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ABSTRACT

Heat stress represents a key factor that negatively 
affects the productive and reproductive performance of 
farm animals. In the present work, a new measure of 
tolerance to heat stress for dairy cattle was developed 
using principal component analysis. Data were from 
590,174 test-day records for milk yield, fat and protein 
percentages, and somatic cell score of 39,261 Italian 
Holstein cows. Test-day records adjusted for main 
systematic factors were grouped into 11 temperature-
humidity index (THI) classes. Daughter trait deviations 
(DTD) were calculated for 1,540 bulls as means of the 
adjusted test-day records for each THI class. Principal 
component analysis was performed on the DTD for each 
bull. The first 2 principal components (PC) explained 
42 to 51% of the total variance of the system across the 
4 traits. The first PC, a measure of the level at which 
the curve is located, was interpreted as a measure of the 
level at which the DTD curve was located. The second 
PC, which shows the slope of increasing or decreases 
DTD curves, synthesized the behavior of the DTD pat-
tern. Heritability of the 2 component scores was moder-
ate to high for level across all traits (range = 0.23–0.82) 
and low to moderate for slope (range = 0.16–0.28). For 
each trait, phenotypic and genetic correlations between 
level and slope were equal to zero. A genome-wide as-
sociation analysis was carried out on a subsample of 
423 bulls genotyped with the Illumina 50K bovine bead 
chip (Illumina, San Diego, CA). Two single nucleotide 
polymorphisms were significantly associated with slope 
for milk yield, 4 with level for fat percentage, and 2 
with level and slope of protein percentage, respectively. 
The gene discovery was carried out considering win-
dows of 0.5 Mb surrounding the significant markers and 
highlighted some interesting candidate genes. Some of 

them have been already associated with the mechanism 
of heat tolerance as the heat shock transcription fac-
tor (HSF1) and the malonyl-CoA-acyl carrier protein 
transacylase (MCAT). The 2 PC were able to describe 
the overall level and the slope of response of milk pro-
duction traits across increasing levels of THI index. 
Moreover, they exhibited genetic variability and were 
genetically uncorrelated. These features suggest their 
use as measures of thermotolerance in dairy cattle 
breeding schemes.
Key words: heat tolerance, principal component 
analysis, heritability, genome-wide association study, 
dairy cattle

INTRODUCTION

The improvement of an animal’s ability to cope with 
adverse environmental conditions is one of the great 
challenges of animal breeding for the future (Berna-
bucci et al., 2010). Among the traits that contribute to 
define animal adaptability to environmental variation, 
tolerance to heat stress plays a major role. Heat stress 
can be defined as the condition where the animal is not 
able to adequately dissipate the excess of endogenous or 
exogenous heat to maintain body thermal balance (Ber-
nabucci et al., 2014). In dairy cattle, it is known that 
heat stress results in relevant economic losses due to 
reduced milk production and reproduction performance 
(Aguilar et al., 2010; Nardone et al., 2010; Biffani et al., 
2016). Increasing concern about tolerance to heat stress 
for dairy animals in temperate areas is a consequence 
of both climate change and higher metabolic heat pro-
duction by high-yielding animals (Kadzere et al., 2002; 
Hansen, 2007; Segnalini et al., 2011).

If tolerance to heat stress is a quite straightforward 
concept, its systematic measure remains problematic. 
On the other hand, a quantification of this trait is fun-
damental if it is to be considered a potential selection 
goal in breeding programs.

Some physiological traits are related to the ability of 
the animal to cope with heat stress. For example, rectal 
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temperature and respiration rate increase when animals 
are exposed to warm environment (Dikmen et al., 2012; 
Perano et al., 2015; Garner et al., 2016). These traits 
exhibit a genetic component; for example, a moderate 
heritability and associations with SNP and candidate 
genes have been reported for rectal temperature (Dik-
men et al., 2013, 2015). However, the inclusion of these 
heat tolerance indicator traits in large-scale phenotype 
recording systems for selecting thermotolerant animals 
appears rather problematic in terms of logistics and 
costs. An alternative is to evaluate heat tolerance by 
measuring changes of milk production traits under 
warm environmental conditions (Hammami et al., 
2015; Carabaño et al., 2016; Nguyen et al., 2016). In 
dairy cattle populations involved in selection programs, 
milk production data could be easily retrieved from 
dairy recording systems and associated with climate 
data provided by weather stations. The variable most 
frequently used to evaluate heat stress conditions is 
the temperature-humidity index (THI). The approach 
commonly used to evaluate heat tolerance relies on the 
so-called broken line model (Ravagnolo and Misztal, 
2000). It assumes the existence of a comfort zone lim-
ited by an upper threshold value (TH0), beyond which 
the production linearly decreases as THI increases 
(Bernabucci et al., 2014; Carabaño et al., 2014).

In statistical models, tolerance to heat stress might 
be fitted according to a reaction norm model (Kolmo-
din and Bijma, 2004), where the phenotype is expressed 
as a linear function of an environmental variable (for 
example THI or temperature). Very often, the envi-
ronmental variable effect is a dummy variable, set to 
zero when THI < TH0 and to THI − TH0 when THI 
> TH0 (Bernabucci et al., 2014). Some studies adopted 
the fixed value of 72 for TH0 (Ravagnolo and Misztal, 
2000; Bohmanova et al., 2008; Aguilar et al., 2009), 
but recently different TH0 have been estimated across 
traits, parities and geographical regions (Bernabucci et 
al., 2014; Biffani et al., 2016).

Some studies on tolerance of heat stress have used 
individual production curves along different THI levels 
corrected for fixed factors as a measure of heat toler-
ance (Hayes et al., 2009; Carabaño et al., 2016). Aver-
age curves of bull progeny for milk production traits 
across different THI levels, named as daughter trait 
deviations (DTD), have been recently used as pheno-
types in a genomic selection study on tolerance to heat 
stress (Nguyen et al., 2016).

