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Abstract: Adipose-derived stem cells (ADSCs) came out from the regenerative medicine landscape
for their ability to differentiate into several phenotypes, contributing to tissue regeneration both
in vitro and in vivo. Dysregulation in stem cell recruitment and differentiation during adipogenesis
is linked to a chronic low-grade inflammation and macrophage infiltration inside the adipose tissue,
insulin resistance, cardiovascular disease and obesity. In the present paper we aimed to evaluate
the role of metformin and vitamin D, alone or in combination, in modulating inflammation and
autophagy in ADSCs during adipogenic commitment. ADSCs were cultured for 21 days in the
presence of a specific adipogenic differentiation medium, together with metformin, or vitamin D, or
both. We then analyzed the expression of FoxO1 and Heat Shock Proteins (HSP) and the secretion
of proinflammatory cytokines IL-6 and TNF-α by ELISA. Autophagy was also assessed by specific
Western blot analysis of ATG12, LC3B I, and LC3B II expression. Our results showed the ability of the
conditioned media to modulate adipogenic differentiation, finely tuning the inflammatory response
and autophagy. We observed a modulation in HSP mRNA levels, and a significant downregulation
in cytokine secretion. Taken together, our findings suggest the possible application of these molecules
in clinical practice to counteract uncontrolled lipogenesis and prevent obesity and obesity-related
metabolic disorders.

Keywords: adipose stem cells; cell differentiation; gene expression; epigenetic; adipogenesis; condi-
tioned media; inflammation; autophagy

1. Introduction

Adipose-derived stem cells (ADSCs) are largely involved in therapeutic applications
and regenerative medicine, being linked to the maintenance of adipose tissue homeostasis
and regeneration [1]. ADSCs are able to undergo adipogenic differentiation into mature
adipocytes under specific stimuli from their microenvironment [2]. Adipogenesis is a
well-regulated process, depending on several genes and epigenetic regulators [3,4]. White
adipose tissue (WAT) is the most abundant adipose tissue in the human body, responsible
for maintaining glucose homeostasis, energy balance, and hormone secretion [5]. Dysregu-
lation in stem cell recruitment and differentiation leads to the secretion of pro-inflammatory
cytokines, metabolic stress, insulin resistance, cardiovascular diseases, and obesity [6,7].
Uncontrolled activation of adipogenesis is linked to a chronic low-grade inflammation

Int. J. Mol. Sci. 2021, 22, 6686. https://doi.org/10.3390/ijms22136686 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8632-2577
https://orcid.org/0000-0002-0389-2142
https://orcid.org/0000-0003-2104-7345
https://orcid.org/0000-0001-9333-0321
https://orcid.org/0000-0003-0187-4968
https://doi.org/10.3390/ijms22136686
https://doi.org/10.3390/ijms22136686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22136686
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22136686?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 6686 2 of 12

