AUC0-24 h*ng/mL 12734 ± 3772 15695 ± 1464 

Vss mL/kg 2881 ± 1071 / 
 

/ 

V/F mL/kg 3599 ± 1335 3288 ± 659 

CL/F mL/hr/kg 381.17 ± 90.10 282.69 ± 26.42 

AUMC h*h*ng/mL 68569a ± 27012 108156 ± 9980 

MRT h 5.37 ± 1.31 6.90 ± 0.37 

F % / ± / 123.25 ± NA 

λZ, first-order rate constant; HLλZ, half-life of the terminal portion of the curve; Tmax, time at the maximum 

drug concentration; Cmax, maximum plasma drug concentration; C0, concentration at time 0; AUC0-24, area 

under the curve from 0 to the last; Vss, volume of distribution at steady state; V/F, volume of distribution 

during the elimination phase; CL/F, body clearance during the elimination phase; AUMC, area under the 

first moment curve from 0 to the last; MRT, mean residence time; F, absolute bioavailability. 

a, significant difference between each treatment group (P<0.05). 
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3.3.2 Disposition of levofloxacin in tissues 

LEVO were found in the investigated tissues up to 48 h following oral administration at 5 mg/kg 

(Figure 17). At 1 h after oral administration, drug tissue concentrations in most organs were high 

and then decreased over time except in muscle. Maximum concentration in muscle was reached at 

6 h after administration. The highest levels of LEVO (6576 ± 1741 ng/mL) were observed in the 

liver. The concentrations of LEVO in kidney, lung and muscle were the next highest. The levels 

of LEVO were similar in liver and kidney, also, higher than those in muscle and lung. 

 

 

Figure 17. Tissue disposition of levofloxacin after PO administration at 5 mg/kg in broilers. Bars 

represent the SD 

 

3.3.3 Serum protein bound 

LEVO is approximately 20 to 30% bound to serum proteins. The average value was 24 ± 5 %. 

Serum protein binding seems independent of serum drug concentrations. 
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3.3.4 Pharmacodynamic analysis 

3.3.4.1 MIC and MBC determination 

The results from the determination of MIC in MHB showed that the two field E. coli isolates were 

sensitive to LEVO. MIC and MBC values are summarized in Table 4. The MIC of LEVO in MHB 

and serum were 0.03 μg/mL and 0.06 µg/mL, respectively. MBC in MHB and serum were 0.03 

and 0.125 μg/mL, respectively. 

 

Table 4. Minimal inhibitory concentrations (MICs), minimal bactericidal concentrations 

(MBCs) for field Escherichia coli isolates and the reference E. coli ATCC 25922 strain. 

E. coli strain 
MIC μg/ml MBC μg/ml 

MHB Serum MHB Serum 

Sensitive E. coli A 0.03 0.06 0.03 0.125 

Sensitive E. coli B 0.03 0.06 0.03 0.125 

E. coli ATCC 25922 0.015 - 0.03 - 

 

3.3.4.2 In vitro bacterial killing curves 

In vitro bacterial activities of LEVO against E. coli has been presented in Figure 18A. The number 

of bacteria in control sample was increased in count of ~5 log10 CFU/mL after 24 h incubation. 

For 1/2 MIC and MIC treatment, the growth of bacteria has been reduced up to 6 h, when a slight 

increasing was visible. The number of bacteria was decreased in count of >3 log10 CFU/mL after 

3 h exposure and it reduced below the limit of detection at 2 MIC. Concentration ranging from 4 

to16 MIC, showed a bacterial eradication after 3 h of exposure (Figure 18 A). 
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3.3.4.3 Ex vivo bacterial killing curves 

The ex vivo antibacterial activity of LEVO against sensitive field E. coli was determined using 

serum samples collected at different time points (10, 30 min, 1, 4, 6, 10, 24 and 48 h), following 

mean LEVO concentration were 841, 1591, 2135, 981, 651, 329, 137 and 27 ng/mL, respectively. 

The ex vivo time killing curves are presented in Figure 18 B. Ex vivo antibacterial effect of LEVO 

was similar to in vitro time kill curve that indicated LEVO concentration above 4 MIC lead to 

eradication of E. coli after 24 h of incubation. At the lowest plasma concentration sample (48 h), 

of the number of bacteria remained stable in comparison of 3 h incubation time point, however, 

the level of bacteria was increased in amount of control sample after 6 h. All the other tested 

samples, ranging from 10 min to 10 h, demonstrated a high bactericidal effect, that started after 3 

h of incubation and that was maintained for the entire experiment. The samples of 24 h 

demonstrated an efficiency after 6 h of incubation till the end of the experiment.  
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Figure 18. In vitro (A) and ex vivo (B) antibacterial effects of levofloxacin in serum of broilers 

against E. coli after PO administration at 5 mg/kg. 

 

3.3.5 PK/PD integration 

The mean values of in vivo Cmax/MIC, AUC24h/MIC, Cmax/MPC and AUC24h/MPC against E. coli 

were represented in Table 5.  
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After oral administration of LEVO, in vivo Cmax/MIC and AUC24h/MIC obtained against E. coli 

were 32.48 and 261.59 h, respectively. Moreover, the mean values for in vivo Cmax/MPC and 

AUC24h/MPC were 15.59 and 125.56 h, respectively. 

 

Table 5. Indices of PK/PD integration after PO administration of levofloxacin at 5 mg/kg in 

broilers. 

Parameters Units Mean ± SD 

 Cmax/MIC - 32.48 ± 6.37 

 AUC24h/MIC h 261.59 ± 24.41 

 Cmax/MBC - 15.59 ± 3.06 

 AUC24h/MBC h 125.56 ± 11.71 

 

3.3.5.1 PK/PD modelling and optimal dose determination 

The PK/PD indices obtained from Emax model were presented in Table 6. The mean values of ex 

vivo AUC24h/MIC corresponded to bacteriostatic, bactericidal and eradication effects were 18.77, 

24.02 and 36.27 h, respectively. The slope of Emax model was steep with mean N value of 5.21. 

Basing on the obtained ex vivo AUC24h/MIC by PK-PD modelling, the daily optimal dose of LEVO 

was obtained corresponding for bacteriostatic, bactericidal and eradication effects. 
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Table 6. Parameters of PK/PD modelling from ex vivo experiment after oral administration of 

levofloxacin at 5 mg/kg in broilers. 

Parameters Units Mean ± SD 

Log10 Emax CFU/mL -6.65 ± 0.18 

Log10 E0 CFU/mL 3.35 ± 0.08 

Log10 Emax-E0 CFU/mL -10.01 ± 0.21 

EC50 h 21.46 ± 6.94 

AUC24h/MIC for bacteriostatic effect h 18.77 ± 0.12 

AUC24h/MIC for bactericidal effect h 24.02 ± 0.28 

AUC24h/MIC for bacterial eradication h 36.27 ± 0.88 

Slope (N) - 5.21 ± 0.83 

E0, difference in bacterial count in control sample between time 0 and 24 h; Emax, difference in bacterial 

count in sample incubated with levofloxacin between time 0 and 24 h, when the detection limit is 

reached; EC50, AUC24h/MIC of drug producing 50% of the maximum antibacterial effect; N, slope of 

the AUC24h/MIC – response curve. 

 

Basing on the obtained ex vivo AUC24h/MIC by PK-PD modelling, the daily optimal dose of LEVO 

was obtained corresponding for bacteriostatic, bactericidal and eradication effects. The MIC90 

values (range from 0.06 to 0.125 µg/mL) of LEVO against E. coli were used from literatures for 

the determination of optimal dose (Hansen and Blondeau, 2005). Optimal doses for the expected 

antibacterial effects were presented in Table 7. 
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Table 7. Predicted optimal daily dose of levofloxacin for PO administration in broilers. 

Expected effects aMIC90: 0.06 µg/mL aMIC90: 0.125 µg/mL 

Dose for bacteriostatic effect 1.1 mg/kg 2.2 mg/kg 

Dose for bactericidal effect 1.4 mg/kg 2.9 mg/kg 

Dose for eradication 2.1 mg/kg 4.3 mg/kg 

a MIC90 values from a literature (Hansen & Blondeau, 2005). 

 

3.4 Discussion and Conclusion 

It has been widely recognized that an inappropriate usage of antibiotics, like as overuse and misuse 

is one of the risk factor for both emergence of resistance and therapeutic failure. Thus, the 

appropriate dosage should be designed, not only to maximize clinical efficacy, but also to 

minimize the emergence of resistance for target animal species (Schentag, 2000; Dagan et al., 

2001; Toutain et al., 2002). The PK/PD approach has been considered as a demonstrable tool in 

the design of optimal dosage strategies. In addition, PK/PD modelling of time–kill curves has the 

advantage of describing the PD effect by parameters, which represent the potency and efficacy of 

drug. Data on the PK/PD of LEVO in poultry are limited, and, in authors’ knowledge, this is the 

first complete study that considers PK/PD of LEVO in broilers. 

After IV and PO administration of LEVO in broilers, the mean values of half-life for IV and PO 

group were 6.93 and 8.09 h, respectively, which are longer than those reported in sheep (Patel et 

al., 2012), camels (Goudah, 2009), goats (Goudah et al., 2009) and cattle calves (Kumar et al., 

2012), but shorter than those in cats (Albarellos et al., 2005). These data indicate that LEVO shows 

some difference in elimination rate among animal species. However, these findings were not 

consistent with data reported in the study of Varia et al., (2009) in which LEVO was administered 
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at 10 mg/kg in broilers. These differences may potentially be explained by experimental 

discrepancies of dosage, age, breed and number of animals between the two studies. 

The apparent volume of distribution at steady state (Vdss) was 2881 mL/kg in broilers indicating 

a relatively wide distribution and it was higher than those reported in sheep (Patel et al., 2012), 

camels (Goudah, 2009), goats (Goudah et al., 2009) and cats (Albarellos et al., 2005). In addition, 

it was consistent with that reported in broilers (Varia et al., 2009). LEVO is eliminated primarily 

by the kidney with the involvement of both glomerular filtration and tubular secretion (Fish & 

Chow, 1997). The CL (mean value; 381.17 mL/h/kg) in broilers was similar to those observed in 

cattle calves (Kumar et al., 2012), sheep (Patel et al., 2012) and camels (Goudah, 2009). 

The absolute bioavailability of LEVO in broilers after PO administration was almost complete 

with mean %F value (123.25 %) suggesting the excellent absorption of LEVO in broilers. 

However, the variation of bioavailabilities has been found among animal species. This value was 

similar to that measured in camels (94%; Goudah, 2009), but higher than those observed in calves 

(62%, Kumar et al., 2012; 57%, Dumka & Srivastava, 2006; 2007), and cats (71%; Albarellos et 

al., 2005). 

Following PO administration of LEVO at the dose of 5 mg/kg revealed drug concentration in liver 

was 6.57±1.74 μg/g after 1 h and 0.14±0.01 μg/g after 48 h respectively, whereas in muscles the 

concentration was 0.94±0.07 μg/g after 1 h and 0.04±0.01 μg/g after 48 h respectively. This 

persistence of drug in tissue supports the wide value for Vss found in this investigation. The levels 

of LEVO in liver and kidney were higher (4-5 folds) than those measured in muscle and lung 1 h 

after administration. This might suggest a specific LEVO affinity for these two clearing organs. 

The PK/PD approach allows to determine the optimal dosage on the basis of the microbiological 

susceptibility and the variation of the disposition kinetics (Hyatt et al., 1995; Sanchez- Recio et 

al., 2000; Toutain & Bousquet-Melou, 2006). In defining PK/PD relationships the key parameters 
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of PKs are the area under the plasma concentration curve (AUC), the maximum plasma 

concentration (Cmax) and the duration of plasma concentration exceeding the MIC (T>MIC) (Hyatt 

et al., 1995). The key PD parameter is the minimum inhibitory concentration (MIC) (Hyatt et al., 

1995). Although the methods for MIC are standardized and reproducible (CLSI, 2009), the results 

of this method may be influenced by many technical factors (inoculum size, incubation times, 

medium content, etc) (Hyatt et al., 1995). Significant difference of MIC or MBC values both in 

broth and serum have been found in many investigations (Hyatt et al., 1995; Aliabadi & Lees, 

2001). In the present investigation, MIC and MBC of LEVO against E. coli were determined in 

broth and serum of broilers to overcome this limitation. MIC (0.03MHB–0.06 serum μg/mL) and MBC 

(0.03 MHB –0.125 serum μg/mL) were significantly different in both matrices. This result indicates 

that the serum inhibitory activity was reduced and that corresponds with previous data reported on 

the decreased antimicrobial effects of most fluoroquinolones in serum (two- to four-fold higher 

MICs) (Aliabadi et al., 2003a; Aliabadi et al., 2003b; Haritova et al., 2004). This result may be 

accounted for moderate protein binding (38%, Fish & Chow, 1997 and in buffalo (19%, Ram et 

al., 2008). The protein binding of LEVO in broilers determined in this investigation was in 

between those previously reported, but still in the same range.  

