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Abstract 

Wildfires are a threat to the ecosystems and in the future this threat could become 

stronger due to climate change. Spatially explicit fire spread models are effective tools 

to study fire behavior and wildfire risk. However, to run fire spread simulations, one of 

the most important inputs is represented by fuel models and this information is not 

always available. In the last decades, remote sensing technologies have offered valuable 

information for the classification and characterization of fuels. For this reason, in this 

work we created accurate maps of main fuel types for Mediterranean areas combining 

multispectral and LiDAR data. This information improves the current available 

information, which derives from the Land Use Map of Sardinia. We also enhanced the 

characterization of canopy fuel models using LiDAR data producing canopy layers 

ready to be used for wildfire spread modeling. Finally, we compared the variation in 

simulated wildfire spread and behavior determined by the use of fine-scale maps v. 

lower resolution maps. In these simulations, we assessed also the effect of using 

LiDAR-derived canopy layers as well. The results showed more accurate outputs when 

using our custom fuel and canopy layers produced in this work. In conclusion, this work 

suggests that the use of LiDAR and satellite imagery data can contribute to improve 

estimates of modeled wildfire behavior.   
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Introduction 

Wildfires threat ecosystems worldwide (Cole and Landres 1996; Pausas and Keeley 

2009) and especially in Mediterranean areas (Syphard et al. 2009). For instance, in 2016 

in Europe the 68% of fires occurred in Mediterranean countries and these fires 

accounted for 93% of the overall burned area of Europe (San-Miguel-Ayanz et al. 

2017). 

In the future, wildfires impacts on ecosystems are expected to increase due to climate 

change (mainly higher temperatures and more frequent heat waves, Flannigan et al. 

2000, 2009; Liu et al. 2010; Arca et al. 2012; Kovats et al. 2014; Kurnik et al. 2017; 

Lozano et al. 2017). Studies carried out to investigate the effects of recent warming on 

wildfire season length and behavior confirmed that higher temperatures bring with them 

prolonged fire seasons and longer fire events, as well as more fire ignitions and larger 

fires (Piñol et al. 1998; Westerling et al. 2006; Turco et al. 2014; Urrutia-Jalabert et al. 

2018).  Indeed, (Kovats et al. 2014) predicted warmer and drier weather (especially in 

summer) with increased fire risk in Mediterranean areas.  

In a context of likely increase of wildfire-derived damages (particularly from large fires, 

which account for the most of burned area although limited in number), the advances in 

fire behavior analysis and in the assessment of fire risk will play a key role for fire 

management and research.  

A number of papers reported that spatially explicit fire spread models are effective tools 

to study wildfire behavior and risk (e.g.: Calkin et al. 2011; Miller and Ager 2013). 

Most of fire spread models are based on physical principles and empirical observations 

(Duff et al. 2013). The use of fire simulators was proved to be an effective and powerful 

tool not only for Northern America ecosystems, (Thompson et al. 2011; Ager et al. 

2013, 2014) but also in the Mediterranean area (Salis et al. 2014; Alcasena et al. 2015; 

Kalabokidis et al. 2015). 

To run fire spread simulations, one of the most important inputs is represented by fuel 

distribution. The spread of fire is affected for some fuel factors such as crown bulk 

density, crown base height, canopy height, percent of canopy cover, surface area-to-
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volume ratio, vertical and horizontal continuity, dead and live fuel load, and size classes 

of fuel elements (Riaño et al. 2003). For that reason, the vegetation is operationally 

classified into different fuel types following a scheme of fuel properties that groups the 

vegetation classes with similar combustion behavior (Pyne et al. 1996). The accuracy of 

the fuel map used as input in fire spread simulations highly affects the results obtained. 

Moreover, the consistency and accuracy of the input data layers are very important for 

realistic predictions of fire growth (Finney 1998; Keane et al. 1998). 

Traditionally, fuel types have been mapped by means of aerial photography and 

extensive fieldwork, which is highly expensive and time consuming (Riaño et al. 2003; 

Arroyo et al. 2008; Marino et al. 2016). Remote sensing data provide an alternative as 

source of fuel information, since they can provide spatial information on land cover. 

Fuel type mapping from satellite imagery has been attempted by several authors 

(Lasaponara and Lanorte 2007a; b; Mallinis et al. 2008; Otukei and Blaschke 2010). 

However, the main limitation of satellite images is their inability to estimate heights and 

to estimate vertical distribution of forest stands (Arroyo et al. 2008). These factors are 

critical not only for fuel type discrimination, but also for assessing some fuel 

characteristics needed for fire spread modeling such as fuel load, canopy cover, tree 

height, crown base height, and crown bulk density (Riaño et al. 2003). Light Detection 

And Ranging (LIDAR) allows overcoming these limitations (Arroyo et al. 2008). The 

ability of penetrating the canopy layer is leading authors to include LiDAR data as an 

essential source of information for fuel types mapping and fuel characterization (Riaño 

et al. 2003; Mutlu et al. 2008; Erdody and Moskal 2010; García et al. 2011; González-

Ferreiro et al. 2014; Hermosilla et al. 2014; Marino et al. 2016; Ruiz et al. 2018). 

In this context, the aims of the following three chapters are 1) to create accurate 

maps of main fuel types for Mediterranean areas combining multispectral and 

LiDAR data; 2) to improve the characterization of canopy fuel models using 

LiDAR data; and 3) to compare the variation in simulated wildfire spread and 

behavior determined by the use of fine-scale v. lower resolution maps, and to assess 

the effect of using our custom canopy layers in the simulations. The final objective 

is to develop a methodology for creating those maps and canopy layers which could 

be reproduced for other areas or for new available data. 
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Chapter 1: Mapping fuel types combining 

Multispectral and LiDAR data of Sardinia 

1. INTRODUCTION 

Accurate fuel maps are not only a critical input for fire spread models, but also to plan 

fire prevention, management and suppression activities. The availability of accurate and 

spatially explicit information on fuel properties is critical in order to improve fire 

management decision-support systems since fuels affect fire ignition and propagation 

(Ottmar and Alvarado 2004; Chuvieco et al. 2009). 

The high spatial and temporal variability of fuels makes field survey methods very 

expensive and time consuming for obtaining realistic characterization, and often limited 

for fuel mapping. Hence methods based on aerial photography and remotely sensed data 

have risen in the last years (Arroyo et al. 2008; Bajocco et al. 2015). Most studies based 

on satellite imagery have been performed at a coarse resolution or in very small areas 

with a very high resolution (Lasaponara and Lanorte 2007a; b, Mallinis et al. 2008, 

2014; Otukei and Blaschke 2010). 

As far as LiDAR (Light Detection and Ranging) is concerned, though these data have 

proved to be suitable to estimate some fuel properties, few studies have evaluated their 

usefulness to create fuel maps because of the difficulties in identifying land cover 

classes only from this data source (Yan et al. 2015).  

The most important limitation of optical images is their inability to assess vegetation 

height, which is a critical variable to discriminate fuel types. The integration of LiDAR 

data allows overcoming this limitation (Arroyo et al. 2008). 

In the last years some works have combined LiDAR and satellite imagery to map fuels, 

but the identification of individual species stills remain a complex task. Varga and 

Asner (2008) developed a new fire fuel index through the fusion of hyperspectral and 

LiDAR data to model the three-dimensional volume of grass fuels. Koetz et al. (2008)  

used LiDAR and hyperspectral data to map different land cover types including roads, 

buildings and vegetation but with only three vegetation types (ground fuel, shrubs and 
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tree canopy). Also García et al. (2011) combined LiDAR and multispectral data in this 

case, for fuel mapping, but since they followed the Prometheus fuel type system to 

classify the different fuel types, only structural characteristics were considered such as 

the average height of vegetation or the average height difference between shrubs and 

trees. Recently, Reese et al. (2014) classified alpine vegetation combining optical 

satellite data and LiDAR derived data, and Marino et al. (2016) obtained fuel model 

maps from discrete airborne laser scanner and Landsat-8 OLI (30-m resolution). 

Regarding Sardinia, there are no fuel type maps for the whole island at fine scale. Until 

now, the maps used to derive fuel type information are coarse resolution land use maps 

(e.g. Corine Land Cover, EEA 2011 or Land Use Map of Sardinia, Autonomous Region 

of Sardinia 2008). 

The overall aim of the work is to improve the available information about the fuel 

types spatial distribution by creating accurate fuel maps at fine scale from 

remotely sensed data, namely combining LiDAR with multispectral data.  

2. METHODS 

2.1. Study area 

The study is performed in the island of 

Sardinia (Italy), which is located between 

38° 44‟ and 41° 05‟ N latitude and 8° 7‟ 

and 9° 49‟ E longitude. The availability 

of LiDAR data for the island is limited to 

the coastal areas and, within these 

boundaries, two study areas covering 

approximately the same extent (4,000 ha 

approximately) were selected to carry out 

this work (Fig. 1.1). These areas are 

located on the eastern coast (Siniscola) 

and on the southeastern coast (Muravera), 
 
Fig. 1.1. Location of the case studies in Sardinia 
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and were selected to include in the study different types of vegetation structures that can 

be often found in Sardinia (i.e.: broadleaf forests and Mediterranean maquis).  

2.2. Classification method 

 

 

Fig. 1.2. Work flow diagram showing the main steps for producing a fuel map. DEM = Digital Elevation 

Model 

The fuel type classification was carried out following the scheme showed in figure 1.2. 

After processing remote sensing data (see sections 2.4 and 2.5), we obtained a series of 

layers with a number of variables (bands of multispectral data, spectral indices and 

height distribution statistics and canopy cover from LiDAR). Then a set of reference 

areas was defined to determine their actual land cover type. For this analysis, we used as 

source of reference data, an orthophoto co-registered with simultaneously acquired 

LiDAR data (0.1m-resolution). 
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The calibration and validation of the classification model has been done by assigning 

the corresponding LiDAR-derived metrics and Spot-5 reflectance values to the 

reference areas (where the fuel type is already known). We used 70% of reference areas 

to fit the model and 30% to validate it. 

We evaluated four different algorithms which are commonly used to classify remote 

sensed data: Maximum Likelihood (ML), Neural Networks (NN), Support Vector 

Machine (SVM) and Random Forests (RF). 

The maximum likelihood (ML) algorithm is one of the most widespread parametric 

methods that have been traditionally used for classification of remote sensing data 

(Martin et al. 1998; Walter 2004; Shalaby and Tateishi 2007). Since a normal 

distribution within each class is assumed, a probability function of a pixel belonging to 

a certain class can be calculated according to the training data‟s values.  In this way, the 

ML classifier assigns the pixel to the class which maximizes the probability function 

(Chuvieco 2010).  

However, since parametric methods implies assumptions such as the normal distribution 

of data, alternative non-parametric methods like artificial neural networks (NN) have 

been employed to classify remote sensing images (Frizzelle and Moody 2001; Qiu and 

Jensen 2004; Yuan et al. 2009). Neural networks are able to learn from training data 

creating a complex classification scheme which is used to classify the rest of 

observations (Chuvieco 2010). They try to mimic the neural storage and analytical 

operations of the brain where “neurons” are interconnected through weighted 

relationships (Frizzelle and Moody 2001). 

Another non-parametric method used in remote sensing classification is suppport 

vector machine (SVM) which is also a machine learning algorithm (Pal and Mather 

2005; García et al. 2011; Mountrakis et al. 2011). Using the training data, the algorithm 

attempts to find a hyperplane that separates the dataset into a discrete predefined classes 

minimizing misclassifications (Mountrakis et al. 2011). 
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Recently random forests (RF) have been also introduced for remote sensed data 

analysis, especially for LiDAR data (Falkowski et al. 2009; Yu et al. 2011; Valbuena et 

al. 2016), but it has been also used for classifying optical data (Pal 2005; Reese et al. 

2014). It is a non-parametric method which consists of a combination of decision trees 

classifiers where different samples are randomly chosen from the training data to 

construct each individual tree (Breiman 2001). This algorithm searches only a random 

subset of the variables in order to minimize the correlation between the classifiers in the 

ensemble. 

These different classification were carried out using the R package „Rasclass‟ (R Core 

Team 2016; Wiesmann and Quinn 2016). Finally we built four fuel maps for each study 

area following the different classification model obtained from the outputs of each 

algorithm. 

2.3. Fuel types 

In this work, the fuel types that we discriminated with the proposed methodology are 

those shown in table 1.1. We selected these fuel types because they have been already 

characterized and/or tested in other studies in Sardinia (Arca et al. 2007, 2009, Salis et 

al. 2013, 2016, 2018; Ager et al. 2014; Alcasena et al. 2015). To compare our outputs 

with the information available until now, we also reclassified the Land Use Map (LUM) 

of Sardinia (Autonomous Region of Sardinia 2008) for the same fuel types. The original 

classes of the LUM of Sardinia are based on the Corine Land Cover classification (EEA 

2011). The LUM of Sardinia was elaborated using different sources such as: ortophoto 

AGEA (AGenzia per le Erogazioni in Agricoltura) 2003, ortophoto 2004, images 

Ikonos 2005-06, images Landsat 2003 and images Aster 2004. As reference data, 4000 

sample site were set throughout the island. 
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Table 1.1. Fuel types to be mapped and corresponding classes of the Land Use Map (LUM) of sardinia. 

Code Fuel type LUM Classes 

1 Buildings (non-fuel) 143, 1111, 1112, 1121, 1122, 1211, 1212, 1224, 1421 

2 Roads (non-fuel) 123, 1221, 1322, 1421 

3 Water 3315, 5111, 5112, 5122, 5211, 5212, 5231 

4 Bare ground 131, 133, 1321, 3311 

5 Sparse vegetation 333, 3313  

6 Mixed agricultural 242, 243, 2112, 2121, 2123 

7 Vineyard and orchard 221, 222, 223, 2411, 2413  

8 Herbaceous vegetation 321, 2111  

9 Garrigue 244, 411, 421, 3232, 3241  

10 Mediterranean maquis 3221, 3222, 3231 

11 Conifer forests 313, 3121, 3242 

12 Broadleaf forests 3111, 31121, 31122 

13 Mixed forests 141, 313  

 

2.4. LiDAR data processing 

LiDAR data of the study area in ASCII (.xyz) format were provided by the Autonomous 

Region of Sardinia (Servizio osservatorio del paesaggio e del territorio, sistemi 

informativi territoriali). These LiDAR data were recorded in different periods from 21
st
 

October 2008 to 10
th

 May 2009 using as laser equipment an Altm GEMINI sensor and 

obtaining a minimum point density of 0.8 m
-2

. 

