
09 April 2024

IRIS - Archivio Istituzionale dell'Università degli Studi di Sassari

The 2016 and 2017 QBF solvers evaluations (QBFEVAL'16 and QBFEVAL'17) / Pulina, Luca; Seidl, Martina.
- In: ARTIFICIAL INTELLIGENCE. - ISSN 0004-3702. - 274:(2019), pp. 224-248.
[10.1016/j.artint.2019.04.002]

Original

The 2016 and 2017 QBF solvers evaluations (QBFEVAL'16 and QBFEVAL'17)

Publisher:

Published
DOI:10.1016/j.artint.2019.04.002

Terms of use:

Publisher copyright

(Article begins on next page)

Chiunque può accedere liberamente al full text dei lavori resi disponibili come “Open Access”.

Availability:
This version is available at: 11388/221183 since: 2021-02-22T08:00:27Z

Questa è la versione Post print del seguente articolo:

note finali coverpage

The 2016 and 2017 QBF Solvers Evaluations
(QBFEVAL’16 and QBFEVAL’17)

Luca Pulinaa,∗, Martina Seidlb

aUniversity of Sassari, Italy
bJohannes Kepler Universitat Linz, Austria

Abstract

After a break of about five years, in 2016 the classical QBFEVAL has been revived. QBFEVAL
is a competitive evaluation of solvers for quantified Boolean formulas (QBF), the extension of
propositional formulas with existential and universal quantifiers over the propositional variables.

Due to the enormous interest in QBFEVAL’16, more recently, QBFEVAL’17 was organized.
Both competitions were affiliated to the respective editions of the International Conference on
Theory and Applications of Satisfiability Testing (SAT’16 and SAT’17), the major conference in
research on SAT and related areas.

In this paper we report about the 2016 and 2017 competitive evaluations of QBF solvers (QBF-
EVAL’16 and QBFEVAL’17), the two most recent events in a series of competitions established
with the aim of assessing the advancements in reasoning about QBFs. This report gives an overview
of the setup of these two events, on their participants and on the results of the experiments that
were performed for evaluating the participating systems.

Keywords: Quantified Boolean Formulas, QBF Competition, QBF Solving

1. Introduction

Competitive events in the field of Boolean reasoning have influenced related research agendas
and shaped the course of tool developments. Such competitions not only compare state-of-the-art
systems, but they also select benchmark sets that challenge the researchers in the respective fields.
Nowadays, evaluations are popular for several subfields of Boolean reasoning, including proposi-
tional satisfiability (SAT) [1, 2], satisfiability modulo theory (SMT) solving [3], and quantified
Boolean formulas (QBF) [4].

This paper summarizes the two most recent QBF competitions, QBFEVAL’161 and QBF-
EVAL’17. Those are the last events in a series of competitions that have been established with
the aim of assessing the advancements in the field of QBF reasoning and related research. The
QBFEVAL events have a long tradition in the relatively young field of QBF research. Already in
2004 the first QBFEVAL competition was successfully organized. For almost 10 years, QBFEVAL
was then organized annually or at least bi-annually. After a break of about five years, during which

∗Corresponding author
Email addresses: lpulina@uniss.it (Luca Pulina), martina.seidl@jku.at (Martina Seidl)

1For a preliminary report on QBFEVAL’16 see [5].

Preprint submitted to Artificial Intelligence April 9, 2019

two QBF Gallery events [6, 7] took place, QBFEVAL was re-established in 2016. Traditionally, the
QBFEVAL events are affiliated with the International Conference on Satisfiability Testing (SAT)2

during which the winners of the competition are announced and certificates are handed over to the
participants. In addition, details on the organization were presented at SAT-affiliated workshops,
in particular the International Workshop on Quantified Boolean Formulas in 2016 and the Inter-
national Workshop on Pragmatics of Constraint Reasoning in 2017. QBF researchers were invited
by the QBFEVAL organizers (Luca Pulina in 2016 and 2017, and Martina Seidl in 2017) about
six months before the SAT conference to submit QBF tools and benchmarks for participation in
the competitions. In an evaluation phase, the tools are tested if they are in accordance with the
requirements like conformance to the format standards. All experiments were conducted on the
StarExec infrastructure [8]3.

The huge amount of submissions (44 systems have been submitted to QBFEVAL’16, the 9th
QBFEVAL event) indicated the current vitality of research on QBF reasoning tools and motivated
the organization of the 10th edition of QBFEVAL, namely QBFEVAL’17, only one year after
QBFEVAL’16. In QBFEVAL’17, 47 systems submitted by 19 teams participated. Furthermore, in
the two years more than 8.000 novel benchmark formulas were provided. In QBFEVAL events the
benchmark selection is done by the organizers in accordance with a team of judges (Hubie Chen,
Martina Seidl, Christoph Wintersteiger in 2016 and Olaf Beyersdorff, Daniel Le Berre, Martin Suda,
Christoph Wintersteiger in 2017). The role of the judges was further to monitor the whole events
in order to guarantee a fair implementation of the competitions. All results and benchmarks are
available at

http://www.qbfeval.org

The paper is structured as follows. In Section 2 we briefly describe the design of last two
QBFEVAL events. In particular, we present the different tracks that were organized, we survey
the systems that participated in the competitions, and we discuss how the formulas that we used
to construct the benchmark sets were selected. Section 3 and Section 4 present the results of
QBFEVAL’16 and QBFEVAL’17. We conclude this paper with a short analysis of the results and
an outlook to future editions of QBFEVAL.

2. Setup of QBFEVAL’16 and QBFEVAL’17

In this section, we describe the setup of QBFEVAL’16 and QBFEVAL’17. Both events featured
multiple tracks in order to evaluate different aspects of QBF reasoning tools. While some tracks
could attract a huge number of participants, other tracks had to be canceled because the number
of submissions was too low. After the presentation of the tracks in Section 2.1, we explain how the
benchmarks were selected for the various tracks in Section 2.2. Finally, in Section 2.3 we present
an overview of the participants of the two QBFEVAL events.

2.1. Tracks of QBFEVAL’16 and QBFEVAL’17

Traditionally, the QBFEVAL events consist of multiple tracks in which different features of
QBF solving tools are evaluated. In the call for participation of QBFEVAL’16 eight tracks were

2http://www.satisfiability.org
3https://www.starexec.org

2

http://www.qbfeval.org
http://www.satisfiability.org
https://www.starexec.org

QBFEVAL’16 QBFEVAL’17
Track # Systems # Formulas # Systems # Formulas

Prenex CNF 24 825 30 523
Prenex non-CNF 8 890 8 320
2QBF 21 305 29 384
Evaluate & Certify 5 825 — —
Solver Portfolio 3 825 — —
Parallel QBF Solvers 6 825 1 7
Random QBFs 21 580 30 505
Incremental Track 1 7 — —
Preprocessing — — 2 7
DQBF — — 3 7

7. . . canceled, — . . . not announced

Table 1: QBFEVAL’16 and QBFEVAL’17 at a glance.

announced. Out of these eight tracks only one was canceled (the track on incremental solving),
because only one system was submitted. In 2017, seven tracks were proposed in the call and four
tracks took place. Table 1 gives an overview on the tracks of QBFEVAL’16 and QBFEVAL’17
w.r.t. the number of participants and also w.r.t. the number of selected formulas. In the following,
we shortly summarize the main intentions behind the different tracks.

• In the Prenex CNF (PCNF) track systems that are able to process formulas in prenex
conjunctive normal form are evaluated, i.e., the considered QBFs are of the structure Π.ψ
where Π is the quantifier prefix over the variables that occur in the propositional formula
ψ that is in conjunctive normal form (CNF). A propositional formula is in CNF if it is a
conjunction of clauses. A clause is a disjunction of literals (variables or negations of variables).
The PCNF track may be considered as the main track of the QBFEVAL, because most
available solvers are build for this input format and QBF research has a strong focus on
the clausal representation of formulas. In consequence, many automated reasoning tasks are
encoded in PCNF. Systems and benchmarks in this track have to be conformant to QDIMACS
1.14 input format.

• The Prenex Non-CNF (PNCNF) track is devoted to evaluate solvers supporting the QCIR
input format for prenex non-CNF formula instances.5 In this format, the QBFs have still the
structure Π.ψ but now the propositional formula ψ is not required to be in CNF. Instead it
may contain arbitrary nestings of conjunctions, disjunctions, and negations. Therefore, no
structural information contained in the original reasoning problem is preserved and may be
exploited by the solvers.

• The 2QBF track consists of PCNF formulas whose prefix contains only a single alternation
of the form ∀∃. The required input format is again QDIMACS 1.1. 2QBF formulas are of
interest because already with this very flat quantifier structure, several practical synthesis

4http://www.qbflib.org/qdimacs.html
5http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf

3

http://www.qbflib.org/qdimacs.html
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf

and verification problems can be encoded. Further, it allows for the application of dedicated
solving techniques for which the generalization to an arbitrary prefix structure is not known
(yet).

• The Evaluate & Certify (EC) track aims to access the state of the art on certification of
QBFs in PCNF. In this track, the participating solvers have to produce a certificate that is
easy (i.e., compared to solving) to validate. In contrast to SAT, where solvers are required
to produce certificates to witness the unsatisfiability of a formula, in QBF only few solvers
support the generation of certificates. Due to the limited numbers of participants, this track
was not announced in 2017.

• For the Solver Portfolio (SP) we invited systems that implement a portfolio approach, i.e.,
these systems analyze the given formula and based on certain properties of the formula a
solver and a configuration for this solver is selected form a pool of solvers and configurations.
As the interest in such a track was rather small in 2016, we did not organize it in 2017.

• The aim of the track on Parallel Solving (PS) is to assess systems that exploit modern
computer architectures and use multiple CPUs for solving. In 2016, we announced this track
as a non-competitive track, and six systems participated. These systems were allowed to
accept formulas in QDIMACS and/or QCIR format. However, in 2017, only one solver was
submitted. Therefore, the PS track was canceled in 2017.

• The formulas included in the Random QBF (RQBF) track are generated according to some
random model. We did not necessarily require that the formulas are generated according to
some clausal random model, but the generation involves one random component at least. The
required input format is again QDIMACS 1.1.

• The track on Incremental Solving (IS) aims at the evaluation of incremental QBF solvers.
Incremental solving is important for applications where the originally satisfiable/unsatisfiable
formula is refined by additional clauses/cubes until it becomes unsatisfiable/satisfiable. As in
SAT solving, incremental solving capabilities are provided via an API. However, as only one
solver has been submitted to this track in 2016, it was canceled. In 2017, the track was not
even announced.

• The aim of the Preprocessing track announced in 2017 was to evaluate (and award) the
impact of preprocessing in the QBF solution process. Nowadays, many solvers that do no ex-
plicitly exploit structure in their search process, considerably benefit from extra preprocessing
phases. Hence, many solvers include external preprocessing tools. In this track submissions
of both preprocessors and solvers without any preprocessing systems were invited. Both pre-
processors and solvers were expected to accept input in the QDIMACS 1.1 format. Since only
two preprocessors were submitted, the track was canceled.

• Most recently, an increasing interest in DQBF solving could be observed motivated by the
demand for efficient reasoning on bit-vectors in the context of SMT. DQBF generalizes QBF
by allowing for Henkin quantifiers, lifting the decision problem from PSPACE to NEXPTIME.
In order to support this stream of research, the idea was to offer a dedicated track on DQBF
solving. However, this was too early in 2017. Only three systems (two complete systems and
one preprocessor) have been submitted to the DQBF track, therefore, the track was canceled.

4

2.2. The Dataset

In this section we describe the instances selection procedure for both the editions of QBFEVAL.
Note that the selection procedure considerably changed from 2016 to 2017. Several requirements on
the considered formulas make the selection very challenging. First of all, due to limited resources,
not all formulas collected in the QBFLIB can be included for the competition. Second, the selection
should be diverse enough that it is not biased towards a certain solving technique. Third, the
selected instances should not be too easy and also not be too hard such that a comparison of the
participating solvers is possible and interesting research challenges are posed.

2.2.1. Dataset of QBFEVAL’16

In 2016, the following three new formula families were submitted:

• Generalized Tic-Tac-Toe [9]: 180 formulas in QDIMACS 1.1, submitted by Diptarama, C.
Jordan, and A. Shinohara,

• Random QBFs [10]: 60 formulas in QDIMACS 1.1 and QCIR format, submitted by F. Ricca,
G. Amendola and M. Truszczynski

• a QBF generator for formulas related to the rewriting algorithm described in [11], implemented
and submitted by T. Peitl.

The dataset used in the QBFEVAL’166, consists of four different classes of formulas:

PCNF Formulas. These formulas were used for the PCNF track, the Evaluate & Certify track,
the Solver Portfolio track, and Parallel Solving track. All of the formulas are of fixed structure in
prenex conjunctive normal formal in QDIMACS 1.1. From each family available in the QBFLIB
we randomly selected up to 10 formulas plus 10 formulas from newly submitted families, resulting
in a total amount of 825 formulas.

Prenex Non-CNF Formulas. This set consists of formulas represented in the QCIR format that
was introduced for the QBFGallery 2014 [6, 7]. As there were no new submissions, the non-prenex
non-CNF dataset of QBFEVAL’10 [12] (after prenexing, 478 formulas were converted to QCIR)
was reused. Furthermore, 50% of the formulas of the PCNF set were converted from QDIMACS to
QCIR, resulting in a total amount of 890 formulas.

2QBF Formulas. For the 2QBF track, we selected up to 50 formulas from the families of the
QBFLIB that contain the required ∀∃ prefix. This resulted in a dataset of 305 formulas.

Random QBFs. Finally, the dataset for the RQBF track includes PCNF formulas that have a prob-
abilistic component in their generation. The dataset used in QBFEVAL’16 includes 580 formulas,
320 of which have been selected from QBFLIB. Another 200 formulas have been generated by the
tool BlocksQBF [13]—based on the model described in [14]. Finally, all 60 newly submitted
random formulas were included.

6All formulas used in QBFEVAL’16 can be downloaded from http://www.qbflib.org/eval16.html.