For genetic purposes, individual effects for heat 
tolerance are usually fitted with an intercept and a 
slope, representing the overall level of production and 
the response of the animal to heat stress, respectively. 
Main concerns about these approaches are on the use 
of a common threshold across all animals and the as-

sumption of linearity for the production decay after 
TH0 (Bernabucci et al., 2014; Carabaño et al., 2014). 
On the other hand, estimation of individual thresholds 
(Sánchez et al., 2009) is more realistic though it is more 
computationally demanding. Individual change points 
of production patterns for increasing THI levels have 
been fitted also with Legendre polynomials in random 
regression models (Brügemann et al., 2011; Carabaño 
et al., 2014, 2016)

Several papers that evaluated the effect of heat stress 
on milk reported an unfavorable genetic relationship 
between production and heat tolerance (Sánchez et al., 
2009; Bernabucci et al., 2014; Hammami et al., 2015). 
These results were confirmed also by the strong nega-
tive correlations (−0.85 and −0.75) between genomic 
breeding value for milk DTD-derived heat tolerance and 
EBV for milk yield in Australian Holsteins and Jerseys 
respectively (Nguyen et al., 2016). Such correlations are 
the result of the increased metabolic heat production 
that occurs in high-producing cows and that exacerbate 
the effects of the external heat. This represents a severe 
constraint to an efficient selection for improving heat 
tolerance without negative consequences on produc-
tion. The aggregation of the 2 traits into a selection 
index may help selection, even though the definition of 
optimal economic weights could remain a theoretical 
issue and the negative correlation undoubtedly will re-
duce the selection response on each individual trait. An 
alternative could be the use of a measure of tolerance 
to heat stress that is not correlated with production 
levels. The use of a model-free approach, able to disen-
tangle main features of DTD without imposing specific 
constraints, is an appealing option for assessing proper 
variables to study tolerance to heat stress. Principal 
component analysis (PCA) is a multivariate statistical 
technique able to synthesize complex patterns as the 
lactation curves for dairy traits in 2 variables with a 
clear technical meaning (Macciotta et al., 2006, 2015). 
Principal component analysis can, therefore, be conve-
niently used to analyze DTD curves for extracting new 
variables able to synthesize the pattern.

In the present work, a PCA approach was tested to 
derive indicator variables of tolerance to heat stress 
from milk production data in dairy cattle. Moreover, 
a genome-wide association study (GWAS) using a 
medium-density (50K) SNP panel was used for investi-
gating the genetic determinism of these new variables.

MATERIALS AND METHODS

Data

Data were 590,174 test-day (TD) records for milk 
yield (MY), fat (FP) and protein (PP) percentages, 
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and SCS (Ali and Shook, 1980) of 39,261 Italian Hol-
stein cows (first, second, and third parity) from 484 
farms, collected from 2001 to 2007. Data were recorded 
by the Italian Breeders Association according to Inter-
national Committee for Animal Recording standards 
(http://www.icar.org/index.php/publications-techni-
cal-materials/recording-guidelines/). Age at calving 
classes were established for each parity according to 
the following thresholds: 20 to 36 (17 classes), 31 to 50 
(20 classes), and 42 to 65 (24 classes) months of age for 
first-, second-, and third-parity cows, respectively. All 
cows had first-lactation data and a minimum of 8 TD 
records per lactation (from 5–305 DIM). A minimum of 
24 records per herd-year of calving were required. Cows 
were sired by 4,184 AI bulls.

Daily weather information were collected from 35 
meteorological stations located no more than 5 km 
from the considered herd. The THI index (Kelly and 
Bond, 1971) was then calculated as:

	 THI = (1.8 × AT + 32) − (0.55 − 0.55 × RH) 	  

× [(1.8 × AT + 32) − 58],

where AT is the maximum daily temperature, expressed 
in degrees Celsius, and RH is the minimum relative 
humidity, expressed as a percentage.

Statistical Analysis

Test-day records were first analyzed with the follow-
ing mixed linear model

	 y = month(year) + age + DIM × parity 	  

	 + herd(year) + e,	 [1]

where y is the record for MY, FP, PP, or SCS; 
month(year) is the fixed effect of the month of calv-
ing (12 mo) nested within the year of calving (7 yr, 
2001–2007); age is the fixed effect of age class in months 
(61 classes, from 20 to 65 mo); DIM × parity is the 
interaction between the fixed effect of the DIM class 
(10 intervals of 30 d each) and the fixed effect of parity 
(3 parities, 1–3); herd(year) is the random effect of the 
herd (458) nested within calving year; and e his the 
random residual.

Residuals of model [1] are therefore production data 
adjusted for main systematic factors, except from ad-
ditive genetic and THI effects. On the basis of THI 
values, records were grouped into 11 THI classes (1 = 
50–52, 2 = 53–54, …, 11 = >79). Distribution of re-
cords across THI classes is reported in Figure 1. Means 
of residuals were calculated for each bull and THI class 
for obtaining DTD (Nguyen et al., 2016). The DTD 

Figure 1. Distribution of test-day records across different classes of temperature-humidity index (THI).

http://www.icar.org/index.php/publications-technical-materials/recording-guidelines/
http://www.icar.org/index.php/publications-technical-materials/recording-guidelines/
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plotted against the THI class express the sensitivity of 
bull’s daughter production performance for increasing 
THI levels.

The following step was to derive a measure able to 
summarize the shape of these curves that could be used 
as dependent variable in a GWAS. A PCA was carried 
out on the 11 points of the DTD curves, considered as 
different variables; for example, the first bull for milk 
yield had 11 records (i.e., DTD1_MY, DTD2_MY, 
…, DTD11_MY). Only bulls that had the complete 
set of 11 DTD values for each trait were considered 
(1,540 for MY, 1,513 for FP, 1,536 for PP, and 1,535 
for SCS, respectively). The PCA was carried out using 
the SAS PRINCOMP procedure (SAS Institute, 2008). 
The number of principal components to be retained was 
based on their eigenvalue, and on their relationships 
with the original variables.