and macrophage infiltration inside the adipose tissue. Loss of adipocyte functionality,
as it occurs in obesity, is accompanied by the secretion of proinflammatory cytokines, as
tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) [5,8,9]. Moreover, adipocyte
hypertrophy leads to a disequilibrium between lipogenesis and lipolysis, and alterations
in the signal transduction process, damaging other organs and tissues [10,11]. Forkhead
box-O1 (FoxO1) is a transcription factor exerting an essential role in controlling lipid
metabolism and energy homeostasis, modulating adipocyte terminal differentiation [12,13].
FoxO1 activity has been also involved in tuning WAT/BAT differentiation, through a direct
induction of autophagosome formation, which has been linked to the downregulation of
UCP1 [13,14]. WAT browning is a complex process of mature white adipocyte transdif-
ferentiation into “brown-like” or beige adipocytes [15], representing a valuable strategy
to counteract obesity [16]. Beige adipocytes share some common features with brown
adipose tissue (BAT), such as increased energy expenditure due to the greater number
of mitochondria [17]. Additionally, WAT browning decreases inflammation by reducing
the release of pro-inflammatory cytokines and regulating the expression of specific Heath
Shock Proteins (HSP) [16,18,19]. HSP60 is the main mediator of adipose tissue inflamma-
tion. High concentrations of HSP60 in adipocytes contribute to lipid accumulation and the
development of inflammatory processes [20,21]. Moreover, HSP70 seems to be involved
in regulating WAT and BAT differentiation. In particular, HSP70 shows higher levels of
expression in BAT, facilitating the thermogenic function of this tissue, while being downreg-
ulated in obesity [22,23]. Furthermore, HSP70 interacts with several transcription factors
in order to modulate stem cell behavior and autophagy [24,25]. Autophagy is a crucial
cell survival mechanism, controlling stem cell self-renewal and differentiation. Autophagy
also supports adipogenesis, maintaining the balance between white and brown adipose
tissue [26–28]. Increased autophagy occurs together with adipose tissue inflammation in
WAT [29], while its suppression in BAT improves energy metabolism and insulin sensitivity
by regulating mitochondrial turnover [30]. Several molecules are able to inhibit unproper
differentiation and activation of ADSCs into white adipocytes, suggesting their potential
application in preventing and managing obesity and obesity-related disorders [31,32]. We
previously demonstrated that the combination of vitamin D and metformin can counteract
the appearance of a white adipogenic phenotype, despite the presence of a specific adi-
pogenic conditioned medium, by enhancing vitamin D metabolism, acting on CYP27B1
and CYP3A4 [33]. In the present study, we evaluated the effects of these two molecules,
alone or in combination, in modulating stem cell behavior during adipogenic commitment,
with particular attention to cytokine release and autophagosome formation, in the attempt
to balance WAT/BAT differentiation and counteract uncontrolled lipogenesis.

2. Results
2.1. Metformin and Vitamin D Inhibit ADSC Adipogenic Differentiation

ADSC morphology after 21 days of differentiation was evaluated by optical mi-
croscopy. Figure 1 shows significant changes in the morphology of ADSCs cultured in
adipogenic medium (MD) containing vitamin D (MD+VIT), or metformin (MD+MET), or
both (MD+VIT+MET), with a reduced number of adipocytes, as compared to untreated
control cells (Ctrl). The same Figure shows that ADSCs cultured in MD alone exhibited
a typical mature adipocyte morphology (Figure 1). Our results are further inferred by
previous observation by our group [33], in which we demonstrated the ability of these
two molecules to oppose adipogenic differentiation, albeit in the presence of a specific
adipogenic conditioned medium.
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Figure 1. Optical microscope analysis of ADSC morphology during differentiation: (A) Figure shows morphological 
changes in cells treated with adipogenic differentiation medium (MD), or in MD plus vitamin D (MD+VIT), or in MD plus 
metformin (MD+MET), or in MD with both metformin and vitamin D (MD+VIT+MET), as compared to control untreated 
cells (Ctrl). ADSCs cultured in adipogenic medium alone acquired the appearance of mature adipocytes (MD). Scale 
bar=100 µm. (B) The number of mature adipocytes was calculated using ImageJ. Data are expressed as mean ± SD referred 
to the control (* p ≤ 0.05). 
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Figure 1. Optical microscope analysis of ADSC morphology during differentiation: (A) Figure shows morphological
changes in cells treated with adipogenic differentiation medium (MD), or in MD plus vitamin D (MD+VIT), or in MD plus
metformin (MD+MET), or in MD with both metformin and vitamin D (MD+VIT+MET), as compared to control untreated
cells (Ctrl). ADSCs cultured in adipogenic medium alone acquired the appearance of mature adipocytes (MD). Scale bar =
100 µm. (B) The number of mature adipocytes was calculated using ImageJ. Data are expressed as mean ± SD referred to
the control (* p ≤ 0.05).
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2.2. The Combination of Metformin and Vitamin D Inhibit the Release of
Pro-Inflammatory Cytokines