Data from the time killing curve indicates that LEVO showed concentration-dependent killing 

pattern against E. coli. For E. coli, LEVO produced an in vitro antibacterial activity with low 

multiples (2- and 4-) of MIC in serum. The bactericidal activity rapidly manifested within 3–6 h 

of incubation, followed by eradication with 4MIC at 3 h. The elimination of bacteria was 

maintained up to 24 h of incubation (where drug concentration > 2 MIC). Ex vivo antibacterial 

activity was consistent with in vitro time killing curve data that indicated LEVO concentrations ≥ 

2 MIC lead to eradication of E. coli. To the author's knowledge, this is the first paper reporting 

this comparison. According to Hyatt et al. (1995), in quantitative terms the PK/PD parameters 

which have been most extensively investigated, and for which the most robust information is 
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currently available, are AUC24/MIC, Cmax/MIC and T N MIC. AUC24/MIC and Cmax//MIC are the 

best predictor of efficacy correlating with concentration-dependent antibiotics (Craig, 1993; 

McKellar et al., 2004). It has been widely proposed that dosage regimens which produce high 

PK/PD parameters such as AUC24/MIC > 125 and Cmax/MIC > 10, are more likely to be successful 

and less likely to be associated with emergence of resistance (Forrest et al., 1993; Schentag, 2000). 

However, more recent studies suggested that these values might be overestimated and should be 

lowered in veterinary medicine (Papich, 2014). The calculated mean Cmax//MIC and AUC24 h/MIC 

for LEVO in this study were 32 and 262, respectively. According to the concept outlined above, 

the dose of 5mg/kg/day PO in broilers seems to be effective for the treatment of colibacillosis. In 

addition, in vitro MIC method using artificial growth media are limited by the lack of various host 

factors such as their immune function. To address this limitation, integration of PD to PK in an ex 

vivo model was attempted in this study. The ex vivo AUC24/MIC parameters were utilised for this 

integration using the sigmoid Emax model with the reduction in bacterial numbers after 24 h of 

incubation. The lowest effective ex vivo AUC24/MICs, corresponding to bacteriostatic, 

bactericidal activity and eradication of the bacteria, were determined for serum. The mean values 

of ex vivo AUC24/MIC corresponding to bacteriostatic, bactericidal and eradication effects were 

18.77, 24.02 and 36.27 h, respectively. The optimal dosages corresponding to bacteriostatic, 

bactericidal activity and eradication of the bacteria were predicted by using the ex vivo 

AUC24/MIC. The calculated optimal doses for bacteriostatic, bactericidal activity and eradication 

were 1.1, 1.4 and 2.1 mg/kg, respectively, considering MIC90 of 0.06 μg/ml. However, using 

recently reported MIC90 (0.125 μg/ml) of E. coli the predicted doses were 2.2, 2.9 and 4.3 

mg/kg/day PO, respectively.  

In conclusion, this is the first study to access the PK/PD relationship of LEVO in broilers. PK/PD 

indices against E. coli were investigated in an ex vivo model. The data presented would suggest 

optimal doses of 2.9 to 4.3 mg/kg/day PO for LEVO against E. coli if the MIC is 0.125 µg/mL. 
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Thus, further studies are needed to determine the efficacy in naturally diseased animals or disease 

models 
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4. Determination and validation of two analytical methods for quantification of 

tulathromycin in plasma goats. Pharmacokinetic study of tulathromycin in 

lactating goats. 

 

Macrolides (erythromycin, tylosin, spiramycin, and tilmicosin) are a class of antibiotics approved 

for the use in livestock. Typically, repeated administrations of these drugs over several days are 

required to achieve therapeutic efficacy, but single administration therapy is desirable for livestock 

producers who wish to minimize animal handling and maximize compliance (Gàler et al., 2004).  

Tulathromycin (TU) is a novel triamilide belonging to the macrolides class of antibiotics used for 

the treatment of respiratory diseases in cattle and swine providing high clinical efficacy after a 

single parenteral administration at 2.5 mg/kg. 

Nowadays, though domestic goats are present as a worldwide population in numbers large enough 

to confer a status of major species, these animals are still considered as a minor species by the 

regulatory agencies in Europe and the USA (Toutain et al., 2010). Due to the lower number of 

goats compared to the other livestock species their health issues cannot be addressed with EMA 

or FDA-approved medications. Consequently, many drugs are administered to goats in an extra-

label manner with no scientific information on drug behaviour, potential toxicity, and adequate 

withdrawal periods for drug removal from products marketed for human consumption (Clothier, 

2010). 

Bacterial pneumonia is a frequent health problem in small ruminants. Mannheimia haemolytica, 

Bibersteinia (Pasteurella) trehalosi, Pasteurella multocida, and Mycoplasma spp. are all 

commensals of the upper respiratory tract in ruminants that contribute to severe pneumonia upon 

reaching the lungs (Clothier, 2010). The FDA and EMA (EMA/499041/2007) approved label 
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indications of TU including only beef and non-lactating dairy cattle for the treatment of bovine 

respiratory disease associated with Mannheimia haemolytica, Pasteurella multocida, Histophilus 

somni (Haemophilus somnus) and Mycoplasma bovis, infectious bovine keratoconjunctivitis 

associated with Moraxella bovis and for the control of respiratory disease in cattle at high risk of 

developing bovine respiratory disease associated with Mannheimia haemolytica, P. multocida, H. 

somni and M. bovis. In addition, TU is registered in the USA for the treatment of interdigital 

necrobacillosis associated with Fusobacterium necrophorum and Porphyromonas levii. The FDA 

and EMA approved TU also for swine where the drug is recommended for the treatment of 

respiratory conditions associated with Actinobacillus pleuropneumoniae, P. multocida, Bordetella 

bronchiseptica, and Haemophilus parasuis (Villarino et al., 2013a). 

In order to characterize drug disposition of TU in different biological matrices and its relationship 

to efficacy, an accurate, precise and robust analytical method is requested. TU is manufactured as 

a single isomer or parent compound, designated CP472,295. This molecule equilibrates in solution 

into in 9:1 mixture of two TU isoforms, designated CP-472,295 and 547,272, respectively. A 

recent method for TU evaluation has been published by Gáler et al. (2004). It quantifies the levels 

of the parent compound CP-472,295 (fragment) in plasma or lung tissue samples using a detection 

via electrospray ionization and tandem mass spectrometry. Moreover, EMA and FDA approved 

the common fragment or marker residue (CP-60,300) for the two different isoforms CP-472,295 

and 547,272. This marker residue was shown to account for between 78 and 95% of all residues 

in another animal (sheep) where the drug is usually used in off-label manner. Based on the residue 

depletion data, distribution of marker residue between target tissue and ratios of marker to total 

residues, and taking into account the toxicological ADI of 3000 µg/person, the MRL values for 

muscle, liver and fat in ovines should be 450 µg/kg for muscle, 250 µg/kg for fat, 5400 µg/kg for 

liver and 1800 µg/kg for kidney (EMA/CVMP/131462/2014). 
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In line with Article 5 of Regulation (EC) No 470/2009 the Committee for Medicinal Products for 

Veterinary Use (CVMP) has allowed the extrapolation of the MRL for TU in other food producing 

animals. Taking into account the current scientific knowledge the recommendations on 

extrapolation are justified as follows: existing data indicates that the pattern of metabolites seen in 

rats, dogs, cattle, pigs and sheep are similar. Open available information indicates that the marker 

residue established for sheep is also present in goat tissues. Although it was not specifically 

demonstrated, the analytical method for monitoring of residues in sheep tissues is expected to be 

applicable for monitoring of residues in goat tissues. Concerning milk residue, no data are 

available that would allow conclusions to be drawn on the appropriate marker residue or marker 

to total residues ratio to use in milk. Milk is consumed on a regular basis and in large quantities 

and consequently data on residues in this commodity are considered necessary in order to allow 

adequate evaluation of the risk of a safety consume posed by residues in milk. Investigation on the 

use of TU in dairy cows showed that TU is extensively partitioned into milk. Consequentially, 

basing on the required 1.5 L consumption factor, the use of this drug in dairy cows would not be 

practicable. Moreover, at this moment, no established milk tolerance (MRLs) and approved 

analytical method for monitoring of residues in milk are available for evaluation of TU 

concentration (EMA/CVMP/131462/2014). Therefore, any detectable residues are considered 

violative, and it is important that the withdrawal time of TU concentration in milk falls below the 

analytical detection limit to ensure food safety (Lin et al., 2016). Microbiological assay was used 

to quantify TU residues in milk but milk samples were collected only 19 days post-treatment 

(Amer et al., 2012). Moreover, a sensitive analytical method performed by Grismer et al. (2013) 

was used to quantify the CP-60,300 fragment in milk. In this study, at the last sampling (45 days 

post-treatment), milk CP-60,300 residues were at or above the LOD (1.8 ng/mL) for five goats and 

below LOD for three goats. However, given the long terminal half-life founded (215 h) authors 
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estimated that after 90 days (10 times longer than terminal half-life) residues should not be 

detectable in milk.  

 

4.1 Aim of the study 

The aim of the present study was fourfold: 

-To develop a new analytical method for the determination and quantification of TU by the HPLC-

FL. 

-To develop a new analytical method for the determination and quantification of TU by the 

HPLC/MS-MS. 

-To evaluate its PK in lactating goats before lactating period (IV and SC administrations) and 

during lactation (IV administration) of TU at labelled dose for cattle and swine (2.5 mg/kg).  

-To develop a new analytical method for the determination and quantification of the TU (CP-

60,300) in milk goats by the HPLC/MS-MS. 

 

4.2 Material and methods 

4.2.1 Development of a new analytical method for the determination and quantification of TU by 

the HPLC-FL. 

The analytical method was performed at the University of Pisa, Department of Veterinary 

Sciences, Italy. 

4.2.1.1 Chemicals, reagents and solutions 

The pure compound of TU and roxithromycin used as internal standard (IS) were provided by 

Toronto Chemical Research Inc (Brisbare road, Toronto, ON, Canada). Acetonitrile (ACN, LC-

MS grade) 9-fluorenylmethyloxycarbonyl-chloride (FMOC-Cl), potassium hydroxide and 
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potassium dihydrogenphosphate (KH2PO4) were purchased from Sigma-Aldrich (Saint Louis, 

MO, USA). Deionised water was produced by a Milli-Q Milli-pore Water System (Millipore, MA, 

USA). All other reagents and materials were of analytical grade and supplied from commercial 

sources. The LC mobile phase were filtered through 0.2 µm cellulose acetate membrane filters 

(Sartorius Stedim Biotech S.A., Aubagne Cedex, France) with a solvent filtration apparatus.  

Singular stock solutions of TU and IS in acetonitrile (ACN) were prepared, at a concentration of 

1000 µg/mL, using volumetric flasks and diluted to prepare 6 concentrations at 100, 10, 5, 1, 0.5, 

and 0.1 µg/mL. 

A phosphate buffer solution was prepared for the mobile phase using potassium 

dihydrogenphosphate 50 mM, 500 µL of triethanolamine (TEA) and the pH modified to 7.5 with 

potassium hydroxide 10%. A phosphate buffer solution was prepared for the extraction method 

using potassium dihydrogenphosphate 0.1M and the pH was modified to 7.5 with phosphoric acid. 

4.2.1.2 Chromatographic conditions 

The HPLC system was an LC Jasco (Como, Italy) consisting of quaternary gradient system (PU 

980) and an in line multilambda fluorescence detector (FP 1520). The chromatographic separation 

assay was performed with a Phenomenex synergy polar analytical column (150 mm × 4.6 mm 

inner diameter, 4 µ particle size [Phenomenex, Bologna, Italy]) preceded by a security guard 

column with the same stationary phase (Phenomenex, Bologna, Italy). The system was maintained 

at 25◦C. The mobile phase consisted of ACN: phosphate buffer solution (50 mM, pH 7.5) at a flow 

rate of 2 mL/min. Excitation and emission wavelengths were set at 260 and 315 nm, respectively. 