5

http://www.qbflib.org/eval16.html

Discussion. The selection process of the dataset for QBFEVAL’16 was completely based on a
random selection of the formulas. In particular, no information on runtimes and results from
previous competition was used. It was not checked if the formulas could be solved by popular
preprocessors. This gave those solvers an advantage that included a third party preprocessor,
because it turned out that about one third of the formulas of the PCNF track could be solved by
preprocessing alone. Also no information on the formula structure was considered for the selection
process, except for the family classification in the QBFLIB. In 2017, we completely changed the
selection process as we describe below.

2.2.2. Dataset of QBFEVAL’17

As detailed in the following, QBFEVAL’17 received more than 4000 new instances related to
different application domains (in parenthesis the track in which they have been involved):

• 2QBF Encoding of Boolean Functional Synthesis: 42 instances submitted by S. Akshay, S.
Chakraborty, A. K. John, S. Shah and M. N. Rabe, UC Berkeley. (PCNF, 2QBF)

• Patch Generation for Engineering Change Order of Integrated Circuits: 5 instances submitted
by L. Chen and J. R. Jiang, National Taiwan University. (PCNF)

• Mapping User-Specified Functions to Configurable Combinational Logic in FPGAs: 12 in-
stances submitted by T. Preusser, University of Texas. (PCNF)

• Safety Synthesis using QBF : 1354 instances submitted by L. Tentrup, Saarland University.
(PCNF, PNCF, 2QBF)

• Sketch Performance Benchmarks: 14 instances submitted by M. N. Rabe, UC Berkeley.
(PCNF, 2QBF)

• Bounded Synthesis for Petri Games: 360 instances submitted by J. Hecking-Harbusch, Saar-
land University. (PNCNF)

• Combinational Equivalence: 50 instances submitted by W. Klieber, Carnegie Mellon Univer-
sity. (PNCNF, RQBF)

• Hard 2QBFs: 1873 instances submitted by G. Amendola and F. Ricca, University of Calabria,
and M. Truszczynski, Kentucky University. (2QBF, RQBF)

• QBF Benchmark for Positional Games: 312 instances submitted by V. Mayer-Eichberger and
A. Saffidine, University of New South Wales, Sydney. (RQBF)

In order to rely less on random choices, in 2017 we used a different selection scheme w.r.t. 2016.
Instead of randomly selecting formulas from a pool of pre-defined families, we took information
from the formulas structure as well as results from previous competitions.

PCNF Formulas. The considered dataset has been composed considering both the results of past
QBFEVALs (if applicable) and instance features. For this purpose, we define the empirical hardness
coefficient (HCi) for an instance i as

HCi =
Si

St
(1)

6

where Si is the number of solvers that solved i, while St is the total number of solvers participating
to a given contest.

For the instances selection from the QBFLIB, we used the following approach. Starting from
the 15, 019 fixed structured instances in QBFLIB with correct QDIMACS format, we discarded

• SAT instances (284);

• instances with a total amount of variables less than 50 (211);

• very easy formulas (HCi = 1) from past QBFEVALs (909).

The next step consisted in classifying the remaining formulas (13,617) by common syntactic
features. For each instance, we computed the total amount of existential and universal variables,
clauses, and quantified sets. These data have been used to build a dataset in order to group
instances with the help of an unsupervised classification algorithm.

Feature Min 1st Med 3rd Max

Existential Variables 36 1,021 4,806 18,295 2199,062
Universal Variables 1 16 66 180 55,022
Clauses 65 318 15,627 60,578 5934,890
Quantifier Blocks 2 3 3 3 1,141

Table 2: Features of a selection of instances in QBFLIB.

In Table 2 we report the five numbers of distributions of the features mentioned above. The
table indicates that the data is not normally distributed, so we choose Partition Around Medoids
(PAM) as unsupervised classification algorithm.

An issue in using PAM (as in most clustering algorithms) is to determine the total amount of
clusters. Therefore we tested the number of clusters ranging from 2 to 40. In choosing the final
number of clusters, first we discarded results having more than about 30% of instances. After that,
we chose the configuration having the highest median of its silhouette. The silhoutte value [15]
measures the similarity of an object to its cluster compared to other clusters and indicates how
good or bad this object matches to its cluster. The silhouette ranges from −1 to 1. A value indicates
that the object fits well to its own cluster, but badly to other clusters. We finally set the number
of clusters to 32, with a silhouette value equal to 0.481.

In order to understand how the obtained clusters are made, we labeled the feature dataset
with the cluster name. This enabled us to classify instances using a supervised learning algorithm.
In particular, our choice fell to JRIP, the WEKA [16] implementation of Repeated Incremental
Pruning to Produce Error Reduction (RIPPER), a propositional rule learner that generates a
symbolic model in the form of rules. Finally, the selection was made picking up 10 instances per
cluster and discarding instances when families where over represented.

At the end of the selection process, we obtained a dataset containing 523 instances, and it is
composed as follows7:

1. 227 formulas of the PCNF track of QBFEVAL’16 having HC in the range [0, 0.5).

7All formulas used in QBFEVAL’17 can be downloaded from http://www.qbflib.org/eval17.zip.

7

http://www.qbflib.org/eval17.zip

2. 21 hard instances, i.e., instances i with HCi = 0 from QBFEVAL’10.
3. 52 (out of 520) hard instances of QBFEVAL’08.
4. 152 formulas from QBFLIB that were never involved in previous QBFEVALs.
5. 70 newly submitted formulas.
6. 1 additional formula from a submitter’s suggestions (we received only two “suggestions”, but

the remaining 9 formulas were already involved in the selection).8

Prenex Non-CNF Formulas. The dataset is composed of 515 instances in total. Of these, 385
formulas were already included in the Prenex Non-CNF track of QBFEVAL’16 having hardness
coefficient in the range [0, 0.5). The rest of the formulas originates from new benchmark suits,
including 40 formulas from the ART family, 42 formulas from Bounded Synthesis for Petri

Games, 30 formulas from Combinatorial Equivalences and 38 formulas from Safety Synthesis

(the latter both are the same as the formulas in the PCNF track).

2QBF Formulas. This dataset was selected such that it does not overlap with the PCNF set. It
is composed of 384 instances in total. It includes the 118 formulas of the 2QBF track of QBF-
EVAL’16 having hardness coefficient in the range [0, 0.5), the 13 hard instances of the 2QBF track
of QBFEVAL’10, a random selection of 12 2QBF instances of hard formulas from QBFEVAL’08,
166 formulas from QBFLIB that were never involved in previous QBFEVALs, as well as a selection
of 75 newly submitted formulas.

Random Formulas. The dataset for the Random track is composed of 505 instances. Of those 319
formulas were selected from the Random track of QBFEVAL’16 with a hardness coefficient in the
range [0, 0.5) and the rest was selected from suitable newly submitted sets, including 30 instances
of Combinational Equivalence; 113 instances of QBF benchmark for Positional Games; 43
instances of the benchmark set Hard 2QBFs.

2.3. Participating Systems

Table 2.3 summarizes the systems participating in QBFEVAL’16 and/or QBFEVAL’17. Each
team of developers was allowed to submit up to three systems per track. As a consequences, some
tools participated in up two three versions as described below. Systems that were submitted by an
organizer participated hors concours (indicated by a star in Table 2.3).

AIGSolve [17, 18] uses And-Inverter Graphs (AIGs) as the main data structure, as well as
AIG-based operations to reason about the input formula. Quantifiers are eliminated starting
with the inner-most quantifier. The solver includes a dedicated preprocessor [19] based on
incremental SAT.

Aqua is a search-based QBF solver using lazy data structures [20] for unit, pure and don’t care
literal detection. For backtracking, a conflict and solution driven constraint learning ap-
proach [21] is used. A restart strategy [22] and phase saving [23] are also implemented. For
QBFEVAL’16, the three versions Aqua-F3V(common first UIP (F-UIP) [24] learning, 3 lit-
erals watching, and VSIDS decision heuristic [25]), Aqua-S2V(first semantic UIP (S-UIP)
learning, 2 literals watching, and VSIDS), and Aqua-S3O(S-UIP learning, 3 literals watch-
ing, and OCCS decision heuristic [25]) have been submitted. Further, Aqua is coupled to the
QBF preprocessor sQueezeBF [26], which is given a timeout of 100 seconds.

8We invited all participants to suggest five instances that will be included in the competition.

8

Solver
Tracks 2016 Tracks 2017

Author(s)
1 2 3 4 5 6 7 1 2 3 7

AIGSolve 3 3 3 C. Scholl, F. Pigorsch
Aqua 3 3 P. Marin
aqme 3 L. Pulina, A. Tacchella
areqs 3 M. Janota
aspq 3 3 G. Amendola, C. Dodaro, F. Ricca
cadet 3 3 M. N. Rabe
caqe 3 3 3 3 3 3 3 3 L. Tentrup, M. N. Rabe
CheQ 3 M. Narizzano, C. Peschiera,

L. Pulina, A. Tacchella
cued 3 3 3 L.-C. Chen, J.-H. R. Jiang
depqbf 3 3 3 3 3 3 F. Lonsing
depqbf-cert 3 F. Lonsing
dynQBF 3 3 3 3 G. Charwat, S. Woltran
ghostQ 3 3 3 3 3 3 3 3 W. Klieber
heretiq 3 3 3 V. Hadzic
hiqqer 3 3 3 3 A. Van Gelder, S. Wood
HordeQBF 3 T. Balyo, F. Lonsing
HQSpre solver 3 3 R. Wimmer, S. Reimer

P. Marin, B. Becker
ijtihad 3 3 3 V. Hadzic
iProver-QBF 3 3 3 3 3 3 K. Korovin
MPIDepQBF 3 C. Jordan, L. Kaiser,

F. Lonsing, M. Seidl
par-pd-depqbf 3 U. Egly, F. Lonsing and J. Oetsch
QBFRelay 3 3 3 F. Lonsing, U. Egly
qell 3 3 3 K.H. Tu, T.C. Hsu, J.H.R. Jiang
qesto 3 3 3 3 3 3 3 M. Janota
qfun 3 3 3 3 M. Janota
qsts 3 3 3 3 3 3 3 B. Bogaerts, T. Janhunen,

S. Tasharrofi, J. Devriendt (BID version)
quabs 3 3 L. Tentrup
qute 3 3 3 3 T. Peitl
rareqs 3 3 3 3 3 3 3 M. Janota
StruQS* 3 3 3 L. Pulina, A. Tacchella

tracks: 1 . . . PCNF, 2 . . . PNCNF, 3 . . . 2QBF, 4 . . . EC, 5 . . . SP, 6 . . . PS, 7 . . . RQBF

Table 3: Systems participating in QBFEVAL’16 and/or QBFEVAL’17.

aqme [27] is a multi-engine solver, i.e., a tool using machine learning techniques to select among
its reasoning engines the one which is more likely to yield optimal results. The reasoning
engines of aqme are a subset of those submitted to QBFEVAL’06. The engine selection is
performed according to the adaptive strategy described in [27]. A prototype version coupled
to the preprocessor sQueezeBF called SqueezeBF+aqme has been submitted as well.

areqs is an implementation of the 2QBF algorithm described in [28] that solves propositional
abstractions of the input QBF by using SAT solvers. See also the description of rareqs.

aspq is a 2QBF solver based on ASP solvers that was submitted to QBFEVAL’16. The input
formula is preprocessed with bloqqer [29], and then transformed in a ground ASP program
according to the classical Eiter-Gottlob encoding of 2QBF in ASP [30], so that it can be
evaluated by using an ASP solver. An updated version (aspq2) has been submitted to
QBFEVAL’17.

9

cadet [31] is a solver for 2QBF formulas based on the incremental construction of the Skolem
functions aimed to prove the satisfiability of the formula. An updated version (cadet 2017)
has been submitted to QBFEVAL’17.

caqe [32] is a CEGAR-based approach for QBF. The solver builds upon a decomposition of QBFs
into a sequence of propositional formulas that contain the variables of just one quantifier
level and additional variables describing the interaction with adjacent quantifier levels. In
2016, two versions of caqe have been submitted, namely caqe-minisat and caqe-picosat.
Both versions use bloqqer as preprocessor. Additionally, caqe has been submitted also
in non-competitive tracks, in particular caqe-cert, caqe-portfolio, caqe-minisat-par
are different solving tools based on the solver caqe. Two versions of caqe participated in
the EC track, namely caqe-minisat-cert and caqe-picosat-cert. A portfolio variant
called caqe-portfolio was submitted to the SP track, and two variants participated in the
parallel track (caqe-minisat-par, caqe-picosat-par). In 2017, three updated versions of
caqe have been submitted, namely caqe 2017 v1, caqe 2017 v2, and caqe 2017 v3.

CheQ [33] is a suite for QBF certification. It consists of QuBE-cert—an extension of QuBE3.1
able to output certificates—and checker, a tool aimed at checking QuBE-cert output.

cued is a QBF solver that is based on Skolem function construction. This solver is incomplete for
formulas with more than two quantifier blocks.

depqbf [34] is a search-based solver with conflict-driven clause and solution-driven cube learning
(QCDCL) [21, 35, 36]. The variants of depqbf submitted to QBFEVAL’16 (depqbf-v1,
depqbf-v2, and depqbf-v3) are based on version 5.0 [37], with an advanced technique for
early cube learning. The most recent version 6.02 [38] that implements advanced techniques
for cube learning participated in QBFEVAL’17, where have been submitted the versions no-
prefix-opt-depqbf and prefix-opt-depqbf. Further, it also exploits dependency schemes
to safely shift variables in the quantifier prefix.

depqbf-cert Two versions of depqbf have been submitted for the EC track, namely depqbf-
cert-v1, depqbf-cert-v2. The former is intended for the certification of unsatisfiable
QBFs, while the latter can certificate both satisfiable and unsatisfiable QBFs. Both versions
leverage on the QBFcert [39] framework.

dynQBF [40] is a structure-aware QBF solver. It splits the QBF instance into sub-problems by
constructing a tree decomposition. The QBF is then solved by dynamic programming over
the tree decomposition. Intermediate results are stored in sets of binary decision diagrams.
dynQBF used bloqqer and HQSpre as preprocessors. Further DepQBF 5.01 is used for
computing standard dependency schemes. In 2016, one version of it participated to the 2QBF
track, while in 2017 three versions have been submitted, namely dynQBF-bloqqer-hqspre,
dynQBF-bloqqer-hqspre-it, dynQBF-bloqqer-variant. The former participated to
the PCNF, 2QBF, and RQBF tracks, while the latters to the 2QBF track only.

ghostQ [41] is a non-prenex non-CNF solver that employs duality aware reasoning based on ghost
literals. Additionally, it features a counterexample guided abstraction refinement (CEGAR)
based learning to further prune the search space when the last decision literal is existen-
tial (resp. universal) and a conflict (resp. solution) is detected. Two versions of ghostQ
have been submitted to QBFEVAL’16, namely ghostQ-cegar and ghostQ-plain. Both

10

participated in the PCNF, 2QBF, and PNCNF tracks. In QBFEVAL’17, the same versions
participated in the PNCNF track, but in the CNF tracks, preprocessing was used in addition
(versions ghostQ-PG cegar and ghostQ-PG plain).

heretiq is a hybrid QBF solver that combines QCDCL and expansion-based solving in two
separate phases for exploiting the complementary strengths of both QBF solving paradigms.
The core solver is based on ijtihad which communicates through learned clauses with the
QCDCL solver DepQBF using DepQBF’s incremental interface.

hiqqer As reported in [6], the QBF solver hiqqer consists of a csh script that invokes two pre-
processors, plodder and eqxbf, before passing the resulting QBF to the complete solver
stepqbf. Three versions have been submitted to QBFEVAL’16, namely hiqqer1, hiqqer3,
and hiqqer1LDSQ. The parallel version (hiqqerFork) that runs hiqqer in different config-
urations has participated in the PS track.