The expression of proinflammatory cytokines IL-6 and TNF-α was evaluated by qPCR
(Figure 2) and ELISA (Figure 3) in ADSCs cultured in different conditioned media after
7, 14, and 21 days. The mRNA levels of IL-6 significantly decreased after 14 days of
differentiation (Figure 2A), as compared to cells exposed to MD alone. TNF-α was also
significantly downregulated even after 7 days of exposure when metformin, or vitamin D,
or both, were added to MD (Figure 2B). These results were further confirmed by ELISA,
showing significantly reduced concentrations of IL-6 and TNF-α in supernatants of cells
exposed to metformin, or vitamin D, or both (Figure 3). The release of IL-6 was significantly
reduced at the end of the differentiation period (21 days) (Figure 3A), while TNF-α showed
a significant inhibition during all of the analyzed time points (Figure 3B), as compared to
ADSCs exposed to MD alone.
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2.3. Exposure to Metformin Alone or Together with Vitamin D Modulates the Expression of 
HSPs and Autophagy  

Figure 4 shows the levels of expression of HSP60 and HSP70 (panels A and B, 
respectively) in ADSCs cultured in the presence of different conditioned media. HSP60 
expression was significantly increased in cells exposed to differentiation medium alone 
(MD), while in the presence of the other conditioned media (MD+VIT; MD+MET; 

Figure 2. The expression of IL-6 (A) and TNF-α (B) was evaluated after 7, 14 and 21 days in ADSCs cultured in the presence
of adipogenic differentiation medium (MD) (blue bars), or in MD plus vitamin D (MD+VIT) (yellow bars), or in MD plus
metformin (MD+MET) (orange bars), or in MD with both metformin and vitamin D (MD+VIT+MET) (red bars), as compared
to control untreated cells (grey bars). The mRNA levels for each gene were normalized to Glyceraldehyde-3-Phosphate-
Dehydrogenase (GAPDH) and expressed as fold of change (2−∆∆Ct) of the mRNA levels observed in undifferentiated
control ADSCs defined as 1 (mean ± SD; n = 6). Data are expressed as mean ± SD referred to the control (* p ≤ 0.05;
** p ≤ 0.01; *** p ≤ 0.001).
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Figure 3. IL-6 and TNF-α quantification by ELISA: The concentration of IL-6 (A) and TNF-α (B) was measured after 7, 14,
and 21 days in supernatants of ADSCs cultured in the presence of adipogenic differentiation medium (MD) (blue bars), or
in MD plus vitamin D (MD+VIT) (yellow bars), or in MD plus metformin (MD+MET) (orange bars), or in MD with both
metformin and vitamin D (MD+VIT+MET) (red bars), as compared to control untreated cells (grey bars). Data are expressed
as mean ± SD referred to the control (mean ± SD; n = 6) (* p ≤ 0.05; ** p ≤ 0.01).