The elution of the substances was carried out in gradient mode (Table 8). 
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Table 8. HPLC-FL pump program. 

Time range  

(min) 

ACN: phosphate buffer  

(%) 

0-14 60-40 

14-14.1 90-10 

14.1-20 90-10 

20-20.1 60-40 

20.1-22 60-40 

 

4.2.1.3 Sample preparation 

Several high-performance liquid chromatography methods for determination of macrolides are 

reported in literature. Most of them required electrochemical detection due to the insensitivity of 

the macrolides with UV and FL detection. Anyway, many studies are present in the literature 

describing analytical methods for the determination with fluorescence detection of different 

macrolides (erythromycin, azithromycin, roxithromycin, clarithromycin) using a derivatization 

method (Toran˜o & Guchelaar, 1998; Bahrami et al., 2005). No study concerning the 

derivatization of TU and its quantification with the HPLC with fluorescence detector is present in 

the literature. In the present study, TU derivatization method and its extraction from plasma were 

based on a previous study reported by Toran˜o & Guchelaar, (1998) and Bahrami et al., (2005) 

with slight modifications. The reaction of derivatization was performed using 9-

fluorenylmethyloxycarbonyl-chloride (FMOC-Cl) optimized at the concentration of 1000 µg/ml 

diluted in ACN. The reaction time, the proportion of acetonitrile–water, the pH and temperature 

of solution were varied around the expected optimal values. A 100 μl aliquot of blank plasma (drug 

free plasma from goats) was spiked with 100 μL of TU at different concentrations (10, 5, 1, 0.5, 

0.1, and 0.05 µg/mL) and IS (1 μg/mL) and vortexed for 60 sec. Three mL of ACN was added to 
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the sample solution. After shaking for 15 min, the solution was centrifuged for 10 min at 3500 g. 

The organic layer was transferred to the dry disposable glass tube and evaporated at 40° C under 

a flow of nitrogen. The residue was dissolved in 100 μl of ACN and 100 μl of phosphate buffer 

0.1 M at pH 7.5 was added. The sample was vortexed again (30 sec), and finally 100 μl of FMOC-

Cl (1000 μg/mL) was added. The sample was vortexed (30 sec) and incubated in a water-bath of 

50° C for 40 min. After derivatization 200 μl of mobile phase solution (ACN: phosphate buffer 50 

mM ph 7.5, 60:40) was added and the sample was injected into the HPLC-FL. 

 

4.2.2 Development of a new analytical method for the determination and quantification of TU by 

the HPLC/MS-MS. 

The analytical method was performed at the University of Pisa, Department of Surgical, 

Medical, Molecular and Critical Area Pathology, Italy. 

4.2.2.1 Chemicals, reagents and solutions 

The pure compound of TU and Azithromycin (AZI), used as internal standard (IS) were provided 

by Toronto Chemical research Inc (Brisbare road, Toronto, ON, Canada). Acetonitrile (LC-MS 

grade), ultra-pure water (LC-MS grade), ammonium acetate solution 7.5M (CH3COONH4, for 

molecular biology), sodium chloride (NaCl), and sodium carbonate (Na2CO3) were purchased 

from Sigma-Aldrich (Saint Louis, MO, USA). Singular stock solutions of TU and IS in ACN (100 

µg/ml) prepared by serial dilution in drug free plasma, were diluted to prepare a 6-point calibration 

curve at the following concentrations 5 (L1), 25 (L2), 50 (L3), 250 (L4), 500 (L5), and 1000 (L6) 

ng/ml), and stored at -20°C and used as standard stock solutions. Calibration standards (200 µl 

each) were added with DPS (Daily Precipitation Solution) and treated like the samples.  

4.2.2.2 Chromatographic conditions 
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The procedure of TU determination and extraction from plasma were based on that previously 

reported by Toutain et al., (2017) with slight modifications. TU and IS analytes were determined 

by an instrument consisting in an AB Sciex API 4000 triple quadrupole mass spectrometer 

(Concord, ON, Canada), equipped with an ESI source, a quaternary HPLC pump (Series 200, 

Perkin Elmer, Boston, MA, USA), and an Agilent 1290 Infinity UHPLC system (Santa Clara, CA, 

USA), constituted by an autosampler outfitted with peltier tray, a binary pump, and a column oven. 

A ten port switching valve (Valco Instruments Co. Inc., Huston, TX, USA) was used as a divert 

valve. Chromatographic separation was performed by a Waters (Torrance, CA, USA) Acquity 

UPLC BEH C18 1.7 µm, 2.1 x 50 mm HPLC column protected by a BEH C18 1.7 µm security 

guard cartridge. Data acquisition and system control were carried out by an AB Sciex Analyst® 

version 1.6.3 software, while data processing by an AB Sciex Multiquant® version 3.0.2 software. 

Binary pump, quaternary pump, and divert valve were properly set in order to discard both head 

and tail of the HPLC runs. This granted an adequate robustness to the analytical method, 

preventing progressive reduction of instrumental sensitivity. The HPLC separation was performed 

under the gradient conditions shown in Table 9, maintaining the column temperature at 40 °C. The 

eluents were: solvent A: ACN and solvent B: mixture water containing CH3COONH4 20 mM pH 

4. The injection volume was 10 µl for samples, and calibrators. The divert valve was set in order 

to supply the mass spectrometer with the column eluate just in the time interval 3.5  5.0 min. 
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Table 9. HPLC/MS-MS pumps program. 

                    

 HPLC Quaternary Pump  HPLC Binary Pump 

                    

                    

Step 

Total 

time 

(min) 

Flow 

rate 

(µl/min) 

Methanol

(%) 
Water

(%) 

 Total 

time 

(min) 

Flow 

rate 

(µl/min) 

Solvent 

A (%) 

Solvent 

B (%) 

                    

                    

0  0.00   100  50 50   0.00  250  5   95  

1  13.5   100  50 50   1.00  250  5   95  

2           8.00  250  95   5  

4           11.1  250  95   5  

5           11.5  250  5   95  

6           13.5  250  5   95  

                    

                    
Solvent A is acetonitrile; solvent B is water containing CH3COONH4 20mM pH 4 (V%) 

 

The MS method was based on positive ion mode selected reaction monitoring (SRM). Using 

optimized declustering potential (DPs), collision energies (CEs), and collision exit potentials 

(CXPs), two transitions were monitored for each compound, the more intense which, was used as 

a quantifier (Q), while the other one as a qualifier (q). These parameters are listed in Table 10. 

Further operative parameters were set as follows: ionSpray voltage (NC), 5.0 KV; gas source 1 

(GS1) zero air, 45; source temperature (TEM), 550°C; entrance potential (EP), 10 V; IQ1 lens 

potential, -9.7 V; collision gas (CAD) nitrogen, operative pressure with CAD gas on, 4.0 mPa. 
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Table 10. Mass Spectrometry operative parameters 

        

        

 

Analyte 

  Operative Parameters 

  
SRM transitions 

    

    

  DP CE CXP 

        

        

 
Tulathromycin 

 806.6 → 158.1 (q)  
136.6 

54.4 13.3 

  806.6 → 577.3 (Q)  32.5 16.7 

        
 

Azithromycin 
 749.6 → 591.5 (q)  

130 
40.2 8.5 

  749.6 → 573.2 (Q)  46.4 9 

        

        

 

 

The described method was re-validated in terms of linearity, limit of detection (LOD), limit of 

quantification (LOQ), recovery, specificity, stability, precision and accuracy according to 

international guidelines on the bioanalytical method validation (Anonymus, 2011). The calibration 

curve was based on analyte/IS peak area ratios. Correlation coefficient for the calibration curve 

was r2>0.99. Within-run and between-run accuracy and precision were assessed on quality control 

samples (QC samples) and determined by replicate analyses using 3 determinations of different 

concentration levels: LOQ (L1), low QC (L2 and L3), medium QC (L4) and high QC (L5 and L6). 

Stability studies were performed to ensure good reproducibility of the method. Stock solution of 

the analyte and IS (1 μg/mL) and high and low QC samples were tested for short-term room 

temperature conditions, long term storage conditions (−20 °C) and freeze–thaw stability. Short-

term stability determinations were obtained by thawing the QC samples and keeping them at room 

temperature for 24 h, whereas long-term stability was assessed by storing the samples for a period 

of 30 days at −20 °C. 
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4.2.2.3 Animal experiment for the analytical validation 

The applicability of this method has been verified in two healthy lactating goats. The study 

protocol was approved by both the University of Pisa’s ethics committee for animal welfare 

(OPBA) and the Italian Ministry of Health (462/2017 PR). TU was administered by IV route at 

labelled dose for cattle and swine (Draxxin® 100 mg/mL, 2.5 mg/kg b.w.). The commercial drug 

was diluted to 25 mg⁄mL with the double-distilled water containing a 50% propylene glycol vehicle 

and monothioglycerol (5 mg⁄ mL). The 1 mL of solution contained 25 mg of TU with pH value of 

7.0, which was adjusted under sterile conditions prior to drug administration (Wang et al., 2011). 

The blood (5 mL) was collected via indwelling catheter previously inserted in the left jugular vein, 

at assigned times (0, 15, 30, min and 1, 2, 4, 6, 8, 10, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240 

h). After centrifugation at 400xg for 10 min plasma samples were separated and stored at -20 °C 

until use within 30 days from collection. 

4.2.2.4 Sample preparation  

The procedure of TU extraction from plasma was based on that previously reported by Gáler et al. 

(2004) with slight modifications. Aliquots (200 µl) of plasma were added to 100 µl of a Na2CO3 

saturated solution and 100 µl of a freshly prepared DPS containing ACN and IS (25 ng/ml). The 

obtained suspensions were vortexed (15 min) and centrifuged (18,620 x g, 15 min). Each sample 

was added with 700 µl of acetonitrile and 50 mg of NaCl, then they were vortexed (15 min) and 

centrifuged (18,620 x g, 15 min) again. Aliquots of 600 µl of organic supernatants were then 

collected and dried under a gentle stream of nitrogen at 40° C. The dried residues were 

reconstituted with 100 µl of a mixture of the HPLC eluents, solvent A and solvent B (20/80; V/V), 

and the reconstituted matters were vortexed (15 min) and 10 µl of the obtained solutions was 

injected into the LC-MS-MS system.  
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4.2.2.5 Statistical analysis and pharmacokinetic evaluation 

The statistical analyses were evaluated using the Student’s t-test. The results were presented as 

mean ± standard deviation (SD). In all the experiments, differences were considered significant if 

the associated probability level (P) was lower than 0.05. The pharmacokinetic calculations were 

carried out by WinNonlin v 5.3.1 (Pharsight Corp, Sunnyvale, CA, USA), using the standard non-

compartmental analysis. 

4.2.3 PK study in lactating goats 

4.2.3.1 Animal experiment 

The animal experiment was approved by the animal welfare ethics committee of the University 

of Lublin (authorization # 62014) and carried out in accordance with the European law 

(2010/63/UE). The study was split in 2 periods (not pregnant vs lactating goat). In the first 

period, first phase, 6 healthy not pregnant goats were divided randomly in two groups A (n=3) 

and B (n=3) according to a single-dose, two-treatment, two-phase, paired, cross-over design (2x2 

Latin-square). TU was administered by IV and SC routes at the dose of 2.5 mg/kg b.w. The 

washout period was 2 months due to the expected long half-life of elimination of TU (Amer et 

al., 2012; Grismer et al., 2013). Blood samples (5mL) were collected from the right jugular vein 

of each goat immediately before medication and at intervals of 5, 15, 30 min, 1, 2, 4, 6, 8, 10, 24, 

48, 72, 96, 120, 144, 168, 192, 216 and 240 h (up to 10 days).  

During the second PK period, TU was administered by IV administration at the dose of 2.5 

mg/kg to the same 6 goats during the lactation period. The drug was administered on the day in 

milk (DIM), almost 1 week after parturition. Blood samples were collected after milk sample 

collections following the same time schedules of the previous period. Milk sampling for residue 

detection of TU were collected prior and at 30 min, 1, 2, 4, 6, 8, 10, 24 h after drug 

administration (day 1), and once a day for days 2-90. During the first day of sampling, milk was 

collected at different time points from both udders into separate vials. From the day 2, goats 
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were totally milked from both udders into separate vials. Milk samples were stored at -20° C 

within 2 h of samples collection, until analysis for the determination of TU concentration. 