First step to process the LiDAR data (Fig. 1.2) was to project the point data to UTM 

(zone 32N) with datum WGS-84 and convert them to a LAS format using LAStools 

(Isenburg 2015). Then we filtered the ground points creating a digital elevation model 

(DEM) which was used to calibrate the height of the points and calculate the metrics 

with FUSION (McGaughey 2014). The descriptive statistics computed by the 

Gridmetrics command of FUSION are shown in tables 1.2, 1.3 and 1.4. To discriminate 

different land cover types, we left out variables with constant values, because they did 

not add extra information. We also omitted absolute variables, since point density is not 

spatially uniform. For the above reason, we only considered relative variables. 
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Table 1.2. Variables related to the metrics of heights obtained from FUSION gridmetrics (McGaughey 

2014). 

Variable name Description 

Elev minimum minimum 

Elev maximum maximum 

Elev mean mean 

Elev mode mode 

Elev stddev standard deviation 

Elev variance variance 

Elev CV coefficient of variation 

Elev IQ interquartile range 

Elev skewness skewness 

Elev kurtosis kurtosis 

Elev AAD absolute average deviation 

Elev L1, L2, L3 and L4 L-moments 

Elev L CV L-moment of coefficient of variation 

Elev L skewness L-moment of skewness 

Elev L kurtosis L-moment of kurtosis 

p01, p05, p10, p20… p95, p99 percentiles 

Elev MAD median median of the absolute deviations from the overall median 

Elev MAD mode median of the absolute deviations from the overall mode 

Elev quadratic mean quadratic mean 

Elev cubic mean cubic mean 

Canopy relief ratio (mean height- min height) / (max height– min height) 

Variable name Description 

Elev minimum minimum 

Elev maximum maximum 

Elev mean mean 

Elev mode mode 

Elev stddev standard deviation 

Elev variance variance 

Elev CV coefficient of variation 

Elev IQ interquartile range 

Elev skewness skewness 

Elev kurtosis kurtosis 

Elev AAD absolute average deviation 

Elev L1, L2, L3 and L4 L-moments 

Elev L CV L-moment of coefficient of variation 

Elev L skewness L-moment of skewness 

Elev L kurtosis L-moment of kurtosis 

p01, p05, p10, p20… p95, p99 percentiles 

Elev MAD median median of the absolute deviations from the overall median 

Elev MAD mode median of the absolute deviations from the overall mode 

Elev quadratic mean quadratic mean 

Elev cubic mean cubic mean 

Canopy relief ratio (mean height- min height) / (max height– min height) 
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Table 1.3. Variables related to the metrics of canopy cover obtained from FUSION gridmetrics 

(McGaughey 2014). 

Variable name Description 

Canopy cover Percentage first returns above 2.00 m 

allcover Percentage all returns above 2.00 m 

afcover (All returns above 2.00 m) / (Total first returns) * 100 

abovemean Percentage first returns above mean 

abovemode Percentage first returns above mode 

allabovemean Percentage all returns above mean 

allabovemode Percentage all returns above mode 

afabovemean (All returns above mean) / (Total first returns) * 100 

afabovemode (All returns above mode) / (Total first returns) * 100 

 

 

Table 1.4. Variables related to the metrics of strata obtained from FUSION gridmetrics (McGaughey 

2014). These variables were computed for each strata (below 0.5 m; from 0.5 to 1 m; from 1 to 2 m; from 

2 to 3 m; from 3 to 5 m; from 5 to 10 m and above 10 m). 

Variable name Description 

Elev strata return proportion (Total return count for the strata)/(all returns) 

Elev strata  min Minimum elevation for the strata 

Elev strata  max Maximum elevation for the strata 

Elev strata  mean Average elevation for the strata 

Elev strata  mode Mode of elevations for the strata 

Elev strata  median Median elevation for the strata 

Elev strata  stddev Standard deviation of elevations within the the strata 

Elev strata  CV Coefficient of variation for elevations within the the strata 

Elev strata  skewness Skewness of elevations within the the strata 

Elev strata  kurtosis Kurtosis of elevations within the the strata 

 

Each variable was converted into a raster ASCII file to be used as input for the 

classification. 

2.5. Multispectral data processing 

The selection of a satellite image presenting a good compromise between spectral and 

spatial resolution is a key point for data processing. Two Spot-5 satellite images (Table 

1.5) acquired over both study areas in 2009 were used. The relatively high spatial 
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resolution (i.e. 10m) satisfies the research objectives, generating a high-resolution scene 

model. Furthermore, it facilitates the fusion with the LiDAR data, allowing to have a 

satisfactory number of points (more than 80 points) included within each pixel. With a 

very high resolution (such as 2 m) we would not be able to compute LiDAR statistics 

for each pixel. Finally, the information content of this data is likely much higher 

compared to the data sources available until now in Sardinia.  

Table 1.5. Technical characteristics of Spot-5 satellite. NIR is Near Infrared and SWIR is short wave 

infrared. 

Bands Spectral range (µm) Spatial resolution (m) 

B1 (Green) 0.50 - 0.59 10 

B2 (Red) 0.61 - 0.68 10 

B3 (NIR) 0.78 - 0.89 10 

B4 (SWIR) 1.58 - 1.75 20 

Pan 0.48 - 0.71 2 

 

Spot-5 images were already orthorectified and therefore the first step was to remove the 

atmospheric effect and to convert the values to reflectance (Fig. 1.2). To carry out this 

step, we used ATCOR-2 (Richter and Schläpfer 2012) which is a model that corrects the 

image according to a set of standard atmospheric profiles (Chuvieco 2010). 

A topographic correction has been then performed to remove the effect of shadowing 

due to the slope and aspect (Chuvieco 2010). Since our study areas cover also some 

forests, we decided to use the correction developed by Soenen et al. (2005), which 

consider the effect of the vertical growth of trees. The formulation for this correction is: 
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where α is the terrain slope, γ is the incidence angle, θs is the solar zenith angle and C is 

an empirical constant calculated for every band separately from the parameters of the 

regression of reflectance and the cosine of the incidence angle. Namely, C is the 

intercept to slope ratio: 
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In addition to the information from the different bands, some spectral indices have been 

also calculated since they have been proved to be good indicators of different vegetation 

species. These indices are: Normalized Difference Vegetation Index (NDVI), Soil 

Adjusted Vegetation Index (SAVI), and Normalized Difference Infrared Index (NDII). 

We computed these indices using the raster calculator tool (ArcGIS) following the 

equation: 

 

REDNIR

REDNIR
NDVI




  

where „RED‟ and „NIR‟ define the spectral reflectance measurements acquired in the 

visible (red) and near-infrared regions, respectively. 
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REDNIR
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


  

where „NIR‟ is the reflectance value of the near infrared band, „RED‟ is reflectance of 

the red band, and „L‟ is the correction factor for soil brightness. The value of L varies 

depending on the amount or cover of green vegetation: with very high vegetation, L=0, 

while in areas with no green vegetation, L=1. When L=0, then SAVI = NDVI. 

Generally, the default value used for the most of scientific papers is L=0.5.  

SWIRNIR

SWIRNIR
NDII




  

where „SWIR‟ and „NIR‟ define the spectral reflectance measurements acquired in the 

short-wave infrared and near-infrared regions, respectively. 
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2.6. Variable selection 

The maximum likelihood algorithm is a parametric method, thus the best explaining not 

correlated variables should be selected. Therefore, first step was to create four sets of 

explanatory variables (databases) with the data associated to the reference areas: (1) 

height metrics (Table 1.2); (2) cover metrics (Table 1.3); (3) strata metrics (Table 1.4); 

and (4) multispectral image bands and spectral indices (Table 1.5). Then, for each set of 

explanatory variables we calculated the correlation matrix and we deleted one of the 

pair of variables with high correlation coefficient. Finally, from the remaining not 

highly correlated variables, we selected those common to both study areas. We used the 

same set of variables for the classification with the SVM algorithm, because, even if it 

has no theoretical limitations, it works worse when variables increase (Mountrakis et al. 

2011). 

The other algorithms that we used (NN, and RF) are non-parametric methods. 

Theoretically, these algorithms should not be affected by distributional assumptions and 

correlation problems, but some studies found different results (Strobl et al. 2007, 2008). 

In any case, they have no limitations regarding the number of variables. Therefore, for 

these algorithms, we tried the classification with both approaches, that is: 1) the subset 

of variables and 2) all variables. 

2.7. Statistical methods 

The accuracy of the classification experiments was estimated using the remaining 30% 

of the reference areas which were not used for the training phase. For each classification 

output, we calculated the confusion matrix, the overall accuracy and the Cohen‟s Kappa 

coefficient (Congalton 1991; Senseman et al. 1995).  

The overall accuracy is the simplest measure of agreement and is calculated as follows: 
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where xii are the agreement cases (values in diagonal of the confusion matrix) and xi+ 

are the total number of reference values. When the agreement is very high OA 

coefficient values are close to one. 

The Kappa coefficient (K) is a bivariate agreement coefficient that becomes zero for 

chance agreement, one for perfect agreement, and negative for less than chance 

agreement (Foody 2006; Chuvieco 2010). K values are calculated as follows: 
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where r is the number of rows in the error matrix, xii is the number of observations in 

row i and column i, xi+ and x+i are the marginal totals of row i and column i, 

respectively and N is the total number of observations. 

Total accuracy coefficients does not reveal if error was evenly distributed among classes 

or if some classes were very accurately classified whereas other classes were completely 

misclassified.  Therefore, we calculated the user‟s and producer‟s accuracy as a measure 

of accuracy for each fuel type. User‟s accuracy is related to the error of commission 

whereas producer‟s accuracy is related to the error of omission. An error of commission 

is said to occur when a class is mapped incorrectly where it does not exist. Then an error 

is „committed‟, meaning that a class is over-mapping. On the other hand, the error of 

omission refers to reference areas that were left out (or omitted) from the correct class 

in the classified map. 

Finally, an accuracy assessment procedure was also followed for evaluating the quality 

of the information of the LUM map. We built the confusion matrix and calculated the 

different accuracy measures. For this purpose, we randomly selected 30% of reference 

areas and we crossed these data with LUM data. 

3. RESULTS 

We defined as reference areas for the different classes a total of 2,105 pixels for the 

study area of Siniscola and 673 pixels for the study area of Muravera. We should set 
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more reference areas in the Siniscola study area due to the scattered anthropic areas 

which were intermingled with the vegetation.  The frequency of reference areas was 

according to the pre-estimated cover extent of each class (Table 1.6).  

Table 1.6. Fuel types and their corresponding number of pixels used as the reference data in each study 

area. 

Code Fuel type 
Reference pixels 

Siniscola Muravera 

1 Buildings (non-fuel) 276 41 

2 Roads (non-fuel) 373 74 

3 Water 78 86 

4 Bare ground 159 42 

5 Sparse vegetation 232 39 

6 Mixed agricultural 138 49 

7 Vineyard and orchard 59 54 

8 Herbaceous vegetation 141 63 

9 Garrigue 116 44 

10 Mediterranean maquis 129 69 

11 Conifer forests 154 53 

12 Broadleaf forests 118 59 

13 Mixed forests 132  

Total 2105 673 

 

For each study area we used the four different algorithms (ML, NN, SVM and RF) with 

a set of less correlated variables to perform the classifications. The selected variables 

were: the Spot-5 bands (Band 1-Green, Band 2-Red, Band 3-NIR and Band 4-SWIR); 

the calculated spectral indices NDVI and NDII; the LiDAR height metrics coefficient of 

variation, kurtosis, 5
th

 percentile, 95
th

 percentile and skewness; the canopy cover; and 

from the LiDAR strata metrics the minimum height of the first stratum, and the 

proportion of returns of the 6
th

 stratum. 

Moreover, for the NN and RF algorithms we tried also the classifications with all 

variables. 
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3.1. Overall performance 

Results of all classifications showed rather high values of accuracy with overall 

accuracy ranging from 77.23% to 91.60% and Kappa coefficient ranging from 0.75 to 

91 (Table 1.7). 

The algorithm obtaining the highest accuracy values was RF in both study areas, 

especially when the classification was performed with the subset of variables (overall 

accuracy about 91.6% and Kappa coefficient about 0.91). Using NN with all variables 

we obtained the lower accuracy values for both study areas (overall accuracy about 

77.5% and Kappa coefficient about 0.75). 

Overall accuracy values were always higher than Kappa coefficient values for all 

classifications.  

Comparing the results of the two study areas, the accuracy results were similar with 

differences lower than 1% in most of the classifications. Using the RF algorithm with 

all variables the accuracy values of Siniscola were approximately 3% higher than those 

of Muravera.  

In table 1.7 we have also included the values related to the validation carried out for the 

Land Use Map (LUM) of Sardinia. As can be observed these accuracy values are much 

lower than those obtained from our classifications. 
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Table 1.7. Accuracy results for the two study areas using the different classification algorithms and set of 

variables. ML = Maximum Likelihood; NN = Neural Networks; SVM = Support Vector Machine; RF = 

Random Forests; LUM = Land Use Map.  

Study area Method Variables Overall accuracy Kappa coefficient 

Muravera 

ML subset 83.17% 0.82 

    

NN 
subset 80.69% 0.79 

all 77.23% 0.75 

    
SVM subset 84.16% 0.83 

    

RF 
subset 91.58% 0.91 

all 88.12% 0.87 

    
LUM 

 
60.40% 0.57 

     

Siniscola 

ML subset 84.15% 0.83 

    

NN 
subset 80.03% 0.78 

all 77.65% 0.75 

    
SVM subset 86.21% 0.85 

    

RF 
subset 91.60% 0.91 

all 90.97% 0.90 

    
LUM 

 
53.18% 0.49 
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3.2. Performance per classes 

In the case of Siniscola study area, almost all algorithms coincided in the categories 

covering the minor extent in the study area, which were „Water‟, „Bare ground‟ and 

„Mixed forest‟ (Table 1.8, Fig.  1.3, and Appendix A). The highest proportion of land, 

correspond to fuel types „Garrigue‟, „Herbaceous vegetation‟ and „Mixed agricultural‟ 

even if there was not much agreement among the classification outputs on this point.  

 

 

Fig. 1.3. Classification output map for the study area of Siniscola using the Random Forests (RF) 

algorithm with the subset of variables. 
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Fig. 1.4. Reclassification in the investigated classes of the Land Use Map (LUM) of Sardinia for the study 

area of Muravera. 

 

Regarding the LUM of Sardinia (Table 1.8 and Fig. 1.4), the „Mixed agricultural‟ is the 

fuel type covering the largest extent followed in a much lesser extent by „Garrigue‟. 