HordeQBF [42] is an MPI-based parallel portfolio solver with clause and cube sharing. It is
based on the framework of HordeSAT [43], a modular and massively parallel SAT solver.
The authors integrated depqbf 5.0 in HordeSAT to obtain HordeQBF.

HQSpre solver [44] uses the preprocessor HQSpre to solve QBFs by performing preprocessing
and universal expansion in alternation.

ijtihad [45] is an expansion-based QBF solver which generalizes the CEGIS approach for solving
QBFs. In contrast to other expansion-based approaches that rely on incremental SAT solvers,
ijtihad uses only two instances of SAT solvers, one that incrementally tries to falsify partial
expansions of the universally quantified variables, and one that incrementally tries to show
the validity of partial expansions of the existential variables.

iProver [46] is a general purpose theorem prover for first-order logic based on the instantiation
calculus Inst-Gen. It incorporates a QBF solving mode which is based on a translation of QBF
into the effectively propositional fragment of first-order logic (EPR). The basic translation fol-
lows the approach of Seidl et al. [47]. Further, it is also implements a dedicated Skolemization
procedure with several optimization. Two versions of iProver have been submitted, namely
iProver-QBF and iProver-QBF-bloqqer (with bloqqer for preprocessing). Updated
versions have been submitted in 2017.

MPIDepQBF [48] dynamically creates budgeted subproblems by setting outermost variables. The
subproblems are solved using depqbf’s implementation of assumptions. The subproblems are
then distributed to workers via MPI. The workers use depqbf to solve the subproblems. If
a subproblem cannot be solved within a given timeout, it is further split and distributed to
idle workers. The master nodes assembles the results of the workers.

par-pd-depqbf. In this solver, the approach to solve quantified circuits in prenex-normal form
relies on running two instances of a QBF solver on a primal and a dual version of the problem
encoding in parallel – as described in [49]. par-pd-depqbf makes use of preprocessing by
means of bloqqer, and it uses depqbf as back-end PCNF QBF solver.

QBFRelay is an incomplete solver that runs preprocessors QxBF, bloqqer, and HQSpre in
rounds until a fixpoint is reached. In QBFEVAL’17 QBFRelay was also submitted in com-
bination with the solver depqbf to realize a complete solver (QBFRelay-limited-depqbf).

11

qell [50] is an expansion-based approach that uses levelized SAT solving. In order to control
formula growth, learning techniques based on circuit structure reconstruction, complete and
incomplete ALLSAT learning, clause selection, etc. are applied.

qesto and qestos are implementations of the QCNF algorithm presented in [51] that are based
on the clause selection solving approach. In 2017 qestos did not participate, while a version
for the PNCNF track has been submitted (cqesto).

qfun is a non-CNF solver that applies machine-learning for learning shorter winning strategies.
qfun is based on the expansion-based solver rareqs. It has also been submitted a version
for tracks accepting QDIMACS1.1 as input format (rev qfun).

qsts is based on nested SAT solving and theory transformations. The main tools utilized for
translation are:

• sat-to-sat [52], a (non-)prenex (non-)CNF QBF solver that is based on nested SAT
solving, and it is able to do early propagation of information between nested solvers.

• qbf2sts [53], a translator from QDIMACS/QCIR input format to sat-to-sat input for-
mat with the ability to reverse engineer circuits and apply several theory transformations
to simplify the representation of QBF formulas.

Three versions of qsts have been submitted to QBFEVAL’16, namely the plain version
(qsts), one version using both qxbf [54] and bloqqer preprocessors (xb-qsts), and xb-
bid-qsts, that extends xb-qsts with breakid [55], a SAT symmetry breaker that has been
modified to detect a (limited) class of symmetries in QBF instances. Updated versions have
been submitted in 2017.

quabs [56] is a certifying QBF solver based on a CEGAR-based abstraction algorithm for Prenex
non-CNF formulas in QCIR format. Two different versions have been submitted, namely
quabs-minisat and quabs-picosat, using the SAT solvers minisat and picosat, respec-
tively. An updated version participated at QBFEVAL’17.

qute [57] is a search-based solver implementing QCDCL. It further includes a dedicated technique
for the lazy relaxation of the prefix variable ordering called dependency learning.

rareqs [58] is an expansion-based solver that recursively refines the propositional abstraction of
the given QBF. The submitted version uses bloqqer as preprocessor. The version rareqs-
nn [59] is able to process non-prenex non-CNF formulas in the QCIR format.

StruQS [60], a QBF solver that implements a dynamic combination of search-based solving with
solution- and conflict-backjumping and variable-elimination. The key point in this approach
is to implicitly leverage graph abstractions of QBFs to yield structural features which sup-
port an effective decision between search and variable elimination. A version coupled to the
preprocessor sQueezeBF (SqueezeBF+StruQS) was submitted as well.

3. Results of QBFEVAL’16

In this section, we summarize the results of QBFEVAL’16. With the exception of the solvers
submitted to the PS track, all systems were executed as a single process (in some cases as a sequence

12

Solver pcnf pncnf 2qbf rqbf
Time # Time # Time # Time

AIGSolve 589 15981.35 NA NA NA NA NA NA
Aqua-F3V 482 7947.80 NA NA NA NA 306 11419.66
Aqua-S3O 479 6774.68 NA NA NA NA 300 10360.07
Aqua-S2V 484 7869.78 NA NA NA NA 306 10976.23
areqs NA NA NA NA 235 2963.33 NA NA
aspq* NA NA NA NA 188 741.09 NA NA
cadet NA NA NA NA 169 790.78 NA NA
caqe-minisat 576 15219.10 NA NA NA NA 212 7360.30
caqe-picosat 590 17178.79 NA NA NA NA 298 7324.49
depqbf-v1 456 9999.76 NA NA 133 5466.70 257 7572.00
depqbf-v2 604 14076.91 NA NA 223 5135.23 287 8977.03
depqbf-v3 527 16186.70 NA NA 138 4901.65 257 7772.75
dynQBF NA NA NA NA 72 489.44 NA NA
ghostQ-cegar 585 14538.77 524 9009.13 155 8135.25 NA NA
ghostQ-plain 568 13727.80 521 7739.63 87 7545.74 NA NA
hiqqer1 NA NA NA NA 183 2703.59 267 6712.26
hiqqer1LDSQ* 574 10951.54 NA NA 183 2663.74 267 7013.05
hiqqer3 NA NA NA NA 185 3236.84 261 4763.45
iProver-QBF 348 12922.04 NA NA 32 1249.98 25 4341.95
iProver-QBF-bloqqer 324 9369.12 NA NA 124 188.14 59 264.61
qesto 582 15552.84 NA NA NA NA 291 9398.91
qestos 527 4356.04 NA NA 184 3487.24 246 6904.90
qsts NA NA NA NA NA NA 239 5231.98
quabs-minisat NA NA 503 4287.17 NA NA NA NA
quabs-picosat NA NA 509 4784.62 NA NA NA NA
rareqs 640 14166.77 NA NA 232 5287.58 295 4305.78
rareqs-nn NA NA 403 7427.47 NA NA NA NA
SqueezeBF+StruQS* NA NA NA NA 100 1169.84 41 5851.10
StruQS* 358 12825.17 NA NA 100 933.77 35 3623.79
xb-bid-qsts NA NA NA NA NA NA NA NA
xb-qsts 613 15296.69 NA NA 206 5581.42 294 7963.03

Table 4: Results of QBFEVAL’16 competitive tracks. For each track, we report the number of instances solved
within the time limit (“#”) and the total CPU time (in seconds) spent on the solved instances (“Time”). Results in
boldface are those of the best three solvers in each track; the colors (gold, silver, bronze) high-light the order. “NA”
means that the results are not available (they did not participate in a track or their output gave rise to discrepancies).
Finally, solvers marked with a “*” participated hors-concours.

of several tools like preprocessors and solvers). The CPU time limit was set to 600 seconds and the
memory limit was set to 4GB. All tracks except PS ran on the StarExec cluster. The PS track was
executed on a cluster of Dell Workstations with Dual Intel Xeon E3-1245 PCs at 3.30 GHz quad
core processor, equipped with 64 bit Ubuntu 12.04.

3.1. Competitive Tracks

Table 4 gives an overview of the total results, considering all solvers participating on com-
petitive tracks PCNF, PNCNF, 2QBF, and RQBF. In the PCNF track the solver rareqs was
ranked first, followed by xb-qsts and depqbf-v2. All solvers but StruQS, iProver-QBF, and
iProver-QBF-bloqqer were able to solve at least 50% of the dataset. Only rareqs could solve
more than 75% of the instances. Five solvers (out of 19) were able to solve instances uniquely,
namely rareqs (5), AIGSolve (24), hiqqer1LDSQ(1), ghostQ-plain, and depqbf-v3 (2).
For the PCNF track, we excluded five solvers, namely, hiqqer1 (1), hiqqer3 (1), qsts (66),
SqueezeBF+StruQS (31), and xb-bid-qsts (18) are not included in the ranking, because they
returned at least one discrepant result. See http://www.qbfeval.org for details. In order to

13

http://www.qbfeval.org

evaluate discrepant results, we considered both the result “by construction” (if available) of the
instance and/or the result returned by the certifying tools submitted to the EC track.

For a more fine-grained view on the results, we introduce the notion of dominance as follows:
we say that solver A dominates solver B whenever the set of instances solved by A is a superset
of the problems solved by B. When analyzing the result, it turns out that no solver is dominated
by another solver, even when considering rareqs–the solver ranked first—and iProver-QBF-
bloqqer —the last solver in the rank. Although iProver-QBF-bloqqer is able to solve only
about 51% of the total amount of formulas also solved by rareqs, it turns out that iProver-
QBF-bloqqer solves six formulas in which rareqs fails. On the one hand, this indicates the
solidity of the considered dataset; on the other hand, this confirms that there is not, in principle,
a dominant solving technique for every possible problem.

As shown in Table 4, the two versions of ghostQ are the best performing systems in the PNCNF
track. ghostQ-cegar and ghostQ-plain rank first and second, respectively, and quabs-picosat
ranks third. All solvers but rareqs-nn were able to solve at least 50% of the dataset. All of the
participating solvers were able to solve instances uniquely. Performance of all the three versions of
qsts are not shown in the table because their output gave rise to discrepancies.

Considering the results related to the 2QBF track, Table 4 reveals that the winner is areqs,
closely followed by rareqs. The solver depqbf-v2 ranks third. areqswas able to solve the 77%
of the dataset, while the last-ranked solver returned results only for 10% of the dataset. Besides
areqs, only rareqs solved more than the 75% of the dataset, while 11 solvers (out of 19) could
solve 50% of the formulas. Four solvers were able to solve instances uniquely, namely areqs (1),
rareqs (9), xb-qsts (1), and cadet (1). We discarded the results of qsts and xb-bid-qsts
because of discrepancies (one in the case of the former, 15 in the case of the latter). Interestingly,
only the six solvers with the fewest solved formulas are dominated by other solvers, while the others
are not.

Finally, Table 4 indicates that Aqua is the winner of the RQBF track, where Aqua-S2V, Aqua-
F3V, and Aqua-S3O rank first, second, and third, respectively. Seven solvers solved at least 50%
of the dataset, while four solvers were not able to cope with more than 10% of the instances. Eight
solvers were able to solve formulas uniquely, while for only one of them—xb-bid-qsts—we have
to report discrepancies (16) on the results. About dominance, the four solvers at the bottom of
the rank are dominated. Not surprisingly, hiqqer1 and hiqqer1LDSQ dominate hiqqer3, while
depqbf-v1 is dominated by Aqua-F3V. All remaining solvers are not dominated.

Figure 1 depicts the performance of the five top-ranked solvers with respect to the Virtual
Best Solver (VBS), i.e., the ideal solver that always fares the best time among all the solvers in a
portfolio. For each track the portfolio is composed of all participating solvers with the exception of
the solvers for which discrepancies have been reported or which are participating hors-concours.

In the PCNF track (top-left plot in Figure 1), the VBS solved 746 instances in 8804.53 seconds;
it solved 90% of the dataset, while the winner of the track—rareqs—successfully solve 77% of the
formulas. Out of 746 instances, 367 are true, while 379 are false. Further, 156 formulas can be
classified as easy (i.e., solved by all solvers), 34 as medium-hard (i.e., solved by only one solver),
and 556 medium. It is worth to notice that 17 solvers contributed to the VBS; in particular,
seven solvers contributed for more than 5%, namely depqbf-v1 and depqbf-v3 (8% and 6%,
respectively), ghostQ-plain and Aqua-F3V (about 9% each), rareqs (12%), qesto (22%), and
AIGSolve (23%). In QBFEVAL’16, special awards were given for distinguished contribution to
the VBS. The award was given to AIGSolve and qesto in the PCNF track.