Principal component (PC) scores were then cal-
culated for each bull and treated as new phenotypes 
for performing either genetic parameter estimation or 
GWAS. Variance components for PC scores were esti-
mated with the following multi-trait animal model:

	 y = μ + animal + e,	

where y is a vector of PC scores for MY, FP, PP, and 
SCS, respectively; μ is the overall mean; animal is the 
random additive genetic effect; and e is the residual 
term. The following (co)variance structure was assumed 
for the random effects:

	 var ,
a
e
=

⊗
⊗

A G
I R

0

0

0
0

	

where A is the numerator relationship matrix, G0 is 
the matrix of (co)variances for additive effects, R0 is a 
diagonal matrix of residual variances corresponding to 
each trait, and I is an identity matrix. The pedigree file 
had 21,685 animals, including the 1,540 sires with DTD 
in the data set.

The model was solved using the program AIREML90 
(Misztal et al., 2002). Considering that PC scores were 
calculated starting from average yields per bull, the 
ratio was

	 h A

A E

2
2

2 2
=

+

σ

σ σ
,	

where σA
2  and σE

2  are the additive genetic and the re-
sidual variances, respectively; h2 represents an approxi-
mation of the true heritability because averaging affects 
the variability of the response (different number of TD 

records per bull). Thus, obtained values have been 
properly called as pseudo-heritability.

Of the 1,540 bulls considered for the PC score calcula-
tion, 423 were genotyped with the Illumina 50K bovine 
bead chip (Illumina, San Diego, CA). Monomorphic 
SNP (7,140) and SNP with a call rate <95% (1,045) 
were discarded. In total, 45,546 SNP were retained for 
the analysis. Genome-wide scan was performed on PCA 
scores with the GenABEL R package (Aulchenko et al., 
2007), using the GRAMMAR procedure. First, an ad-
ditive polygenic model was fitted to obtain individual 
residuals using the genomic relationship matrix. Then, 
SNP association was tested using a linear model on 
residuals of the first step. The SNP statistical signifi-
cance was corrected for the stratification of the popula-
tion using the genomic control (GC) option (Amin et 
al., 2007). The GC-corrected P-values (GC_Pi) were 
further corrected for multiple testing using either (1) 
the Bonferroni correction, obtained as GC_Pi × m 
(where m is the number of performed tests); (2) and 
calculating the false discovery rate (FDR), as (GC_Pi 
× m)/m0, where m0 is the number of tests having the 
GC P-values lower or equal to GC_Pi. A marker was 
declared significantly associated with a trait when the 
FDR was <0.10.

Gene discovery analysis was carried out considering 
windows of 0.5 Mb surrounding the significant marker 
(0.25 Mb up- and downstream, respectively). Genes 
were derived from UCSC Genome Browser Gateway 
(http://genome.ucsc.edu/). Both SNP and gene posi-
tions were obtained from the UMD3.1 bovine genome 
assembly (Zimin et al., 2009).

RESULTS

PCA

Eigenvectors and eigenvalues of the first 2 PC ex-
tracted from all the 4 considered phenotypes are re-
ported in Table 1. The first 2 PC explained from 42 
to 51% of the total variance of the system across the 
4 traits. The choice of retaining only the first 2 PC 
was motivated by the magnitude of single eigenvalues, 
even though the amount of explained variance was 
not particularly relevant. A common criterion used for 
retaining PC is that the eigenvalue should be greater 
than 1. In the present work, for all 4 traits only the first 
eigenvalue fulfilled this requirement, and the second 
eigenvalue was very close to 1 (Table 1).

The first principal component (PC1) showed posi-
tive and moderate eigenvector coefficients or loadings 
(ranging from 0.25 to 0.35) with all the original vari-
ables (Table 1). Thus, PC1 can be considered as a mea-

http://genome.ucsc.edu/
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sure of the level at which the curve is located and it was 
named level. Bulls with large scores for this component 
have their DTD pattern located on a higher level. The 
second principal component (PC2) exhibited larger 
loadings (up to 0.76 for DTD_FP) with both positive 
and negative signs. In particular, PC2 showed positive 
values for the first part of THI interval and negative for 
the second part for MY, SCS, and, even if less definite, 
for FP; on the contrary, PC2 for PP showed the oppo-
site trend. For its structure, PC2 defined the shape of 
the DTD curve. Therefore, larger values (or smaller in 
the case of protein content) of PC2 scores characterize 
DTD curves with a decreasing pattern, whereas smaller 
(or larger) PC2 scores indicate increasing patterns. 
This component was named slope. The interpretation 
of level and slope meaning may be better inferred from 
the average DTD curves for different PC1 and PC2 

classes (Figures 2). Only MY data were reported for 
brevity, but the other traits showed the same pattern.

To simplify the comparison between slope for differ-
ent traits, scores of slope for PP were multiplied by 
−1. Pearson correlations among PC scores (Table 2) 
confirm the expected orthogonality between level and 
slope within each trait. Sign and magnitude of correla-
tions between PC scores of different traits confirm the 
meaning of the new variables extracted; for example, 
the negative correlations between level for milk yield 
and for fat and protein percentage and the positive cor-
relation between the last 2 traits.