This map showed as the least frequent fuel types „Roads‟ and „Mixed forest‟. 
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Table 1.8. In the study area of Siniscola, percentage of area covered by each fuel type according to each 

algorithm and set of variables. ML = Maximum Likelihood; NN = Neural Networks; SVM = Support 

Vector Machine; RF = Random Forests; LUM = Land Use Map. 

Class 
ML            NN SVM              RF 

LUM 
subset all subset subset all subset 

Buildings 6.16 7.77 4.80 4.48 4.68 3.94 7.56 

Roads 6.31 8.31 6.95 6.25 11.33 5.95 0.27 

Water 0.86 2.72 2.32 1.06 1.31 1.19 1.01 

Bare ground 1.52 5.99 1.03 0.71 0.72 0.94 1.64 

Sparse vegetation 10.26 7.36 8.41 11.72 9.90 10.58 2.32 

Mixed agricultural 8.52 19.98 8.54 9.36 13.67 11.45 41.42 

Vineyard and 
orchard 

12.49 4.27 1.83 8.50 7.59 11.49 5.42 

Herbaceous 
vegetation 

14.62 10.96 16.10 12.76 10.62 12.92 5.94 

Garrigue 17.26 9.72 25.30 21.10 12.54 17.32 17.45 

Mediterranean 
maquis 

4.90 9.84 6.82 8.26 11.15 6.71 8.56 

Conifer forest 2.79 3.25 5.14 4.78 3.58 3.63 2.74 

Broadleaf forest 12.97 7.46 9.88 8.01 9.55 12.05 5.16 

Mixed forest 1.34 2.37 2.87 3.01 3.36 1.82 0.51 
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Also in the study area of Muravera there was a high degree of classification 

correspondence among maps regarding the fuel types least frequent which were „Bare 

ground‟, „Water‟ and „Herbaceous vegetation‟ (Tanle 1.9, Fig. 1.5, and Appendix B).  

Fuel types covering the largest extent were „Mediterranean maquis‟, „Broadleaf forest‟ 

and „Garrigue‟. The fuel type „Mixed forest‟ is not included in this case because was not 

found in this study area.  

 

 

Fig. 1.5. Classification output map for the study area of Muravera using the Random Forests (RF) 

algorithm with the subset of variables. 
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Fig. 1.6. Fuel types of the Muravera study area, according to the Land Use Map (LUM) of Sardinia 

 

In this area, the LUM of Sardinia (Table 1.9 and Fig. 1.6) showed „Mixed agricultural‟ 

as the most frequent fuel type followed by the „Mediterranean maquis‟ whereas „Roads‟ 

and „Sparse vegetation‟ were present only in a 0.20 and 0.88%, respectively, present in 

this area. 
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Table 1.9. In the study area of Muravera, percentage of area covered by each fuel type according to each 

algorithm and set of variables. ML = Maximum Likelihood; NN = Neural Networks; SVM = Support 

Vector Machine; RF = Random Forests; LUM = Land Use Map. 

Class 

ML NN SVM RF 

LUM 

subset all subset subset all subset 

Buildings 6.24 5.48 1.97 2.18 3.29 3.34 4.60 

Roads 5.91 9.20 5.94 5.29 8.25 6.81 0.20 

Water 1.53 2.88 2.48 2.32 2.66 2.35 3.09 

Bare ground 1.22 3.42 0.91 0.81 3.59 0.88 1.72 

Sparse vegetation 1.91 3.69 3.76 3.23 5.97 5.25 0.88 

Mixed agricultural 5.71 4.35 9.19 7.18 3.63 6.48 22.89 

Vineyard and 
orchard 

10.25 14.31 18.09 15.36 9.35 9.41 16.53 

Herbaceous 
vegetation 

2.67 3.12 3.50 3.22 1.66 2.53 2.01 

Garrigue 21.57 4.95 10.27 16.58 10.46 17.42 12.85 

Mediterranean 
maquis 

15.54 21.48 16.33 20.16 22.89 15.65 18.96 

Conifer forest 5.91 5.95 15.57 10.32 12.39 13.14 2.71 

Broadleaf forest 21.53 21.17 12.00 13.33 15.87 16.75 13.57 

 

 

Regarding the user‟s and producer‟s accuracy, „Water‟ was the class which higher 

values (Tables 1.10 and 1.11, and Appendices C and D). However, regarding the 

producer‟s accuracy the most accurately classified fuel types were very different in the 

two study area: in Siniscola they were „Conifer forest‟, „Garrigue‟ and „Mixed 

agricultural‟ while in Muravera they were „Herbaceous vegetation‟, „Mixed agricultural‟ 

and „Sparse vegetation‟. Results regarding the fuel types with higher error of omission 

were very uneven. In Siniscola the lowest value of producer‟s accuracy was in the fuel 
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type „Vineyard and orchard‟ with the NN algorithm using the subset of variables 

(9.09%), but with the RF algorithm using all variables or with the ML algorithm we 

obtained a 100% of producer‟s accuracy. In Muravera again the NN algorithm with all 

variables showed the worst performance in this case for the „Conifer forest‟ with a 

producer‟s accuracy value of 0% while RF with all variables reached a 100% for the 

same fuel type. 

In case of user‟s accuracy, in both areas the fuel types „Mixed Agricultural‟ and 

„Buildings‟ showed the highest values, whereas „Vineyard and orchard‟ in Siniscola 

(40%) and „Conifer forest‟ in Muravera (0%)  showed the lowest values when they were 

classified using the NN algorithm with the subset of variables and all variables 

respectively.  

In both, producer‟s and user‟s accuracy, RF showed high values and very balanced for 

all fuel types, especially when performed with the subset of variables. Conversely, NN 

showed most uneven results for the different fuel types. 

Also in this case we included data from the validation carried out with the Sardinian 

LUM. The results are very unbalanced showing for some fuel types very high accuracy 

values, such as „Broadleaf forest‟ and „Water‟ in both areas whereas other fuel types 

such as „Conifer forest‟ showed very different values in each study area. There were 

also some fuel types for which producer‟s and user‟s accuracy was very unbalanced, 

especially in the Siniscola study area („Sparse vegetation‟ and „Roads‟).  
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Table 1.10. Producer‟s and user‟s accuracy (%) from the classification outputs obtained using the 

different algorithms in the study area of Siniscola. ML = Maximum Likelihood; NN = Neural Networks; 

SVM = Support Vector Machine; RF = Random Forests; LUM = Land Use Map.  

Class Accuracy 
ML NN SVM RF 

LUM 
subset subset all subset subset all 

Buildings 
Producer's 89.77 85.71 79.12 90.11 89.77 88.64 94.68 

User's 91.86 96.30 90.00 94.25 96.34 93.98 69.53 

Roads 
Producer's 81.48 91.96 80.36 91.96 94.44 92.59 15.84 

User's 91.67 89.57 86.54 87.29 90.27 90.91 100.00 

Water 
Producer's 100.00 100.00 92.00 100.00 100.00 100.00 81.48 

User's 100.00 92.59 82.14 100.00 95.83 100.00 100.00 

Bare ground 
Producer's 83.64 75.00 84.09 70.45 87.27 74.55 60.78 

User's 64.79 71.74 56.06 75.61 84.21 83.67 51.67 

Sparse 
vegetation 

Producer's 54.79 72.60 53.42 73.97 82.19 84.93 1.28 

User's 70.18 72.60 68.42 75.00 80.00 70.45 100.00 

Mixed 
agricultural 

Producer's 91.67 84.85 96.97 90.91 94.44 94.44 97.73 

User's 100.00 100.00 65.31 100.00 100.00 100.00 29.86 

Vineyard and 
orchard 

Producer's 100.00 9.09 81.82 68.18 85.71 100.00 84.00 

User's 77.78 40.00 81.82 88.24 100.00 93.33 72.41 

Herbaceous 
vegetation 

Producer's 94.74 79.31 58.62 75.86 81.58 78.95 12.90 

User's 66.67 63.89 73.91 70.97 88.57 93.75 57.14 

Garrigue 
Producer's 97.30 86.84 84.21 100.00 97.30 100.00 65.71 

User's 87.80 68.75 80.00 90.48 92.31 94.87 30.26 

Mediterranean 
maquis 

Producer's 84.78 90.48 88.10 95.24 97.83 95.65 86.11 

User's 100.00 79.17 88.10 83.33 95.74 97.78 55.36 

Conifer forests 
Producer's 95.24 90.70 88.37 95.35 100.00 100.00 50.00 

User's 93.02 68.42 64.41 85.42 97.67 100.00 38.89 

Broadleaf 
forests 

Producer's 84.85 65.71 74.29 65.71 90.91 93.94 94.12 

User's 80.00 62.16 89.66 95.83 93.75 100.00 84.21 

Mixed forests 
Producer's 76.32 61.36 65.91 90.91 94.74 100.00 0.00 

User's 82.86 90.00 90.63 83.33 94.74 95.00 0.00 
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Table 1.11. Producer‟s and user‟s accuracy (%) from the classification outputs obtained using the 

different algorithms in the study area of Muravera. ML = Maximum Likelihood; NN = Neural Networks; 

SVM = Support Vector Machine; RF = Random Forests; LUM = Land Use Map.  

Class Accuracy 
ML NN SVM RF 

LUM 
subset subset all subset subset all 

Buildings 
Producer's 85.71 69.23 69.23 76.92 85.71 92.86 100.00 

User's 92.31 90.00 52.94 100.00 100.00 100.00 100.00 

Roads 
Producer's 80.00 75.00 54.17 79.17 85.00 65.00 0.00 

User's 84.21 72.00 72.22 86.36 85.00 72.22 0.00 

Water 
Producer's 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

User's 100.00 96.43 100.00 100.00 100.00 100.00 70.27 

Bare ground 
Producer's 86.67 84.62 76.92 100.00 80.00 80.00 41.67 

User's 92.86 78.57 66.67 86.67 85.71 92.31 35.71 

Sparse 
vegetation 

Producer's 88.89 69.23 84.62 76.92 100.00 100.00 0.00 

User's 61.54 90.00 100.00 71.43 81.82 75.00 0.00 

Mixed 
agricultural 

Producer's 88.24 100.00 90.48 90.48 88.24 82.35 60.00 

User's 100.00 84.00 95.00 100.00 93.75 93.33 22.50 

Vineyard and 
orchard 

Producer's 75.00 85.71 100.00 64.29 87.50 87.50 100.00 

User's 80.00 63.16 73.68 75.00 100.00 93.33 66.67 

Herbaceous 
vegetation 

Producer's 80.00 90.48 90.48 95.24 96.00 92.00 44.00 

User's 95.24 90.48 82.61 86.96 92.31 85.19 84.62 

Garrigue 
Producer's 92.31 35.71 64.29 64.29 100.00 76.92 28.57 

User's 54.55 50.00 81.82 56.25 81.25 66.67 28.57 

Mediterranean 
maquis 

Producer's 63.16 69.23 69.23 84.62 100.00 94.74 47.06 

User's 80.00 69.23 81.82 73.33 100.00 94.74 72.73 

Conifer forests 
Producer's 68.75 83.33 0.00 83.33 87.50 100.00 100.00 

User's 91.67 76.92 0.00 66.67 87.50 84.21 84.21 

Broadleaf 
forests 

Producer's 90.91 76.47 94.12 76.47 81.82 81.82 78.26 

User's 62.50 92.86 57.14 92.86 81.82 100.00 94.74 
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4. DISCUSSION 

High accuracies were reached by combining multispectral and LiDAR data in the fuel 

type classification, especially if we compare these results with the LUM of Sardinia 

which showed very low accuracy coefficients.  

The higher values of overall accuracy respect to the Kappa coefficient are common 

since latter is a more conservative measure than the overall classification accuracy. 

According to both accuracy coefficients (overall accuracy and Kappa coefficient), the 

best method for classifying this kind of data in these fuel types is the RF algorithm, 

followed by the SVM algorithm. The least performing algorithm was the NN contrary 

to what Frizzelle and Moody (2001) found in their study of characterization of land 

cover from multispectral data. In their work they obtained better results with the NN 

algorithm than the ML maybe because they used few variables and the classified only 

eight land cover categories. However, in agreement with our results, García et al. (2011) 

found in their study combining also LiDAR and Multispectral data, that SVM had 

higher potential for combing different data sources than ML. Also in accordance with 

our results, in the study of Pal and Mather (2005) RF showed accuracy coefficients 

slightly better than SVM, even if also in this case the classification was carried out 

using only multispectral data for seven classes. 

The most similar work to our study is the one carried out by Reese et al. (2014) since 

they used Spot-5 and LiDAR data to classify 12 classes of vegetation using the RF 

algorithm. However, they made it for alpine vegetation which includes mainly different 

types of herbaceous vegetation and shrubs and two classes of broadleaf forests. Their 

accuracies coefficients were much lower than ours (63.1% of overall accuracy). 

Also the classifications and the LUM of Sardinia differ in the fuel distribution of the 

study areas (Figs. 1.3, 1.4, 1.5, and 1.6), probably due to the coarser resolution of the 

latter.  

Regarding the performance per fuel type, besides „Water‟, which showed very high 

accuracies in both areas, the rest of fuel types showed very different values in each 

study area. This is probably because of the very different spatial distribution of fuel 

types in each area, which makes easier to define certain fuel types in each area. 
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However we selected these two study areas for this reason (different distribution of 

fuels characteristics of the island) and even if the results differ, in both cases showed 

high values of accuracy. Also in our study RF is the algorithm showing the most 

balanced performance regarding the results per fuel types with high values of both, 

producer‟s and user‟s accuracy. 

5. CONCLUSIONS 

Regarding the objective of this study, we can conclude that it is possible to create high 

accuracy fuel maps by combining multispectral and LiDAR data and the resulting maps 

improve the available information until now. 

Even if in this case we applied the methodology only to a small study area, the same 

methodology could be extended to other areas. Moreover, if new LiDAR data will be 

available for the whole island in the next years, we could update the fuel maps by 

following this methodology. 

In this study, the RF algorithm carried out with a subset of variables showed the best 

performance for the fuel type classification. However, RF with all variables performs a 

reasonably accurate classification (even if the results are not good as with selected 

variables). Therefore, since the selection of variables suppose extra-work and time, for a 

quick classification or if the classification should be done for lots of different areas, this 

methodology could be applied. 

Further work should be focus on the improvement of the variable selection for 

automatize the process and optimize the results. 
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Chapter 2: Characterizing Mediterranean 

canopy fuel properties from LiDAR data 

1. INTRODUCTION 

The knowledge of the canopy fuel characteristics is for several aspects related to fire 

management, as for instance for predicting crown fire occurrence and behavior (Scott 

and Reinhardt 2002). Therefore, the characterization of the canopy should be a 

preliminary work necessary for forest managers in case of wildfires as well as for using 

fire spread models. 