Int. J. Mol. Sci. 2021, 22, 6686 5 of 12

2.3. Exposure to Metformin Alone or Together with Vitamin D Modulates the Expression of HSPs
and Autophagy

Figure 4 shows the levels of expression of HSP60 and HSP70 (panels A and B, respec-
tively) in ADSCs cultured in the presence of different conditioned media. HSP60 expression
was significantly increased in cells exposed to differentiation medium alone (MD), while in
the presence of the other conditioned media (MD+VIT; MD+MET; MD+VIT+MET) their
expression was similar to what was observed in control untreated cells (Figure 4A). An
opposite trend was observed for HSP70, whose expression was significantly increased in
ADSCs cultured in the presence of metformin (MD+MET), or both metformin and vitamin
D (MD+VIT+MET) (Figure 4B), as compared to both control untreated cells and ADSCs
cultured in the presence of MD alone.
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Figure 4. Analysis of heat shock proteins: The expression of HSP60 (A) and HSP70 (B) was evaluated after 7, 14, and 21
days in ADSCs cultured in the presence of adipogenic differentiation medium (MD) (blue bars), or in MD plus vitamin D
(MD+VIT) (yellow bars), or in MD plus metformin (MD+MET) (orange bars), or in MD with both metformin and vitamin
D (MD+VIT+MET) (red bars), as compared to control untreated cells (grey bars). The mRNA levels for each gene were
normalized to Glyceraldehyde-3-Phosphate-Dehydrogenase (GAPDH) and expressed as fold of change (2−∆∆Ct) of the
mRNA levels observed in undifferentiated control ADSCs defined as 1 (mean ±SD; n = 6). Data are expressed as mean ± SD
referred to the control (* p ≤ 0.05; ** p ≤ 0.01). (C) Analysis of autophagosome formation. The protein levels were analyzed
on ADSCs cultured in the presence of adipogenic differentiation medium (MD), or in MD plus vitamin D (MD+VIT), or in
MD plus metformin (MD+MET), or in MD with both metformin and vitamin D (MD+VIT+MET), as compared to control
untreated cells (Ctrl) after 7, 14, and 21 days by Western blot, using Autophagosome Marker Antibody Sampler Kit. The
sizes of the bands were determined using pre-stained marker proteins. The data presented are representative of different
independent experiments.
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Western blotting analysis of autophagosome formation (Figure 4C) showed the acti-
vation of autophagy in ADSCs cultured in the presence of the adipogenic differentiation
medium alone (MD) for all the analyzed time points, with a marked expression of LC3I
and LC3II proteins, as compared to control untreated cells (Ctrl). The exposure to vitamin
D (MD+VIT), or metformin (MD+MET), or both (MD+VIT+MET) inhibited autophago-
some formation at the end of the 21 days of differentiation. The ATG12 protein, an
Ubiquitin-like protein involved in autophagy vesicles formation and controlling MSC be-
havior [34] showed a marked expression in cells exposed to both vitamin D and metformin
(MD+VIT+MET) at 14 and 21 days, as compared to both control untreated cells and cells
exposed to MD alone.

2.4. Exposure to Metformin Alone or Together with Vitamin D Modulates the Expression of FoxO1

Immunohistochemical analysis showed that in the presence of metformin alone
(MD+MET) or together with vitamin D (MD+VIT+MET), the expression of FoxO1 was
downregulated, as compared to cells cultured in the presence of adipogenic differentiation
medium alone (MD). On the other hand, FoxO1 expression was increased in cells exposed
to the differentiation medium in the presence of vitamin D alone (MD+VIT).