4.2.3.2 Pharmacokinetic analysis 

Pharmacokinetic parameters for IV and SC administration were determined individually as a non-

compartmental model using WinNonlin 5.3.1 software (Pharsight Corp, Sunnyvale, CA, USA).  

The SC bioavailability (F) was calculated as (Eq. 9): 

 

Eq.9      F = 
𝐴𝑈𝐶 (𝑆𝐶)

𝐴𝑈𝐶 (𝐼𝑉)
 

 

4.2.3.3 Statistical analysis and pharmacokinetic evaluation 

The statistical analyses were evaluated using the Student’s t-test. The results were presented as 

mean ± standard deviation (SD). In all the experiments, differences were considered significant if 

the associated probability level (P) was lower than 0.05.The pharmacokinetic calculations were 

carried out by WinNonlin v 5.3.1 (Pharsight Corp, Sunnyvale, CA, USA), using the standard non-

compartmental analysis. 

 

4.3 Results 

4.3.1 Development of a new analytical method for the determination and quantification of TU by 

the HPLC-FL. 

4.3.1.1 Optimization of the analytical method 

In the present study, to optimize the analytical method, different parameters were tested. 

Concerning the detection method, a full scan of the derivatized TU and IS by the fluorescence 
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detector showed the values of 260 and 315 nm as the optimal excitation and emission wavelengths 

for the two compounds, respectively. Three different columns were tested: Luna C18 (250 mm × 

4.6 mm inner diameter, 5 µ particle size), Luna C18 (150 mm × 4.6 mm inner diameter, 5 µ particle 

size) and Phenomenex synergy polar (150 mm × 4.6 mm, 4 µ particle size). The latter column 

presented the better chromatographic separation between TU, IS and matrix peaks. Two 

compounds (roxithromycin, and azithromycin) with amenable chemical features were evaluated 

as ISs. Among these, roxithromycin was found to be the best candidate with an excellent resolution 

and a suitable retention time, providing the shortest chromatographic course and with peaks well 

distinct and separated from both the TU peak and matrix interferences (Figure 19). On the other 

hand, azithromycin, the most similar to TU in chemical and physical characteristics, showed partial 

overlap with TU. Two mobile phases were preliminarily tested, the ACN:ammonium acetate 

buffer and ACN:phosphate buffer at different pH and buffer concentrations. The latter mobile 

phase with a 2.0 mL/min flow, rate was found to optimally provide separation between TU, IS and 

matrix interference peaks in short chromatographic run. A range of buffer pH (5.0, 6.0, 7.0 and 

7.5) were tested to optimize the chromatographic separation. The retention time of TU and IS were 

influenced by different pH. A pH value of 7.5 provided the best separation between the TU, IS and 

matrix peaks.  

Concerning the extraction method, solvents such as AcOEt, CH2Cl2, Et2O and ACN were 

examined. The ACN was selected as the most suitable organic solvent in terms of analyte 

extraction and minimization of matrix components. Finally, different concentrations of FMOC-Cl 

were tested and the 1000 µg/mL showed adequate fluorescence signal. 
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Figure 19. Chromatographic curve from goats control plasma fortified with TU 

100 μg/mL and IS 1 μg/mL). 

 

4.3.2 Development of a new analytical method for the determination and quantification of 

TU by the HPLC-MS/MS. 

4.3.2.1 Optimization of the analytical method 

As mentioned in paragraph 4.2.2.2. the procedure of TU determination from plasma was based on 

that previously reported by Toutain et al., (2017) with slight modifications. To optimize the 

analytical method, different parameters were tested. Two compounds (roxithromycin, and 

azithromycin) with amenable chemical features were evaluated as ISs. Among these, azithromycin 

was found to be the best candidate for similar chemical and physical characteristics to TU, an 

excellent resolution and a suitable retention time (4.30 min.), providing the shortest 

chromatographic course and good baseline separation of them from each (Figure 20).  

IS (1 μg/mL) 

TU (100 μg/mL) 
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Figure 20. HPLC-MS extracted ion chromatogram. It was acquired from a 

real sample and is relative to the ions at m/z 806.6 and 749.6 Da. The peaks 

from TU and IS, are clearly shown at 4.30 min and 4.77 min, respectively. 

 

By injecting standard solutions into a mass spectrometer equipped with an electrospray ionization 

source, TU and IS were detected by monitoring the following Selected reaction Monitoring (SRM) 

transitions: 806.6 > 577.3 Da (quantifier) and 806.6 > 158.1 Da (qualifier) for TU and 749.6 > 

591.5 Da (quantifier) and 749.6 > 591.5 Da (qualifier) for IS. Instrumental parameters were 

optimized in order to maximize signal of those transitions. No endogenous or extraneous 

interfering peaks were observed. Concerning the mobile phase, the ACN:ammonium acetate buffer 

was preliminarily tested at different pH (4, 4.5, 5, 6 and 7) and buffer concentrations (20, 50, 100 

mM). The ammonium acetate phase at 20 mM and pH 4 was found to provide optimally separation 

between TU, IS and matrix interference peaks in short chromatographic run. The method exhibited 

a good linear response for the concentration range of 5-1000 ng/mL. Intra-day and inter-day 

precisions were lower than 15% and the accuracy was ranging from 103 to 105%. The limit of 

quantification (LOQ) was 5 ng/mL with a precision of 9% and an accuracy of 107%. 
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Concerning the extraction method, differently from studies present in the literature where the solid 

phase extraction method (SPE) was commonly used for the extraction of TU, a liquid/liquid 

extraction method has been developed. Different solvents such as AcOEt, CH2Cl2, ACN and 

different pH solutions (chloridric acid and Na2CO3 saturated) were tested in terms of recovery and 

selectivity. The ACN with Na2CO3 saturated were selected as the most suitable solutions in terms 

of analyte extraction efficiency and minimization of matrix components, with a recovery for TU 

in a range of 89-95% and for IS in a range of 87-93%. The processed extracts of TU were stable 

in the auto-sampler at room temperature for at least 24 h.  

4.3.2.2 Animal experiment for the analytical validation 

The applicability of this method has been verified by determining TU in plasma of two healthy 

goats after single IV administration with 2.5 mg/kg of Draxxin®. (Figure 21).  

 

  

Figure 21. Mean plasma concentration vs. time curve of TU after IV 

administration at 2.5 mg/kg in lactating goats (n=2). Bars represent the SD. 
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The described method allowed monitoring of the concentration vs. time curves of the analyte and 

the calculation of the basic pharmacokinetic parameters (Table 11). 

 

Table 11. Pharmacokinetic parameters of TU after IV administration at 2.5 

mg/kg in lactating goats 

       

          IV   

  
Parameter

s   Units   Mean   SD   

  R2       0.97 ± 0.08   

  λz   1/h   0.01105 ± 0.00078   

  HLλz   h   62.81 ± 4.31   

  C0   ng/mL   3255 ± 379   

  AUClast   h*ng/mL   18313 ± 757   

  AUC0-∞   h*ng/mL   19649 ± 559.18   

  CL   mL/h/kg   127.29 ± 3.62   

  MRT0-∞   h   81.83 ± 2.6   

  Vss   mL/kg   10421 ± 639   

                  
λZ, first-order rate constant; HLλZ, half-life of the terminal portion of the curve; C0, 

concentration at time 0; AUClast, area under the curve from 0 to the last; AUC0-∞, 

area under the curve from 0 to infinit; Vss, volume of distribution at steady state; 

CL, body clearance during the elimination phase; MRT, mean residence time; F. 

a, significant difference between each treatment group (P<0.05). 

 

4.3.3 PK study in lactating goats 

No adverse effects were observed during the experiment.  

Following the first period of the study, the plasma concentration vs. time curve of the IV and SC 

administration of TU at 2.5 mg/kg, are illustrated in Figure 22.  



Chapte 4. 

 

83 
Dr. De Vito Virginia 

“Pharmacokinetic studies of “off-label” drugs in food producing animals. Quantification of drug residues in different organic matrices.” 

Tesi di Dottorato in Scienza Veterinarie, Qualità e Sicurezza Alimentare, Università degli studi di Sassari 

 

Figure 22. Mean plasma concentration vs. time curve of TU after IV (——) and SC 

(--●--) administration at 2.5 mg/kg in lactating goats. Bars represent the SD. 

 

TU concentration for IV and SC were detectable in the plasma up to 240 h. PK parameters of TU 

are presented in Table 12.  

  

1

10

100

1000

10000

0 60 120 180 240

C
o

n
ce

n
tr

at
io

n
 (

n
g
/m

L
)

Time (hours)



 

 

 
84 

Chapter 4 

Table 12. Pharmacokinetic parameters of TU after IV and SC administration at 2.5 mg/kg in lactating goats. 

                      

        IV   SC 

Parameters   Units   Mean   SD   Mean   SD 

R2       0.97 ± 0.08   0.98 ± 0.02 

λz   1/h   0.01213 ± 0.00264   0.01217 ± 0.00206 

HLλz   h   58.83 ± 1.40   58.21 ± 1.78 

Tmax   h   / ± /   0.63 ± 0.08 

Cmax   ng/mL   / ± /   520.71 ± 75.51 

C0   ng/mL   3035 ± 370   / ± / 

AUClast   h*ng/mL   17685 ± 752   18383 ± 679 

AUC0-∞   h*ng/mL   18757 ± 743   19684 ± 627 

VD   mL/kg   / ± /   10668 ± 1562 

CL   mL/h/kg   136.47 ± 25.09   127.11 ± 4.07 

MRT0-∞   h   78.24 ± 5.15   90.94 ± 6.31 

Vss   mL/kg   10692 ± 2192   / ± / 

F   %           104.9 ± 1.2 

                      
λZ, first-order rate constant; HLλZ, half-life of the terminal portion of the curve; Tmax, time at the maximum drug concentration; Cmax, maximum plasma drug concentration; C0, concentration at time 

0; AUC0-24, area under the curve from 0 to the last; Vss, volume of distribution at steady state; V/F, volume of distribution during the elimination phase; CL/F, body clearance during the elimination 

phase; AUMC, area under the first moment curve from 0 to the last; MRT, mean residence time; F, absolute bioavailability.  a, significant difference between each treatment group (P<0.05). 

. 
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After a SC administration, TU showed fast absorption with the mean Tmax value of 0.63 h and a 

slow drug elimination. The mean values of HLλZ for IV and SC were 58.83 and 58.21 h, 

respectively. The bioavailability for SC administration was complete with a mean value of 104.9 

%. 

Following the second period of the study, Figure 23 show the plasma concentration vs. time curves 

of TU at 2.5 mg/kg administered by IV injection in lactating goats during two different 

physiological conditions: non pregnant(-○-) and lactating (-▲-) conditions. 

 

 

Figure 23. Mean plasma concentration vs. time curve of TU after IV 

administration during not pregnant (——) and lactating (—▲—) conditions at 

2.5 mg/kg in goats. Bars represent the SD. 

 

Pharmacokinetic parameters of TU after IV administration during lactation condition are 

presented in Table 13. 
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Table 13. Pharmacokinetic parameters of TU after IV administration 

at 2.5 mg/kg in lactating goats during lactation condition. 

              

        IV 

Parameters   Units   Mean ± SD 

R2       0.97 ± 0.04 

λz   1/h   0.00847 ± 0.00354 

HLλz   h   67.15 ± 11.53 

C0   ng/mL   2652 ± 282 

AUClast   h*ng/mL   18905 ± 2608 

AUC0-∞   h*ng/mL   21607 ± 2476 

CL   mL/h/kg   117.08 ± 14.40 

MRT0-∞   h   88.35 ± 4.46 

Vss   mL/kg   12784 ± 3944 

              
λZ, first-order rate constant; HLλZ, half-life of the terminal portion of the curve; C0, 

concentration at time 0; AUClast, area under the curve from 0 to the last; AUC0-∞, 

area under the curve from 0 to infinit; Vss, volume of distribution at steady state; 

CL, body clearance during the elimination phase; MRT, mean residence time; F. 

a, significant difference between each treatment group (P<0.05). 

 

During lactating condition, PK parameter resulted not significantly different from PK parameters 

obtained during not pregnant condition. HLλz, Vss and CL resulted higher but not significantly 

different from the first period of the study.  

Concerning TU residues in milk, the animal experiment was completed, milk was collected up to 

90 days after administration of the drug, but it was not still possible to determine the CP-3600 

fragment of TU due to the analytical problems on the determination and validation of an 

accurate, sensitive and reproducible method. 
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4.4 Discussion and conclusion 

Currently there are limited antimicrobials available for treatments of bacterial infections in goats, 

despite this animal species is often affected by infection diseases. Pharmacokinetic data on 

potential drugs is critical to ensure effective treatment and safe food for human consumption.  