Genetic Parameter Estimation

All new variables exhibited genetic variability (Table 
3). In particular, pseudo-heritability had a moderate 

Table 1. Eigenvectors and eigenvalues of the first 2 principal components (level and slope) extracted from the correlation matrix of daughter 
trait deviations for milk yield (DTD_MY), fat (DTD_FP) and protein (DTD_PP) percentages, and SCS (DTD_SCS)

Temperature-humidity  
index interval

DTD_MY

 

DTD_FP

 

DTD_PP

 

DTD_SCS

Level Slope Level Slope Level Slope Level Slope

50–52 0.25 0.45 0.24 0.76 0.26 −0.48 0.22 0.49
53–55 0.28 0.41 0.29 0.37 0.29 −0.37 0.25 0.55
56–58 0.32 0.22 0.30 0.17 0.31 −0.20 0.33 0.07
59–61 0.31 0.14 0.31 −0.25 0.32 −0.07 0.30 0.12
62–64 0.32 0.17 0.31 0.03 0.32 −0.18 0.34 0.09
65–67 0.32 0.00 0.31 −0.02 0.33 −0.06 0.30 0.01
68–70 0.32 −0.04 0.32 −0.14 0.31 0.10 0.34 −0.11
71–73 0.32 −0.13 0.32 −0.28 0.31 0.22 0.31 −0.06
74–76 0.31 −0.31 0.31 −0.02 0.31 0.11 0.33 −0.26
77–79 0.30 −0.34 0.31 −0.30 0.29 0.36 0.32 −0.14
>79 0.25 −0.55 0.28 −0.11 0.25 0.60 0.27 −0.57
Eigenvalue 4.43 0.96 4.25 0.91 4.79 0.91 3.60 0.98
Eigenvalue % 40 9 39 8 43 8 33 9

Figure 2. Average curves of daughter trait deviations (DTD) for milk yield of groups of bulls of different level (a) and slope (b) score classes 
(♦ = <−2; ■ = −2 to −1; ▲ = −1 to 0; ● = 0 to 1; continuous line = 1 to 2; dotted line = >2). Points are plotted for the average DIM on 
each test day. THI = temperature-humidity index.
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to high level across all traits (values ranged between 
0.32 for SCS and 0.82 for FP, respectively) and low to 
moderate slope (ranging from 0.16 for SCS to 0.28 for 
PP, respectively). Moreover, values for slope of FP and 
PP were consistent with the proportion of variability 
explained by one of the canonical variables obtained 
for the eigendecomposition of the additive (co)variance 
matrix of random regression coefficients for these traits 
(Carabaño et al., 2014). Pseudo-genetic correlations 
confirm at a genetic level the substantial orthogonality 
between the level and slope components within each 
trait. Values of pseudo genetic correlation rg between 
level values across the different traits were large (abso-
lute values >0.65), with the exception of comparisons 
involving SCS. Large pseudo-genetic correlations were 
also observed between slope values for all traits, with 
the exception of the correlation between FP and SCS 
(Table 3).

GWAS

Eight SNP were significantly associated with the con-
sidered traits (FDR <0.10; Bonferroni P-value <0.08; 
Table 4). Two SNP were associated with the slope of 
MY. Four, including the 3 top significant SNP, were 
associated with the level of FP and 2 for PP (1 to level 
and 1 to slope). No significant association was found 
for principal components extracted from DTD for SCS.

MY. The 2 markers significantly associated with 
DTD_MY were both related to slope (Table 4 and Fig-
ure 3a), the PC that expresses the shape of individual 
curves for increasing levels of THI. The first SNP was 
located on BTA26 at approximately 22.3 Mb. A pos-
sible candidate gene located within the interval defined 
by this marker is the β-transducin repeat containing 
E3 ubiquitin protein ligase (BTRC; Table 5), reported 
to be associated with milk production (Raven et al., 
2016) and leg morphology (van den Berg et al., 2014) 
in cattle, and with growth rate in chicken (Zhang et al., 
2015). The 0.5-Mb window includes also genes involved 
in folliculogenesis in cattle, such as fibroblast growth 
factor 8 (FGF8), found in a selection sweep study in 
dairy cattle (Kemper et al., 2014), meningioma ex-
pressed antigen 5 (hyaluronidase; MGEA5), and taurus 
Kv channel interacting protein 2 (KCNIP2; Hatzirodos 
et al., 2014). Of interest is also Hermansky-Pudlak 
syndrome 6 (HPS6), a gene related to pigmentation in 
humans (Sturm and Duffy, 2012). A marker located on 
BTA26 and significantly associated with sweating rate 
was reported by Dikmen et al. (2013) for Holsteins, 
although the map position is about 2.0 Mb from the 
SNP identified in our study.

The second marker associated with slope for MY was 
located on BTA6 at approximately 35.5 Mb (Table 4). 
In this region maps the coiled-coil serine rich protein 1 
(CCSER1; Table 5), a gene involved in the mechanism 

Table 2. Pearson correlations between the scores of the first principal components (level and slope) extracted from the correlation matrix of 
daughter trait deviations for milk yield (MY), fat (FP) and protein (PP) percentage, and SCS

Item Level MY Slope MY Level FP Slope FP Level PP Slope PP Level SCS Slope SCS

Level MY 1.00 0.00 −0.37 −0.03 −0.34 0.00 −0.07 −0.07
Slope MY   1.00 0.01 −0.12 −0.01 −0.20 −0.04 −0.16
Level FP     1.00 0.00 0.52 0.02 −0.05 0.04
Slope FP       1.00 0.03 0.23 −0.02 0.05
Level PP         1.00 0.00 0.05 0.02
Slope PP           1.00 0.02 −0.15
Level SCS             1.00 0.00
Slope SCS               1.00

Table 3. Pseudo-heritability (on the diagonal) and pseudo-genetic correlations (out of the diagonal) between the scores of the first principal 
components extracted from the correlation matrix of daughter trait deviations for milk yield (MY), fat (FP) and protein (PP) percentage, and 
SCS (SE of pseudo-heritabilities in parentheses)

Item Level MY Slope MY Level FP Slope FP Level PP Slope PP Level SCS Slope SCS

Level MY 0.52 (0.07) 0.02 −0.67 −0.05 −0.67 0.01 −0.05 −0.19
Slope MY   0.24 (0.04) 0.04 −0.56 −0.05 −0.83 −0.17 −0.85
Level FP     0.82 (0.11) 0.01 0.75 0.04 −0.10 0.14
Slope FP       0.23 (0.01) 0.06 0.88 −0.10 0.36
Level PP         0.74 (0.11) 0.00 0.11 0.10
Slope PP           0.28 (0.01) −0.07 0.69
Level SCS             0.32 (0.07) 0.04
Slope SCS               0.16 (0.05)
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of cell division found to be associated with birth weight 
in Brangus cattle (Saatchi et al., 2014) and with Na 
concentration in muscle of Nelore cattle (Tizioto et 
al., 2015). Dikmen et al. (2013, 2015) found markers 
significantly associated with rectal temperature and 
respiration rate on BTA6, but at a position about 10 
Mb from the marker flagged in the present study.