In the PNCNF track (top-right plot in Figure 1), the VBS solved 555 instances in 6017.16

14

Figure 1: Performance of top five ranked solvers with respect to the Virtual Best Solver (VBS) on QBFEVAL’16
competitive tracks. Plots in the top show performance of solvers participating at the PCNF and PNCNF Tracks (left
and right, respectively). Bottom-left plot is related to the 2QBF Track, while the bottom-right one to the RQBF
Track. For each plot, in th x-axes is depicted the total amount of instance, while in the y-axes the CPU time in
seconds.

seconds; it solved the 62% of the dataset, while the winner of the track—ghostQ-cegar—solved
59%. Out of 555 solved instances, 243 were true, while 312 were false. Overall 375 formulas were
turned out to be easy, 20 were medium-hard, and 160 were medium. All five solvers participating
in the track contributed to the VBS. The best contributor was quabs-minisat with 69%, while
ghostQ-cegar contributed for about 8%.

The bottom-left plot in Figure 1 summarizes the 2QBF track. The VBS solved the 96% of
the dataset (292 instances), 57 more than areqs that won the track and that was also the major
contributor (50%) on the performance of the VBS. In total, 205 solved by the VBS were true, while
87 were false, resulting in 13 easy, 14 medium-hard, and 265 medium formulas. Four solvers did
not contribute to the VBS, namely depqbf-v3, dynQBF, ghostQ-plain, and iProver.

Finally, in the RQBF track, as depicted in the bottom-right plot of Figure 1, the VBS solved
352 instances, 35 more than Aqua-F3V, the winner of the track. For solving these formulas the
VBS needed 6296.33 seconds. Out of 352 instances, 146 were found to be true, while 206 were
false, resulting in 25 easy, 30 medium-hard, and 297 medium formulas. caqe-minisat and the two
version of iProver did not contribute to the VBS, while rareqs (22%) has been awarded as the

15

System ec System sp System ps
Time # Time # Time

depqbf-cert-v2 309 4732.51 caqe-portfolio 580 8824.50 par-pd-depqbf 606 12269.14
caqe-picosat-cert 268 7598.09 aqme* 530 9657.69 hiqqerFork 598 14624.01
caqe-minisat-cert 236 6831.53 SqueezeBF+aqme* 473 9599.09 caqe-picosat-par 585 13337.43
depqbf-cert-v1 217 2760.83 caqe-minisat-par 570 12304.04
CheQ* 217 6188.85 HordeQBF 443 8434.86

Table 5: Results of QBFEVAL’16 non competitive tracks. The table is organized in three groups, one for each track.
For each group, we report the name of the system (“System”), the total amount of formulas solved within the time
limit (“#”) and the total CPU time (in seconds) spent on the solved instances (“Time”).

best VBS contributor.

3.2. Non-Competitive Tracks

In Table 5 we summarize the results of non-competitive tracks, namely EC, SP, and PS. We did
not award any prizes for these tracks.

In EC (left-most part of Table 5) depqbf-cert-v2 is the tool that obtains the highest number
of certified answers (309 out of 825). depqbf-cert-v2 was also the tool that could certify the
highest amount of false formulas (217), while CheQ was the tool that could certify the highest
amount of true formulas (118). All participating systems were able to solve and certify instances
uniquely. In order to have the largest possible set of certified instances, we computed the “Virtual
Best Certifier” in a similar way as the VBS in the previous subsection. With the VBC, we obtain
387 certified formulas, 142 of which are true and of which 245 are false.

The SP track was organized as a non-competitive track because two out of three participating
systems where hors-concours. caqe-portfolio was the system that solved the highest amount
of formulas, i.e. 580, 10 less than the best version of caqe submitted to the PCNF track (caqe-
picosat solved 590 instances).

Finally, regarding the PS Track, the best performing system was par-pd-depqbf, followed by
hiqqerFork and caqe-picosat-par, solving 606, 598, and 585 instances, respectively. It is worth
to notice that par-pd-depqbf solved 3 instances more than the best version of depqbf submitted
to the PCNF track, while the parallel versions of caqesolve less formulas than the sequential
versions.

4. Results of QBFEVAL’17

In this section, we summarize the results of QBFEVAL’17. The CPU time limit was set to 900
seconds and the memory limit was set to 32GB. All tracks ran on the StarExec cluster.

Table 6 gives an overview of the QBFEVAL’17 results. In the PCNF track two versions of
caqe are ranked first and second, namely caqe 2017 v2 and caqe 2017 v3, and the solver
qute random is ranked third. Only the solvers in the first two positions of the ranking were
able to solve more than 50% of the formulas, while iProver-QBF-2017 solved less than 25%. The
two versions of cued solved only 7 and 8 instances because, despite they support solving on 2QBF
only, they participated also on this track. Eight solvers (out of 30) were able to solve instances
uniquely. The solver ijtihad v2 dominates ijtihad v1 and xb-qsts xbqsts2.0 dominates xb-
qsts xbqsts1.0. Despite its low performance on the PCNF track, cued is dominated only by the
three versions of caqe and rareqs.

16

Solver pcnf pncnf 2qbf rqbf
Time # Time # Time # Time

AIGSolve 246 18098.45 NA NA NA NA 19 2489.14
aspq2 NA NA NA NA 228 8996.81 NA NA
cadet 2017 NA NA NA NA 241 9276.17 NA NA
caqe 2017 v1 230 18773.73 NA NA 228 15303.55 66 8776.50
caqe 2017 v2 286 20825.18 NA NA 230 11755.12 67 6684.96
caqe 2017 v3 271 19935.09 NA NA 230 11766.28 66 8244.28
cqesto NA NA 112 8574.74 NA NA NA NA
cued1919 NL 8 1342.56 NA NA 73 9493.36 – –
cued1919 NNL 7 547.98 NA NA 70 8972.15 – –
dynQBF-bloqqer-hqspre 223 15335.98 NA NA 210 7097.44 8 25.50
dynQBF-bloqqer-hqspre-it NA NA NA NA 207 7265.30 NA NA
dynQBF-bloqqer-variant NA NA NA NA 200 5166.79 NA NA
ghostQ-cegar 156 11634.73 89 13737.38 76 9162.22 32 4144.25
ghostQ-plain NA NA 42 6027.87 NA NA NA NA
ghostQ-PG cegar 190 16914.39 NA NA 246 10736.04 41 5611.56
ghostQ-PG plain 163 13512.42 NA NA 185 8239.49 11 1689.30
heretiq 232 18827.34 NA NA 192 5618.61 58 69668.48
HQSpre solver 205 13432.33 NA NA NA NA 9 5.62
ijtihad v1 205 11679.88 NA NA 161 4344.53 31 1461.48
ijtihad v2 207 11661.28 NA NA 164 5557.63 33 3851.94
iProver-QBF-2017 108 14635.17 NA NA 16 536.12 4 165.02
iProver-QBF-bloqqer-2017 150 14442.74 NA NA 125 584.31 11 933.02
no-prefix-opt-depqbf NA NA NA NA 74 8030.01 NA NA
prefix-opt-depqbf 157 11596.86 NA NA 54 5187.86
QBFRelay 224 14894.21 NA NA 198 2362.54 14 744.65
QBFRelay-limited-depqbf 236 18342.40 NA NA 207 18477.13 82 13968.71
qell default 191 12624.17 NA NA 103 8484.74 53 5692.99
qell unit 191 11240.31 NA NA 104 9846.45 53 5423.12
qesto 136 11306.00 NA NA 208 10340.04 58 13790.20
qfun NA NA 117 10607.37 NA NA NA NA
quabs 2017 NA NA 106 9105.55 NA NA NA NA
qute default 246 19086.20 NA NA NA NA 49 2111.22
qute hybrid NA NA 95 14226.01 NA NA NA NA
qute opt500 249 21245.50 NA NA NA NA 51 2661.01
qute opt617 NA NA 81 7559.50 NA NA NA NA
qute opt993 NA NA 86 7005.88 NA NA NA NA
qute random 250 22330.05 NA NA NA NA 51 2670.65
rareqs 245 19499.77 NA NA 229 10833.10 74 7782.52
rev qfun 236 19375.71 NA NA 176 5484.06 33 1737.27
xb-qsts bqsts2.0 188 15097.50 NA NA 209 10291.68 47 10865.21
xb-qsts xbqsts1.0 191 17608.96 NA NA 208 11007.97 48 11071.49
xb-qsts xbqsts2.0 191 17602.46 NA NA 208 10996.27 48 11073.47

Table 6: Results of QBFEVAL’17 tracks. The table is organized similarly to Table 4. For each track, we report the
number of instances solved within the time limit (“#”) and the total CPU time (in seconds) spent on the solved
instances (“Time”). Results in boldface are those of the best three solvers in each track; ; the colors (gold, silver,
bronze) high-light the order. “NA” means that the solver did not participate in the related track. Finally, a “–”
means that a solver did not solve any instance in the related group.

As shown in Table 6, qfun and cqesto rank first and second, respectively, in the PNCNF
track, while quabs 2017 ranks third. No solver was able to solve at least 50% of the dataset—
qfun reaches 37%. Four solvers out of eight were able to solve instances uniquely and no solver
was dominated.

Regarding the results related to the 2QBF track, Table 6 shows that the winner of the track
is ghostQ-PG cegar, followed by cadet 2017. caqe 2017 v2 ranks third. Here the system
with the best performance was able to solve the 64% of the formulas, while the last-ranked solver—
iProver-QBF-2017—solved about 4%. Overall, 17 solvers (out of 29) solved more than 50% of

17

Figure 2: Performance of top five ranked solvers with respect to the VBS on QBFEVAL’17 tracks. Plots in the top
show performance of solvers participating at the PCNF and PNCNF Tracks (left and right, respectively). Bottom-left
plot is related to the 2QBF Track, while the bottom-right one to the RQBF Track. For each plot, in th x-axes is
depicted the total amount of instance, while in the y-axes the CPU time in seconds.

the dataset, while five solvers solved less than 25%. In this track, six solvers were able to solve
instances uniquely. The solver xb-qsts xbqsts2.0 dominates xb-qsts xbqsts1.0. In addition,
on this dataset caqe 2017 v2 dominates caqe 2017 v1 and iProver-QBF-2017 is dominated
by 18 solvers.

Finally, in the RQBF track, QBFRelay-limited-depqbf is the winner, while rareqs and
caqe 2017 v2 are ranked second, and third, respectively (cf. Table 6). The dataset of this track
was quite hard for the submitted systems; the winner was able to solve about 16% of the instances.
Seven solvers (out of 30) were able to solve formulas uniquely and the two versions of cued did not
solve any instance.

Figure 2 depicts the performance of top five ranked solvers with respect to the VBS. In the
PCNF track (top-left plot in Figure 2), the VBS solved 417 instances in 15,160.95 seconds; it solved
about 90% of the dataset, while the winner of the track—caqe 2017 v2—reached only 55%. Out
of 417 instances, 157 have been found to be true, while 260 have been found to be false, overall
resulting in 2 easy, 25 medium-hard, and 390 medium formulas. Eight solvers contributed for more
than 5%. The major contributors to the VBS were rareqs and qell default, with 17% and

18

14%, respectively.
Concerning VBS performance in the PNCNF track (top-right plot in Figure 2), we observed

that the VBS would solve 181 instances in 11247.52 seconds; this includes the 57% of the dataset,
while the winner of the track—qfun—reaches 37%. Out of 181 instances, 96 have been found to
be true, while 85 were false, resulting in 17 easy, 23 medium-hard, and 141 medium formulas. With
the exception of ghostQ-cegar, all solvers participating in the track contributed to the VBS.
The most active contributors were qfun, quabs 2017 and cqesto, with 28%, 21%, and 18%,
respectively.

The bottom-left plot in Figure 2 shows that the VBS in the 2QBF track solved the 89% of the
dataset (343 instances in 5942.92 seconds), 97 more than ghostQ-PG cegar. In total, 2012 of
the solved formulas were decided to be true, while 131 formulas were false, resulting in 9 easy, 18
medium-hard, and 316 medium formulas. Six solvers contributed to the VBS for more than 5%.
The major contributor was cadet 2017 (38%), followed by aspq2 (14%).

Finally, the bottom-right plot of Figure 1 shows that the VBS solved 178 instances in the RQBF
track. This is about twice as much as prefix-opt-depqbf, the winner of the track, could solve
The CPU time spent by the VBS was 17488.17 seconds. Out of 178 instances, 107 were found to be
true and 71 were found to be false, resulting in 28 medium-hard and 150 medium formulas. Seven
solvers contributed to the VBS with more than 5%. The major contributor was the winner of the
track (20%).

5. Conclusions

In this paper, we reported on the 2016 and 2017 editions of QBFEVAL, the competitive evalua-
tion of solvers for quantified Boolean formulas. As an additional experiment, we took the best three
systems of QBFEVAL’16 and run them on the benchmarks of QBFEVAL’17. For this experiment,
we considered the tracks PCNF, PNCNF, 2QBF and RQBF. In all of these tracks, the top-ranked
solvers of 2017 could solve more instances than the top-ranked solvers of 2016. Considering the
benchmark set of the PCNF track in QBFEVAL’17, the top three ranked solvers of QBFEVAL’16,
namely depqbf-v2, rareqs, and xb-qsts, were able to solve 165, 245, and 189 instances, respec-
tively. The winning solver of 2017, caqe 2017 v3, solved 286 formulas. In the PNCNF track of
2016, the winners were ghostQ-cegar, ghostQ-plain, and quabs-picosat that solved 85, 42,
and 95 formula instances of the 2017 benchmark set. The winning solver of 2017, qfun, solved
117 formulas. In the 2QBF track, areqs, depqbf-v2, and rareqs of 2016 solved 184, 188, and
229 formulas. The winner of the 2QBF track, ghostQ-cegar, solved 246 formulas. Finally, in
the RQBF track, the three versions of Aqua solved up to 62 benchmarks of the 2017 dataset,
QBFRelay-limited-depqbf – the winner of RQBF in 2017 – solved 82 formulas. In all cases, we
hence observe progress on the selected benchmark sets.