TU has been showed to be very effective against major respiratory pathogens of both cattle and 

swine. Safety profile of TU in caprine species has been found good (Washburn et al. 2007). 

Indeed, adult goats were treated with 25 mg/kg of TU which is ten times the labeled dose (2.5 

mg/kg) for cattle and swine and observed for signs of adverse reactions. Observations on 

physical condition, clinical pathology parameters and genotoxicity assessment has found to not 

be affected by the TU administration. The same results has been assessed also by of Clothier et 

al., (2010). In agreement with former studies, no adverse effects were observed in all the animals 

after both IV and SC administration in the present research.  

Relating to the HPLC-FL study, although the chromatographic conditions are suitable for the 

determination of the IS, the same conditions were not suitable for the determination of the analyte 

TU. All these analytical conditions did not show a right compromise especially in terms of 

sensitivity (LOQ 100 µg/mL) of the instrument for the determination of TU after derivatization 

method in plasma samples. Finally, the derivatization reaction did not show to be repeatable 

between TU concentrations, presenting a high variability between samples.  

Concerning the HPLC/MS-MS, the liquid/liquid extraction provides a selective and accurate 

analysis of TU without the need for expensive clean-up steps. It presents a simple and more rapid 

extraction method compared to the common SPE method (Gáler et al. 2004; Toutain et al., 2017) 

with an optimal recovery (about 90%) of the analyte. 

Relating to the PK study performed in the present research, the pharmacokinetics reported in the 

present study shows for the first time the determination of TU after IV administration in lactating 
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goats using the LC-MS/MS, an accurate and sensitive method characterized by a lower LOQ (5 

ng/mL) compared to the microbiological assay performed by Amer et al., (2012). The PK 

parameters showed after IV and SC administration at the dose of 2.5 mg/kg b.w. demonstrated 

similar variabilities to those reported in other studies performed in goats (Amer et al., 2012, Young 

et al., 2011, Clothier et al., 2011), but also reported in cattle (Gáler et al. 2004; Nowakowski et 

al., 2004) and swine (Benchaoui et al., 2004). This can be due to the different animal breed used 

in the studies and the different analytical method performed to determined TU concentration in 

plasma. The pharmacokinetics of a single IV administration of TU in lactating goats during non-

pregnant condition were similar to those in lactating conditions. These similarities are in agreement 

with data observed in other different animal species and different route of administrations (Amer 

et al., 2012). The SC route was chosen for the present study because it is considered the most 

relevant route for the administration of TU in different animal species.  

Following the single SC injection of TU in lactating goats during non-pregnant period, TU was 

rapidly absorbed. Low plasma concentrations of TU were obtained following SC injection, with 

calculated mean Cmax of 520±75 ng/mL at Tmax of 0.63 h. For comparison, a mean Cmax value of 

633ng/mL was obtained at 0.4 h following SC injection in meat goats (Young et al., 2011). 

Mean Cmax values of 987 ng/mL and 1185 ng/mL were obtained following SC injection in 

juvenile and market-age goats, respectively (Clothier et al., 2011), and mean Cmax value of 500 

ng/mL at 1.8 h was observed in cattle following SC injection (Nowakowski et al., 2004).  

In the present study a high Vss after IV injection was found (Vss, 10692±2192 mL/kg). Similarly 

high values for Vss have been reported for TU in lactating goats (16000 mL/kg; Amer et al., 

2012) determined with a microbiological assay, but also in cattle (1110 mL/kg; Nowakowski et 

al., 2004), foals (12700-18200 mL/kg; Scheuch et al., 2007; Schock, 2008) and pigs (13200 

mL/kg; Benchaoui et al., 2004). The basic nature, limited degree of ionization and lipophilicity 

of TU are typical of macrolides; these physicochemical characteristics of macrolides enable 
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extensive drug penetration into tissues and fluids, and result in large volumes of distribution and 

higher milk concentrations than plasma concentrations.  

The bioavailability of TU in lactating goats calculated in the present study after SC injection 

resulted almost complete (104%). This is in agreement with the high bioavailability reported in 

cattle (>90%) after SC injection (Nowakowski et al., 2004).  

Moreover, TU showed a low mean plasma clearance (CL) of 136 mL/kg/h after IV injection and 

127 mL/kg/h after SC injection in lactating goats. In order to compare, TU clearance was 126 

mL/kg/h in lactating goats after IV injection (Amer et al., 2012). A value of 208 mL/kg/h was 

observed in meat goats after SC administration (Young et al., 2011). Finally, 250 and 320 

mL/kg/h were found after SC route in juvenile and marked-age goats, respectively (Clothier et 

al., 2011), while after IV injection, values of 181 mL/kg/h were observed in pigs (Benchaoui et 

al., 2004) and 181 mL/kg/h in cattle (Nowakowski et al., 2004).  

TU was slowly eliminated in lactating goats after IV and SC injection with long elimination half 

time (about 58 h for both the administration). For this reason, it was preferable to collect plasma 

samples for longer than the approximate 2 half-lives of data (up to 240 h).  

The mean area under the plasma concentration–time curve from time 0 to infinity (AUC0-∞) of 

TU in lactating goats was 18757 h*ng/mL after IV injection and 19684 h*ng/mL after SC 

injection. Similar mean values of AUC0-∞ have been reported for IV injection in a study on 

lactating goats (25900 h*ng/mL; Amer et al., 2012). Slightly lower mean values of AUC0-∞ 

have been reported in meat goats (12500 h*ng/mL; Young et al., 2011) and in cattle (13500 

h*ng/mL) after SC injection (Nowakowski et al., 2004). On the other hand, all these data were in 

disagreement with the AUC0-∞ values reported by Clothier et al., (2011) (10266 and 8529 

h*ng/mL for juvenile and market-age goats, respectively). 



Chapte 4. 

 

90 
Dr. De Vito Virginia 

“Pharmacokinetic studies of “off-label” drugs in food producing animals. Quantification of drug residues in different organic matrices.” 

Tesi di Dottorato in Scienza Veterinarie, Qualità e Sicurezza Alimentare, Università degli studi di Sassari 

Concerning the concentration of TU in milk, the high penetration of the drug into milk is due, in 

part, to its basic nature (high pKa), relative to the pH of milk (6.6–6.8). The limit of detection of 

TU in bovine milk determined by Juan et al., (2010) was 10 ng/mL when it was analysed using 

LC-MS/MS, which provides the most sensitive analytical method for quantification of TU in 

milk. In the present study, due to the technical problems, it was not possible to determine an 

analytical method for the determination of the marker residue CP-60,300 of TU in milk. Future 

studies have been planned to develop a more rapid, sensitive and reproducible new analytical 

method for the determination and quantification of TU in milk goats.  

In conclusion, TU may be effective in the treatment of respiratory disease in goats. However, in 

Europe TU administration is not permitted in animals where the milk will be consumed by 

humans (Juan et al., 2010). Further studies are needed to determined a suitable withdrawal times 

required for milk intended for human consumption when TU is administered in “off-label” 

manner to lactating goats. 
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5. Pharmacokinetics of tapentadol in laying hens and its residues in eggs after 

multiple oral dose administration. 

 

In the last decades, the modernization of food animal husbandry is growing in correlation with the 

growing demand of food from the population. On the other hand, consumers are more interested 

to the suffering of farm animals caused by the routine husbandry procedures (De Vito, 2015; 

Bomzon, 2011; Giorgi et al., 2016). In 2012 of the conventional “battery” cages for laying hens 

were banned from Europe forcing a change towards the use of non-cage and furnished cage 

systems to allow more freedom of movement for these animal species. Surprisingly, the new 

consequence of this change was an increasing in keel fractures of 36% in laying hens with 

furnished cages and 86% with free- range system (Nasr et al., 2012a). 

Different studies have reported that the mammal’s acute pain coming to the bone fractures is 

obtained for an activation of mechanosensitive nociceptors in the periosteum. Although no 

information about the innervation of the keel bone in birds are available in literature, some 

physiological conditions and fracture healing similarities between mammals and birds suggest that 

sensory afferent fibres may densely innerve the keel bone (Nasr et al., 2012a). Some studies in 

literature reported that birds with fractures took longer to reach food in runway tests and took four 

times longer to fly down from a perch to obtain food, compared with healthy hens. Laying hens 

took longer time to complete the landing, flying and walkway tests than healthy hens. Finally, pain 

has been reported to reduce egg production with lower egg quality score (Nasr et al., 2012a; Nasr 

et al., 2012b; Nasr et al., 2015). 

The use of pain relief drugs might be one of the measures to improve animal welfare and pain 

management in this animal species, although relatively few drugs are labelled for laying hens (De 
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Vito, 2015; Goetting el al., 2011). Mobility can be partially improved by the administration of 

morphine and butorphanol. However, opioids have complex effects on mood (sedation) and reward 

systems (Nasr et al., 2013). On the contrary, carprofen, flunixin, meloxicam and ketoprofen, drugs 

belongs to the non-steroidal anti-inflammatory drugs class, can modulate the behaviour of birds 

(Nasr et al., 2015). 

Further considerations are the risks to human health posed by veterinary drug residues contained 

in food derivatives, including direct toxic effects and allergic reactions. Indeed, it has been reported 

that drug residues in eggs produced by laying hens can arise when the animals are mistakenly 

given medicated or contaminated feed, or when drugs are administered off-label (Goetting el al., 

2011).  

Tapentadol (TAP), is a new opioid with a unique centrally acting analgesic effect. Due to its 

innovative mechanisms of action, TAP is likely to produce fewer and shorter opioid-related side 

effects than classical MOR agonists while still retaining a good efficacy. These features make TAP 

an attractive prospective drug for use in food producin animals (Giorgi, 2012). 

 

5.1 Aim of the study 

The aim of the present study was to: 

-Evaluate the pharmacokinetics of TAP in laying hens after intravenous and oral administration at 

the dose of 1 and 5 mg/kg respectively. 

-To quantify the concentrations of TAP residues in eggs (yolk and albumen) after multiple oral 

dose administrations (5 days). 
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5.2 Materials and methods 

5.2.1 Chemicals, reagents and solution. 

The pure powder purity (>99.8%) of TAP hydrochloride was provided by Bepharm (Shanghai, 

China). The internal standard (IS), the metabolite of tramadol (M1), had a purity >99.8% and was 

provided  by LCG Promochem (Milan, Italy ).  

TAP and IS singular stock solutions in MeOH were diluted to prepare a 6-point calibration curve 

at the following concentrations 5, 1, 0.500, 0.250, 0.100, and 0.050 μg/mL, of TAP in plasma, yolk 

and albumen, respectively. The analyte was stable for at least 20 weeks if stored at 4° C. 

5.2.2 Animal experiment 

The animal experiment was performed at the University of Pisa, Department of Veterinary 

Sciences. 

Twenty healthy Livorno breed laying hens, 38 weeks old, with an average weight of 1.9 ± 0.2 kg 

according to the European Poultry Standards, were supplied by a local organic farm. The birds 

were checked by a veterinarian who certified the good health status, and the absence of drug 

treatments. The study protocol was approved by the University of Pisa’s ethics committee for 

animal welfare (CEASA) and transmitted to the Italian Ministry of Health (19994 2015)  

Animals were acclimated for a 2-week period prior to beginning the study. During this period, 

laying hens were housed in an indoor area all together on the floor. Regular veterinary checks, 

based on daily physical examination through observation of behaviour and appetite, assessed that 

animals were in good health. Animals were casually distributed into 3 groups (20 slips of paper 

marked with the numbers 1 to 20 selected blinded from a box). Groups A and B with 6 subjects 

and group C with 8 subjects. A ring with an identification code was applied to the right leg of each 

animal. Animals were then moved to cages (1 animal/cage) until the end of the experiment. Water 
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was provided ad libitum. Standard management practices were followed to keep animals free from 

stress.  