FP. The 4 significant SNP detected for level of FP 
were located on BTA14 in an interval of approximately 
0.6 Mb (Table 4). The top significant SNP (ARS-BF-
GL-NGS-4939) was reported to be significantly associ-
ated with milk fat in Italian, US, and German Holsteins 
(Cole et al., 2011; Wang et al., 2012; Capomaccio et 
al., 2015), in Italian Simmental cattle (Macciotta et al., 
2015), and in a multibreed population (Raven et al., 
2014). The 0.5-Mb window surrounding this top marker 
flagged a zone characterized by a high density of an-
notated genes. In particular, in that region maps one 
of the most important genes affecting milk fat content 
and yield in cattle (Table 5), the diacylglycerol o-acyl-
transferase 1 (DGAT1) (Grisart et al., 2002). However, 
on BTA14 at approximately 1.81 to 1.83 Mb maps the 
heat shock transcription factor 1 (HSF1), a protein that 
is involved in the mechanism of response to heat stress 
(Guettouche et al., 2005). Among the genes that map 
in the interval defined by the second marker (Table 4), 
of interest is the Rho GTPase activating protein 39 
(ARHGAP39), involved in the development of the cen-
tral nervous system (Ma and Nowak, 2011) (Table 5). 
This gene has been reported to be associated with milk 
fat composition in Danish (Buitenhuis et al., 2014) and 
North American (Nayeri et al., 2016) Holstein, and to 
SCS (Wang et al., 2015) in Chinese Holstein. Another 
interesting gene located in this region is the ribosomal 
protein L8 (RPL8), involved in the cellular mechanisms 
of homeostasis (Katz et al., 2016), associated with re-
sponse to acute heat stress in the fish Lates calcarifer 
(Newton et al., 2012).

The third marker located on BTA14 displayed the 
mitogen-activated protein kinase 15 (MAPK15) 

(Table 5), suggested as a candidate gene for SCS in a 
study on Chinese Holstein (Wang et al., 2015). The last 
significant SNP for PC1 of DTD_FP was also located 
on BTA14, very close to the second significant SNP. 
Close to this marker maps the zinc finger protein 34 
(ZNF34), found to be associated with milk fat percent-
age in Chinese Holstein (Jiang et al., 2014) and Italian 
Simmental (Macciotta et al., 2015). No significant SNP 
were detected for the slope component for fat percent-
age (Figure 3b)

PP. A SNP significantly associated with slope of PP 
was found on BTA5, at approximately 114.8 Mb (Table 
4 and Figure 3c). In the 0.5-Mb interval flanking this 
marker is an interesting gene, malonyl-CoA-acyl carrier 
protein transacylase (MCAT; Table 5), expressed in the 
mitochondrion and involved in fatty acid metabolism. 
This gene has been found to be differentially expressed 
in chicken embryos exposed to heat challenge (Loyau et 
al., 2016). Other genes of interest located in this inter-
val are the sorting and assembly machinery component 
(SAMM50), a mitochondrial protein found associated 
with serum triglyceride levels in humans (Kitamoto et 
al., 2013), and the translocator protein (TSPO), a gene 
upregulated in atretic bovine follicles (Hatzirodos et 
al., 2014).

The other significant marker associated with PP was 
related to level. It was located on BTA14, in a region 
where no annotated genes have been retrieved in the 
UCSC genome database.

DISCUSSION

Traits able to describe efficiently the response of 
animals to heat stress are rather problematic to be 
routinely measured in dairy cattle populations involved 
in breeding programs. Dikmen et al. (2012) estimated 
that 13 to 17% of the variation in rectal temperature 
in cows during heat stress is due to genetic differences. 
However, it will not be practical to select cows for heat 
tolerance based on rectal temperature directly because 

Table 4. Markers significantly associated [false discovery rate (FDR) <0.10] with scores of principal components extracted from daughter trait 
deviations for milk yield (MY) and fat (FP) and protein (PP) contents

SNP BTA Position (bp) P-GC_P Bonf1 FDR   Trait

ARS-BFGL-NGS-4939 14 1,801,116 0.000001 0.000001 Level FP
ARS-BFGL-NGS-57820 14 1,651,311 0.000021 0.000011 Level FP
ARS-BFGL-NGS-107379 14 2,054,457 0.000335 0.000112 Level FP
ARS-BFGL-NGS-29678 26 22,383,645 0.000973 0.000973 Slope MY
Hapmap30383-BTC-005848 14 1,489,496 0.049244 0.012311 Level FP
ARS-BFGL-NGS-19275 5 114,818,206 0.053830 0.053830 Slope PP
Hapmap32110-BTA-153952 6 35,555,247 0.077947 0.038974 Slope MY
Hapmap32435-BTC-012188 14 56,075,435 0.081155 0.081155 Level PP
1Level of significance of the test adjusted with Bonferroni correction.
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Figure 3. Genome-wide association study of the scores of the second principal component (slope) for milk yield (MY; a), fat percentage (FP; 
b), and protein percentage (PP; c). On the vertical axis is the negative logarithm of the P-value corrected for the stratification of the popula-
tion. On the horizontal axis are the SNP ordered by their position and by chromosome. The line corresponds to a false discovery rate of 0.10. 
GC = genomic control.
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this trait is not recorded on dairy farms. On the contrary, 
patterns of milk production traits can be conveniently 
modeled to estimate tolerance to heat stress (Carabaño 
et al., 2014; Bernabucci et al., 2014; Hammami et al., 
2015). In particular, DTD have been proposed as a 
proxy of individual response of bulls across increasing 
levels of heat load (Hayes et al., 2009). The reliability 
of heat tolerance proxies based on production traits was 
underlined in a recent study on dairy cattle subjected to 
heat challenge under a controlled environment, namely 
climate chambers (Garner et al., 2016). Heat-tolerant 
cows, ranked according to a genomic breeding value of 
heat tolerance based on milk yield, showed lower values 
of physiological indicators (core body temperature, rec-
tal and intravaginal temperature) than heat-sensitive 
cows.