As a closing remark, we can say that the huge number of participants indicates that at the
moment QBF is a very active research field. While QBF research itself is distributed over different
communities like automated reasoning, artificial intelligence, formal verification and synthesis, etc.,
the QBFEVAL event provides a common platform for exchanging ideas, insights, approaches, tools,
and formulas as well as a forum for understanding the status quo and for identifying open challenges.
These challenges particularly manifest in terms of the benchmark sets used in the competitions,
because these become the basis for the evaluation of novel approaches. Hence, the selection of the
benchmarks is a very sensitive task. In 2016, we only relied on the classifications into families as
suggested by the submitters of the formulas and on results from previous competitions. However, in

19

this approach we are confronted with the problem that by looking at the outcomes, strengths and
weaknesses of the different techniques can have an impact of the selection process. In consequence,
we are confronted with the danger of introducing a biased set resulting in overtuning that might
be counterproductive for the introduction of novel techniques. Hence, a different approach was
taken in 2017 by analyzing various features of the benchmark sets and make the selection based on
the outcome of classification algorithms. In 2017, we also tried to involve the participants in the
selection by inviting them to provide a couple of formulas that they consider interesting and that
should be included. Only very few participants used this option, and so we decided to not repeat
this again and we will based with feature-based selection process in the next editions of QBFEVAL.

For QBF solving, a lot of different tracks that tackle problems of practical relevance would be
of interest. However, we realized that the main focus of QBF tool development currently is on the
implementation of sequential P(N)CNF solvers. Therefore, dedicated tracks like on certification,
portfolio, and parallel solving do currently hardly find enough participants. Therefore, these tracks
were canceled or organized as show-case tracks. In particular, certification is very important — on
the one hand for the validation of the result, and on the other hand for the extraction of strategies.
Different than in SAT, we cannot make the validation of a result mandatory, because this would
exclude several solving techniques for which it is currently not known how to do the certification
efficiently. Here more research is required first. Further, we also tried to establish a track on DQBF,
a generalization of QBF. This is a very young research field with a lot of potential, and we hope
that soon there will be enough contributors (solvers and benchmarks) for organizing a DQBF track.

Finally, detailed statistics from the outcomes of both QBFEVAL events can be obtained at
http://www.qbfeval.org where custom tables can be generated as described in [61]. For the
readers convenience, we included a selection in the appendix.

Acknowledgments. The authors would like to thank all the participants of QBFEVAL’16 and QBF-
EVAL’17 for submitting their work and the judges of QBFEVAL’16 and QBFEVAL’17 for their
valuable feedback. Last but not least, the authors would like to thank Aaron Stump and the
StarExec team.

[1] T. Balyo, A. Biere, M. Iser, C. Sinz, SAT Race 2015, Artificial Intelligence 241 (2016) 45–65.

[2] T. Balyo, M. J. H. Heule, M. Järvisalo, SAT competition 2016: Recent developments, in: Proc.
of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17), AAAI Press, 2017,
pp. 5061–5063.

[3] D. R. Cok, D. Déharbe, T. Weber, The 2014 SMT competition, Journal on Satisfiability,
Boolean Modeling and Computation 9 (2014) 207–242.

[4] P. Marin, M. Narizzano, L. Pulina, A. Tacchella, E. Giunchiglia, Twelve years of QBF evalu-
ations: QSAT is pspace-hard and it shows, Fundam. Inform. 149 (1-2) (2016) 133–158.

[5] L. Pulina, The ninth QBF solvers evaluation - preliminary report, in: Proc. of the 4th Inter-
national Workshop on Quantified Boolean Formulas (QBF’16), Vol. 1719 of CEUR Workshop
Proc., CEUR-WS.org, 2016, pp. 1–13.

[6] M. Janota, C. Jordan, W. Klieber, F. Lonsing, M. Seidl, A. Van Gelder, The QBFGallery
2014: The QBF competition at the FLoC olympic games, Journal on Satisfiability, Boolean
Modeling and Computation 9 (2016) 187–206.

20

http://www.qbfeval.org

[7] F. Lonsing, M. Seidl, A. V. Gelder, The QBF gallery: Behind the scenes, Artif. Intell. 237
(2016) 92–114.

[8] A. Stump, G. Sutcliffe, C. Tinelli, StarExec: a cross-community infrastructure for logic solving,
in: Proc. of the 7th International Joint Conference on Automated Reasoning (IJCAR’14), Vol.
8562 of Lecture Notes in Computer Science, Springer, 2014, pp. 367–373.

[9] Diptarama, K. Narisawa, A. Shinohara, Extension of generalized tic-tac-toe: p stones for one
move, IPSJ Journal 55 (2014) 2344–2352.

[10] G. Amendola, F. Ricca, M. Truszczynski, Generating hard random boolean formulas and
disjunctive logic programs, in: Proceedings of the 26th International Joint Conference on
Artificial Intelligence, AAAI Press, 2017, pp. 532–538.

[11] F. Slivovsky, S. Szeider, Soundness of Q-resolution with dependency schemes, Theoretical
Computer Science 612 (2016) 83–101.

[12] C. Peschiera, L. Pulina, A. Tacchella, U. Bubeck, O. Kullmann, I. Lynce, The seventh QBF
solvers evaluation (QBFEVAL’10), in: Proc. of the 13th International Conference on Theory
and Applications of Satisfiability Testing (SAT’10), Vol. 6175 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2010, pp. 237–250.

[13] R. Brummayer, F. Lonsing, A. Biere, Automated testing and debugging of SAT and QBF
solvers, in: Proc. of the 13th International Conference on Theory and Applications of Satisfi-
ability Testing (SAT’10), Vol. 6175 of Lecture Notes in Computer Science, Springer, 2010, pp.
44–57.

[14] H. Chen, Y. Interian, A Model for Generating Random Quantified Boolean Formulas, in: Proc.
of 19th International Joint Conference on Artificial Intelligence (IJCAI’05), 2005, pp. 66–71.

[15] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis, Journal of computational and applied mathematics 20 (1987) 53–65.

[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, The weka data
mining software: an update, ACM SIGKDD explorations newsletter 11 (1) (2009) 10–18.

[17] F. Pigorsch, C. Scholl, Exploiting structure in an AIG based QBF solver, in: Design, Automa-
tion and Test in Europe (DATE’09), IEEE, 2009, pp. 1596–1601.

[18] C. Scholl, F. Pigorsch, The QBF solver AIGSolve, in: Proc. of the 4th Int. Workshop on
Quantified Boolean Formulas (QBF 2016), Vol. 1719 of CEUR Workshop Proc., CEUR-WS.org,
2016, pp. 55–62.

[19] F. Pigorsch, C. Scholl, An AIG-based QBF-solver using SAT for preprocessing, in: Proc. of
the 47th International Conference on Design Automation Conference (DAC’10), IEEE, 2010,
pp. 170–175.

[20] I. Gent, E. Giunchiglia, M. Narizzano, A. Rowley, A. Tacchella, Watched Data Structures
for QBF Solvers, in: Proc. of the Sixth International Conference on Theory and Applications
of Satisfiability Testing (SAT’03), Vol. 2919 of Lecture Notes in Computer Science, Springer
Verlag, 2003, pp. 25–36.

21

[21] E. Giunchiglia, M. Narizzano, A. Tacchella, Clause-Term Resolution and Learning in Quanti-
fied Boolean Logic Satisfiability, Artificial Intelligence Research 26 (2006) 371–416.

[22] C. P. Gomes, B. Selman, H. Kautz, Boosting combinatorial search through randomization,
in: Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth In-
novative Applications of Artificial Intelligence Conference (AAAI’98/IAAI’98), Vol. 98, AAAI
Press / The MIT Press, 1998, pp. 431–437.

[23] K. Pipatsrisawat, A. Darwiche, A lightweight component caching scheme for satisfiability
solvers, in: Proc. of the 10th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT’07), Vol. 4501 of Lecture Notes in Computer Science, Springer, 2007,
pp. 294–299.

[24] L. Zhang, S. Malik, Conflict driven learning in a quantified boolean satisfiability solver, in:
Proc. of the International Conference on Computer Aided Design (ICCAD’02), ACM / IEEE
Computer Society, 2002, pp. 442–449.

[25] L. Zhang, C. F. Madigan, M. W. Moskewicz, S. Malik, Efficient conflict driven learning in
a Boolean satisfiability solver, in: Proc. of the International Conference on Computer-Aided
Design (ICCAD’01), 2001, pp. 279–285.

[26] E. Giunchiglia, P. Marin, M. Narizzano, sQueezeBF: An effective preprocessor for QBFs based
on equivalence reasoning, in: Proc. of the 13th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT’10), Vol. 6175 of Lecture Notes in Computer Science,
Springer, 2010, pp. 85–98.

[27] L. Pulina, A. Tacchella, A self-adaptive multi-engine solver for quantified Boolean formulas,
Constraints 14 (1) (2009) 80–116.

[28] M. Janota, J. Marques-Silva, Abstraction-based algorithm for 2QBF, in: Proc. of the 14th
International Conference on Theory and Applications of Satisfiability Testing (SAT’11), Vol.
6695 of Lecture Notes in Computer Science, Springer, 2011, pp. 230–244.

[29] A. Biere, F. Lonsing, M. Seidl, Blocked clause elimination for QBF, in: N. Bjørner, V. Sofronie-
Stokkermans (Eds.), Proc. of the 23rd International Conference on Automated Deduction
(CADE’11), Vol. 6803 of Lecture Notes in Computer Science, Springer, 2011, pp. 101–115.

[30] T. Eiter, G. Gottlob, On the computational cost of disjunctive logic programming: Proposi-
tional case, Annals of Mathematics and Artificial Intelligence 15 (3-4) (1995) 289–323.

[31] M. N. Rabe, S. A. Seshia, Incremental determinization, in: Proc. of the 19th International
Conference on Theory and Applications of Satisfiability Testing (SAT’16), Vol. 9710 of Lecture
Notes in Computer Science, Springer, 2016, pp. 375–392.

[32] M. N. Rabe, L. Tentrup, CAQE: A Certifying QBF Solver, in: Proc. of the 15th Conference
on Formal Methods in Computer-Aided Design (FMCAD’15), 2015, pp. 136–143.

[33] M. Narizzano, C. Peschiera, L. Pulina, A. Tacchella, Evaluating and certifying QBFs: A
comparison of state-of-the-art tools, AI communications 22 (4) (2009) 191–210.

[34] F. Lonsing, A. Biere, DepQBF: A Dependency-Aware QBF Solver, JSAT 7 (2-3) (2010) 71–76.

22

[35] R. Letz, Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas,
in: Proc. of the International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX’02), Vol. 2381 of Lecture Notes in Computer Science, Springer,
2002, pp. 160–175.

[36] L. Zhang, S. Malik, Towards a symmetric treatment of satisfaction and conflicts in quantified
boolean formula evaluation, in: Proc. of the Eighth International Conference on Principles and
Practice of Constraint Programming (CP’02), Vol. 2470 of Lecture Notes in Computer Science,
2002, pp. 200–215.

[37] F. Lonsing, F. Bacchus, A. Biere, U. Egly, M. Seidl, Enhancing search-based QBF solving by
dynamic blocked clause elimination, in: Proc. of the 20th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR’15), Vol. 9450 of Lecture Notes
in Computer Science, Springer, 2015, pp. 418–433.

[38] F. Lonsing, U. Egly, Depqbf 6.0: A search-based QBF solver beyond traditional QCDCL, in:
Proc. of the 26th International Conference on Automated Deduction (CADE 26), Vol. 10395
of Lecture Notes in Computer Science, Springer, 2017, pp. 371–384.

[39] A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, A. Biere, Resolution-based certificate extrac-
tion for QBF, in: Proc. of the 15th International Conference on Theory and Applications of
Satisfiability Testing (SAT’12), Vol. 7317 of Lecture Notes in Computer Science, 2012, pp.
430–435.

[40] G. Charwat and S. Woltran, dynQBF: A Dynamic Programming-based QBF Solver, http:
//dbai.tuwien.ac.at/proj/decodyn/dynqbf (2016).

[41] W. Klieber, S. Sapra, S. Gao, E. Clarke, A non-prenex, non-clausal QBF solver with game-
state learning, in: Proc. of the 13th International Conference on Theory and Applications
of Satisfiability Testing (SAT’10), Vol. 6175 of Lecture Notes in Computer Science, Springer,
2010, pp. 128–142.

[42] T. Balyo, F. Lonsing, HordeQBF: A Modular and Massively Parallel QBF Solver, in: Proc.
of the 19th International Conference on Theory and Applications of Satisfiability Testing
(SAT’16), Vol. 9710 of Lecture Notes in Computer Science, Springer, 2016, pp. 531–538.

[43] T. Balyo, P. Sanders, C. Sinz, HordeSat: A massively parallel portfolio SAT solver, in: Proc.
of the 18th International Conference on Theory and Applications of Satisfiability Testing
(SAT’15), Vol. 9340 of Lecture Notes in Computer Science, Springer, 2015, pp. 156–172.

[44] R. Wimmer, S. Reimer, P. Marin, B. Becker, Hqspre–an effective preprocessor for qbf and
dqbf, in: International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, Springer, 2017, pp. 373–390.

[45] R. Bloem, N. Braud-Santoni, V. Hadzic, QBF solving by counterexample-guided expansion,
CoRR abs/1611.01553. arXiv:1611.01553.

[46] K. Korovin, Inst-gen – a modular approach to instantiation-based automated reasoning, in:
Programming Logics - Essays in Memory of Harald Ganzinger, Vol. 7797 of Lecture Notes in
Computer Science, Springer, 2013, pp. 239–270.

23

http://dbai.tuwien.ac.at/proj/decodyn/dynqbf
http://dbai.tuwien.ac.at/proj/decodyn/dynqbf
http://arxiv.org/abs/1611.01553

[47] M. Seidl, F. Lonsing, A. Biere, qbf2epr: A Tool for Generating EPR Formulas from QBF.,
in: Proc. of the Third Workshop on Practical Aspects of Automated Reasoning (PAAR’12),
Vol. 21 of EPiC Series in Computing, EasyChair, 2012, pp. 139–148.

[48] C. Jordan, L. Kaiser, F. Lonsing, M. Seidl, MPIDepQBF: towards parallel QBF solving without
knowledge sharing, in: Proc. of the 17th International Conference on Theory and Applications
of Satisfiability Testing (SAT’14), Vol. 8561 of Lecture Notes in Computer Science, Springer,
2014, pp. 430–437.

[49] A. Van Gelder, Primal and dual encoding from applications into quantified boolean formu-
las, in: Proc. of the 19th International Conference on Principles and Practice of Constraint
Programming (CP’13), Vol. 8124 of Lecture Notes in Computer Science, Springer, 2013, pp.
694–707.