The study was conducted in two phases. During the first phase animals in groups A (n=6) and B 

(n=6) received TAP according to a randomized, parallel study design. After overnight fasting, 

group A received TAP (5 mg/kg) orally by a capsule directly into the chickens' crop. The doses 

were prepared by weighing and partitioning the pure TAP. Group B received the drug 

intravenously through the vein of the right wing using a 2.5 mL syringe and 26- gauge needle. The 

injectable TAP solution was freshly prepared by dissolving pure TAP hydrochloride powder in 

saline to produce 1 mg/mL solution, which were then passed through a 0.45-μm filter, maintaining 

sterile conditions. Blood samples (0.5 mL) were collected in groups A and B at assigned times (15 

min, 1, 2, 4, 6, 8, 10 and 24 h for group A and 5, 30 min, 1, 2, 4, 6, 8, 10 and 24 h for group B) 

using an IV catheter (Venflon 24Gx25mm) fixed into the left wing vein. After centrifugation at 

400xg for 10 min plasma samples were separated for PK analysis, and stored at -20 °C until use 

within 30 days from collection. During the second phase of the study, animals in group C (n=8) 

received TAP orally in multiple doses of 5 mg/kg for 5 days. Eggs were collected every day for 

30 days from the beginning of the study. Yolk and albumen were divided for each egg and stored 

at -80° C until analysis (Figure 24). 
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Figure 24. Animal experiments 

 

5.2.3 Analytical method 

The analytical method was performed at the University of Pisa, Department of Veterinary 

Sciences. 

5.2.3.1 Instrumentation and chromatographic conditions 

The HPLC method with fluorescence detector was based on a previously published technique 

(Giorgi et al., 2012a) with slight modifications. The limits of quantification and detection were 10 

and 3 ng/mL, respectively. The analytical method was re-validated for laying hen plasma samples. 

The accuracy was lower than 6.8%, while intra-and inter-day repeatability was measured lower 

than 9.1%. Emission and excitation wavelengths were set at 298 nm and 273 nm, respectively. The 

chromatographic separation assay was performed with a Luna C18 analytical column (150 x 4.6 

mm inner diameter, 3-μm particle size, Phenomenex) maintained at 25° C. The mobile phase 

consisted of 0.2% acetic acid solution (A): ACN (B) at a flow rate of 1 mL/min. The linear gradient 

elution system was performed as follows : from 5% B - 95% A to 40% B - 60% A (0 to 20 min), 
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from 40% B - 60% A to 5% B - 95% A (20 to 20.1 min) and 5% B - 95% A isocratically (20.1 to 

22 min). 

5.2.3.2 Sample preparation 

The procedure of TAP extraction from plasma was based on that previously reported by Giorgi et 

al. (2012a) with slight modifications. 

Concerning the preparation of plasma samples, in a 1.5-mL polypropylene snap cap tube 

containing 0.2 mL of plasma, 0.1 mL of IS solution (0.1 μg/mL) and 0.2 mL (0.2 M) borate buffer 

(borax solution at pH 9.3) were added. Samples were vortex and added with 0.4 mL of extraction 

solvent CH2Cl2 : Et2O (3:7 v/v). After vortexing, samples were shaken and then centrifuged for 10 

min at 15,000g and the organic layer (0.15 mL) was transferred into a clean 1.5-mL polypropylene 

snap cap conical tube. A volume of 0.2 mL of back-extraction solvent ACN 0.05 M : HCl (1:1 

v/v) was added to the samples. The aqueous phase obtained after centrifugation (50 μL) was 

injected onto the HPLC-FL system.  

About the preparation of yolk samples, a quantity of 1 g (each sample) was diluted with 1 mL of 

borate buffer (0.2 M) and was added 100 μL of IS solution (0.1 μg/mL). After vortexing, 1 mL of 

extraction solvent CH2Cl2:Et2O (3:7 v/v) was added. The organic layer (0.8 mL) obtained from 

centrifugation was then transferred into a clean 1.5-mL polypropylene snap cap conical tube. Four 

hundred L of back-extraction solvent 0.05 M HCl : ACN (1:1 v/v) was added to the tube. Fifty 

μL of the aqueous lower layer was injected onto the HPLC-FL system.  

Finally, for the preparation of albumen samples 1 mL of sample was diluted with 1 mL of borate 

buffer (0.2 M). One mL of the final solution was placed in a 2 mL polypropylene snap cap conical 

tube, added to 100 μL of IS solution (0.1 μg/mL) and vortexed for 30 s After vortexing-mixing, 

400 μL of extraction solvent (CH2Cl2 : Et2O (3: 7 v/v) was added. Then the tube was placed in a 

vortex for 30 s, shaken for 5 min, and then centrifuged (10 min at 15,000g). The organic layer 
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(0.15 mL) was transferred into a conical tube, 0.4 mL of back-extraction solvent 0.05 M HCl : 

ACN (1:1 v/v) was added and after centrifugation the aqueous layer (50 μL) was injected onto the 

HPLC-FL system.  

5.2.3.3 Sample quantification 

Standard curves were constructed with standard TAP concentrations vs ratio of TAP/internal 

standard peak areas. Linearity of the regression curve in the range of 50-5000 ng/mL for plasma 

yolk and albumen were assessed on the basis of the residual plot, the fit test and the back 

calculation. Limit of quantitation (LOQ) was determined as signal-to-noise ratios of 10, while the 

limit of detection (LOD) as the signal-to-noise ratios of 3. The HPLC-FL method for plasma and 

eggs were validated by examining the within-run precision calculated from similar responses for 

six repeats of 3 control samples (50, 500, and 1000 ng/mL) in one run. Moreover, the HPLC-FL 

method was validated by examining the between-run precision determined by comparing the 

calculated response of the low (50 ng/mL), middle (500 ng/mL), and high (1000 ng/mL) control 

samples over three consecutive daily runs (total of 6 runs). The assay accuracy for within-run and 

between-runs was established by determining the ratio of calculated response to expected response 

for low (50 ng/mL), middle (500 ng/mL), and high (1000 ng/mL) control samples over 6 runs. 

The efficiency of extraction method was evaluated by comparing the response (in area) of high, 

middle, low standards and the IS, spiked into blank plasma, to the response of equivalent extracted 

standards. 

5.2.4 Pharmacokinetic analysis 

Pharmacokinetic parameters for intravenous and oral administration were determined individually 

as a non-compartmental model using WinNonlin 5.3.1 software (Pharsight).  

The oral bioavailability (F) was calculated as (Eq. 10): 
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Eq. 10     F = 
𝐴𝑈𝐶 (PO) x dose IV

𝐴𝑈𝐶 (𝐼𝑉) x dose PO
 

 

5.2.5 Statistical Analysis  

The Kolmogorov-Smirnov test was applied to verify data distribution. Statistical comparison of 

PK parameters was determined with Student’s t-test and performed by Graph Pad In Stat (Graph 

Pad Software). The PK parameters and TAP residues in yolk and albumen are presented as means 

± SD. In all experiments, differences were considered significant if P< 0.05. 

 

5.3 Results 

5.3.1 Pharmacokinetics of Tapentadol 

No visible adverse effects were observed during the experiment. Following IV and PO 

administrations of TAP at 1 and 5 mg/kg respectively, the plasma concentration vs time curves are 

illustrated in Figure 25.  
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Figure 25. Mean plasma concentration vs time curve of tapendadol after IV (——) and PO (—

●—) administrations at 1 and 5 mg/kg respectively in laying hens (n=12). Bars represent the SD. 

The horizontal dotted and dashed line shows the minimal effective concentration (MEC; 148 

ng/mL) reported for humans and its intercepts with the concentration vs time curves reported in 

laying hens 

 

TAP plasma concentrations after IV and PO administrations were detectable up to 4 h. Only the 

IV administration reached concentrations higher than the minimal effective concentration (MEC 

148 mg/mL) reported for human and this was only for the first 1 h (Tzschentke et al., 2007). 

Pharmacokinetic parameters of TAP after IV administration are presented in Table 14. After PO 

administration, TAP demonstrated fast absorption and elimination and plasma concentrations that 

did not conform to software algorithms; for this reason, pharmacokinetic parameters could not be 

calculated. 
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Table 14. Pharmacokinetic parameters of TAP after IV administration at 1 mg/kg in laying hens 

(n=6). 

        IV 

Parameters   Units   Mean   SD 

r2       0.96 ± 0.05 

λz   1/h   0.76 ± 0.11 

HLλz   h   0.94 ± 0.15 

C0   ng/mL   292 ± 102 

AUClast   h*ng/mL   369 ± 110 

AUC0-∞   h*ng/mL   389 ± 109 

Vss   mL/kg   3299 ± 1136 

V/F   mL/kg   3764 ± 1322 

Cl/F   mL/h/kg   2749 ± 796 

AUMClast   h*h*ng/mL   355 ± 129 

MRTlast   h   0.96 ± 0.15 

r2, correlation between observed/predicted points; λZ, first-order rate constant; HLλZ, half-life of the terminal 

portion of the curve; C0, concentration at time 0; AUClast, area under the curve from 0 to the last; AUC0-∞, 

area under the curve from 0 to ∞; V/F, volume of distribution during the elimination phase; CL/F, body 

clearance during the elimination phase; AUMClast, area under the first moment curve from 0 to the last; 

MRTlast, mean residence time; Vss, volume of distribution at steady state 
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5.3.2 Disposition of TAP in eggs (albumen and yolk) 

TAP concentrations following multiple PO doses at 5 mg/kg for 5 days were quantifiable in the 

incurred albumen and yolk up to 7 and 12 days respectively (Figure 26; Figure 27). Figure 26 

showed low (near the LOD) and not significantly different daily TAP concentrations in albumen 

up to 7 days after the first administration. Figure 27 showed a higher concentration of TAP in yolk 

than in albumen. The concentrations of TAP in yolk decreased from the sixth day up to twelfth 

day. At that time, the concentration was very close to the LOD of the instrument. 

 

 

Figure 25. Disposition of TAP in albumen after PO multiple dose (5 days) at 5 mg/kg in laying 

hens (n=8). Bars represent the SD 

 



Chapter 5. 

 

102 
Dr. De Vito Virginia 

“Pharmacokinetic studies of “off-label” drugs in food producing animals. Quantification of drug residues in different organic matrices.” 

Tesi di Dottorato in Scienza Veterinarie, Qualità e Sicurezza Alimentare, Università degli studi di Sassari 

 

Figure 26. Disposition of TAP in albumen after PO multiple dose (5 days) at 5 mg/kg in laying 

hens (n=8). Bars represent the SD 

 

5.4 Discussion and conclusion 

The present study represents the first pharmacokinetics of TAP in laying hens, although studies in 

different animal species have recently been published (Giorgi et al., 2012b; Giorgi et al., 2013; 

Lee et al., 2013; Lavy et al., 2014; Giorgi et al., 2015). 

To the best of the authors’ knowledge, there are no published reports of the TAP pharmacokinetics 

in laying hens thus far. Drug dosing schedule for the laying hens was extrapolated from studies on 

other animal species (Giorgi et al., 2012b; Giorgi et al., 2013; Lee et al., 2013; Lavy et al., 2014; 

Giorgi et al., 2015). The orally administered dose (5 mg/kg) in laying hens, appears high if 

compared with previous studies. In a clinical study (Pasero, 2011), the oral dose administered in 

humans was 200 mg/subject; this showed a low bioavailability (30%). Another study in dogs 

Giorgi et al., (2012b) showed a low bioavailability (4%) after administration of a similar oral dose 
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(200 mg/dog). Due to this likely low bioavailability, the authors decided to double the oral dose 

for administration to laying hens. 

In contrast, to preserve the heath of the animals, in the present study a lower IV dose (1 mg/kg 

b.w.) was chosen to avoid the presence of some slight and transitory side effects observed in 

literature after IV administration in other animal species (Giorgi et al., 2012b; Lavy et al., 2014).  

In humans, the MEC is equivalent to 148 ng/mL (Tzschentke et al., 2007). If the human MEC also 

applies to laying hens, the plasma drug concentration reported in the present study, after IV 

administration at the dose of 1 mg/kg, exceeded this value for not more than 1 h. However, 

extrapolation of the humans MEC value for laying hens might not be prudent and attention should 

be used (Giorgi and Yun, 2012). It is also recognized that there could be some discrepancy between 

the actual effect at the receptor level and plasma concentration of the drug (Toutain & Lees, 2004). 

Indeed, recently the administration of TAP in rabbits was reported to be effective for at least 10 h 

after a 5 mg/kg IV administration, although TAP concentrations were below the human MEC after 

2 h. This effect suggested to the authors the possible long lasting effect of TAP in rabbits (Giorgi 

et al., 2013).  