3. Discussion

Adipose-derived stem cells have a great plasticity, being able to differentiate into
several phenotypes taking part in tissue regeneration both in vivo and in vitro [35]. In
physiological conditions, ADSCs are located inside of the stromal vascular fraction (SVF)
of the adipose tissue and are pre-committed cells, supporting adipogenesis and fatty acid
accumulation [36,37]. Several transcriptional programs are activated or inhibited during
differentiation, involving stemness genes, specific tissue markers and epigenetic mod-
ulators [38]. In particular, during adipogenesis, ADSCs exhibit high levels of the main
adipogenic-related markers, peroxisome proliferator-activated receptor γ (PPAR-γ), fatty
acid binding protein (FABP) 4, also known as aP2, lipoprotein lipase (LPL) and acyl-CoA
thioesterase 2 (ACOT2) [31]. We have previously demonstrated that the combination of
natural molecules, for example, melatonin and vitamin D together with the adipogenic
conditioned medium, can counteract the appearance of an adipogenic phenotype in ADSCs,
instead stimulating osteogenic differentiation [32]. Moreover, metformin, widely known
in the treatment of obesity-related diabetes, promotes stem cell differentiation [39]. In
addition, metformin reduced the levels of TNF-α in obese mice, down-regulating NF-kB
translocation into macrophages [40]. We recently described the effect of metformin, alone
or in combination with vitamin D, in controlling ADSC adipogenic differentiation, acting
on vitamin D metabolism through epigenetic modification and miRNAs [33]. Within this
context, in the present study, we aimed to evaluate the ability of the two molecules to modu-
late inflammation and autophagy, both closely related to obesity and unproper activation of
adipocytes. Uncontrolled accumulation of adipose tissue occurring in obesity leads to the
onset of a whole series of metabolic syndrome and pathological conditions [9]. In addition,
the establishment of a state of chronic low-grade inflammation induces the infiltration
of bone marrow-derived immune cells, negatively impacting organ function [41]. Our
results showed a reduced number of mature adipocytes when ADSCs were cultured in
the presence of vitamin D, or metformin, or both (Figure 1), despite the presence of the
adipogenic conditioned media, as compared to cells exposed to MD alone, showing the
typical morphology of mature adipocytes. Moreover, metformin and vitamin D are able
to modulate the inflammatory response, acting directly on the secretion of the proinflam-
matory cytokines IL-6 and TNF-α (Figure 2). Actually, the activity of the two molecules
resulted in a significant downregulation in the expression levels of these cytokines from
the first days of differentiation, as compared to cells cultured in the presence of the MD
alone. These results were further inferred by the ELISA assay, which revealed a significant
inhibition of cytokine release in cells exposed to metformin or vitamin D or both (Figure 3),
as compared to both untreated control cells and ADSCs cultured in the presence of MD
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alone. Moreover, heath shock proteins have a central role in regulating adipose tissue
inflammation and homeostasis [42]. In particular, high expression of HSP60 induces the
release of IL-6 and TNF-α by adipocytes, contributing to the onset of insulin resistance [21].
Furthermore, HSP60 concentrations are strictly related to triglyceride accumulation or
decrease after surgery-induced weight loss [43]. Here, we provide evidence that ADSC
exposure to metformin and vitamin D during adipogenic commitment is able to signifi-
cantly downregulate HSP60 levels of expression (Figure 4A), akin to the observed decrease
in cytokine production. An opposite trend was observed for HSP70, whose expression is
upregulated in cells exposed to both metformin and vitamin D (Figure 4B). Increased levels
in HSP70 in BAT might regulate T cell-mediated inflammation, protecting mitochondria
and cells from apoptosis [44,45]. Moreover, HSP70 is involved in autophagy regulation in
several physiological processes [46]. Autophagy is required for lipid storage during white
adipocyte differentiation [47]. Hyperactivation of autophagy was observed in adipocyte
hypertrophy, and obese and diabetic patients [48]. WAT to beige or BAT transdifferentiation
has been recognized as a potential therapeutic target for obesity and related metabolic
disease prevention and management [49]. Metformin might increase BAT thermogenic
markers and mitochondrial biogenesis, promoting brown adipocyte proliferation and dif-
ferentiation [50]. Inhibition of autophagy leads to increased levels of uncoupling protein 1
(UCP1), which regulates the browning of WAT and beige adipocytes [26,51]. The down-
regulation of LC3I/LC3II, assessed by Western blot (Figure 4C), seems to indicate that
metformin and vitamin D inhibit autophagosome formation in ADSCs during adipogenic
commitment. This event, related to the modulation of HSP60 and 70 (Figure 4C), highlights
a possible role of metformin and vitamin D in counteracting WAT formation while inducing
BAT differentiation. At the same time, ADSCs exposed to MD+VIT+MET showed a higher
expression of ATG12, taking part in regulating mitochondrial biogenesis and cellular energy
metabolism [52]. This temporary shutdown in autophagosome formation, while keeping
ATG12 expression, could represent the molecular switch in the transition from white to
brown adipose tissue. These events appear to be directly mediated by FoxO1, whose
expression changes significantly depending on the presence of the different molecules in
the conditioned medium. Figure 5 shows that FoxO1 is upregulated during adipogenic
differentiation (MD), confirming previous findings by other authors [53]. Moreover, it has
been demonstrated that vitamin D can promote bone formation and glucose homeostasis
by activating FoxO1 [54]. On the other hand, inhibition of FoxO1 suppresses autophagy,
increasing UCP1 expression [55]. Our results showed that treatment with metformin is
able to inhibit FoxO1 expression, closely controlling adipocyte differentiation, even in the
presence of vitamin D activation.
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Figure 5. Immunohistochemistry analysis of FoxO1 after 21 days of differentiation: Immunohistochemical analysis of the
expression of FoxO1 was performed in ADSCs cultured in the presence of adipogenic differentiation medium (MD), or
in MD plus vitamin D (MD+VIT), or in MD plus metformin (MD+MET), or in MD with both metformin and vitamin D
(MD+VIT+MET), as compared to control untreated cells (Ctrl). The figures are representative of two different independent
experiments with three technical replicates. For each differentiation marker, fields with the highest yield of positively
stained cells are shown. Nuclei are labelled with 4,6-diamidino-2-phenylindole (DAPI, blue). Scale bars: 40 µm.
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4. Materials and Methods
4.1. Cell Isolation and Culturing Conditions