In the present work, DTD calculated for 4 different 
milk production traits were analyzed with PCA. This 
approach was able to extract 2 new variables, which 
explained approximately 50% of the original variance. 
Interestingly, they were related to the level of the DTD 
curve and to its slope, respectively. Our interpretation 
of PC meaning is in agreement with the outcome of 
eigendecomposition of coefficient matrix of random 
regression models used to estimate heat tolerance 
(Carabaño et al., 2014) and with previous reports on 
PCA carried out on milk production traits in cattle 
(Macciotta et al., 2006, 2015).

Most of the genetic models used to study the heat 
stress effect on dairy traits use the reaction norm model 
approach (Kolmodin and Bijma, 2004; Shariati et al., 
2007). In particular, for each animal the THI effect is 
fitted as a general intercept plus a slope (Hayes et al., 
2009; Sánchez et al., 2009; Carabaño et al., 2014). The 
results of the model-free PCA approach used in the 
present study basically confirm theoretical assumptions 
of the reaction norm model. Also, the predominance 
of level over slope in terms of variance explained is in 
agreement with previous reports. In particular, slope 
eigenvalue (about 10%) is not far from values reported 
for the second eigenfunction for fat and protein yield 
obtained from the decomposition of (co)variance matrix 
of random regression models by Carabaño et al. (2014). 
These suggest that the behavior of milk production 
traits across increasing THI levels can be partitioned 
into 2 main components, one basically related to the 
overall production genetic potential of the animal and 
the other to the individual specific response.

The slope component could be proposed as a mea-
sure of individual tolerance to heat stress; however, the 
interpretation of its values deserves further discussion. 
From Figures 3b it can be noted that animals with 
negative slope scores exhibited, on average, lower DTD 
in the first part of the THI scale (i.e., in the comfort T
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zone) and higher in the second part. Thus, selection in 
favor of this kind of response pattern would result in less 
productive animals under comfort conditions (i.e., the 
most frequent at least in temperate areas). However, it 
should be remembered that graphs depicted in Figures 
2 represent deviations from the average response pat-
tern (Carabaño et al., 2016). Thus, animals exhibit-
ing a curve as the one reported in Figure 2b are not 
expected to respond with a decrease of production to 
lower THI levels, but to have a quite constant average 
level of production in this point of the curve. Moreover, 
provided the orthogonality between the 2 traits, the 
crossed distribution of individual patterns among the 
classes of the 2 PC (Table 6) shows values in all the 
cells. Although intermediate classes (i.e., those having 
values between −1 and 1 for both the components) are 
the most abundant, 10 bulls belong to the class hav-
ing the most positive and negative values for level and 
slope, respectively. The DTD_MY patterns of some of 
these bulls are reported in Figure 4; they exhibit the 
typical ascending pattern of this slope class, with the 

points mostly having values higher than zero or show-
ing great variability.

Another point of agreement between the results of 
the present study and those of other studies on heat 
tolerance based on the broken line model can be found 
in the structure of PC eigenvectors. It is worth not-
ing that the inversion of eigenvector coefficient sign of 
slope (Table 1) occurs in the THI class 68 to 70 for 
DTD of MY, PP, and SCS, and in the class 65 to 67 
for FP. These values basically agreed with estimates of 
TH0 threshold reported by some authors. Sánchez et al. 
(2009) estimated a THI threshold of 72 for milk yield 
in US Holsteins using hierarchical models. Carabaño 
et al. (2016) estimated TH0 thresholds of 72 to 73 for 
milk yield in Holstein populations of different Euro-
pean countries. The lower threshold of fat percentage 
compared with the other traits reported in the present 
study also agrees with previous reports. In our previous 
study, THI thresholds of 76, 73, and 74 were estimated 
in first-, second-, and third-parity Holstein cows, re-
spectively, for MY (Bernabucci et al., 2014).

In view of a possible implementation of PCA-derived 
measures of tolerance to heat stress in breeding pro-
grams, the 2-stage approach suggested in the current 
study has the limitation that only bulls having com-
plete records (i.e., the 11 points of the DTD curve) 
could be considered. Such a requirement strongly re-
duced the number of animals for which PC could be 
computed (for example, from 4,184 to 1,540 for MY 
in the present study). To overcome this problem, the 
correlation matrix between different points of the DTD 
curve could be reconstructed by using a random re-
gression model (RRM) in which records at different 
THI classes are treated as repeated measures for each 
sire. Thus, DTD_MY were fitted with a mixed model 
having the same structure of [1] but with the sire ef-
fect fitted as random. The covariance within animal 
was accounted for by an 11 × 11 unstructured matrix 
of between sire effects for each THI level. To avoid 
convergence problems, bulls having 7 or more records 

Table 6. Absolute frequencies of individual patterns of daughter trait deviations for milk yield across different 
classes of level and slope principal component scores

Level

Slope

≤−2 −2 to −1 −1 to 0 0 to 1 1 to 2 ≥2

≤−2 10 24 72 81 21 6
−2 to −11 4 15 82 80 25 4
−1 to 0 5 32 138 137 31 4
0 to 1 4 27 128 137 28 3
1 to 2 7 21 90 84 16 8
≥2 10 32 70 62 27 15
1Lower limit of the class is included.