The low plasma concentrations after oral dosing in the current study, triggered by the low F% (not 

calculated) prevented a complete description of the drug concentration vs time curves (especially 

in the terminal phase). This is in agreement with the low value of F% found in dogs (Giorgi et al., 

2012b). Glucuronidation is the main metabolic pathway for TAP in humans, as 83% of an oral 

dose of TAP is converted into and excreted as inactive glucuronated metabolite from the UDP-

glucuronyl transferases (Terlinden et al., 2007). Humans and dogs are reported to have some 

similarities in UDP-glucuronyl transferases (Soars et al., 2001). However, dogs showed a low PO 

bioavailability (about 4%) of TAP (Giorgi et al., 2012b). On the contrary, cats have very limited 

UDP-glucuronyl transferase activity, which might explain the high IM and SC bioavailability of 
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TAP reported in the literature (Lee et al., 2013). Unfortunately, there is little information in the 

published literature about glucoronidation and UDP-glucuronyl transferase enzymes in laying hens 

and other similar animal species (Bartlet & Kirinya, 1976). These results suggest that, due to its 

low F%, PO administration of TAP could not be generally recommended in laying hens. 

In the present study, the IV administration showed a high inter- and intra-variability in both plasma 

concentrations and pharmacokinetic data. This is in agreement with previous studies on opioids 

(Taylor et al., 2001). The pharmacokinetic analysis showed that TAP, when administered by IV 

route in laying hens at the dose of 1 mg/kg, was rapidly and widely distributed to tissues with a 

distribution volume (Vd) of 3765 mL/kg. Clearance and half-life (T1/2 λz) were 2749 mL/h/kg 

and 0.94 h, respectively. If Cl and Vd are normalized for the dose, they are similar to those 

observed in dogs but different to those in cats, goats, turtles and rabbits. These results can reflect 

the wide differences in metabolism of diverse animal species (Giorgi et al., 2013; Lee at al., 2013; 

Lavy et al., 2014; Giorgi et al., 2015). 

A few drugs are approved and labelled for laying hens and eggs because of their residues. Eggs 

present three components: yolk, albumen and shell. The yolk presents a lipophilic site for drug 

accumulation with the longest development time. The albumen is laid down over a period of 2-3 

h and can also be an accumulation site. Many drugs residue preferentially in yolk and albumen 

rather than in shell. Because of the protracted nature of egg development, many weeks may be 

required following treatment or exposure before eggs are free of drug residues (Goetting et al., 

2011). This is in agreement with the results of the present study where the TAP concentration in 

yolk was shown to be higher than in albumen. Moreover, TAP concentration in yolk was detectable 

for a longer time (12 days) than in albumen (7 days). After that time the TAP concentration was 

below the LOD (3 ng/mL) of the instrument. There are no official MRLs of TAP in eggs produced 

by laying hens, so the LOD value was used as the endpoint of the present study (Lin et al., 2016). 
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In conclusion, this is the first pharmacokinetic study on the novel atypical opioid TAP in laying 

hens. Further studies are necessary to assess the F% of TAP and its analgesic efficacy in this animal 

species. However, due to the low bioavailability, this drug doesn’t seem suitable for pain treatment 

in laying hens.  
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6. Pharmacokinetics of meloxicam in lactating goats (Capra hircus) and its 

quantification in milk after a single intravenous and intramuscular injection. 

 

6.1 Introduction 

Production of animal food derivatives safe for the human consumption is one of the most important 

issues of this century. On the other hand, society has become progressively more conscious about 

potential suffering in production animals and aware of the necessity of new pain therapies for its 

prevention and treatment (Giorgi et al., 2016). Therefore, there is a demand for novel therapies to 

relieve pain in food producing animals (De Vito, 2015). 

Nowadays, though domestic goats are present as a worldwide population in numbers large enough 

to confer a status of major species, these animals are still considered as a minor species by the 

regulatory agencies in Europe and the USA (Toutain et al., 2010). Due to the lower number of 

goats compared to the other livestock species their health issues cannot be addressed with EMA 

or FDA-approved medications. Consequently, many drugs are administered to goats in an extra-

label manner with no scientific information on drug behaviour, potential toxicity, and adequate 

withdrawal periods for drug removal from products marketed for human consumption (Clothier, 

2010). 

Meloxicam (MEL) is a potent anti-inflammatory drug belonging to enolic acid group of the oxicam 

class, having analgesic and antipyretic properties. MEL, if compared to the common non-steroidal 

anti-inflammatory drugs (NSAIDs), has been shown to be more preferential in inhibiting COX-2 

(12 times more selective as a COX-2 inhibitor in the dog) than COX-1 isoenzyme, preventing the 

occurrence of inflammation by the inhibition of prostaglandin production that sensitize the afferent 

nociceptors at peripheral sites of inflammation (Kay et al., 2000). This mechanism of action results 
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in a lower ulcerogenic side effect and gastrointestinal irritation (Wani et al., 2013; Wani et al., 

2014). 

The pharmacokinetic profile of MEL shows good absorption, longer elimination half-life and high 

extravascular bioavailability in different animal species: dogs (Hare et al., 2012; Montoya et al., 

2004; Busch et al., 1998), cats (Lehr et al., 2010; Giraudel et al., 2005), horses (Lees et al., 1991; 

Toutain & Cester, 2004; Toutain et al., 2004; Burns et al., 2010), rabbits (Turner et al., 2006; 

Carpenter et al., 2009), turtles (Di Salvo et al., 2015), green iguanas (Divers et al., 2010), piglets 

(Alassane et al., 2010; Fosse & Spadavecchia, 2011), cattle (Johnn et al., 2011; Coetzee et al., 

2007; Coetzee et al., 2012), camels (Wasfi et al., 2012) and Ilamas (Amanda et al., 2012). Little 

and conflicting information only is available for small ruminants (Shukla et al., 2007; Ingvast-

Larssom et al., 2010; Wani et al., 2013; Wani et al., 2014). 

 

6.2 Aim of the study 

The aim of the present study was two-fold:  

-Determine the pharmacokinetics of MEL after intravenous (IV) and intramuscular (IM) route of 

administrations at the dose of 0.5 mg/kg b.w. in goats  

-Quantify MEL residues in milk.  

 

6.3 Materials and methods 

6.3.1 Chemicals and reagents 

The pure powder (purity >99.8%) of MEL was provided by LCG Promochem (Milan, Italy). The 

pure powder of piroxicam, the internal standard (IS), (> 99.8%) was provided by LCG Promochem 

(Milan, Italy).  
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6.3.2 Animal experiment 

The animal experiment was approved by the animal welfare ethics committee of the University of 

Lublin (authorization 43/2017) and carried out in accordance with the European law 

(2010/63/UE). 

Six healthy 1-2 year old mixed breed lactating goats, with an average weight of 55 kg were used 

in the study. Goats were examined to be clinically healthy based on blood analysis and absence of 

any apparent clinical signs before the commencement of the study. All the animals were housed 

in an animal shed and were acclimatized to the new environment for 7 days. The animals were fed 

twice a day and water was provide ad libitum. The feed was withheld the night preceding the day 

of the experiment until 6 h post drug administration. 

Goats were randomly assigned to 2 treatment groups (6 slips of paper marked with the numbers 

from 1 to 6 in a box), using an open, single-dose, two-treatment, two-phase, unpaired, cross-over 

design (2x2 Latin square). On the day of experiment, the goats’ necks were shaved and a local 

anaesthetic (Emla®, ointment, lidocaine 25 mg⁄g, prilocaine 25 mg⁄g; AstraZeneca) was spread on 

the skin above the jugular veins. Two catheters were placed in the jugular veins, one only in the 

IV injection group (right) and the other for blood sampling (left) in both groups. Group A (n=3) 

received a single dose of MEL (Metacam® solution for injection 20 mg/mL, Boehringer Ingelheim) 

at 0.5 mg/kg b.w. intravenously. Group B (n=3) received the same dose of MEL by an 

intramuscular injection in to the right gluteal muscle. A wash-out period of 3 weeks was observed 

between phases, the groups were rotated and the experiment was repeated. Blood samples (10 mL) 

were collected immediately before and at 5, 15, 30 and 45 min, 1, 1.5, 2, 4, 6, 8, 10, 24, 36, 48, 

60, 72, 96, 120, 144, and 168 h after administration of the drug. Goats were totally milked from 

both udders immediately before and after the administration of the drug at 10, 24, 36, 48, 60, 72, 

96, 120, 144, and 168 h. After centrifugation at 4500xg for 10 min blood, plasma and milk samples 
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were stored at -20 °C until use within 30 days from collection. A licensed veterinarian (BLW) 

evaluated the presence of likely adverse effects from the time of drug administration up to 7 days 

(Figure 27). 

 

Figure 27. Animal experiments 

 

6.3.3 Analytical method 

6.3.3.1 Instrumentation and chromatographic conditions  

The HPLC method was based on a previously published technique (Kimble et al., 2013) with slight 

modifications. The chromatographic separation assay was performed with a Gemini C18 analytical 

column (250 x 4.6 mm inner diameter, 5-μm particle size, Phenomenex) maintained at 25° C. The 

mobile phase consisted of ACN (A): 0.05 M phosphate buffer pH 3.2 (B) at an isocratic flow rate 

of 1 mL/min. The wavelength was set at 365 nm. The analytical method was re-validated for 

lactating goats’ plasma and milk samples according to the EMA guidelines (EMA, 2012) by 

examining the within-run precision calculated from similar responses for six repeats of 3 control 
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samples (50, 500, and 1000 ng/mL) in one run. The between-run precision was determined by 

comparing the calculated response of the low (50 ng/mL), middle (500 ng/mL), and high (1000 

ng/mL) control samples over three consecutive daily runs (total of 6 runs). The assay accuracy for 

within-run and between-runs was established by determining the ratio of calculated response to 

expected response for low (50 ng/mL), middle (500 ng/mL), and high (1000 ng/mL) control 

samples over 6 runs. Limit of quantitation (LOQ) was determined as signal-to-noise ratios of 10, 

and the limit of detection (LOD) as the signal-to-noise ratios of 3.  

6.3.3.2 Sample quantification 

MEL and IS singular stock solutions in ACN were diluted to prepare a 7-point calibration curve 

at the following concentrations 2.5, 1, 0.5, 0.1, 0.05, 0.025 and 0.015 µg/mL of MEL in plasma 

and milk matrices. Standard curves were constructed with standard MEL concentrations vs ratio 

of MEL/internal standard peak areas. The analyte was stable for at least 20 weeks if stored at 4° 

C. Linearity of the regression curve for plasma and milk were assessed on the basis of the residual 

plot, the fit test and the back calculation. The efficiency of extraction method was evaluated by 

comparing the response (in area) of high, middle, low standards and the IS, spiked into blank 

plasma or milk, to the response of equivalent standards. 

6.3.3.3 Plasma sample preparation  

In a 15 mL polypropylene snap cap tube containing 500 µL of plasma, a volume of 100 μL of IS 

solution (10 μg/mL) was added. After vortexing, 2.2 mL of ACN was added to the samples and 

vortexed again. Finally, 0.1 gr of NaCl was added for the optimal separation of the organic and 

aqueous phases. After vortexing, samples were shaken for 10 min at 60 osc/min and then 

centrifuged for 10 min at 4500 g and the organic layer (2 mL) was transferred into a clean 5 mL 

polypropylene snap cap conical tube. The organic phase was evaporated under a gentle stream of 
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nitrogen at 40 °C and reconstituted with 200 µL of the mobile phase. Fifty µL of this latter solution 

was injected onto the HPLC-DAD system. 

6.3.3.4 Milk sample preparation  

Milk samples (500 µL each sample) were added to 100 μL of IS solution (10 μg/mL). After 

vortexing, 2.2 mL of ACN was added to the samples and vortexed again. Finally 0.1 gr of NaCl 

was added to optimize the separation of the organic and aqueous phases. After vortexing, samples 

were shaken for 10 min at 60 osc/min and then centrifuged for 10 min at 4500 g and the organic 

layer (2 mL) was transferred into a clean 5 mL polypropylene snap cap conical tube. The organic 

phase was evaporated under a gentle stream of nitrogen at 40 °C and reconstituted with 200 µL of 

the mobile phase. Fifty µL of this latter solution was injected onto the HPLC-DAD system. 

6.3.4 Pharmacokinetic analysis 

MEL plasma concentration vs time curves were modelled for each subject using compartmental 

analysis (Gibaldi & Perrier, 1982). Comparison between competing models was made using the 

goodness of fit, Akaike’s information criterion, Schwarz Bayesian information criterion, the sum 

of square of the residuals and the visual inspection of the curves. The pharmacokinetic calculations 

were carried out using WinNonlin v 5.3.1 (Pharsight, La Lolla, CA, USA). The elimination half-

life (Beta_HL) was evaluated by ln2/z while the elimination rate constant was estimated by semi-

log lineal regression of the terminal slope. Area under the plasma vs time curve (AUC) was 

calculated from 0 to the last quantifiable concentration using a linear trapezoidal method. For 

intravenous administration, plasma clearance (Cl) and the total volume of distribution at steady-

state (Vss) were determined. 