ADSCs were isolated from subcutaneous adipose tissue of men and women (n = 6,
age = 45 ± 15 years, BMI: 22 ± 3 kg/m2) after written informed consent. The study was
approved by the Review Board of the Human Studies Ethics Committee of Sassari (n◦ ETIC
240I/CE 26 July 2016, Ethical committee, ASL Sassari). Immediately after harvesting,
samples of adipose tissue were washed in PBS (Euroclone, Milan, Italy), minced into small
fragments and digested by type I Collagenase solution for 1 h at 37 ◦C (Gibco Life Tech-
nologies, Grand Island, NY, USA) as previously described [28]. Cells were then centrifuged
and resuspended in a basic growing medium consisting of Dulbecco’s modified Eagle’s
medium (DMEM) (Life Technologies Grand Island, NY, USA) supplemented with 20%
fetal bovine serum (FBS) (Life Technologies, Grand Island, NY, USA), 200 mM L-glutamine
(Euroclone, Milan, Italy), and 200 U/mL penicillin 0.1 mg/mL streptomycin (Euroclone,
Milan, Italy). The growing medium was changed every 3 days and, when cells reached
the confluence, were trypsinized and immunomagnetically separated for flow cytometry
characterization, as previously described [28]. Cells at passage 5 used as untreated con-
trols were maintained in basic growing medium (Ctrl). A group of cells was cultured in
a specific adipogenic differentiation medium (MD) (StemPro Adipocyte Differentiation
Medium, Gibco Life Technologies, Grand Island, NY, USA) and used as positive control
for adipogenic differentiation. Finally, a group of cells was cultured in MD in the presence
of 10−6 M vitamin D (Sigma–Aldrich Chemie GmbH, Munich, Germany) (MD+VIT) or
5 mM metformin (Sigma–Aldrich Chemie GmbH, Munich, Germany) (MD+MET) or both
(MD+VIT+MET). All experiments were performed twice (in three technical replicates).

4.2. Gene Expression Analysis

Gene expression analysis was performed after 7, 14, and 21 days in cells cultured
under the above-described conditions. Total RNA was extracted using the ChargeSwitch
kit (Thermo Fisher Scientific, Grand Island, NY, USA) according to the manufacturer’s
instructions, and quantified by the NanoDrop™ One/OneC Microvolume UV-Vis spec-
trophotometer (Thermo Fisher Scientific, Grand Island, NY, USA). Approximately 1 µg of
total RNA was reverse transcribed using the High-Capacity cDNA Reverse Transcription
Kit (Thermo Fisher Scientific, Grand Island, NY, USA). Real-time quantitative PCR was
performed by Luna® Universal qPCR Master Mix (New England Biolabs, Ipswich, MA,
USA) in triplicate using a CFX Thermal Cycler (Bio-Rad, Hercules, CA, USA). Amplification
cycling was carried out at 95 ◦C for 60 s, then cycled at 95 ◦C for 15 s and 60 ◦C for 30 s,
for a total of 40–45 cycles. Target Ct values of each sample were normalized to hGAPDH,
which was considered as a reference gene. The relative values of the genes of interest,
Interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), Heat Shock Protein 60 (HSP60),
and Heat Shock Protein 70 (HSP70) were expressed as fold of change (2−∆∆Ct) of mRNA
levels observed in undifferentiated ADSCs, used as untreated control cells. All primers
used (Thermo Fisher Scientific, Grand Island, NY, USA), are reported in Table 1.

Table 1. Primer sequences.