[50] K. Tu, T. Hsu, J. R. Jiang, QELL: QBF reasoning with extended clause learning and levelized
SAT solving, in: Proc. of the 15th International Conference on Theory and Applications of
Satisfiability Testing (SAT’15), Vol. 9340 of Lecture Notes in Computer Science, Springer,
2015, pp. 343–359.

[51] M. Janota, J. Marques-Silva, Solving QBF by clause selection, in: Proc. of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJCAI’15), AAAI Press, 2015, pp.
325–331.

[52] T. Janhunen, S. Tasharrofi, E. Ternovska, SAT-TO-SAT: Declarative extension of SAT solvers
with new propagators, in: Proc. of the Thirtieth AAAI Conference on Artificial Intelligence
(AAAI’16), AAAI Press, 2016, pp. 978–984.

[53] B. Bogaerts, T. Janhunen, S. Tasharrofi, Solving QBF instances with nested SAT solvers, in:
Proc. of the 2016 AAAI Beyond NP Workshop, Vol. WS-16-05 of AAAI Workshops, AAAI
Press, 2016, pp. 307–313.

[54] F. Lonsing, A. Biere, Failed literal detection for QBF, in: Proc. of the 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT’11), Vol. 6695 of Lecture
Notes in Computer Science, Springer, 2011, pp. 259–272.

[55] J. Devriendt, B. Bogaerts, M. Bruynooghe, BreakIDGlucose: On the importance of row sym-
metry in SAT, in: Proc. 4th International Workshop on the Cross-Fertilization Between CSP
and SAT, 2014, pp. 1–17.

[56] L. Tentrup, Non-prenex QBF Solving Using Abstraction, in: Proc. of the 19th International
Conference on Theory and Applications of Satisfiability Testing (SAT’16), Vol. 9710 of Lecture
Notes in Computer Science, Springer, 2016, pp. 393–401.

[57] T. Peitl, F. Slivovsky, S. Szeider, Dependency learning for QBF, in: Proc. of the 20th Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT’17), Vol. 10491
of Lecture Notes in Computer Science, Springer, 2017, pp. 298–313.

[58] M. Janota, W. Klieber, J. Marques-Silva, E. Clarke, Solving QBF with counterexample guided
refinement, in: Proc. of the 15th International Conference on Theory and Applications of
Satisfiability Testing (SAT’12), Vol. 7317 of Lecture Notes in Computer Science, Springer,
2012, pp. 114–128.

24

[59] M. Janota, W. Klieber, J. Marques-Silva, E. Clarke, Solving QBF with counterexample guided
refinement, Artificial Intelligence 234 (2016) 1–25.

[60] L. Pulina, A. Tacchella, A structural approach to reasoning with quantified Boolean formulas.,
in: Proc. of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),
2009, pp. 596–602.

[61] M. Narizzano, L. Pulina, A. Tacchella, The QBFEVAL Web Portal, in: Proc. of the 10th
European Conference on Logics in Artificial Intelligence (JELIA’06), Vol. 4160 of Lecture
Notes in Computer Science, Springer Verlag, 2006, pp. 494–497.

25

Appendix

Table 7: Results of PCNF Track of QBFEVAL’16. For each solver, the table shows the number of instances solved
(“#”) and the total CPU time (in seconds) spent to solve them (“Time”). Total number of formulas solved (“Total”)
is also split into true, false, and uniquely solved formulas (“True”, “False”, and “Unique”, respectively). Solvers are
sorted according to the number of instances solved, and, in case of a tie, according to CPU time. A dash means that a
solver did not solve any instance in the related group. Finally, systems denoted with a “*” participate hors-concours.

Solver Solved True False Unique
Time # Time # Time # Time

rareqs 640 14166.77 309 4598.66 331 9568.11 5 985.85
xb-qsts 613 15296.69 299 5212.69 314 10084.00 – –
depqbf-v2 603 14076.91 297 6256.31 306 7820.60 – –
caqe-picosat 590 17178.79 294 6272.92 296 10905.87 – –
AIGSolve 589 15981.35 293 7833.21 296 8148.14 24 1064.73
ghostQ-cegar 585 14538.77 298 7739.39 287 6799.38 – –
qesto 582 15552.84 285 4394.35 297 11158.49 – –
caqe-minisat 576 15219.10 292 4878.17 284 10340.93 – –
hiqqer1LDSQ* 574 10951.54 288 6319.74 286 4631.80 1 16.26
ghostQ-plain 568 13727.80 282 7000.20 286 6727.60 2 408.42
qestos 527 4356.04 252 1848.00 275 2508.04 – –
depqbf-v3 527 16186.70 261 8995.82 266 7190.88 2 1077.76
Aqua-S2V 484 7869.78 229 3290.43 255 4579.35 – –
Aqua-F3V 482 7947.80 229 3753.27 253 4194.53 – –
Aqua-S3O 479 6774.68 225 3036.41 254 3738.27 – –
depqbf-v1 456 9999.76 201 4319.97 255 5679.79 – –
StruQS* 358 12825.17 175 4595.09 183 8230.08 – –
iProver-QBF 348 12922.04 158 5385.42 190 7536.62 – –
iProver-QBF-bloqqer 324 9369.12 243 3955.44 81 5413.68 – –

26

Table 8: Classification of the instances of the PCNF Track of QBFEVAL’16. The table consists of nine columns
where for each family of instances we report the name of the family in alphabetical order (column “Family”), the
number of instances included in the family, the number of instances solved, the number of such instances found true
and the number found false (group “Overall”, columns “#”, “N”, “T”, and “F”, respectively), the time taken to
solve the instances (column “Time”), the number of easy, medium and medium-hard instances (group “Hardness”,
columns “E”, “M”, and “H”).

Family Overall Time Hardness
N # T F EA ME MH

Abduction 10 9 4 5 13.93 0 9 0
Adder 10 9 6 3 422.82 1 3 5
blackbox-01X-QBF 10 10 0 10 10.19 0 10 0
blackbox design 10 10 10 0 0.92 0 10 0
Blocks 10 10 3 7 0.41 4 6 0
BMC 10 8 5 3 48.47 2 6 0
bomb 10 6 4 2 589.37 0 5 1
C432 8 8 3 5 3.45 4 4 0
C499 8 8 3 5 13.86 3 3 2
C5315 8 5 3 2 6.44 3 2 0
C6288 8 2 2 0 0.67 0 2 0
C880 8 8 2 6 413.80 0 6 2
Chain 10 10 10 0 0.09 10 0 0
circuits 10 4 4 0 202.15 1 3 0
conformant planning 10 10 6 4 213.92 2 8 0
Connect4 10 6 0 6 10.41 0 6 0
Counter 10 10 10 0 83.80 5 4 1
Debug 10 2 2 0 825.81 0 0 2
DFlipFlop 10 10 0 10 0.42 0 10 0
dungeon 10 10 0 10 134.59 0 5 5
evader-pursuer-4x4-logarithmic 7 7 7 0 1.67 0 7 0
evader-pursuer-4x4-standard 7 7 7 0 86.56 0 7 0
evader-pursuer-6x6-logarithmic 8 5 0 5 182.57 0 5 0
evader-pursuer-6x6-standard 8 3 0 3 340.64 0 3 0
evader-pursuer-8x8-logarithmic 8 5 0 5 351.28 0 5 0
FPGA PLB FIT FAST 5 5 4 1 0.14 4 1 0
FPGA PLB FIT SLOW 3 3 1 2 0.36 0 3 0
fpu 10 10 0 10 5.41 0 10 0
Generalized-Tic-Tac-Toe 10 10 1 9 271.24 0 10 0
HardwareFixpoint 10 9 2 7 268.58 0 5 4
Impl 10 10 10 0 0.00 10 0 0
incrementer-encoder 10 10 1 9 11.32 3 7 0
irqlkeapclte 10 10 10 0 162.67 0 10 0
ISCAS89 7 7 6 1 1.89 3 4 0
ITC99 7 4 3 1 25.65 1 3 0
jmc quant squaring 10 8 4 4 27.66 0 4 4
k branch n 10 9 9 0 12.48 3 6 0
k branch p 10 9 0 9 26.04 0 9 0
k d4 n 10 10 10 0 0.76 3 7 0
k d4 p 10 10 0 10 0.26 0 10 0
k dum n 10 10 10 0 0.09 4 6 0
k dum p 10 10 0 10 0.09 0 10 0
k grz n 10 10 10 0 0.33 7 3 0
k grz p 10 10 0 10 0.25 0 10 0
k lin n 10 10 10 0 6.24 6 4 0
k lin p 10 10 0 10 0.19 0 10 0
k path n 10 10 10 0 0.18 4 6 0
k path p 10 10 0 10 0.23 0 10 0
k ph n 10 10 10 0 23.83 8 2 0
k ph p 10 4 0 4 40.02 1 3 0
k poly n 10 10 10 0 0.07 1 9 0
k poly p 10 10 0 10 0.08 0 10 0
k t4p n 10 10 10 0 0.49 1 9 0
k t4p p 10 10 0 10 0.38 0 10 0
LinearBitvectorRankingFunction 10 3 1 2 501.02 0 2 1
Logn 4 4 0 4 0.86 1 3 0
mqm 10 10 5 5 158.10 0 9 1
MutexP 7 7 7 0 0.32 1 6 0
Planning-CTE 7 7 2 5 181.77 2 5 0
QBF-Hardness 10 10 1 9 32.15 2 8 0
qbfeval12 6 6 2 4 31.87 4 2 0
Qshifter 6 6 6 0 6.00 3 3 0
RankingFunctions 10 10 10 0 0.31 0 10 0
Reduction-finding 10 9 2 7 43.42 2 6 1
Rewriting 10 10 0 10 0.02 0 10 0
s1196 6 6 1 5 308.64 0 6 0
s1269 10 5 5 0 128.89 0 5 0
s27 4 4 1 3 0.03 1 3 0
s298 10 10 7 3 89.46 1 9 0
s3330 10 5 5 0 405.17 0 5 0
s386 10 10 5 5 36.97 0 10 0
s499 10 10 7 3 183.41 0 10 0
s510 10 10 10 0 707.74 0 10 0
s641 9 9 5 4 105.82 0 9 0
s713 10 10 5 5 203.31 0 10 0
s820 10 10 6 4 215.89 0 10 0
Sorting networks 10 10 5 5 220.51 1 7 2
SzymanskiP 10 10 0 10 114.76 0 10 0
term1 8 8 4 4 0.72 6 2 0
terminator 10 10 1 9 194.47 0 9 1
tipdiam 10 10 7 3 44.85 4 4 2
tipfixpoint 10 10 7 3 15.39 1 9 0
ToiletA 10 10 3 7 0.37 8 2 0
ToiletC 10 10 1 9 0.69 7 3 0
ToiletG 7 7 7 0 0.00 7 0 0
trafficlight-controller 10 10 0 10 20.79 3 7 0
Tree 10 10 2 8 0.00 1 9 0
uclid 3 2 1 1 2.68 0 2 0
VonNeumann 10 10 0 10 2.79 0 10 0
wmiforward 10 10 10 0 0.17 3 7 0
z4ml 8 8 4 4 0.00 4 4 0

27

Table 9: Results of PNCNF Track of QBFEVAL’16. The table is organized as Table 7.

Solver Solved True False Unique
Time # Time # Time # Time

ghostQ-cegar 524 9009.13 231 5391.70 293 3617.43 8 1907.06
ghostQ-plain 521 7739.63 229 2802.33 292 4937.30 4 1055.21
quabs-picosat 509 4784.62 223 2047.07 286 2737.55 5 761.05
quabs-minisat 503 4287.17 217 2608.65 286 1678.52 1 248.48
rareqs-nn 403 7427.47 174 3161.98 229 4265.49 2 208.49

28

Table 10: Classification of the instances of the PNCNF Track of QBFEVAL’16. The table is organized as Table 8.
Family Overall Time Hardness