Wildfire spread models are efficient tools not only for simulating single fires but they 

have been also used for assessing potential wildfire risk, optimizing fuel treatments, etc 

(Finney 2006; Jahdi et al. 2015; Lozano et al. 2017; Salis et al. 2018). Fuel distribution 

maps are very important for wildfire spread modeling, but they are not the only 

necessary input. Widely used fire spread models such as FARSITE (Finney 1998) and 

FlamMap (Finney 2006) require spatially explicit estimation of canopy fuel 

characteristics to simulate also the crown fire. These required variables are: (1) Stand 

Height (SH) which is the average height of the dominant tree layer; (2) Canopy Base 

Height (CBH) which is the average height of the bottom of the tree crowns in the stand; 

and (3) Canopy Bulk Density (CBD) which is the density of the crown biomass above 

the shrub layer (Keane et al. 1998). 

As well as for the fuel maps, it is very difficult characterize canopy fuel structure based 

only on field surveys and therefore indirect estimation methods are needed (Hevia et al. 

2016). Optical remote sensing methods can be used to assess some vegetation 

characteristics over wide areas for relatively low costs (Arroyo et al. 2008; Claggett et 

al. 2010; Mallinis et al. 2013). However, these techniques are unable to accurately 

characterize canopy structural attributes while light detection and ranging (LiDAR) 

pulses penetrate the canopy and allows characterizing the forest structure (Wasser et al. 

2013). In fact, Riaño et al. (2003) modeled airborne laser scanning data for producing 

forest parameters used in fire behavior modeling. They used high density pulse LiDAR 

data which is only available for small areas because of its high cost. However, even 
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with low point density LiDAR data, some studies proved that it is possible to 

characterize some canopy fuel properties for conifer species, but for broadleaf areas 

there are not many studies (Erdody and Moskal 2010; Brubaker et al. 2014; González-

Ferreiro et al. 2014; Hermosilla et al. 2014; Hevia et al. 2016). In 2005, Andersen, 

Mcgaughey, and Reutebuch (2005) estimated conifer canopy fuel parameters using 

high-density LIDAR data. Hermosilla et al. (2014) estimated forest structure and 

canopy fuel parameters in a conifer forest from small-footprint full-waveform LiDAR 

data. In other studies, canopy fuel variables have been modelled using in this case 

medium or low-density LiDAR data but only in conifer stands (Hall et al. 2005; Zhao et 

al. 2011; González-Ferreiro et al. 2014, 2017). Brubaker et al. (2014) estimated only the 

canopy height using low density LiDAR but in a deciduous forest. 

The present study aims at improving the characterization of broadleaf forest fuel 

models using low-density LiDAR data in a Mediterranean area. Namely we wanted 

to obtain canopy input data, which are also required by wildfire spread models 

such as Stand Height, Crown Base Height and Crown Bulk Density. 

2. METHODS 

2.1. Study area 

The study area (between 39° 23‘ and 39° 25‘ N latitude and 9° 32‘ and 9° 35‘ E 

longitude , Fig. 2.1) is located in Muravera which is a municipality of south-eastern 

Sardinia (Italy). This area is close to the sea and therefore there are not very high 

altitudes (up to 572 m.a.s.l.). The area covers about 400 ha and was selected because it 

includes the largest extent of broadleaf evergreen forest within Sardinia areas for which 

LiDAR data are available.  The forest includes as main species Quercus ilex L. and 

other secondary species such as Olea europaea L. var. sylvestris, Juniperus oxycedrus 

L., Phillyrea latifolia L., Arbutus unedo L., Pistacia lentiscus L., Quercus suber L. 
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Fig. 2.1. Location of the study area of Muravera in south-eastern Sardinia 

2.2. LiDAR data 

Lidar data processed in chapter 1 corresponding to the Muravera case study were used 

for this chapter as well.  

2.3. Field data 

The field work provided the data to fit the model. The sampling design is presented in 

the following lines. 

Plot shape 

We decided to use circular plots because they are easier to georeference since only a 

single point is needed. Furthermore, in circular plots the perimeter-to-area ratio is 

minimum, therefore also the negative impact of the edge-effect on the LiDAR metrics is 

minimum (Frazer et al. 2011). 
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Plot size 

Some studies suggested that plot size should be the same as cloud point raster pixel size 

(Magnussen and Boudewyn 1998; Condés et al. 2013). In our study we were not able to 

change the pixel size of the cloud point raster since we wanted to combine our outputs 

with those obtained in chapter 1 (determined by the resolution of the multispectral 

image which is 10 m). Therefore, our field sampling plots had to be 100 m
2
. However, it 

was demonstrated that from larger field plots more accurate results may be achieved 

(Gobakken and Næsset 2009; Frazer et al. 2011; Zolkos et al. 2013; Ruiz et al. 2014; 

Hansen et al. 2015). Thus, we decided to use 10 m radius plots (314 area m
2
 

approximately). Ruiz et al. (2014) assessed the combined effect of field plot size and 

LiDAR density on the estimation of four forest structure variables (volume, total 

biomass, basal area and canopy cover). For a 314 m
2
 field plot with a density of 0.8 

points/m
2
, their results showed coefficients of determination (R

2
) ranging from 0.78 to 

0.86 for the different variables. Namely, for the canopy cover they suggested plot areas 

of 300-400 m
2
. 

Plot number 

Accuracy of outputs is not only related to plot size but also to plot number (Zeide 1980). 

It is possible to minimize the number of plots if the sampling design covers the whole 

variability (Condés et al. 2013). For this reason, the stratified sampling based on 

LiDAR data ensures that the entire data range of the predictor variables is sampled, and, 

consequently, the predictions by LiDAR-derived regression models are better 

(Hawbaker et al. 2009; Frazer et al. 2011; Condés et al. 2013). The locations of our 

plots were derived from a stratified sampling based on two LiDAR variables: mean 

height and standard deviation of height. The stratification was carried out first by the 

mean height (three strata), and then each stratum was further stratified into three strata 

according to the standard deviation (Fig. 2.2). Then we build a map with these 

combined strata (Fig. 2.3). A total of 27 plots were set and the number of plots per 

stratum was assigned according to their frequency in the map (Table 2.2). 
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Fig. 2.2. Scatterplot showing the values of the mean height and standard deviation (derived from LiDAR 

data) for each pixel of the study area. Data were stratified first by the mean height (x axis) and then by the 

standard deviation of LiDAR pulse height (y axis). Dash lines show the breaks among different strata. 

 

Table 2.2. Number of field plots assigned to each 

combined stratum. H1, H2 and H3 means the 

first, second and third strata of mean height 

respectively; and SD1, SD2 and SD3 are the 

first, second and third strata of standard deviation 

respectively (inside each mean height interval) 

Strata Number of plots 

H1 - SD1 6 

H1 - SD2 8 

H1 - SD3 1 

H2 - SD1 2 

H2 - SD2 6 

H2 - SD3 1 

H3 - SD1 1 

H3 - SD2 1 

H3 - SD3 1 

Total 27 
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Fig. 2.3. Map of the combining strata resulting from the stratification of LiDAR data according to the mean 

height and standard deviation: H1, H2 and H3 means the first, second and third strata of mean height 

respectively; and SD1, SD2 and SD3 are the first, second and third strata of standard deviation 

respectively (inside each mean height interval). 

Parameters measured in each plot 

We used handheld GPS navigator to reach the sampling plots. Then, we logged the 

coordinates of the center of the circular plot using a dual-frequency, geodetic, real-time 

RTK receiver (Leica GPS900) with a horizontal precision of 10mm + 1ppm and a 

vertical precision of 20mm + 1ppm. 

At each plot, we recorded the vegetation species and measured the diameters at breast 

height (DBH) of all trees (when DBH was higher than 7.5 cm). We verified the distance 

of each tree to the center of the plot by means of a laser vertex and a transponder 

(Haglof Vertex Laser VL400). 

We additionally measured the total height, the crown base height and crown projection 

diameters (two cross diameters) of four trees in the plot (the most northern, most 

eastern, most western and most southern tree of each plot).  
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To measure tree diameters we used a tree caliper, for total heights we used a handheld 

laser rangefinder/clinometer (TruPulse 360, Laser Technology), for crown base height 

we used a 3-m folding rule, and for crown projection diameters we used a 10-m 

measuring tape. 

Since we were only allowed to carry out non-destructive inventories in the study area, 

we had to indirectly calculate the Crown Bulk Density (CBD). Firstly, we calculated the 

crown volume as an ellipsoid which diameters were the two cross diameters of the 

crown projection and the third diameter was the difference between the total height and 

the crown base height. Then we calculated the CBD using the equations for the crown 

dry weight proposed by Tabacchi et al. (2011). 

2.4. Modeling canopy structure inside the sampling plots (allometric 

models) 

Field work provided diameter measures for all trees within the plot, but only few 

measures for height, CBH and canopy volume. To obtain these parameters for 

unmeasured trees we built Linear Mixed Models (LMMs) implemented on the R 

package lme4 (Bates et al. 2015). LMMs include random effects allowing to avoid 

pseudo-replication and to evaluate conditional effects on parameter estimates (Bolker et 

al. 2008). We used tree diameter as fixed effect for tree height and canopy volume, 

whereas for CBH we used tree height as fixed effect because preliminary analysis 

reported no relationship between tree diameter and CBH. Instead, as random effect  we 

used Plot ID over both the intercept and slope. The Akaike Information Criteria (AIC) 

was used for model selection (Burnham and Anderson 1998). Models were fitted using 

the maximum likelihood algorithm because other quasi-likelihood methods (e.g. 

restricted maximum likelihood) are not adequate for inference (e.g. AIC, Bolker et al. 

2008). To assess the variance explained of the selected models we used the R
2
 for 

mixed models of Nakagawa and Schielzeth (2013). The R
2 

of Nakagawa and Schielzeth 

reports both the variance explained by the model (conditional) and the fixed part only 

(marginal). The R
2
 of Nakagawa and Schielzeth was implemented using the R package 

MuMIn. 
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2.5. Variable selection 

We extracted from the LiDAR data the descriptive statistics corresponding to the field 

plots using the CloudMetrics tool in FUSION (McGaughey 2014). Even if we left out 

variables with constant values and relative variables, the database still had 116 variables 

(Cloudmetrics output metrics are the same as those from Gidmetrics, see Chapter 1, 2.4. 

LiDAR data processing). Since we wanted to test linear equations as canopy structure 

models, we had to reduce the number of variables. The first step was to split the 

database in seven databases as follows: percentiles of heights, other metrics of heights, 

canopy cover metrics and the metrics of strata grouped in four groups (strata below 1 

meter, strata between 1 and 3 meters, strata between 3 and 10 meters and strata above 

10 meters). Then we run a principal components analysis to each group and we selected 

the most explanatory variables (original variables and not principal components) of each 

group. At the end, we created a database with 33 variables (Table 2.2) 
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Table 2.2. Selected variables to fit the canopy structure models 

Variable name Description 

Elev minimum minimum 

Elev mean mean 

Elev mode mode 

Elev stddev standard deviation 

Elev CV coefficient of variation 

Elev skewness skewness of elevations 

Elev kurtosis kurtosis of elevations 

Elev P05 5th percentile 

Elev P05 25th percentile 

Elev P70 70th percentile 

Elev P95 95th percentile 

Canopy relief ratio (mean height- min height) / (max height– min height) 

Canopy cover Percentage first returns above 2.00 m 

allcover Percentage all returns above 2.00 m 

allabovemean Percentage all returns above mean 

allabovemode Percentage all returns above mode 

Elev strata below 0.50 return 
proportion 

(Total return count for the strata)/(all returns) 

Elev strata 0.50 to 1.00 return 
proportion 

(Total return count for the strata)/(all returns) 

Elev strata  0.50 to 1.00 min Minimum elevation for the strata 

Elev strata 0.50 to 1.00  mean Average elevation for the strata 

Elev strata  0.50 to 1.00  mode Mode of elevations for the strata 

Elev strata 0.50 to 1.00 skewness Skewness of elevations within the the strata 

Elev strata  kurtosis Kurtosis of elevations within the the strata 

Elev strata 1.00 to 2.00 return 
proportion 

(Total return count for the strata)/(all returns) 

Elev strata 1.00 to 2.00  min Minimum elevation for the strata 

Elev strata 1.00 to 2.00 mean Average elevation for the strata 

Elev strata  1.00 to 2.00 skewness Skewness of elevations within the the strata 

Elev strata return 2.00 to 3.00 
proportion 

(Total return count for the strata)/(all returns) 

Elev strata 2.00 to 3.00 mean Average elevation for the strata 

Elev strata 2.00 to 3.00 stddev Standard deviation of elevations within the the strata 

Elev strata return 3.00 to 5.00 
proportion 

(Total return count for the strata)/(all returns) 

Elev strata return 5.00 to 10.00 
proportion 

(Total return count for the strata)/(all returns) 

Elev strata return above 10.00 
proportion 

(Total return count for the strata)/(all returns) 
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2.6. Canopy structure modeling for the whole study area 

Combining the collected field data with the 33-variables database from LiDAR data we 

wanted to test different models for the following canopy variables: average stand height, 

average crown base height and average crown volume. We performed a stepwise 

selection for each response variable to identify the most explanatory variables and then 

we tried different linear regressions combining these variables. After the stepwise 

analysis and trying different variables and combinations of variables, we selected the 

models prioritizing the minimum number of variables, the lowest AIC, the highest 

adjusted correlation coefficient (R
2
) and the significance of coefficients. 

For the best performing models we calculated the variance inflation factors to test the 

multicollinearity and we plotted some diagnostics graphics (Residuals v. predicted 

values, Regression Influence Plot, Residuals v. Leverage and Normal Q-Q) to evaluate 

the model assumptions and to investigate if there were observations with an undue 

influence on the analysis. Then also an outlier test was run (Bonferroni Outlier Test,  R 

Core Team 2016) to confirm or not the presence of outlier plots. We also tried to find 

the best model using the Random Forest algorithm with all variables or with the set of 

33 variables previously selected. 

When we selected the best models, we extended them to the whole area using the ASCII 

files as predictive variables and obtaining as a result three maps (one for each canopy 

variable).  