Figure 4. Individual patterns of daughter trait deviations (DTD) 
for milk yield, which have scores >2 and <−2 for the level and slope 
components, respectively. THI = temperature-humidity index.
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were considered. A total of 35,992 records belonging 
to 3,697 bulls were used. From Table 7, it can be seen 
that observed Pearson correlations among DTD_MY 
and the correlation matrix estimated by the RRM are 
very similar. Finally, PCA carried out on the RRM 
estimated correlation matrix yielded basically the same 
results (Table 8) of the 2-step approach, both in terms 
of variance explained by the first 2 PC and of their 
eigenvector structure (i.e., the first can be considered 
a level PC, the second a slope). Such a concordance of 
results opens interesting perspectives on the possible 
use of this heat tolerance indices on large scale.

Previous studies on the genetic basis of tolerance 
to heat stress indicated that this trait has a moderate 
genetic variability and that it could be split into an 
intercept and a slope component that are genetically 
related. The PC-based measure of heat tolerance pro-
posed in the present work does show genetic variability. 
In particular, the pseudo-heritability of the slope com-
ponent is similar to heritability values reported in other 
studies for the slope parameter of the reaction norm 
model. Thus, the 2 PC extracted from DTD of 4 milk 
traits could be considered as possible breeding criteria 
when selecting for improved heat tolerance in cattle. 
However, compared with previous measurements of 
tolerance to heat stress based on milk production data, 
a distinguishing feature of the PC is their phenotypic 
and genetic orthogonality. The absence of any genetic 
relationship between level and slope (Table 2) suggests 
that an independent selection of the 2 main aspects of 
DTD patterns (i.e., level of production and heat toler-
ance) should be feasible. A simultaneous selection for 
improving both heat tolerance and dairy traits could 
be achieved also by implementing a selection index in 
which suitable economic weight have to be determined 
(Nguyen et al., 2016). However, provided the unfavor-
able genetic correlation between heat tolerance and 
production, a smaller selection response is expected for 

each single trait in comparison with the use of the 2 
uncorrelated level and slope components.

The amount of variance accounted for by the slope 
parameter in reaction norm models is used as an indica-
tor of the genotype × environment interaction (Kol-
modin and Bijma, 2004; Shariati et al., 2007). In the 
present study, slope and level additive variance ratios 
were 0.10 for MY, 0.05 for FP, 0.06 for PP, and 0.13 
for SCS. These values confirm results of Santana et al. 
(2017), who concluded that a genotype × environment 
interaction due to heat stress is more relevant for milk 
yield and SCS than for fat and protein percentage.

Association analysis highlighted a limited number of 
significant markers. This was not an unexpected out-
come due to the severe correction needed to account for 
multiple testing when high-throughput platforms are 
used, to the complex biology underlying the physiologi-
cal response to heat stress, and to the limited size of the 
sample of animals genotyped.

Table 7. Pearson correlations among daughter trait deviations for milk yield (above the diagonal) and estimated unstructured correlation 
matrix estimated with random regression model (under the diagonal)1

Item THI1 THI2 THI3 THI4 THI5 THI6 THI7 THI8 THI9 THI110 THI11

THI1 0.41 0.37 0.35 0.36 0.37 0.33 0.29 0.31 0.30 0.23
THI2 0.43 0.42 0.40 0.40 0.40 0.37 0.36 0.35 0.33 0.25
THI3 0.38 0.44 0.43 0.46 0.44 0.43 0.41 0.43 0.36 0.26
THI4 0.35 0.41 0.43 0.41 0.44 0.42 0.42 0.40 0.34 0.33
THI5 0.35 0.40 0.44 0.41 0.44 0.44 0.41 0.43 0.37 0.30
THI6 0.34 0.39 0.42 0.42 0.42 0.44 0.44 0.42 0.43 0.35
THI7 0.32 0.37 0.41 0.41 0.43 0.40 0.43 0.45 0.43 0.34
THI8 0.28 0.35 0.38 0.40 0.37 0.41 0.39 0.42 0.41 0.43
THI9 0.27 0.30 0.35 0.36 0.39 0.39 0.44 0.42 0.45 0.37
THI10 0.23 0.26 0.33 0.27 0.31 0.37 0.43 0.42 0.47 0.41
THI11 0.18 0.22 0.22 0.26 0.26 0.34 0.34 0.41 0.41 0.43  
1THI = temperature-humidity index.

Table 8. Eigenvectors and eigenvalues of the first 2 principal 
components (PC) extracted from the correlation matrix estimated by 
fitting a random regression model to daughter trait deviations for milk 
yield (DTD_MY)

Temperature humidity  
index interval PC1 PC2

50–52 0.26 −0.40
53–55 0.30 −0.36
56–58 0.31 −0.27
59–61 0.31 −0.21
62–64 0.31 −0.18
65–67 0.32 −0.03
68–70 0.32 0.07
71–73 0.31 0.19
74–76 0.31 0.30
77–79 0.29 0.42
>79 0.27 0.51
Eigenvalue 4.66 1.15
Eigenvalue % 42 10
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Half of the significant SNP were associated with the 
level variable for FP and located on BTA14. This result 
is quite common in genomic studies on Holstein cattle, 
mainly due to the genetic architecture of the trait, 
which is largely influenced by a single segregating gene, 
DGAT1 (Grisart et al., 2002). The relevant influence of 
this gene on FP was previously observed in the Italian 
Holstein population (Fontanesi at al., 2014).