N # T F EA ME MH
Abduction 5 4 1 3 0.86 3 1 0
Adder 5 1 0 1 0.10 1 0 0
blackbox-01X-QBF 5 5 0 5 1.03 4 1 0
blackbox design 5 5 5 0 0.74 5 0 0
Blocks 5 5 2 3 4.31 4 1 0
BMC 5 2 1 1 2.09 2 0 0
bomb 5 2 1 1 20.37 0 2 0
C432 4 4 2 2 5.03 4 0 0
C499 4 2 1 1 0.56 1 1 0
C5315 4 3 1 2 2.40 2 1 0
C6288 4 0 0 0 - 0 0 0
C880 4 3 0 3 859.45 1 1 1
Chain 5 5 5 0 2.94 1 4 0
circuits 5 1 1 0 0.10 1 0 0
conformant planning 6 4 3 1 187.99 2 2 0
Connect4 5 3 0 3 17.12 2 1 0
Counter 5 3 3 0 40.81 1 2 0
Debug 5 0 0 0 - 0 0 0
DFlipFlop 5 5 0 5 46.30 5 0 0
dungeon 5 2 0 2 14.18 0 2 0
evader-pursuer-4x4-logarithmic 4 4 4 0 29.20 0 3 1
evader-pursuer-4x4-standard 4 0 0 0 - 0 0 0
evader-pursuer-6x6-logarithmic 4 1 0 1 168.79 0 0 1
evader-pursuer-6x6-standard 4 0 0 0 - 0 0 0
evader-pursuer-8x8-logarithmic 4 1 0 1 70.35 0 1 0
FPGA PLB FIT FAST 3 3 2 1 4.60 2 1 0
FPGA PLB FIT SLOW 2 2 0 2 12.45 0 2 0
fpu 5 5 0 5 116.21 2 3 0
Generalized-Tic-Tac-Toe 5 5 1 4 53.07 0 5 0
HardwareFixpoint 5 0 0 0 - 0 0 0
Impl 5 5 5 0 0.18 0 5 0
incrementer-encoder 5 5 1 4 243.99 1 1 3
irqlkeapclte 5 4 4 0 1604.25 0 0 4
ISCAS89 3 2 2 0 0.98 0 2 0
ITC99 5 3 3 0 121.82 0 2 1
jmc quant squaring 5 0 0 0 - 0 0 0
k branch n 5 4 4 0 262.70 1 3 0
k branch p 5 5 0 5 87.14 0 4 1
k d4 n 5 5 5 0 5.91 1 4 0
k d4 p 5 5 0 5 2.54 0 5 0
k dum n 5 5 5 0 0.92 1 4 0
k dum p 5 5 0 5 0.57 0 5 0
k grz n 5 5 5 0 0.74 0 5 0
k grz p 5 5 0 5 1.24 0 5 0
k lin n 5 5 5 0 4.43 1 4 0
k lin p 5 5 0 5 0.10 5 0 0
k path n 5 5 5 0 1.07 0 5 0
k path p 5 5 0 5 0.78 1 4 0
k ph n 5 5 5 0 7.19 2 2 1
k ph p 5 3 0 3 48.28 2 1 0
k poly n 5 5 5 0 1.51 0 5 0
k poly p 5 5 0 5 1.30 0 5 0
k t4p n 5 5 5 0 8.29 0 5 0
k t4p p 5 5 0 5 4.69 0 5 0
LinearBitvectorRankingFunction 5 1 0 1 30.25 0 0 1
Logn 2 2 0 2 33.18 2 0 0
mqm 136 135 1 134 74.23 132 3 0
MutexP 4 4 4 0 2.12 1 3 0
NuSMV diam 92 92 92 0 26.44 92 0 0
Planning-CTE 3 1 1 0 3.75 1 0 0
QBF-Hardness 5 4 1 3 29.9 2 2 0
qbfeval12 2 2 0 2 0.45 0 2 0
QLTL safety 250 11 0 11 59.93 3 8 0
Qshifter 3 1 1 0 0.00 1 0 0
RankingFunctions 5 0 0 0 - 0 0 0
Reduction-finding 5 3 0 3 3.04 3 0 0
Rewriting 5 5 0 5 0.01 5 0 0
s1196 3 3 1 2 11.65 1 2 0
s1269 5 2 2 0 0.58 2 0 0
s27 2 2 0 2 0.00 2 0 0
s298 5 5 2 3 3.61 2 3 0
s3330 5 3 3 0 1.01 3 0 0
s386 5 5 2 3 0.58 5 0 0
s499 5 5 3 2 2.40 5 0 0
s510 5 5 5 0 8.54 4 1 0
s641 5 5 3 2 8.51 3 2 0
s713 5 5 3 2 11.74 3 2 0
s820 5 5 2 3 2.93 5 0 0
Sorting networks 5 1 1 0 10.14 0 1 0
SzymanskiP 5 5 0 5 728.38 0 2 3
term1 4 4 2 2 1.05 4 0 0
terminator 5 5 0 5 0.51 3 2 0
tipdiam 5 4 3 1 248.52 3 0 1
tipfixpoint 5 5 4 1 0.49 4 1 0
ToiletA 5 5 0 5 3.15 5 0 0
ToiletC 5 5 1 4 10.59 4 1 0
ToiletG 4 4 4 0 0.02 4 0 0
trafficlight-controller 5 5 0 5 4.60 3 2 0
Tree 5 5 1 4 0.13 1 4 0
uclid 2 1 1 0 336.35 0 0 1
VonNeumann 5 5 0 5 285.76 3 1 1
wmiforward 5 5 5 0 0.95 2 3 0
z4ml 4 4 3 1 0.00 4 0 0

29

Table 11: Results of 2QBF Track of QBFEVAL’16. The table is organized as Table 7.

Solver Solved True False Unique
Time # Time # Time # Time

areqs 235 2963.33 179 2136.52 56 826.81 1 22.22
rareqs 232 5287.58 156 2084.94 76 3202.64 9 1801.46
depqbf-v2 223 5135.23 142 1553.21 81 3582.02 – –
xb-qsts 206 5581.42 154 3354.41 52 2227.01 1 561.03
aspq* 188 741.09 141 275.41 47 465.68 – –
hiqqer3 185 3236.84 150 2235.98 35 1000.86 – –
qestos 184 3487.24 135 1194.36 49 2292.88 – –
hiqqer1LDSQ* 183 2663.74 147 2195.58 36 468.16 – –
hiqqer1 183 2703.59 147 2232.26 36 471.33 – –
cadet 169 790.78 120 512.95 49 277.83 1 472.50
ghostQ-cegar 155 8135.25 108 6031.48 47 2103.77 – –
depqbf-v3 138 4901.65 97 1799.51 41 3102.14 – –
depqbf-v1 133 5466.70 68 1262.27 65 4204.43 – –
iProver-QBF-bloqqer 124 188.14 122 78.66 2 109.48 – –
StruQS* 100 933.77 73 483.18 27 450.59 – –
SqueezeBF+StruQS* 100 1169.84 73 720.19 27 449.65 – –
ghostQ-plain 87 7545.74 40 4115.46 47 3430.28 – –
dynQBF 72 489.44 70 489.29 2 0.15 – –
iProver 32 1249.98 30 1142.63 2 107.35 – –

Table 12: Classification of the instances of the 2QBF Track of QBFEVAL’16. The table is organized as Table 8.

Family Overall Time Hardness
N # T F EA ME MH

irqlkeapclte 46 46 46 0 607.53 0 45 1
k ph n 1 1 1 0 0.00 1 0 0
MutexP 7 7 7 0 0.34 1 6 0
Qshifter 6 6 6 0 6.01 3 3 0
RankingFunctions 50 50 49 1 1.61 0 50 0
Reduction-finding 48 37 24 13 2267.48 0 26 11
Sorting networks 42 40 15 25 1286.11 0 39 1
terminator 50 50 2 48 505.67 0 49 1
Tree 5 5 5 0 0.00 3 2 0
wmiforward 50 50 50 0 2.80 5 45 0

30

Table 13: Results of RQBF Track of QBFEVAL’16. The table is organized as Table 7.

Solver Solved True False Unique
Time # Time # Time # Time

Aqua-S2V 306 10976.23 127 4952.36 179 6023.87 2 9.63
Aqua-F3V 306 11419.66 127 5031.04 179 6388.62 1 22.47
Aqua-S3O 300 10360.07 127 5085.79 173 5274.28 – –
caqe-picosat 298 7324.49 128 2579.82 170 4744.67 6 869.06
rareqs 295 4305.78 127 1699.99 168 2605.79 4 762.33
xb-qsts 294 7963.03 132 2295.17 162 5667.86 4 535.47
qesto 291 9398.91 131 3720.64 160 5678.27 1 308.61
depqbf-v2 287 8977.03 113 1613.30 174 7363.73 – –
hiqqer1 267 6712.26 111 1709.68 156 5002.58 – –
hiqqer1LDSQ* 267 7013.05 111 1681.42 156 5331.63 – –
hiqqer3 261 4763.45 111 1560.89 150 3202.56 – –
depqbf-v1 257 7572.00 104 2130.39 153 5441.61 – –
depqbf-v3 257 7772.75 108 2726.88 149 5045.87 1 37.04
qestos 246 6904.90 107 2340.14 139 4564.76 – –
qsts 239 5231.98 106 2339.49 133 2892.49 10 564.45
caqe-minisat 212 7360.30 107 3758.12 105 3602.18 – –
iProver-QBF-bloqqer 59 264.61 58 75.49 1 189.12 – –
SqueezeBF+StruQS* 41 5851.10 27 3814.07 14 2037.03 – –
StruQS* 35 3623.79 21 1602.65 14 2021.14 – –
iProver-QBF 25 4341.95 25 4341.95 – – – –

Table 14: Classification of the instances of the RQBF Track of QBFEVAL’16. The table is organized as Table 8.

Family Overall Time Hardness
N # T F EA ME MH

ASP Program Inclusion 40 40 0 40 26.63 0 40 0
CounterFactual 80 61 27 34 1163.47 4 47 10
Model instances 60 40 24 16 735.45 0 38 2
Q 2 2 3 50 0 0 0 - 0 0 0
Q 2 3 50 30 10 20 589.29 0 19 11
Q 3 3 50 1 0 1 3.73 0 0 1
Q 3 3 3 50 0 0 0 - 0 0 0
RobotsD2 30 30 26 4 853.83 3 24 3
RobotsD3 30 30 23 7 116.66 6 24 0
RobotsD4 30 30 15 15 49.35 6 24 0
RobotsD5 30 30 13 17 32.92 6 24 0
Strategic Companies 80 60 8 52 2725.00 0 57 3

31

Table 15: Results of PCNF Track of QBFEVAL’17. For each solver, the table shows the number of instances solved
(“#”) and the total CPU time (in seconds) spent to solve them (“Time”). Total number of formulas solved (“Total”)
is also split into true, false, and uniquely solved formulas (“True”, “False”, and “Unique”, respectively). Solvers are
sorted according to the number of instances solved, and, in case of a tie, according to CPU time. A dash means that a
solver did not solve any instance in the related group. Finally, systems denoted with a “*” participate hors-concours.

Solver Solved True False Unique
Time # Time # Time # Time

caqe 2017 v2 286 20825.18 86 6807.57 200 14017.61 – –
caqe 2017 v3 271 19935.09 84 8195.79 187 11739.30 – –
qute random 250 22330.05 77 8875.44 173 13454.61 – –
qute opt500 249 21245.50 77 8604.45 172 12641.05 – –
AIGSolve 246 18098.45 78 5685.02 168 12413.43 12 777.62
qute default 246 19086.20 67 6350.96 179 12735.24 – –
rareqs 245 19499.77 73 5684.27 172 13815.50 1 480.97
QBFRelay-limited-depqbf 236 18342.40 79 6011.29 157 12331.11 1 715.80
rev qfun 236 19375.71 89 5723.70 147 13652.01 4 1406.47
heretiq 232 18827.34 67 7926.39 165 10900.95 1 835.00
caqe 2017 v1 230 18773.73 75 5668.16 155 13105.57 – –
QBFRelay 224 14894.21 77 3657.70 147 11236.51 – –
dynQBF-bloqqer-hqspre 223 15335.98 68 2406.87 155 12929.11 3 470.28
ijtihad v2 207 11661.28 55 2559.76 152 9101.52 – –
ijtihad v1 205 11679.88 54 2983.89 151 8695.99 – –
HQSpre solver 205 13432.33 63 5406.01 142 8026.32 – –
qell unit 191 11240.31 56 4429.34 135 6810.97 – –
qell default 191 12624.17 54 4198.90 137 8425.27 – –
xb-qsts xbqsts2.0 191 17602.46 58 6723.96 133 10878.50 – –
xb-qsts xbqsts1.0 191 17608.96 58 6724.34 133 10884.62 – –
GhostQ-PG cegar 190 16914.39 70 7001.93 120 9912.46 1 25.93
xb-qsts bqsts2.0 188 15097.50 56 4931.72 132 10165.78 – –
ghostQ-PG plain 163 13512.42 54 4231.14 109 9281.28 2 929.62
prefix-opt-depqbf 157 11596.86 41 2652.72 116 8944.14 – –
ghostQ-cegar 156 11634.73 61 5116.05 95 6518.68 – –
iProver-QBF-bloqqer-2017 150 14442.74 47 4278.55 103 10164.19 – –
qesto 136 11306.00 45 4202.79 91 7103.21 – –
iProver-QBF-2017 108 14653.17 18 2273.93 90 12379.24 – –
cued1919 NL 8 1342.56 4 106.86 4 1235.70 – –
cued1919 NNL 7 547.98 4 100.50 3 447.48 – –

32

Table 16: Classification of the instances of the PCNF Track of QBFEVAL’17. The table is organized as Table 8.
Family Overall Time Hardness

N # T F EA ME MH
Abduction 5 2 1 1 45.26 0 2 0
Adder 10 10 7 3 94.40 0 8 2
amba 4 3 1 2 136.82 0 3 0
arithmetic 5 5 5 0 9.01 0 5 0
blackbox-01X-QBF 20 20 0 20 30.56 0 20 0
BMC 13 6 4 2 138.43 0 6 0
C432 2 2 0 2 0.28 0 2 0
C499 3 3 0 3 14.37 0 3 0
C5315 5 2 1 1 2.99 0 2 0
C6288 7 3 3 0 733.11 0 1 2
C880 6 6 0 6 568.07 0 5 1
circuits 14 3 3 0 90.21 0 3 0
conformant planning 10 8 3 5 881.55 0 8 0
Connect2 1 1 1 0 9.56 0 1 0
Connect3 1 0 0 0 - 0 0 0
Connect4 8 1 0 1 0.05 0 1 0
Connect5 2 2 0 2 128.14 0 2 0
Connect6 2 1 0 1 0.05 0 1 0
Connect7 2 0 0 0 - 0 0 0
Connect8 2 2 0 2 0.36 0 2 0
Counter 5 3 3 0 55.25 0 2 1
cycle-sched 4 4 2 2 65.23 0 4 0
Debug 14 7 7 0 1787.95 0 7 0
disjunctive decomposition 5 4 3 1 1.73 0 4 0
driver 4 4 2 2 0.37 0 4 0
dungeon 26 26 1 25 465.42 0 26 0
evader-pursuer-4x4-logarithmic 1 1 1 0 0.48 0 1 0
evader-pursuer-4x4-standard 7 7 7 0 14.23 0 7 0
evader-pursuer-6x6-logarithmic 5 3 0 3 1013.88 0 2 1
evader-pursuer-6x6-standard 8 2 0 2 187.68 0 2 0
evader-pursuer-8x8-logarithmic 5 3 0 3 1255.86 0 2 1
formula add 12 9 9 0 1411.26 0 7 2
fpu 20 20 0 20 23.32 0 20 0
genbuf 4 3 1 2 411.32 0 2 1
Generalized-Tic-Tac-Toe 7 7 1 6 144.00 0 7 0
genpatch 5 5 3 2 106.20 0 5 0
HardwareFixpoint 26 17 2 15 568.74 1 16 0
hwmcc 4 4 2 2 141.22 0 4 0
hyperLTL 2 2 1 1 0.00 1 1 0
incrementer-encoder 13 13 2 11 23.31 0 13 0
irqlkeapclte 10 10 10 0 107.39 0 10 0
ISCAS89 4 4 2 2 1.04 0 4 0
ITC99 9 8 7 1 736.08 0 6 2
jmc quant 1 0 0 0 - 0 0 0
jmc quant squaring 8 6 3 3 16.73 0 3 3
k branch n 6 6 6 0 133.19 0 6 0
k branch p 8 8 0 8 20.19 0 8 0
k ph p 10 5 0 5 618.17 0 2 3
LinearBitvectorRankingFunction 23 9 6 3 835.58 0 9 0
ltl2aig-comp 4 2 0 2 21.61 0 2 0
LTL2DBA 2 2 1 1 0.24 0 2 0
LTL2DPA 2 2 1 1 1.50 0 2 0
mqm 3 3 3 0 45.89 0 3 0
mult-matrix 4 4 2 2 41.47 0 2 2
Planning-CTE 29 29 2 27 610.59 0 29 0
QBF-Hardness 10 10 1 9 152.85 0 10 0
qbfeval12 3 3 3 0 14.03 0 3 0
RankingFunctions 2 2 2 0 0.08 0 2 0
Reduction-finding 6 6 3 3 74.36 0 5 1
s1196 2 2 0 2 101.35 0 2 0
s1269 2 1 1 0 3.33 0 1 0
s298 2 2 1 1 9.58 0 2 0
s3330 2 1 1 0 2.92 0 1 0
s499 2 2 1 1 2.35 0 2 0
s510 2 2 2 0 36.64 0 2 0
s641 2 2 1 1 8.70 0 2 0
s713 2 2 0 2 51.37 0 2 0
s820 2 2 1 1 3.36 0 2 0
sketch 5 2 0 2 413.67 0 2 0
Sorting networks 6 6 2 4 96.05 0 6 0
SzymanskiP 2 2 0 2 34.98 0 2 0
terminator 9 9 1 8 12.46 0 9 0
tipdiam 10 10 5 5 200.18 0 8 2
tipfixpoint 13 12 9 3 157.78 0 11 1
toy 4 4 2 2 0.42 0 4 0
trafficlight-controller 10 10 0 10 10.63 0 10 0
uclid 3 3 2 1 23.52 0 3 0

33

Table 17: Results of PNCNF Track of QBFEVAL’17. The table is organized as Table 15.