 

3. RESULTS 

3.1. Field work 

We measured a total of 969 trees within the 27 sampling plots (Table 2.3). The majority 

of trees sampled were Quercus ilex L.; the other species (which frequencies were less 

than 10%) were Arbutus unedo L., Phillyrea latifolia L., Juniperus oxycedrus L., Olea 

europaea L. var. sylvestris, Pistacia lentiscus L. and Quercus suber L. 
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Table 2.3. Summary of field data collected. Stratum refers to the strata in which study area data was 

divided according to the mean height and the standard deviation of LiDAR pulse height. In the first 

column of the table, H1S1 means first range of mean height and first range of standard deviation, and so 

on for the other codes. Diameter at Breast Height (DBH) was measured in all trees of each plot. (*) The 

values of these parameters were calculated for four trees inside each plot. 

  Plot 
Number 
of trees 

Mean dbh Total Height* 
Crown Base 

Height* 
Crown 

Volume* 

H1S1 

1 14 11.16 4.70 1.36 148.53 

2 9 12.56 3.14 0.84 37.76 

3 20 11.79 5.48 1.48 93.39 

4 31 11.35 4.94 1.34 77.14 

5 20 11.65 4.85 1.38 90.10 

6 21 11.15 4.24 1.29 64.51 

H1S2 

7 14 14.54 5.73 1.00 288.66 

8 23 12.27 4.40 1.21 148.75 

9 26 13.90 7.23 1.99 260.25 

10 28 13.45 6.65 1.56 125.03 

11 21 11.37 6.10 2.16 62.77 

12 18 11.72 5.79 1.54 122.64 

13 50 11.07 5.70 1.56 124.95 

14 24 12.51 4.99 1.16 90.93 

H1S3 15 36 15.60 7.80 2.98 275.28 

H2S1 
16 75 10.65 7.15 2.39 125.71 

25 80 10.19 5.64 1.44 69.64 

H2S2 

17 37 13.24 10.15 2.76 686.94 

18 32 16.00 6.93 2.05 493.58 

19 64 12.28 7.85 1.85 180.04 

20 60 12.28 8.75 2.73 256.89 

21 25 12.31 5.71 1.64 87.01 

27 56 12.64 8.05 1.85 493.49 

H2S3 22 39 14.28 6.03 2.41 53.75 

H3S1 23 62 10.57 8.05 2.37 220.59 

H3S2 24 69 10.75 7.53 2.20 95.45 

H3S3 26 15 22.18 13.15 2.98 843.13 
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3.2. Allometric models 

As far as tree height and volume are concerned, the best model (i.e. lowest AIC) was 

that obtained using plot ID in the intercept as random effect. Instead, for CBH the 

models with random factors did not perform better. The conditional variance explained 

by the models was the 70, 80, and 33 for tree height, volume and CBH, respectively. 

Figure 4 shows the fitted relationships for the three variables.  

 

Fig. 2.4. Allometric fitted relationships. 

 

 

3.3. Models of canopy variables 

After the stepwise analysis and trying different variables and combinations of variables, 

we selected the models by prioritizing the minimum number of variables, the lowest 

AIC, the highest adjusted correlation coefficient (R
2
) and the significance of 

coefficients. 

The selected models and their respective coefficients of determination (R
2
) for each 

canopy fuel variable are summarized in Table 2.4. For all three models, the coefficients 

of determination are above 0.7.  

Scatter plots of field-measured against model values for the three studied variables are 

shown in Fig. 2.5. In these charts, all plots are near to the 1:1 line, except for plot 26 in 

SH and Crown Volume. 
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Table 2.4. Results of the best performing models for the average Stand Height (SH), the average Crown 

Base Height (CBH) and the average crown Volume (V). Significance codes: (***) = 0; (**) = 0.001; (*) 

= 0.01; (‘) = 0.05; ( ) = 0.1. The LiDAR elevations variables are: Elev P70 = 70th percentile; Elev P95 = 

95th percentile; Elev stddev = standard deviation; Elev kurtosis = kurtosis; allcover =  Percentage of all 

returns above 2 m. 

Selected models Adjusted R-squared 

SH = 1.56069** + 0.92950*** · Elev P70 0.7912 

CBH = 0.60437*** + 0.15810*** · Elev P70 + 0.21445 · Elev stddev 0.8140 

V = 2.55952*** + 0.22290*** · Elev P95 - 0.27668* · Elev kurtosis 
+ 0.0223' · allcover 

0.7261 

 

Fig. 2.5. Scatter plot of field-measured values v. model predicted results for the three 

studied canopy variables: average Stand Height (SH); average Crown Base Height 

(CBH); and the average crown Volume (V). 
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Diagnostics graphics showed some plots like 26, 18 and 22 distant from the other ones 

in terms of influence and residuals (Fig. 2.6). In the residuals v. predicted values plot, 

especially for the SH, the 26 plot shows a large positive value, while plots 18 and 22 

show a large negative value. In addition, both, Regression Influence Plot and Residuals 

v. Leverage plot, show that plot 26 had a high value of leverage for the three variables.   

Regarding the Cook's D statistic, again plots 26, 22 and 18 show high values for the 

three variables, whereas plots 7 and 8 show high variables only for crown volume. Plots 

26, 22 and 18 are far away from normal observations in the Normal Q-Q plot for SH. In 

case of CBH only plots 22 and 18 do not follow the normal observation‘s line.   
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Fig. 2.6. Diagnostics plots for the selected models for the three studied canopy variables: average Stand 

Height (SH); average Crown Base Height (CBH); and the average crown Volume (V). (a) Residuals v. 

predicted values; (b) Regression Influence Plot; (c) Residuals v. Leverage; and (d) Normal Q-Q. 
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(c) 
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We tried also to use the Random Forest algorithm but the resulting percentages of 

variance explained were always very low, therefore we did not consider these models. 

Maps of figures 2.7, 2.8 and 2.9 show the results of extending the fitted linear models to 

the whole study area. The three maps corresponding to the three studied variables (SH, 

CBH and crown volume) agreed in the identification of the areas with the highest 

values. The areas presenting the most pale colors or even white color (corresponding to 

no data) are also coinciding in the three maps. 

 

 

Fig. 2.7. Map of the resulting average Stand Height for the whole study area. 

 



61 

Olga Muñoz Lozano – Coupling remote sensing with wildfire spread modeling in Mediterranean areas – 
Tesi di Dottorato in Sienze Agrarie – Curriculum “Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e 
Forestali” – Ciclo XXX –  Università degli Studi di Sassari –  Anno Accademico 2016 - 2017 

 

Fig. 2.8. Map of the resulting average Crown Base Height (CBH) for the whole study area. 
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Fig. 2.9. Map of the resulting average Crown Volume for the whole study area. 

 

4. DISCUSSION 

According to the R-squared values the three models of canopy variables performed well 

at predicting the respective canopy variables. In addition, the plots of field data v. 

predicted data show the goodness of fit obtained with these models (Fig. 2.5). 

In some of the diagnostics graphics a few plots appear away from the other ones. 

However, based on the results of the outlier test, there was no statistically justifiable 

reason to remove these plots from the data set (Aldas Manzano and Uriel Jiménez 

2017). Moreover, we decided to perform a stratified sampling to cover all the 

variability; therefore, deleting a plot would have resulted in missing some parts of the 

forest fuels.  
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Regarding the stand height (SH), previous studies that used low-density LiDAR data 

found a linear relationship between this variable and LiDAR metrics as in our case (Hall 

et al. 2005; Brubaker et al. 2014; González-Ferreiro et al. 2014). The coefficients of 

determination in these studies were lower than our R
2
 (0.7912) in of Hall et al. (2005, 

0.571); similar in Brubaker et al. (2014, around 0.8); and higher in González-Ferreiro et 

al. (2014, 0.977). 

With respect to CBH, there is not so much agreement among authors about its 

relationship with LiDAR metrics: Hall et al. (2005) found a logarithmic relationship, 

whereas González-Ferreiro et al. (2014) and the present study found a linear 

relationship. For this variable, the coefficient of determination obtained by González-

Ferreiro et al. (2014) was higher than ours (R
2
 = 0.8140) and those obtained by Hall et 

al. (2005) which were about 0.8 in both cases. 

Our estimation of CBD was indirect; therefore it is difficult to compare our results with 

other studies carried out using different methodologies. However, we found a 

logarithmic relationship between LiDAR variables and crown volume as well as 

Andersen et al. (2005), which reported a logarithmic relationship between LiDAR 

variables and CBD. 

Regarding the resulting maps, the dark areas in the three maps of SH, CBH and crown 

volume are likely the areas characterized by tree cover. These areas probably mainly 

correspond to forest areas, but it is also possible to observe the boundaries of the 

different agricultural areas, which are surrounded by trees. There are also some darker 

spots inside the village which probably correspond to urban green areas. Instead, the 

areas showing very pale colors or even white color (no data) most likely correspond to 

bare ground areas or areas with short vegetation. It is possible to note the white area in 

the north of the study area, the Flumendosa river, which flows from west to east through 

the study area. We can also observe the highway as light color area, from north towards 

south of the study area. 
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5. CONCLUSIONS 

Lidar data are already being used in forest inventories to quantify and map several forest 

characteristics (Woods et al. 2010; Yu et al. 2011; Guerra-Hernández et al. 2016a; b,  

González-Ferreiro et al. 2017). Our results showed that this source of data could be also 

used to characterize the canopy of broadleaf forests. 

Even if our accuracy results are lower than those obtained in other works, the results 

obtained are promising. Moreover, the most of previous works focused on the canopy 

variables of conifer forests (except for Brubaker et al. 2014), while our study 

investigated broadleaf forest: the more homogeneous crown shape of conifers could 

explain the differences in the accuracy values with respect to our work. 

The selection of variables is quite time-consuming (explained in section ―2.5. Variable 

selection‖) and at the end, for the linear models, we only selected five different 

variables. Since we wanted to develop a methodology which could be extended to more 

areas, this previous selection phase could be omitted, and we could directly test some 

commonly used variables (canopy cover, 95
th

 percentile of elevations, standard 

deviation…) or combinations of these variables. For example, the LiDAR strata 

variables seem not to be very useful for describing canopy variables, probably because 

the height of crowns is also variable and the use of only one range of heights (one 

stratum) is not enough. However, in case of the Random Forest model since all 

variables could be considered, strata metrics might be included in the analysis. 

However, in the present work this algorithm did not performed very well for describing 

canopy variables. 

In any case, the most demanding part of this methodology is the field work. Therefore, 

if the selection of variables optimizes the results, it merits consideration. In this way, it 

would be possible to take maximum advantage of field-derived data. 

The methodology presented in this study provides encouraging results. However, when 

a new LiDAR dataset will be available for Sardinia, it would be advisable to carry out 

the field work as soon as possible and this will probably improve the results. Further 

studies should also consider the possibility of improving the estimations of canopy bulk 
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density. In this sense, destructive inventories could help since direct measurements 

should provide better results. 
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Chapter 3: Integrating LiDAR and satellite 

data with wildfire spread modeling to 

enhance wildfire exposure analysis in 

Mediterranean areas 

1. INTRODUCTION 

Forest managers use wildfire spread models as a tool for assessing fire risk, for fire 

management decision-making, to manage suppression resources, and to plan fuel 

reduction treatments across landscapes (Salis et al. 2016b; Lozano et al. 2017; 

Sakellariou et al. 2017; Salis et al. 2018). 

Most fire spread models are based on the Rothermel‘s model, which calculates surface 

fire rate of spread using as inputs fine scale information on weather, fuels and 

topography. Two of the most used are FARSITE (Finney 1998), which is based on the 

Huygen‘s principle of wave propagation, and FlamMap (Finney 2006) based on the 

Minimum Travel Time (MTT) algorithm for the fire growth (Finney 2002). In 

particular, FARSITE is a good simulator for single events and it has been calibrated and 

validated for different areas including Sardinia (Arca et al. 2007; Duguy et al. 2007; 

Salis 2008; Jahdi et al. 2015b; Salis et al. 2016a).  

Fuel maps are one of the most important inputs for wildfire spread simulation. 

Vegetation layers and databases should quantify fuel information at a high level of 

detail or resolution for the simulator to work well (Keane et al. 2000). For this reason 

numerous studies have been focused on the development of high accuracy fuel maps 

(Lasaponara and Lanorte 2007a; b, Mallinis et al. 2008, 2014; Otukei and Blaschke 

2010). Most of this research is based on remote sensed data which require much less 

effort than the traditional field methods. However, the elaboration of these accurate 

layers is always - to a greater or lesser degree – demanding. Therefore, it is important to 

assess how much could be improved the results of a wildfire spread simulation by using 

high accurate maps. 
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Previous studies used Lidar and satellite imagery to build the fuel inputs for wildfire 

spread models (González-Olabarria et al. 2012). Mutlu et al. (2008) modeled fictitious 

fires with FARSITE to assess the differences in modeling outputs using different fuel 

model maps. Recently, a study carried out using FlamMap, assesed the impact of error 

in LiDAR-derived canopy height and canopy base height on modeled wildfire behavior 

(Kelly et al. 2018).  

However, to the best of our knowledge, this is the first work that evaluates the 

improvement of historical wildfire simulations after the use of high accuracy maps. This 

approach has the advantage that the final area burned is known.  

The main objective of this chapter will be to assess differences on the accuracy of 

FARSITE simulations by using alternatively the fuel model maps obtained from 

the previous chapters and fuel maps derived from the Land Use Map (LUM) of 

Sardinia (Autonomous Region of Sardinia 2008) as fuel layer inputs.  

2. METHODS 

2.1. Study area 

The historical fire simulated in this chapter occurred in the area of Muravera, which was 

described in chapter 2. 

2.2. Case study 

We selected the only wildfire that affected broadleaf forests inside of the area with 

available LiDAR data. This wildfire occurred in the study area of Muravera on July 24
th

 

2010 and affected 493 ha (Fig. 3.1).   
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Fig. 3.1. Fire perimeter in the study area of Muravera. DEM = Digital 

Elevation Model. 

Burned area perimeter was downloaded from www.sardegnageoportale.it whereas the 

ignition point and other information about the fire event were provided by the Forest 

Service of Sardinia. The fire started at 14:15 pm nearby a highway in a shrubland area 

mainly covered by Cistus ssp.  The fire lasted for four hours and showed very high 

spread rates.  Even if the dense smoke complicated the visibility, both spot fires and 

crown fires were observed and reported in the Sardinia Forest Service documents. 

The weather of the day of the fire was characterized by a maximum temperature of 

31°C, average relative humidity of 47% and strong northwest winds (24 km·h
-1

 with 

gusts of 50 km·h
-1

). The fire spread rapidly driven by the mistral wind and the 

topographic conditions, and was also supported by the dryness of fuels. 