The IM bioavailability (F%) was calculated as (Eq. 11): 

Eq. 11     F= 
AUC (IM)

AUC (IV)
 𝑥 100 
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Afterwards, basing on the pharmacokinetic data, a WinNonlin 5.3.1 simulation was performed. It 

was executed to establish if multiple administrations of MEL to goats IM at 0.5 mg/kg once a day 

would achieve the values of average therapeutic plasma concentration (MEC) reported in literature 

for cats (347 ng/mL), dogs (833 ng/mL) and horses (735 ng/mL). These latter values were 

calculated from approved maintenance dose and reported clearance values (Toutain et al., 2004; 

Toutain & Lassourd, 2002). In agreement with the MEC values of MEL reported above, other 

PK/PD studies performed in cats and horses showed EC50 values of about 900 ng/mL and 195 

ng/mL in horse and cat, respectively (Toutain & Cester, 2004; Giraudel et al., 2005). 

6.3.5 Statistical Analysis  

The Kolmogorov-Smirnov test was applied to verify data distribution. Statistical comparison of 

PK parameters was determined with Student’s t-test and performed by Graph Pad In Stat (Graph 

Pad Software). The PK parameters and MEL residues in milk are presented as means ± SD. In all 

experiments, differences were considered significant if p< 0.05. 

 

6.4 Results 

The HPLC method was revalidated using plasma and milk from control goats. Briefly, MEL was 

linear in the range of 15–2500 ng/mL for both plasma and milk. LOD was 5 ng/mL and LOQ was 

15 ng/mL for both plasma and milk. When samples exceeded the upper limit of the range, they 

were re-analysed after appropriate dilution. The recoveries obtained were 89.3 ± 5.8% and 85.7 ± 

3.2% for plasma and milk samples, respectively. The intra-day repeatability for plasma and milk 

was lower than 4.6% and 5.1% respectively, whereas accuracy was lower than 6.2% and 6.9%, 

respectively. 

No visible adverse effects were observed during the experiment.  
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6.4.1 Pharmacokinetics of meloxicam 

Following IV and IM administrations of MEL at the dose of 0.5 mg/kg b.w, the plasma 

concentration vs time curves are illustrated in Figure 28. MEL plasma concentrations after IV and 

IM administrations were detectable up to 96 h. At 120 h, the drug concentrations dropped below 

the LOQ of the method.  
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Figure 28. Mean plasma concentration vs time curve of MEL after IV (——) and IM (—●—) 

administrations at 0.5 mg/kg in lactating goats (n=6). Bars represent the SD. 

 

Pharmacokinetic parameters of MEL after IV injection were best fitted with the bi-compartmental 

model, while a mono-compartmental model best fitted plasma concentration after IM injection. 

MEL elimination phase from plasma was similar in both the administration groups. These 

similarities between routes of administration were proved by the pharmacokinetic parameters 

shown in Table 15 and 16. No pharmacokinetic parameters were shown to be significantly different 

between routes of administration. The bioavailability (F%) after IM administration was shown to 

be complete (105.0 ± 8.23%). 
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Table 15. Pharmacokinetic parameters of MEL after IV administration at 0.5 mg/kg in lactating 

goats (n=6). 

 

              

 

 

    IV 

 

Parameter   Units   Mean   SD 

 

 

AUC   h*ng/mL   26499 ± 4233 

 

 

K10   1/h   0.12 ± 0.03 

 

 

K12   1/h   0.64 ± 0.38 

 

 

K21   1/h   1.13 ± 0.71 

 

 

K10_HL   h   6.07 ± 1.18 

 

 

Alpha   1/h   1.82 ± 1.09 

 

 

Beta   1/h   0.07 ± 0.02 

 

 

Alpha_HL   h   0.53 ± 0.35 

 

 

Beta_HL   h   9.96 ± 2.51 

 

 

A   ng/mL   1223 ± 153.71 

 

 

B   ng/mL   1840 ± 357.69 

 

 

AUMC   h*h*ng/mL   374373 ± 120223 

 

 

MRT   h   13.88 ± 3.36 

 

 

CL   mL/h/kg   19.38 ± 3.86 

 

 

Vss   mL/kg   262.37 ± 50.74 

 

 

V1   mL/kg   165.76 ± 23.06 

 

 

V2   mL/kg   96.61 ± 31.07 
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Table 16. Pharmacokinetic parameters of MEL after IM administration at 0.5 mg/kg in lactating 

goats (n=6). 

                  

            IM     

  Parameter   Units   Mean   SD   

  Tmax   h   3.73 ± 2.08   

  Cmax   ng/mL   1409 ± 40.78   

  AUC   h*ng/mL   28071 ± 7630   

  K01   1/h   1.13 ± 0.86   

  K10   1/h   0.07 ± 0.01   

  K01_HL   h   1.08 ± 0.76   

  K10_HL   h   10.82 ± 2.75   

  CL/F   mL/h/kg   18.77 ± 4.29   

  V/F   mL/kg   280.85 ± 33.50   

  F%       105.93 ± 8.23   

                  

 

The plasma concentration vs time curve of the simulated multiple dose (0.5 mg/kg/day) of MEL 

by IM injection in goats is illustrated in Figure 29. At the steady state, the AUC value was 32593 

h*ng/mL and the mean plasma concentration within 24 h was 1358 ng/mL. 
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Figure 29. Disposition of TAP in albumen after PO multiple dose (5 days) at 5 mg/kg in laying 

hens (n=8). Bars represent the SD 

 

6.4.2 Disposition of MEL in milk 

MEL concentrations following IV and IM injection at the dose of 0.5 mg/kg b.w. were quantifiable 

in the milk samples up to 60 and 48 h, respectively (Figure 30). The average milk concentration 

showed similar trends between groups. 
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Figure 30. Disposition of TAP in albumen after PO multiple dose (5 days) at 5 mg/kg in laying 

hens (n=8). Bars represent the SD 

 

6.5 Discussion and conclusion 

The primary objective of this study was to determine the pharmacokinetics of MEL in lactating 

goats after IV and IM administrations.  

After IV administration the bi-compartment model provided the best fit of the concentration-time 

data while after IM injection the best fit was provide by the mono-compartment model. This 

difference can be triggered by a common phenomenon and is due to the value of the absorption 

rate constant being similar or lower than the rate constant for the distribution phase. In this study, 

the absorption phase did not appear in the curves and the drug’s disposition performed better with 

an open mono-compartment model (Gibaldi and Perrier, 1982).  
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Some information about MEL pharmacokinetics in goats and other small ruminant species are 

present in the literature (Shukla et al., 2007; Ingvast-Larssom et al., 2010; Wani et al., 2013; Wani 

et al., 2014). In the present study, the mean AUC value (26499 ± 4233 ng*h/mL) was similar to 

data reported by Shukla et al., (2007) (19230 ± 2230 ng*h/mL) and Ingvast-Larssom et al., (2010) 

(29738 ± 8576 ng*h/mL). In contrast, this value is in disagreement with data reported by Wani et 

al., (2013), if normalized for the dose (2635 ± µg*h/mL at the dose of 1 mg/kg b.w.). The mean 

half-lives of elimination obtained in the present study (9.96 and 10.82 h) were similar to the values 

reported by Shukla et al., (2007) (7 h), Ingvast-Larssom et al., (2010) (10.9 h) and Wani et al., 

(2013) (8 h). Finally, the mean values of Cl (19.38 ± 3.86 mL/h/kg) and Vss (262.37  ± 50.74 

mL/kg) obtained in the present study were in agreement with data reported by Ingvast-Larssom et 

al., (2010) (Cl 17.9 ± 4.3 mL/h/kg and Vss 245 ± 62 mL/kg) and Wani et al., (2013) (Cl 22 mL/h/kg 

and Vss 276 mL/kg). In contrast, Shukla et al., (2007) reported a similar Vss value (250 mL/kg) 

but different plasma Cl (30 mL/h/kg). These differences could be due to differences in weight 

(Shukla et al., 2007 about 20 kg, Ingvast-Larssom et al., 2010 about 44 kg, present study about 55 

kg), variations in breed used in the diverse studies, and to the different LOQ of the analytical 

techniques (Toutain and Bousquet-Mélou, 2004). 

Concerning the IM route of administration of MEL in goats, few data are reported in the literature. 

A study of Ingvast-Larssom et al., (2010) presented an estimated half life of elimination value of 

14.4 ± 5.2 h obtained in 3 hornless goat kids after IM administration of MEL. This value represents 

an estimation of half life of elimination only, due to the small number of animals used and the 

small number of blood samples collected in that study. A similar mean half life of elimination 

value (10.82 ± 2.75 h) was shown in the present study.  

A dosage regimen of 0.5 mg/kg b.w. once a day by IM administration was simulated. The steady 

state was achieved after the third administration. Based on the assumption that goats have a similar 

MEC value to cats and dogs, the plasma concentration values at the steady state simulated in the 
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present study were always above the MEC for cats (347 ng/mL). In contrast, the plasma 

concentrations of MEL were above the MEC value reported in dog (833 ng/mL) for 16 out of the 

24 h. It should be keep in mind though that the mean plasma concentration within 24 h (1358 

ng/mL) obtained after the simulation was well above the MEC reported for dogs (833 ng/mL) or 

the EC50 in horse (900 ng/mL). In conclusion, the relatively long half life of elimination, the 

complete F% of the IM injection and the high value of the mean plasma concentration within 24 h 

calculated after simulation, suggests that the drug can be administered once a day by the IM route. 

6.5.1 Disposition of MEL in milk 

Few drugs are approved and labelled for lactating goats because of the likely drug residues in the 

milk. After a single dose of MEL by IV and IM administrations, the drug residues showed similar 

concentrations and a similar trend of elimination. This is in line with the similar trend of 

elimination reported for the plasma and the complete IM F%. Milk samples were collected in the 

present study until 168 h but MEL concentrations could only be quantified until 48h and 60h for 

IM and IV groups, respectively.  

No maximum residual limits established for lactating goats are allowed in milk entering in the 

human food chain. Concerning the approval for use of MEL in bovine, EMEA/MRL/635/99-

FILAL (1999) identified MEL as the marker residue and the ratio to total residues of 0.75 for milk. 

Moreover, in cattle, after a recommended single dose of 0.5 mg/kg b.w. administered by IV or 

subcutaneous injection, the corresponding mean concentrations of MEL for low and high milk 

yields were 347 and 325 ng/mL, respectively. These values decline until the MRLs value (15 

µg/kg) established for cattle is achieved at day 5 after the administration. Assuming the LOQ 15 

ng/mL in the present study as a possible MRLs (Lin et al., 2016), after IV and IM injection milk 

concentrations fell below the LOQ at 72 and 60 h, respectively. The rate of depletion in goat’s 

milk seems faster than that reported in cattle. These results could be due to the more active 
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metabolism of goats compared with sheep or cattle. This is linked to their respective feeding 

behaviour where goats are natural browsers that can stand on their hind legs or even climb trees. 

They preferably eat leaves, shrubs, flowers and fruits, thus choosing the most nutritious available 

food but also the portions of plants containing many toxic alkaloids that need to be metabolised 

by a hepatic first pass effect. In contrast cattle are a non-selective bulk feeder that graze non 

selective grass generally low in term of alkaloid content (Toutain et al., 2010). 

Further studies are needed however to determine the milk concentrations after multiple 

administrations of MEL at 0.5 mg/kg once a day in a larger number of animals to determine the 

accurate withdrawal time for milk intended for human consumption (EMEA/MRL/635/99-FILAL, 

1999; EMEA/CVMP/473/98-FINAL, 2000). 

In conclusion, IV and IM administration of MEL in lactating goats showed similar 

pharmacokinetic profiles. The dose of 0.5 mg/kg used in the simulation study provided plasma 

concentrations above the MEC determined for other animal species for most of the 24 h. This latter 

value along with the high IM F% and the long half-life of elimination suggested that the drug could 

be administered once a day. The present study showed that MEL concentrations in milk are to 

some extent in agreement with the depletion of MEL in cattle milk. Further studies are required to 

clarify the dose needed to produce effective analgesia and to avoid the risk of milk contamination 

in goats. 
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