Solver Solved True False Unique
Time # Time # Time # Time

qfun 117 10607.37 56 4485.13 61 6122.24 11 2398.47
cqesto 112 8574.74 57 4782.37 55 3792.37 – –
quabs 2017 106 9105.55 48 4355.14 58 4750.41 7 1935.29
qute hybrid 95 14226.01 43 6869.27 52 7356.74 4 893.89
ghostQ-cegar 89 13737.38 41 7693.15 48 6044.23 – –
qute opt993 86 7005.88 40 3289.58 46 3716.30 – –
qute opt617 81 7559.50 37 3263.29 44 4296.21 1 156.40
ghostQ-plain 42 6027.87 16 2157.24 26 3870.63 – –

34

Table 18: Classification of the instances of the PNCNF Track of QBFEVAL’17. The table is organized as Table 8.
Family Overall Time Hardness

N # T F EA ME MH
Abduction 1 0 0 0 - 0 0 0
Adder 4 0 0 0 - 0 0 0
amba 4 2 1 1 400.14 0 2 0
Blocks 1 1 0 1 0.42 0 1 0
BMC 3 1 1 0 106.98 0 1 0
bomb 3 2 1 1 269.39 0 0 2
BoundedSynthesisPetriGames 42 23 10 13 2816.69 5 17 1
C499 3 3 0 3 2.91 0 3 0
C5315 1 0 0 0 - 0 0 0
C6288 4 1 1 0 196.18 0 0 1
C880 2 1 0 1 2.44 0 1 0
Chain 3 3 3 0 0.34 0 3 0
circuits 4 1 1 0 360.12 0 0 1
CombinationalEquivalence 30 30 15 15 17.41 0 30 0
conformant planning 3 2 2 0 117.61 0 1 1
Connect4 2 0 0 0 - 0 0 0
Counter 2 1 1 0 87.64 0 1 0
cycle-sched 4 1 0 1 796.48 0 0 1
Debug 5 0 0 0 - 0 0 0
driver 4 3 1 2 2.33 1 2 0
dungeon 3 1 0 1 1.56 0 1 0
evader-pursuer-4x4-logarithmic 2 2 2 0 5.37 0 2 0
evader-pursuer-4x4-standard 4 0 0 0 - 0 0 0
evader-pursuer-6x6-logarithmic 4 1 0 1 166.35 0 1 0
evader-pursuer-6x6-standard 4 0 0 0 - 0 0 0
evader-pursuer-8x8-logarithmic 4 1 0 1 19.05 0 1 0
fpu 2 2 0 2 14.25 2 0 0
genbuf 4 2 0 2 482.28 0 2 0
HardwareFixpoint 5 0 0 0 - 0 0 0
hwmcc 4 2 0 2 2.14 2 0 0
hyperLTL 2 2 1 1 0.00 2 0 0
incrementer-encoder 3 3 1 2 0.88 0 3 0
irqlkeapclte 5 5 5 0 180.62 0 5 0
ISCAS89 1 1 1 0 18.46 0 1 0
ITC99 4 4 4 0 225.46 0 2 2
jmc quant squaring 5 1 0 1 266.44 0 1 0
k branch n 2 2 2 0 114.54 0 0 2
k branch p 3 3 0 3 11.72 0 2 1
k ph n 1 1 1 0 0.24 0 1 0
k ph p 2 1 0 1 31.59 0 0 1
LinearBitvectorRankingFunction 5 1 0 1 0.66 0 1 0
ltl2aig-comp 4 2 0 2 116.28 0 1 1
LTL2DBA 2 1 0 1 0.27 1 0 0
LTL2DPA 2 1 0 1 0.64 0 1 0
Model instances 20 14 10 4 811.94 0 11 3
mqm 2 2 1 1 469.94 0 1 1
mult-matrix 4 0 0 0 - 0 0 0
MutexP 3 3 3 0 0.12 0 3 0
Planning-CTE 2 1 0 1 478.93 0 0 1
QBF-Hardness 2 1 1 0 6.33 0 1 0
QLTL safety 50 28 20 8 2142.86 1 24 3
Qshifter 2 0 0 0 - 0 0 0
RankingFunctions 5 0 0 0 - 0 0 0
Reduction-finding 2 0 0 0 - 0 0 0
s1269 3 0 0 0 - 0 0 0
s3330 2 0 0 0 - 0 0 0
Sorting networks 4 2 1 1 33.16 0 1 1
SzymanskiP 5 5 0 5 41.53 0 5 0
terminator 1 1 0 1 3.37 0 1 0
tipdiam 2 1 0 1 340.32 0 1 0
toy 4 4 2 2 0.51 2 2 0
uclid 2 2 2 0 68.96 0 2 0
VonNeumann 1 1 0 1 13.63 1 0 0
wmiforward 2 2 2 0 0.04 0 2 0

35

Table 19: Results of 2QBF Track of QBFEVAL’17. The table is organized as Table 15.

Solver Solved True False Unique
Time # Time # Time # Time

ghostQ-PG cegar 246 10736.04 141 6909.24 105 3826.80 3 1178.17
cadet 2017 241 9276.17 134 7529.46 107 1746.71 5 106.18
caqe 2017 v2 230 11755.12 117 5122.23 113 6632.89 – –
caqe 2017 v3 230 11766.28 117 5130.78 113 6635.50 – –
rareqs 229 10833.10 139 5140.59 90 5692.51 1 106.89
aspq2 228 8996.81 145 4981.43 83 4015.38 6 948.28
caqe 2017 v1 228 15303.55 141 8476.27 87 6827.28 – –
dynQBF-bloqqer-hqspre 210 7097.44 142 2376.55 68 4720.89 – –
xb-qsts bqsts2.0 209 10291.68 132 7822.38 77 2469.30 – –
qesto 208 10340.04 132 6384.94 76 3955.10 – –
xb-qsts xbqsts2.0 208 10996.27 132 7953.58 76 3042.69 – –
xb-qsts xbqsts1.0 208 11007.97 132 7958.92 76 3049.05 – –
dynQBF-bloqqer-hqspre-it 207 7265.30 139 2248.07 68 5017.23 – –
QBFRelay-limited-depqbf 207 18477.13 122 11335.91 85 7141.22 – –
dynQBF-bloqqer-variant 200 5166.79 134 2219.50 66 2947.29 2 484.36
QBFRelay 198 2362.54 140 1444.20 58 918.34 – –
heretiq 192 5618.61 103 2496.97 89 3121.64 – –
ghostQ-PG plain 185 8239.49 79 5025.16 106 3214.33 – –
rev qfun 176 5484.06 122 3386.80 54 2097.26 – –
ijtihad v2 164 5557.63 99 4250.96 65 1306.67 – –
ijtihad v1 161 4344.53 96 2013.21 65 2331.32 – –
iProver-QBF-bloqqer-2017 125 584.31 93 542.18 32 42.13 – –
qell unit 104 9846.45 43 5202.41 61 4644.04 – –
qell default 103 8484.74 41 3581.03 62 4903.71 1 2.18
ghostQ-cegar 76 9162.22 45 6117.01 31 3045.21 – –
no-prefix-opt-depqbf 74 8030.01 19 2090.97 55 5939.04 – –
cued1919 NL 73 9493.36 38 7359.17 35 2134.19 – –
cued1919 NNL 70 8972.15 35 6149.50 35 2822.65 – –
iProver-QBF-2017 16 536.12 11 19.92 5 516.20 – –

36

Table 20: Classification of the instances of the 2QBF Track of QBFEVAL’17. The table is organized as Table 8.

Family Overall Time Hardness
N # T F EA ME MH

amba 4 2 2 0 158.73 0 2 0
arithmetic 5 5 5 0 75.14 0 5 0
cycle-sched 4 4 4 0 22.51 0 4 0
disjunctive decomposition 5 5 4 1 2.37 0 4 1
driver 4 4 4 0 0.37 0 4 0
genbuf 4 0 0 0 - 0 0 0
HardwareFixpoint 86 80 37 43 902.36 6 67 7
hwmcc 4 4 4 0 358.08 0 4 0
irqlkeapclte 35 35 35 0 140.18 0 35 0
ltl2aig-comp 4 1 1 0 10.45 0 1 0
LTL2DBA 4 1 1 0 0.43 0 1 0
mult-matrix 4 3 3 0 4.16 0 3 0
RankingFunctions 37 37 37 0 1.80 0 37 0
Reduction-finding 82 70 41 29 2349.79 3 63 4
Selection-hard 10 8 8 0 497.68 0 5 3
sketch 9 8 0 8 440.88 0 8 0
Sorting networks 26 23 7 16 446.64 0 23 0
terminator 39 39 5 34 34.20 0 39 0
toy 4 4 4 0 4.14 0 4 0
wgrowing 10 6 6 0 492.89 0 3 3
wmiforward 4 4 4 0 0.12 0 4 0

37

Table 21: Results of RQBF Track of QBFEVAL’17. The table is organized as Table 15.

Solver Solved True False Unique
Time # Time # Time # Time

QBFRelay-limited-depqbf 82 13968.71 51 7089.27 31 6879.44 14 2461.27
rareqs 74 7782.52 36 4698.57 38 3083.95 3 1455.88
caqe 2017 v2 67 6684.96 44 6382.66 23 302.30 – –
caqe 2017 v3 66 8244.28 41 6750.28 25 1494.00 – –
caqe 2017 v1 66 8776.50 42 7039.92 24 1736.58 1 824.68
heretiq 58 6968.48 13 1754.23 45 5214.25 6 2363.68
qesto 58 13790.20 35 5760.10 23 8030.10 2 755.09
prefix-opt-depqbf 54 5187.86 35 1732.01 19 3455.85 – –
qell unit 53 5423.12 18 1408.27 35 4014.85 – –
qell default 53 5692.99 18 1576.14 35 4116.85 – –
qute opt500 51 2661.01 35 1808.04 16 852.97 – –
qute random 51 2670.65 35 1809.36 16 861.29 – –
qute default 49 2111.22 32 1521.59 17 589.63 1 250.22
xb-qsts xbqsts1.0 48 11071.49 39 7475.83 9 3595.66 – –
xb-qsts xbqsts2.0 48 11073.47 39 7477.41 9 3596.06 – –
xb-qsts bqsts2.0 47 10865.21 38 7438.76 9 3426.45 – –
ghostQ-PG cegar 41 5611.56 23 3031.75 18 2579.81 – –
rev qfun 33 1737.27 17 493.79 16 1243.48 – –
ijtihad v2 33 3851.94 7 842.48 26 3009.46 – –
ghostQ-cegar 32 4144.25 19 3025.97 13 1118.28 – –
ijtihad v1 31 1461.48 6 12.65 25 1448.83 – –
AIGSolve 19 2489.14 12 1624.18 7 864.96 1 320.91
QBFRelay 14 744.65 8 29.10 6 715.55 – –
iProver-QBF-bloqqer-2017 11 933.02 11 933.02 – – – –
ghostQ-PG plain 11 1689.30 7 711.88 4 977.42 – –
HQSpre solver 9 5.62 8 5.61 1 0.01 – –
dynQBF-bloqqer-hqspre 8 25.50 8 25.50 – – – –
iProver-QBF-2017 4 165.02 4 165.02 – – – –
cued1919 NL – – – – – – – –
cued1919 NNL – – – – – – – –

Table 22: Classification of the instances of the RQBF Track of QBFEVAL’17. The table is organized as Table 8.
Family Overall Time Hardness

N # T F EA ME MH
CombinationalEquivalence 30 30 15 15 98.74 0 30 0
CounterFactual 31 11 0 11 2532.70 0 6 5
Model instances 46 28 23 5 3006.88 0 27 1
PositionalGames gttt 64 41 39 2 2558.15 0 29 12
PositionalGames hex 49 13 10 3 2656.75 0 13 0
Q 2 2 3 50 0 0 0 - 0 0 0
Q 2 3 47 16 0 16 644.61 0 14 2
Q 3 3 50 0 0 0 - 0 0 0
Q 3 3 3 50 1 1 0 320.91 0 0 1
RobotsD2 5 5 5 0 775.05 0 3 2
Selection-hard 10 5 5 0 171.63 0 5 0
Strategic Companies 40 19 0 19 3965.50 0 14 5
wgrowing 33 9 9 0 757.25 0 9 0

38

	Introduction
	Setup of QBFEVAL'16 and QBFEVAL'17
	Tracks of QBFEVAL'16 and QBFEVAL'17
	The Dataset
	Dataset of QBFEVAL'16
	Dataset of QBFEVAL'17

	Participating Systems

	Results of QBFEVAL'16
	Competitive Tracks
	Non-Competitive Tracks

	Results of QBFEVAL'17
	Conclusions