2.3. Input data for the simulations 

A good approach to test the accuracy of the fuel map will be to use it as input for 

simulating some fire events in the past from which fire area and behavior are already 

known. Since other factors (as the other inputs or the model itself) could affect the 

accuracy of a simulation, the best way to assess the effects of a single input on the 
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output accuracy is to run the simulation changing only this input (fuel model map 

and/or canopy layers in our case), while holding constant all the other parameters and 

inputs. We prepared the simulation inputs as follows: 

Topography and fuels 

FARSITE required some spatial data, which should be imported as a so-called 

landscape file. The landscape file is composed of five layers (elevation, slope, aspect, 

fuel models and canopy cover) and other three optional canopy layers (canopy bulk 

density, canopy base height, and stand height). 

We prepared five different landscape files (at a resolution of 10m); all of them with 

fixed topography layers. From the Digital Terrain Model (www.sardegnageoportale.it) 

we calculated, using ArcGIS, the layers of elevation, slope and aspect. 

Regarding the fuel layers, each landscape file was different and the combinations of fuel 

layers and canopy layers of each landscape were as follows: 

- LCP-LUM-NO: the fuel model layer was produced from a reclassification of the 

Land Use Map (LUM, Fig. 3.2) of Sardinia as explained in Chapter 1 (2.3. Fuel 

types). We built this landscape without canopy layers. 

- LCP-LUM-ST: the fuel model layer was the reclassification of the LUM, but in 

this case, the canopy layers were built using standard values (see Table 3.1) used 

in other studies carried out in Sardinia in areas covered by similar vegetation 

types (Salis et al. 2016a)  

- LCP-CUS-NO: we used the fuel model map (Fig. 3.2) obtained from the 

classification of selected variables using the random forest algorithm presented 

in Chapter 1 (which showed the best accuracy coefficients). This landscape file 

did not include canopy layers.  

- LCP-CUS-ST: this landscape was built using our fuel map, but we added the 

standard canopy values for crown fuels. 
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- LCP-CUS-CUS: in this landscape file, we combined our fuel model map with 

the canopy layers resulting from Chapter 2.  

 

 

Fig. 3.2. Maps of fuel types from reclassification of the Land Use Map (LUM) of Sardinia (a) and from 

the classification carried out in chapter 1 combining multispectral data and LiDAR data (b) with the 

observed perimeter of the fire 

The standard (Anderson 1982; Scott and Burgan 2005) or custom fuel models attributed 

to each fuel type are shown  in Table 3.1. The custom fuel models were developed in 

previous studies carried out for Sardinian fuel models (Arca et al. 2007, 2009; Bacciu et 

al. 2009; Salis et al. 2013) and were applied to the shrubland vegetation (Mediterranean 

maquis and garrigue) and pastures. 

  

(a) (b) 
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Table 3.1. Fuel models assigned to each fuel type and the values of canopy variables used for the 

landscape files including standard canopy layers. 
(a)

 Scott and Burgan 2005; 
(b)

 Anderson 1982; and 
(c) 

Arca et al. 2009. 

Fuel 
types 

Class 
Reference Fuel 
Models used 

Standard canopy layer values  

Stand 
Height 

 (m) 

Canopy 
Base Height 

(m) 

Canopy Bulk 
Density 

(kg · m-3) 

21 Buildings NB1(a) 0 0 0 

22 Roads NB1(a) 0 0 0 

23 Water NB8(a) 0 0 0 

24 Bare ground GR1(a) 0 0 0 

25 
Sparse 
vegetation 

Mod 1 (reduced 
load 50%)(b) 

0 0 0 

26 
Mixed 
agricultural 

Mod 1(b) 0 0 0 

27 
Vineyard and 
orchard 

Mod 2(b) 6 0.8 0.09 

28 
Herbaceous 
vegetation 

CM 27(c) 0 0 0 

29 Garrigue CM 29(c) 0 0 0 

30 
Mediterranean 
maquis 

CM 28(c) 7 0.8 0.13 

31 Conifer forests TL6(a) 10 2 0.11 

32 
Broadleaf 
forests 

TL3(a) 9 1.8 0.14 

 

Weather data and fuel moisture content 

Temperatures and wind data was gathered from San Vito, the nearest available weather 

station (www.weatherunderground.com), which is located 4 km far from the study area. 

The values of live and dead fuel moisture content (FMC) were set according to field 

data collected in other studies carried out in Sardinia, considering the fuel drought 

conditions of the fire period (Pellizzaro et al. 2007, 2009; Arca et al. 2009). 

http://www.weatherunderground.com/
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2.4. Wildfire simulations 

To simulate the wildfire of Muravera we used FARSITE (Finney 1998). FARSITE is a 

spatially explicit fire growth model that simulates the spread and behavior of fires under 

heterogeneous conditions (Stratton 2006). This software incorporates models for surface 

fire (Rothermel 1972), crown fire initiation (Van Wagner 1977, 1993), crown fire 

spread (Rothermel 1991), spotting (Albini 1979), point-source fire acceleration (Finney 

1998), and dead fuel moisture (Nelson 2000).  

Different wildfire simulations were performed using alternately as input the five 

landscape files previously built (see 2.3 Input data for the simulations) and the rest of 

the inputs and parameters were held fixed. All wildfire spread simulations were 

performed at 10m resolution with a fire duration of four hours (from 14:15 pm to 18:15 

pm). No suppression efforts were considered in fire modeling due to the lack of accurate 

information. 

Regarding the outputs, we exported as shapefiles the perimeters of the burned area at 

different times. Instead, the fire behavior parameters were exported as raster files 

(Reaction Intensity, Rate of Spread, Fireline Intensity, Crown Fire Activity, Heat per 

unit Area, Spread Direction, Time of Arrival, and Flame Length). These fire behavior 

parameters are explained in the following paragraphs. 

The Reaction Intensity (RCI) quantifies the rate of released energy per unit area of fire 

front. 

Rate of Spread (ROS), according to the Rothermel (1972) model, can be defined as the 

ratio between the heat received by unburned fuel and the heat required to ignite 

unburned fuel. The equation is as follows: 

igb

SW

Q

RCI
ROS








 )1(
 

where ROS is the rate of spread, RCI is the reaction intensity, ξ is the propagating flux 

ratio, Фw is the wind factor, Фs is the slope factor, ρb is the fuel bed bulk density, ɛ is the 

effective heating number, and Qig is the heat of pre-ignition. Under steady-state 
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conditions, the Rothermel‘s equation computes the rate of fire spread in the direction of 

maximum fire spread and assuming that wind and slope are aligned in this direction. 

Fireline Intensity (FLI) is defined from fire rate of spread and fuel consumption, 

according to the Byram's (1959) equation:  

ROSwaHFLI   

where H is the net low heat of combustion, wa is the fuel consumed in the active 

flaming front and ROS is the Rate of Spread. 

Flame Length (FML) is defined as the distance from the base of the flaming zone to 

the top of continuous flames. This parameter is used to describe fire intensity and 

difficulties for the suppression operations. 

As Crown Fire Activity (CFR) output, FARSITE provides a raster file with three 

possible values: (1) ―Surface‖ which means no crown fire; (2) ―Passive‖ which means 

torching crown fires (the rate of spread remains the same as surface fire but the fireline 

intensity and flame length increase a small amount as a result of the additional fuel 

consumed by the torching trees); and (3) ―Active‖, which means active crown fires: in 

this case, the crown fire ROS is much higher than the surface fire ROS. The fireline 

intensity and flame length also increase significantly for active crown fire.  

The Heat per unit Area (HPA) is the product of the total heat released by fuel and the 

net fuel load. 

Finally, FARSITE produces other raster outputs with the information on the Spread 

Direction (SDR) for each pixel, and the Time of Arrival (TOA) of the simulated fire. 

2.5. Statistical analysis 

First step for evaluating the simulation performances with different landscape files was 

the calculation of the error matrix between actual and simulated fire perimeters.  Then 

Sørensen‘s coefficient (SC; Legendre and Legendre 1998) and Cohen‘s Kappa 

coefficient (K; Congalton 1991) were used as measures of the accuracy of the extent of 

the fire spread (Arca et al. 2007; Jahdi et al. 2015a; b). 
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Sørensen‘s coeffcient (SC) is an indicator of the coincidence between observed and 

simulated burned areas and is calculated as follows: 

cba

a
SC




2

2
 

where a is the number of burned cells in both observed and simulated data, b is the 

number of burned cells in the simulation and unburned the observation, and c is the 

number of unburned cells in the simulation and burned in the observation (Arca et al. 

2007). 

Kappa coefficient (K) equation was explained in chapter 1 (2.7. Statistical methods). 

 Both K and SC coefficient values are close to one when the agreement between 

simulated and observed fire perimeters is very high. 

Regarding the other outputs (not the perimeters), since it is not easy to know exactly 

how was the behavior of the fire (besides the perimeter that it burned), we only 

compared the different outputs among themselves. To simplify, we run a zonal statistics 

using ArcGIS, and we obtained a unique mean value inside the real perimeter. 

3. RESULTS  

3.1. Perimeters 

The simulated perimeters were compared with the observed fire perimeter (Fig. 3.3, 

Table 3.2). Overall, the landscapes including canopy layers produced more accurate 

simulations according to both, Søerensen coefficient (0.75 – 0.86) and Cohen‘s kappa 

coefficient (0.69 – 0.83). All landscape files including our custom fuel models maps 

performed better than those based on the reclassification of the LUM. Only the LCP-

CUS-NO showed low values for the accuracy coefficients (SC = 0.54 and K = 0.49), 

even if they were better than the LCP-LUM-NO (SC = 0.47 and K = 0.41).  
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Fig. 3.3. Simulated burned areas for the different landscape files compared whith the actual fire perimeter. LCP = landscape file; ST = standard; CUS = custom 

(for landscape file codes see section ―2.3. Input data for the simulations‖) 
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When comparing the LCP-LUM-ST with the LCP-CUS-ST, we observed that both 

accuracy coefficients were higher for the latter. There were also differences between the 

simulations carried out with LCP-CUS-CUS and LCP-CUS-CUS: our LiDAR-derived 

canopy layers guaranteed higher accuracy coefficients than those of the outputs from the 

landscape file including standard canopy layers. 

Table 3.2. Results of the statistical evaluation from the comparison between simulated fire perimeter and 

actual perimeter. LCP = landscape file; ST = standard; CUS = custom (for landscape file codes see 

section ―2.3. Input data for the simulations‖). 

Landscape 
file 

Agreement 
(ha) 

Overestimation 
(ha) 

Underestimation 
(ha) 

Sørensen’s 
coefficient  

Cohen’s Kappa 
coefficient 

LUM-NO 166.28 46.80 326.67 0.47 0.41 

LUM-ST 411.33 199.47 81.62 0.75 0.69 

CUS-NO 190.87 19.71 302.08 0.54 0.49 

CUS-ST 480.84 187.69 12.11 0.83 0.79 

CUS-CUS 457.91 111.18 35.04 0.86 0.83 

 

The outputs of the simulations carried out with the landscape files without canopy 

layers underestimated much more the area burned than the other ones. The highest 

overestimations were produced by the landscape files including the standard canopy 

layers. The landscape file including our custom fuel model map and our custom canopy 

layers showed the best agreement with respect to the observed perimeter. 

3.2. Other outputs 

The resulting maps of the raster outputs (Reaction Intensity, Rate of Spread, Fireline 

Intensity, Crown Fire Activity, Heat per unit Area, Spread Direction, Time of Arrival, 

and Flame Length) are compiled in Appendix E. 

The simulations carried out with the landscape files without the canopy layers produced 

the lowest mean values for CFR and FML and the highest values of RCI (table 3.3).  

The LUM landscapes showed fire behavior outputs with the highest means in case of 

ROS and the lowest values for HPA and FLI.  
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Table 3.3. Statistics calculates inside the real perimeter of the fire for the outputs obtained from the 

simulations run with the different landscape file. LCP = landscape file; ST = standard; CUS = custom;  

CFR = Crown Fire Activity (1 = surface; 2 = passive; 3 = active); FLI = Fireline Intensity; FML = Flame 

Length; HPA = Heat per unit Area; RCI = Reaction Intensity; ROS = Rate of Spread; SDR = Spread 

Direction (for landscape file codes see section ―2.3. Input data for the simulations‖). 

Landscape 
file 

Output Minimum Maximum Range Mean 
Standard 
deviation 

LUM-NO 

CFR (category) 1 3 2 1.08 0.27 

FLI (kW·m-1) 0.01 9641.71 9641.70 530.26 730.42 

FML (m) 0.01 12.07 12.06 1.32 1.15 

HPA (kJ·m-2) 35.33 30209.08 30173.75 7633.48 7306.18 

RCI (kW·m-2) 4.89 1829.93 1825.04 877.78 530.81 

ROS (m·min-1) 0.01 35.61 35.60 4.50 3.99 

SDR (Azimuth) 0.00 359.00 359.00 155.34 100.66 

LUM-ST 

CFR (category) 1 3 2 1.76 0.43 

FLI (kW·m-1) 0.09 27255.83 27255.74 1031.98 1141.67 

FML (m) 0.01 24.13 24.12 2.34 1.73 

HPA (kJ·m-2) 57.30 116497.13 116439.83 9956.33 8324.49 

RCI (kW·m-2) 6.95 1847.49 1840.55 681.90 241.65 

ROS (m·min-1) 0.01 36.47 36.46 6.71 5.63 

SDR (Azimuth) 0.00 359.00 359.00 130.38 88.06 

CUS-NO 

CFR (category) 1 3 2 1.26 0.46 

FLI (kW·m-1) 0.72 14746.00 14745.28 1140.57 1546.60 

FML (m) 0.07 16.02 15.95 2.21 2.22 

HPA (kJ·m-2) 106.73 31505.61 31398.87 13499.12 10535.05 

RCI (kW·m-2) 0.00 1936.15 1936.15 1113.49 532.36 

ROS (m·min-1) 0.17 28.59 28.42 4.04 3.48 

SDR (Azimuth) 0.00 359.00 359.00 155.81 94.71 

CUS-CUS 

CFR (category) 1 3 2 1.47 0.50 

FLI (kW·m-1) 0.00 22042.79 22042.79 1310.91 2045.23 

FML (m) 0.00 20.94 20.94 2.51 2.64 

HPA (kJ·m-2) 4.95 445585.63 445580.67 15373.11 14417.93 

RCI (kW·m-2) 0.00 1915.06 1915.06 686.15 313.73 

ROS (m·min-1) 0.01 25.59 25.58 3.89 3.37 

SDR (Azimuth) 0.00 359.00 359.00 152.37 96.43 

CUS-CUS 

CFR (category) 1 3 2 1.65 0.48 

FLI (kW·m-1) 0.05 27925.45 27925.40 1324.19 2083.27 

FML (m) 0.00 24.52 24.52 2.53 2.64 

HPA (kJ·m-2) 0.80 633384.25 633383.45 15753.99 14737.69 

RCI (kW·m-2) 0.00 1886.17 1886.17 847.66 287.05 

ROS (m·min-1) 0.00 24.26 24.26 3.95 3.40 

SDR (Azimuth) 0.00 359.00 359.00 153.82 94.05 
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4. DISCUSSION 

The uncertainty in wildfire spread models is mainly due to the variability of fuels 

(Lydersen et al. 2015). Therefore, when increasing the accuracy of the fuel maps and 

the canopy layers used as input for fire behavior simulation, an improvement in the 

outputs is expected. Our work confirmed this fact, and showed that the best results were 

obtained by the simulations carried out with high accuracy fuel maps and canopy layers. 