Primer Name Forward Reverse

hGAPDH GAGTCAACGGAATTTGGTCGT GACAAGCTTCCCGTTCTCAG
IL-6 TCTCAACCCCAATAA GCCGTCGAGGATGTA

TNF-α CCTCAGACGCCACAT GAGGGCTGATTAGAGAGA
HSP60 GGGCATCTGTAACTCTGTCTT TAAAAGGAAAAGGTGACAAGG
HSP70 CACAGCGACGTAGCAGCTCT ATGTCGGTGGTGGGCATAGA
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4.3. ELISA Assay

The concentrations of IL-6 and TNF-α were determined using streptavidin-HRP
conjugated systems Human IL-6 Mini TMB ELISA Development kit (PeproTech EC, Ltd.,
London, UK) and Human TNF-α Mini TMB ELISA Development kit (PeproTech EC, Ltd.,
London, UK), respectively. Cell culture supernatants were collected after 7, 14, and 21 days
from ADSCs cultured under the above-described conditions. Exactly 100 µL of each
sample was incubated in a pre-treated plate for 2 h at RT. After three washing steps in PBS,
detection antibody was added in each well for 2 h at RT and then removed and replaced
by streptavidin-HRP for 30 min at RT. Antibody was then washed three times and liquid
substrate incubated at RT for 20 min. Color development was analyzed at 450 nm using a
plate reader (Akribis Scientific, Common Farm, Frog Ln, Knutsford, UK). Standard curves
were prepared according to manufacturer’s instructions. Each sample was assayed in
duplicate, and values were expressed as the mean ± SD of 2 measures per sample.

4.4. Autophagosome Detection Assays

For evaluation of autophagosome formation by Western blot, the Autophagosome
Marker Antibody Sampler Kit (Cell Signaling Technology, Danvers, MA, USA) was used.
Protein extraction was performed according to manufacturer’s instructions from ADSCs
cultured in the above-described conditions after 7, 14, and 21 days. After lysis by adding
1X SDS sample buffer, samples were heated to 95–100 ◦C for 5 min and then loaded onto
SDS-PAGE gel. Proteins were electrotransferred to a nitrocellulose membrane using iBlot®

Dry Blotting System (Thermo Fisher Scientific, Grand Island, NY, USA. The membrane was
incubated in blocking buffer for 1 h at room temperature and then ON at 4 ◦C in primary
antibodies ATG12, LC3 I and II. At the end of incubation time, the membrane was washed
three times in TBS and incubated in with HRP-conjugated secondary antibody for 1 h at
RT. Protein expression was assessed by SuperSignal Chemiluminescent HRP Substrates
(Thermo Fisher Scientific, Grand Island, NY, USA).

4.5. Immunostaining

At the end of 21 days of differentiation in the above described conditions, ADSCs
were fixed in paraformaldehyde (Sigma–Aldrich Chemie GmbH, Germany) for 30 min at
RT with 4% and permeabilized with 0.1% Triton X-100 (Thermo Fisher Scientific, Grand
Island, NY, USA)-PBS. After three washings in PBS, cells were incubated in 3% bovine
serum albumin (BSA)-0.1% Triton X-100 in PBS (Thermo Fisher Scientific, Grand Island,
NY, USA) for 30 min. A FoxO1 (C29H4) rabbit primary antibody was incubated ON at 4 ◦C.
At the end of incubation, cells were washed three times in PBS for 5 min and incubated
with fluorescence-conjugated secondary antibodies (Life Technologies, USA) at 37 ◦C for
1 h in the dark. Nuclei were labeled with 1 µg/mL 4,6-diamidino-2-phenylindole (DAPI)
(Thermo Fisher Scientific, Grand Island, NY, USA). Fluorescence was acquired with a
confocal microscope (TCS SP5, Leica, Nussloch, Germany).

4.6. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9.0 software (GraphPad,
San Diego, CA, USA). For each treatment, two separated experiments with three technical
replicates were performed. Two-way analysis-of-variance ANOVA tests with Tukey’s
correction and the Wilcoxon signed-rank test were used, assuming a p value < 0.05 as
statistically significant. We considered * p < 0.05, ** p < 0.01, *** p < 0.001.

5. Conclusions

Taken together, our findings suggest the possible application of metformin and vita-
min D in controlling adipogenic differentiation, inhibiting WAT formation, and promoting
BAT differentiation by temporary inactivating autophagosome formation and HSP modu-
lation. The ability of these two molecules to control autophagy and inflammation could
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represent a novel target for the regulation of lipogenesis and treatment of obesity-related
metabolic disorders.
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