However, it is worth mentioning that a gene encod-
ing for a heat shock transcription factor (HSF1) maps 
on BTA14 very close to the top significant marker de-
tected in the present study. In humans, HSF1 mediates 
the expression of the heat shock and stress proteins in 
response to physical and chemical stresses (Guettoche 
et al., 2005). This gene has been recognized to have a 
central role in coordinating thermal tolerance in cattle 
(Collier et al., 2008). Differences in the expression of 
HSF1 in the liver were found between cows calving 
in spring and summer, respectively (Shahzad et al., 
2015). Moreover, associations between this gene and 
thermotolerance have been detected in Chinese Hol-
stein (Li et al., 2011). An overexpression of HSF1 has 
been found in buffalo during summer under tropical 
environment (Kumar et al., 2015) and is reported to be 
associated with genetic susceptibility to Mycobacterium 
bovis infection in dairy cattle (Richardson et al., 2016). 
Differential expression of heat shock proteins has been 
related to in vitro fertilization rate and blastocyst rate 
of bovine embryos (Zhang et al., 2011). The HSP70.1 
polymorphism has been associated with cellular ther-
mos tolerance in Holstein lactating cows (Basiricò et 
al., 2011)

The relationships between tolerance to heat stress 
and fertility has been confirmed by associations found 
in the present study. Candidate genes found in the 
0.5-Mb intervals defined by the significant markers for 
the slope component are involved in cellular regulation 
mechanism, fertility, and weight at birth. Nguyen et al. 
(2016), using the DTD deviation as indicators of heat 
stress in Australian Holsteins, found favorable correla-
tion between DTD and fertility.

Among putative candidate genes that have been de-
tected in the present study for the SLOPE trait, one 
(MCAT) is involved in fatty acid metabolism. This 
result is in agreement with findings by Hammami et 
al. (2015), who highlighted a relationship between milk 
fatty acid content and tolerance to heat stress in cattle. 
It should pointed out that milk fatty acid profile is an 
index of animal energy balance (Bastin et al., 2011) and 
is strongly related to the diet, which may be affected by 
climatic conditions. Nardone et al. (1997) found greater 
proportions of long-chain fatty acids in colostrum pro-
duced by heifers under heat stress conditions. Those 

authors demonstrated that the higher proportion of 
long-chain fatty acids was due to the reduced synthesis 
of short- and medium-chain fatty acids in the mam-
mary gland cells. Thus, the role of milk FA as potent 
biomarkers for evaluating individual thermotolerance 
could be hypothesized.

Previous GWAS studies carried out on DTD and 
rectal temperature have highlighted genomic regions 
associated with heat stress tolerance. These results 
were not confirmed in the present study, even though 
significant markers were seen for slope for milk yield on 
BTA 5, 6, and 26 [i.e., on the same chromosomes where 
Dikmen et al. (2013) found significant associations for 
rectal temperature]. The detection of a limited number 
of significant markers and a poor repeatability of re-
sults across studies and populations is a major issue in 
GWAS studies carried out on livestock species. Sample 
size, genetic differences among populations (i.e., level 
of linkage disequilibrium, allelic SNP frequencies) were 
mentioned as main reasons for such a lack of concor-
dance between experiments. Moreover, the severe cor-
rections of significance levels due to huge number of 
repeated tests further reduce the number of detected 
markers. Finally, a more general issue that has been 
raised in GWAS carried out in humans is that not all 
the genetic variation of a trait is captured by available 
markers (i.e., the so-called problem of missing herita-
bility; Gusev et al., 2013). On the other hand, in the 
case of GWAS for heat tolerance traits, the role of the 
phenotypes should be carefully considered. Dikmen et 
al. (2015) found that 1 out of 4 significant SNP previ-
ously detected using a phenotype derived from milk 
yield was also associated with a physiological indica-
tor of heat stress (i.e., sweating rate). However, SNP 
validation is problematic also within the same trait. 
Hayes et al. (2009), on a second independent data set, 
confirmed only 2 out of 42 SNP significantly associated 
with the slope component of a reaction norm model 
fitted to milk yield in a Holstein population. A further 
issue in genetic studies of tolerance to heat stress is 
represented by the methodologies used to obtain the 
environmental variable. The THI calculations, for ex-
ample, could differ in the kind of variable used (i.e., 
daily maximum or average temperature, minimum or 
average relative humidity) and in the time lag with 
the day of the test. Such heterogeneity of measures 
could be one of the reasons for the differences between 
studies in the estimates of the THI upper threshold for 
the comfort zone. The existence of all these sources of 
variation that may possibly affect results of studies on 
the genetic dissection of heat tolerance traits should 
lead scientists to make efforts to increase the power 
of their experiments, validate results in independent 
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populations, and in harmonize methodologies for calcu-
lating environmental variables. Furthermore, alterna-
tives to traditional methods for measuring physiological 
indicators of heat tolerance should be found. Recent 
achievements in precision farming, such as the use of 
microequipment directly installed on the animal or the 
use of indirect predictors of physiological traits (as for 
example midinfrared milk spectra), could provide inter-
esting tools.

CONCLUSIONS

The PCA was able to derive 2 new variables able to 
describe the overall level and the slope of response of 
milk production traits across increasing levels of THI 
index. These 2 new phenotypes are uncorrelated and 
may therefore provide an option for overcoming the 
problem of the negative correlation between heat toler-
ance and production level that has been found within 
the context of milk and weather record analysis. The 
genetic background of the 2 PC was investigated and 
some putative candidate genes were proposed. A useful 
numerical property of the 2 extracted variables is their 
orthogonality. This feature makes the use of the sec-
ond PC as a measure of thermotolerance for breeding 
purposes, which is particularly appealing because many 
authors have stressed the need for using measures of 
tolerance to heat stress uncorrelated from the produc-
tion level. Moreover, this variable could be derived from 
data that are routinely recorded in breeding programs 
and, therefore, used on large scale could be proposed.
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