The accuracy results of the simulations without considering the crown fuels were very 

weak, which supports the fact that crown fires and spot fires played a relevant role in 

the fire propagation, as indicated by the Sardinia Forest Service. 

Using the fuel map from the reclassification of the LUM of Sardinia and including the 

standard values for the canopy layers, the results are acceptable. Arca et al. (2007) 

obtained similar results using as fuel model map a reclassification of the LUM of 

Sardinia. 

When including our custom fuel model maps as input for the simulations, the accuracy 

of outputs improved considerably. Keeping constant all other inputs (including standard 

canopy layers), the accuracy coefficients increased from 0.75 to 0.83 for Sørensen 

coefficient and from 0.69 to 0.79 for kappa coefficient. The inclusion of our custom 

canopy layers also led to a better performance. However, in this case, the accuracy 

coefficients increased to a lesser extent (SC from 0.83 to 0.86 and K from 0.79 to 0.83). 

Probably, this small increase is due to the limited presence of forests in the area burned.  

Regarding the overestimation values, they could seem very high. However, it is usual 

that FARSITE overestimates when suppression activities are not considered in the 

simulations (Jahdi et al. 2015a; b). 

We also analyzed other outputs such as: Reaction Intensity, Rate of Spread, Fireline 

Intensity, Crown Fire Activity, Heat per unit Area, Spread Direction, Time of Arrival, 

and Flame Length. However, for these outputs it is more difficult to evaluate which 

simulations were more accurate since the real values were unknown. In any case, 

variables such as FML and CRW, which are mostly influenced by the canopy 

characteristics, showed lowest values when using landscape files without canopy layers. 
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5. CONCLUSIONS 

In this study we assessed the effects of the accuracy of fuel models maps on the fire 

behavior model outputs. In particular, we used FARSITE, which is a tool that could 

assist forest managers and fire fighters with the mitigation of the effects of wildfire 

(Finney 1998). Accurate estimation of fire growth area and spread direction is 

extremely important because it could strongly support the decision-making process. 

We demonstrated that increasing the accuracy of fuel model map and canopy layers 

improves the outputs of the wildfire spread models. The improvement obtained by 

including more accurate layers in the simulation could be considered moderate. 

However, especially in areas where houses and vegetation are intermingled, fatalthis 

effect could definitely be much more relevant. 
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Final conclusions 

This work suggests that the use of LiDAR and satellite imagery data can contribute to 

improve estimates of modeled wildfire behavior. The methodology proposed in this 

work could become a semi-automatic process to assess the potential fire behavior from 

remote sensed data. However, the procedures for both, creating accurate fuel maps and 

developing canopy layers from high accurate remote sensed data, are very time-

consuming. Therefore it would be advisable to determinate, previously, which level of 

detail is needed. In that way, for some works it would be enough with the 

reclassification of the Land Use Map which results are acceptable. For example, for fire 

spread modeling at no very high resolution, for large areas, this option would be 

adequate. Even if in some cases more accurate results are needed, the accuracy 

increases considerably when simply performing the classification. The development of 

high accurate canopy layers requires (in addition to the data process) field work and 

therefore it would be necessary only when very high accuracies are expected. 

The key aspect of the methodology showed in this work is that it could be reproduced 

for other areas or when new data would be available (especially LiDAR data which is 

expensive and therefore it is difficult to have this kind of data at disposal). This is 

important because it would allow an efficient, operative and low-cost update of maps 

compared to traditional methods.  

Another interesting aspect of this methodology is that the spatial distribution of fuel 

models and their canopy characteristics is not only useful for modelling wildfire 

behavior. Forest managers working on prevention might benefit from this information 

because they could better plan their actions. In addition, even fire fighter could need this 

information for predicting the fire behavior in real time.  

In this work, we developed and validated a methodology to improve the spatial 

information about fuel models and canopy characteristics. However, there is another 

aspect of fuel models that is very important for wildfire simulations: the characterization 

of each fuel model (dead and live fuel load, moisture of extinction, surface area-to-
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volume ratio, etc). Some studies have explored the possibility of quantifying the fuel 

load or biomass from LiDAR data (Guerra-Hernández et al. 2016; Chen et al. 2017; 

González-Ferreiro et al. 2017). Additionally, other studies investigated the relationship 

between fuel moisture and the reflectances from different satellite images (Nieto et al. 

2010; Jurdao et al. 2012; Yebra et al. 2013). Therefore, maybe in the future, would be 

possible to gather and create all the necessary information for wildfire modeling from 

remote sensed data (a combination of LiDAR data and satellite images) following a 

rather automatic methodology. Thus, future studies can be oriented to improve this 

topic, particularly for fire-prone areas such as the Mediterranean basin. 

At the end, this work, as well as all studies about wildfires, aims to maintain and protect 

our landscapes and natural heritage, to minimise the damage caused to properties, and 

especially, to avoid loss of human lives by uncontrolled forest fires. We hope that we 

have contributed, in some small way, to improve the prevention of these disaters. 
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Appendix A. Maps obtained from the classifications 

outputs carried out with the different algorithms and in 

the study area of Siniscola. 
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Fig. A.1. Classification output map for the study area of Siniscola using the Maximum Likelihood (ML) 

algorithm with the selection of variables. 
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Fig. A.2. Classification output map for the study area of Siniscola using the Neural Networks (NN) 

algorithm with the selection of variables. 
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Fig. A.3. Classification output map for the study area of Siniscola using the Neural Networks (NN) 

algorithm with the all variables. 
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Fig. A.4. Classification output map for the study area of Siniscola using the Support Vector Machine 

(SVM) algorithm with the selection of variables. 
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Fig. A.5. Classification output map for the study area of Siniscola using the Random Forest (RF) 

algorithm with all variables. 
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Appendix B. Maps obtained from the classifications 

outputs carried out with the different algorithms and in 

the study area of Muravera. 
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Fig. B.1. Classification output map for the study area of Muravera using the Maximum Likelihood (ML) 

algorithm with the selection of variables. 
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Fig. B.2. Classification output map for the study area of Muravera using the Neural Networks (NN) 

algorithm with the selection of variables. 
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Fig. B.3. Classification output map for the study area of Muravera using the Neural Networks (NN) 

algorithm with the all variables. 
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Fig. B.4. Classification output map for the study area of Muravera using the Support Vector Machine 

(SVM) algorithm with the selection of variables. 
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Fig. B.5. Classification output map for the study area of Muravera using the Random Forest (RF) 

algorithm with all variables. 
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Appendix C. Confusion matrices from the classifications carried 

out with the different algorithms for the study area of Siniscola. 
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Table C.1. Confusion matrix obtained from the classification carried out with the maximum likelihood 

algorithm (ML) using the subset of variables in the Siniscola study area. 1 = Buildings; 2 = Roads; 3 = 

Water; 4 = Bare ground; 5 = Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = 

Herbaceous vegetation; 9 = Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf 

forests; 13 = Mixed forests. 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13

1 79 4 0 1 4 0 0 0 0 0 0 0 0 89.77

2 5 88 0 8 5 0 0 2 0 0 0 0 0 81.48

3 0 0 23 0 0 0 0 0 0 0 0 0 0 100.00

4 0 0 0 46 5 0 0 4 0 0 0 0 0 83.64

5 2 3 0 16 40 0 0 11 1 0 0 0 0 54.79

6 0 0 0 0 1 33 0 1 1 0 0 0 0 91.67

7 0 0 0 0 0 0 14 0 0 0 0 0 0 100.00

8 0 0 0 0 0 0 0 36 2 0 0 0 0 94.74

9 0 1 0 0 0 0 0 0 36 0 0 0 0 97.30

10 0 0 0 0 1 0 4 0 1 39 0 1 0 84.78

11 0 0 0 0 0 0 0 0 0 0 40 0 2 95.24

12 0 0 0 0 1 0 0 0 0 0 0 28 4 84.85

13 0 0 0 0 0 0 0 0 0 0 3 6 29 76.32
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Table C.2. Confusion matrix obtained from the classification carried out with the Neural Networks (NN) 

using the subset of variables in the Siniscola study area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare 

ground; 5 = Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = Herbaceous 

vegetation; 9 = Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = 

Mixed forests. 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13

1 78 6 0 5 1 0 0 0 0 0 0 0 1 85.71

2 0 103 1 0 4 0 0 3 1 0 0 0 0 91.96

3 0 0 25 0 0 0 0 0 0 0 0 0 0 100.00

4 0 1 0 33 10 0 0 0 0 0 0 0 0 75.00

5 1 4 0 8 53 0 0 6 0 1 0 0 0 72.60

6 0 0 0 0 0 28 0 0 5 0 0 0 0 84.85

7 0 0 0 0 0 0 2 2 5 7 0 6 0 9.09

8 0 1 0 0 3 0 0 23 1 0 1 0 0 79.31

9 0 0 1 0 2 0 0 2 33 0 0 0 0 86.84

10 0 0 0 0 0 0 1 0 3 38 0 0 0 90.48

11 0 0 0 0 0 0 0 0 0 0 39 2 2 90.70

12 1 0 0 0 0 0 2 0 0 2 7 23 0 65.71

13 1 0 0 0 0 0 0 0 0 0 10 6 27 61.36

96.30 89.57 92.59 71.74 72.60 100.00 40.00 63.89 68.75 79.17 68.42 62.16 90.00

Prediction Producer's

Accuracy

(%)

R
e

fe
re

n
ce

 d
at

a

User's

 Accuracy

(%)



 

112 

Olga Muñoz Lozano – Coupling remote sensing with wildfire spread modeling in Mediterranean areas – 
Tesi di Dottorato in Sienze Agrarie – Curriculum “Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e 
Forestali” – Ciclo XXX –  Università degli Studi di Sassari –  Anno Accademico 2016 - 2017 

Table C.3. Confusion matrix obtained from the classification carried out with the Neural Networks (NN) 

using all variables in the Siniscola study area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare ground; 5 = 

Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = Herbaceous vegetation; 9 = 

Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = Mixed forests. 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13

1 72 11 1 4 1 0 0 0 0 0 2 0 0 79.12

2 4 90 1 4 8 0 1 4 0 0 0 0 0 80.36

3 0 0 23 0 0 0 2 0 0 0 0 0 0 92.00

4 0 2 0 37 5 0 0 0 0 0 0 0 0 84.09

5 1 1 0 21 39 6 0 2 3 0 0 0 0 53.42

6 0 0 0 0 0 32 0 0 1 0 0 0 0 96.97

7 0 0 3 0 0 0 18 0 0 0 0 1 0 81.82

8 0 0 0 0 3 9 0 17 0 0 0 0 0 58.62

9 0 0 0 0 1 2 0 0 32 3 0 0 0 84.21

10 0 0 0 0 0 0 0 0 4 37 0 1 0 88.10

11 1 0 0 0 0 0 0 0 0 0 38 1 3 88.37

12 2 0 0 0 0 0 1 0 0 2 4 26 0 74.29

13 0 0 0 0 0 0 0 0 0 0 15 0 29 65.91

90.00 86.54 82.14 56.06 68.42 65.31 81.82 73.91 80.00 88.10 64.41 89.66 90.63
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Table C.4. Confusion matrix obtained from the classification carried out with the Support Vector 

Machine (SVM) using the subset of variables in the Siniscola study area. 1 = Buildings; 2 = Roads; 3 = 

Water; 4 = Bare ground; 5 = Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = 

Herbaceous vegetation; 9 = Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf 

forests; 13 = Mixed forests. 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13

1 82 4 0 5 0 0 0 0 0 0 0 0 0 90.11

2 1 103 0 0 4 0 0 4 0 0 0 0 0 91.96

3 0 0 25 0 0 0 0 0 0 0 0 0 0 100.00

4 1 2 0 31 10 0 0 0 0 0 0 0 0 70.45

5 3 6 0 5 54 0 0 5 0 0 0 0 0 73.97

6 0 0 0 0 0 30 0 0 3 0 0 0 0 90.91

7 0 0 0 0 0 0 15 0 0 6 0 1 0 68.18

8 0 3 0 0 4 0 0 22 0 0 0 0 0 75.86

9 0 0 0 0 0 0 0 0 38 0 0 0 0 100.00

10 0 0 0 0 0 0 1 0 1 40 0 0 0 95.24

11 0 0 0 0 0 0 0 0 0 0 41 0 2 95.35

12 0 0 0 0 0 0 1 0 0 2 3 23 6 65.71

13 0 0 0 0 0 0 0 0 0 0 4 0 40 90.91

94.25 87.29 100.00 75.61 75.00 100.00 88.24 70.97 90.48 83.33 85.42 95.83 83.33
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Table C.5. Confusion matrix obtained from the classification carried out with the Random Forests (RF) 

using the subset of variables in the Siniscola study area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare 

ground; 5 = Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = Herbaceous 

vegetation; 9 = Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = 

Mixed forests. 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13

1 79 4 0 3 2 0 0 0 0 0 0 0 0 89.77

2 1 102 0 1 1 0 0 3 0 0 0 0 0 94.44

3 0 0 23 0 0 0 0 0 0 0 0 0 0 100.00

4 0 2 0 48 5 0 0 0 0 0 0 0 0 87.27

5 2 5 0 5 60 0 0 1 0 0 0 0 0 82.19

6 0 0 0 0 0 34 0 0 2 0 0 0 0 94.44

7 0 0 0 0 0 0 12 0 0 2 0 0 0 85.71

8 0 0 0 0 7 0 0 31 0 0 0 0 0 81.58

9 0 0 1 0 0 0 0 0 36 0 0 0 0 97.30

10 0 0 0 0 0 0 0 0 1 45 0 0 0 97.83

11 0 0 0 0 0 0 0 0 0 0 42 0 0 100.00

12 0 0 0 0 0 0 0 0 0 0 1 30 2 90.91

13 0 0 0 0 0 0 0 0 0 0 0 2 36 94.74

96.34 90.27 95.83 84.21 80.00 100.00 100.00 88.57 92.31 95.74 97.67 93.75 94.74
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Table C.6. Confusion matrix obtained from the classification carried out with the Random Forests (RF) 

using all variables in the Siniscola study area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare ground; 5 = 

Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = Herbaceous vegetation; 9 = 

Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = Mixed forests. 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13

1 78 5 0 2 2 0 0 0 0 1 0 0 0 88.64

2 3 100 0 1 3 0 0 1 0 0 0 0 0 92.59

3 0 0 23 0 0 0 0 0 0 0 0 0 0 100.00

4 0 1 0 41 13 0 0 0 0 0 0 0 0 74.55

5 2 3 0 5 62 0 0 1 0 0 0 0 0 84.93

6 0 0 0 0 1 34 0 0 1 0 0 0 0 94.44

7 0 0 0 0 0 0 14 0 0 0 0 0 0 100.00

8 0 1 0 0 7 0 0 30 0 0 0 0 0 78.95

9 0 0 0 0 0 0 0 0 37 0 0 0 0 100.00

10 0 0 0 0 0 0 1 0 1 44 0 0 0 95.65

11 0 0 0 0 0 0 0 0 0 0 42 0 0 100.00

12 0 0 0 0 0 0 0 0 0 0 0 31 2 93.94

13 0 0 0 0 0 0 0 0 0 0 0 0 38 100.00

93.98 90.91 100.00 83.67 70.45 100.00 93.33 93.75 94.87 97.78 100.00 100.00 95.00
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Table C.7. Confusion matrix obtained from the Land Use Map (LUM) of Sardinia in the Siniscola study 

area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare ground; 5 = Sparse vegetation; 6 = Mixed 

agricultural; 7 = Vineyard and orchard; 8 = Herbaceous vegetation; 9 = Garrigue; 10 = Mediterranean 

maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = Mixed forests. 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13

1 89 0 0 0 0 2 0 0 0 0 0 0 0 94.68

2 30 16 0 3 0 30 8 0 6 5 0 3 0 15.84

3 0 0 22 0 0 3 0 0 1 1 0 0 0 81.48

4 9 0 0 31 0 1 0 0 7 1 0 2 0 60.78

5 0 0 0 26 1 30 0 2 11 8 0 0 0 1.28

6 0 0 0 0 0 43 0 1 0 0 0 0 0 97.73

7 0 0 0 0 0 4 21 0 0 0 0 0 0 84.00

8 0 0 0 0 0 27 0 4 0 0 0 0 0 12.90

9 0 0 0 0 0 4 0 0 23 8 0 0 0 65.71

10 0 0 0 0 0 0 0 0 4 31 0 1 0 86.11

11 0 0 0 0 0 0 0 0 21 0 21 0 0 50.00

12 0 0 0 0 0 0 0 0 0 2 0 32 0 94.12

13 0 0 0 0 0 0 0 0 0 0 33 0 0 0.00

69.53 100.00 100.00 51.67 100.00 29.86 72.41 57.14 30.26 55.36 38.89 84.21 0.00
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Appendix D. Confusion matrices from the classifications carried 

out with the different algorithms for the study area of Muravera. 
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Table D.1. Confusion matrix obtained from the classification carried out with the maximum likelihood 

algorithm (ML) using the subset of variables in the Muravera study area. 1 = Buildings; 2 = Roads; 3 = 

Water; 4 = Bare ground; 5 = Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = 

Herbaceous vegetation; 9 = Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf 

forests; 13 = Mixed forests. 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12

1 12 1 0 0 0 0 0 0 1 0 0 0 85.71

2 1 16 0 0 2 0 0 0 1 0 0 0 80.00

3 0 0 27 0 0 0 0 0 0 0 0 0 100.00

4 0 0 0 13 2 0 0 0 0 0 0 0 86.67

5 0 0 0 0 8 0 0 1 0 0 0 0 88.89

6 0 0 0 0 0 15 0 0 2 0 0 0 88.24

7 0 0 0 0 0 0 12 0 2 1 0 1 75.00

8 0 0 0 1 0 0 0 20 4 0 0 0 80.00

9 0 0 0 0 1 0 0 0 12 0 0 0 92.31

10 0 1 0 0 0 0 3 0 0 12 0 3 63.16

11 0 1 0 0 0 0 0 0 0 2 11 2 68.75

12 0 0 0 0 0 0 0 0 0 0 1 10 90.91

92.31 84.21 100.00 92.86 61.54 100.00 80.00 95.24 54.55 80.00 91.67 62.50
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Table D.2. Confusion matrix obtained from the classification carried out with the Neural Networks (NN) 

using the subset of variables in the Muravera study area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare 

ground; 5 = Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = Herbaceous 

vegetation; 9 = Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = 

Mixed forests. 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12

1 9 4 0 0 0 0 0 0 0 0 0 0 69.23

2 1 18 0 1 1 2 0 0 1 0 0 0 75.00

3 0 0 27 0 0 0 0 0 0 0 0 0 100.00

4 0 2 0 11 0 0 0 0 0 0 0 0 84.62

5 0 0 0 1 9 0 0 0 3 0 0 0 69.23

6 0 0 0 0 0 21 0 0 0 0 0 0 100.00

7 0 0 0 0 0 0 12 0 0 2 0 0 85.71

8 0 0 0 1 0 0 0 19 1 0 0 0 90.48

9 0 0 1 0 0 2 2 2 5 2 0 0 35.71

10 0 0 0 0 0 0 4 0 0 9 0 0 69.23

11 0 1 0 0 0 0 0 0 0 0 10 1 83.33

12 0 0 0 0 0 0 1 0 0 0 3 13 76.47

90.00 72.00 96.43 78.57 90.00 84.00 63.16 90.48 50.00 69.23 76.92 92.86
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Table D.3. Confusion matrix obtained from the classification carried out with the Neural Networks (NN) 

using all variables in the Muravera study area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare ground; 5 = 

Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = Herbaceous vegetation; 9 = 

Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = Mixed forests. 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12

1 9 3 0 0 0 0 1 0 0 0 0 0 69.23

2 5 13 0 2 0 0 1 0 0 1 1 1 54.17

3 0 0 27 0 0 0 0 0 0 0 0 0 100.00

4 2 0 0 10 0 0 0 1 0 0 0 0 76.92

5 0 0 0 2 11 0 0 0 0 0 0 0 84.62

6 0 0 0 1 0 19 0 1 0 0 0 0 90.48

7 0 0 0 0 0 0 14 0 0 0 0 0 100.00

8 0 0 0 0 0 0 0 19 2 0 0 0 90.48

9 1 0 0 0 0 1 0 2 9 1 0 0 64.29

10 0 1 0 0 0 0 3 0 0 9 0 0 69.23

11 0 1 0 0 0 0 0 0 0 0 0 11 0.00

12 0 0 0 0 0 0 0 0 0 0 1 16 94.12

52.94 72.22 100.00 66.67 100.00 95.00 73.68 82.61 81.82 81.82 0.00 57.14
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Table D.4. Confusion matrix obtained from the classification carried out with the Support Vector 

Machine (SVM) using the subset of variables in the Muravera study area. 1 = Buildings; 2 = Roads; 3 = 

Water; 4 = Bare ground; 5 = Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = 

Herbaceous vegetation; 9 = Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf 

forests; 13 = Mixed forests. 

 

  

1 2 3 4 5 6 7 8 9 10 11 12

1 10 2 0 0 0 0 0 1 0 0 0 0 76.92

2 0 19 0 1 2 0 0 0 2 0 0 0 79.17

3 0 0 27 0 0 0 0 0 0 0 0 0 100.00

4 0 0 0 13 0 0 0 0 0 0 0 0 100.00

5 0 0 0 1 10 0 0 0 2 0 0 0 76.92

6 0 0 0 0 2 19 0 0 0 0 0 0 90.48

7 0 0 0 0 0 0 9 0 1 3 1 0 64.29

8 0 0 0 0 0 0 0 20 1 0 0 0 95.24

9 0 0 0 0 0 0 2 2 9 1 0 0 64.29

10 0 0 0 0 0 0 1 0 1 11 0 0 84.62

11 0 1 0 0 0 0 0 0 0 0 10 1 83.33

12 0 0 0 0 0 0 0 0 0 0 4 13 76.47

100.00 86.36 100.00 86.67 71.43 100.00 75.00 86.96 56.25 73.33 66.67 92.86
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Table D.5. Confusion matrix obtained from the classification carried out with the Random Forests (RF) 

using the subset of variables in the Muravera study area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare 

ground; 5 = Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = Herbaceous 

vegetation; 9 = Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = 

Mixed forests. 

 

  

1 2 3 4 5 6 7 8 9 10 11 12

1 13 1 0 0 0 0 0 0 0 0 0 0 92.86

2 0 16 0 1 0 0 0 0 3 0 0 0 80.00

3 0 0 27 0 0 0 0 0 0 0 0 0 100.00

4 0 1 0 12 2 0 0 0 0 0 0 0 80.00

5 0 0 0 0 9 0 0 0 0 0 0 0 100.00

6 0 0 0 0 0 15 0 2 0 0 0 0 88.24

7 0 0 0 0 0 0 14 0 1 1 0 0 87.50

8 0 0 0 1 0 0 0 24 0 0 0 0 96.00

9 0 0 0 0 1 0 0 0 11 0 1 0 84.62

10 0 0 0 0 0 0 0 0 0 19 0 0 100.00

11 0 0 0 0 0 0 0 0 0 1 15 0 93.75

12 0 0 0 0 0 0 0 0 0 0 2 9 81.82

100.00 88.89 100.00 85.71 75.00 100.00 100.00 92.31 73.33 90.48 83.33 100.00
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Table D.6. Confusion matrix obtained from the classification carried out with the Random Forests (RF) 

using all variables in the Muravera study area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare ground; 5 = 

Sparse vegetation; 6 = Mixed agricultural; 7 = Vineyard and orchard; 8 = Herbaceous vegetation; 9 = 

Garrigue; 10 = Mediterranean maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = Mixed forests. 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12

1 13 1 0 0 0 0 0 0 0 0 0 0 92.86

2 0 13 0 1 0 0 0 1 5 0 0 0 65.00

3 0 0 27 0 0 0 0 0 0 0 0 0 100.00

4 0 1 0 12 2 0 0 0 0 0 0 0 80.00

5 0 0 0 0 9 0 0 0 0 0 0 0 100.00

6 0 0 0 0 0 14 0 3 0 0 0 0 82.35

7 0 1 0 0 0 0 14 0 0 1 0 0 87.50

8 0 1 0 0 0 1 0 23 0 0 0 0 92.00

9 0 1 0 0 1 0 0 0 10 0 1 0 76.92

10 0 0 0 0 0 0 1 0 0 18 0 0 94.74

11 0 0 0 0 0 0 0 0 0 0 16 0 100.00

12 0 0 0 0 0 0 0 0 0 0 2 9 81.82

100.00 72.22 100.00 92.31 75.00 93.33 93.33 85.19 66.67 94.74 84.21 100.00
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Table D.7. Confusion matrix obtained from the Land Use Map (LUM) of Sardinia in the Muravera study 

area. 1 = Buildings; 2 = Roads; 3 = Water; 4 = Bare ground; 5 = Sparse vegetation; 6 = Mixed 

agricultural; 7 = Vineyard and orchard; 8 = Herbaceous vegetation; 9 = Garrigue; 10 = Mediterranean 

maquis; 11 = Conifer forests; 12 = Broadleaf forests; 13 = Mixed forests. 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12

1 11 0 0 0 0 0 0 0 0 0 0 0 100.00

2 0 0 1 9 0 7 4 0 0 0 0 0 0.00

3 0 0 26 0 0 0 0 0 0 0 0 0 100.00

4 0 0 4 5 0 1 0 0 1 1 0 0 41.67

5 0 0 6 0 0 1 0 0 1 0 0 0 0.00

6 0 3 0 0 0 9 1 2 0 0 0 0 60.00

7 0 0 0 0 0 0 14 0 0 0 0 0 100.00

8 0 0 0 0 0 12 2 11 0 0 0 0 44.00

9 0 0 0 0 0 10 0 0 4 0 0 0 28.57

10 0 0 0 0 0 0 0 0 6 8 2 1 47.06

11 0 0 0 0 0 0 0 0 0 0 16 0 100.00

12 0 0 0 0 0 0 0 0 2 2 1 18 78.26

100.00 0.00 70.27 35.71 0.00 22.50 66.67 84.62 28.57 72.73 84.21 94.74
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Appendix E. Outputs from the simulations carried out using as 

input the different landscape files. 

 

  



 

126 

Olga Muñoz Lozano – Coupling remote sensing with wildfire spread modeling in Mediterranean areas – 
Tesi di Dottorato in Sienze Agrarie – Curriculum “Agrometeorologia ed Ecofisiologia dei Sistemi Agrari e 
Forestali” – Ciclo XXX –  Università degli Studi di Sassari –  Anno Accademico 2016 - 2017 

 

Fig. E.1. Crown Fire Activity outputs from the simulations run using the different landscape LCP = landscape file; ST = standard; CUS = custom 

(for landscape file codes see chapter 3 section “2.3. Input data for the simulations”) 
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Fig. E.2. Fireline Intensity outputs from the simulations run using the different landscape LCP = landscape file; ST = standard; CUS = custom (for 

landscape file codes see chapter 3 section “2.3. Input data for the simulations”) 
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Fig. E.3. Flame Length outputs from the simulations run using the different landscape LCP = landscape file; ST = standard; CUS = custom (for 

landscape file codes see chapter 3 section “2.3. Input data for the simulations”) 
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Fig. E.4. Heat per unit area outputs from the simulations run using the different landscape LCP = landscape file; ST = standard; CUS = custom (for 

landscape file codes see chapter 3 section “2.3. Input data for the simulations”) 
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Fig. E.5. Reaction Intensity outputs from the simulations run using the different landscape LCP = landscape file; ST = standard; CUS = custom (for 

landscape file codes see chapter 3 section “2.3. Input data for the simulations”) 
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Fig. E.6. Rate of Spread outputs from the simulations run using the different landscape LCP = landscape file; ST = standard; CUS = custom (for 

landscape file codes see chapter 3 section “2.3. Input data for the simulations”) 
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Fig. E.7. Spread Direction outputs from the simulations run using the different landscape LCP = landscape file; ST = standard; CUS = custom (for 

landscape file codes see chapter 3 section “2.3. Input data for the simulations”) 
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Fig. E.8. Time of Arrival outputs from the simulations run using the different landscape LCP = landscape file; ST = standard; CUS = custom (for 

landscape file codes see chapter 3 section “2.3. Input data for the simulations”) 


