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ABSTRACT

The objectives of this study were to establish if 
exposure of pregnant dairy cows to high environ-
mental temperatures and humidity during the first 
trimester of pregnancy impairs the establishment of 
the ovarian reserve (total number of healthy follicles 
and oocytes in ovaries) and fertility in their offspring. 
Serum anti-Müllerian hormone (AMH) concentrations 
and number of follicles ≥3 mm (antral follicle count; 
AFC) were assessed on a random day of the estrous 
cycle in 310 sixteen-month-old dairy heifers. Based on 
season of their conception and early fetal life, heifers 
were separated into 2 groups: summer (mean monthly 
temperature-humidity index = 69.33 ± 2.6) and winter 
(temperature-humidity index = 54.91 ± 1.08). The 
AMH and AFC were lower in summer (419.27 ± 22.81 
pg/mL and 9.32 ± 0.42 follicles, respectively) compared 
with winter heifers (634.91 ± 47.60 pg/mL and 11.84 
± 0.46 follicles, respectively) and were not influenced 
by farm and age at sampling. Heifers born to dams 
that were not being milked during gestation had lower 
AMH and AFC compared with offspring of cows on 
their first lactation, whereas no difference was detected 
between offspring of cows on their first and subsequent 
lactations. Summer and winter heifers had similar age 
at first service and at first calving, and similar number 
of services per conception. Regardless of season in early 
fetal life, heifers were classified into 3 groups based on 
AMH and AFC (low = 20%, intermediate = 60%, high 
= 20%). Heifers with the lowest AMH were older at first 
service compared with herd mates with intermediate 

AMH, but age at first calving and number of services 
per conception were similar among AMH categories. No 
difference was detected in any of the fertility measures 
among AFC categories. Heifers born to mothers exposed 
to high environmental temperatures in early gestation 
had smaller ovarian reserves compared with herd mates 
conceived in winter, but no association between season 
of early fetal life and fertility at first conception was 
established. Season of conception and maternal lacta-
tion status affect the size of the ovarian reserve, but not 
fertility, at first conception in the progeny.
Key words: anti-Müllerian hormone, antral follicle 
count, fetal programming, dairy cow

INTRODUCTION

The ovarian reserve is the total number of healthy 
oocytes and follicles in the ovary of a female mammal, 
which declines during her reproductive life span and 
is never replenished (Evans et al., 2010; Ireland et al., 
2011). In cattle, gonadal development occurs during 
fetal life, and primordial follicles form between d 70 to 
100 of gestation and initiate their irreversible growth 
by d 90 to 140 of pregnancy (Rüsse, 1983; Yang and 
Fortune, 2008; Burkhart et al., 2010; Fortune et al., 
2013). Also, the peak in number of germ cells is reached 
within the first 3 mo of gestation (Erickson, 1966), 
thus the first trimester of fetal life is a critical window 
for the establishment of the ovarian reserve in cattle. 
Understanding the regulation of follicular formation is 
relevant because the variation in the size of the ovarian 
reserve may be among the main factors that contribute 
to the high variation in fertility among young, adult 
female cattle (Evans et al., 2010; Ireland et al., 2011; 
Mossa et al., 2017).

Two markers have been identified to reliably esti-
mate the size of the ovarian reserve in cattle: antral 
follicle count (AFC) and circulating concentrations 
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of anti-Müllerian hormone (AMH). The AFC is the 
total number of ovarian antral follicles equal to or 
larger than 3 mm in diameter on both ovaries and is 
determined by ultrasonography; AMH is a glycoprotein 
exclusively produced by healthy, growing ovarian fol-
licles (Monniaux et al., 2008). Both AFC and AMH 
are positively associated with the size of the ovarian 
reserve (Burns et al., 2005; Ireland et al., 2008; Rico et 
al., 2009; Batista et al., 2014; Ribeiro et al., 2014) and 
are highly repeatable within the same animal during 
the same or multiple estrous cycles (Burns et al., 2005; 
Rico et al., 2009; Ireland et al., 2011; Monniaux et al., 
2012; Mossa et al., 2012; Pfeiffer et al., 2014; Souza 
et al., 2015). However, they are highly variable among 
individuals (Baldrighi et al., 2014; Ribeiro et al., 2014). 
Studies conducted using either AFC, AMH, or both 
indicate that the ovarian reserve is positively associ-
ated with several measures of fertility (Jimenez-Krassel 
et al., 2009; Mossa et al., 2012; Ribeiro et al., 2014; 
Martinez et al., 2016; McNeel et al., 2017) and with the 
response to ovarian hormonal stimulation (Singh et al., 
2004; Ireland et al., 2007; Rico et al., 2009; Hirayama 
et al., 2012; Silva-Santos et al., 2014; Souza et al., 2015; 
Santos et al., 2016; Mossa and Ireland, 2019).

Nevertheless, what determines the size of the ovar-
ian reserve in cattle is unclear. While recent studies 
report that AFC and AMH are moderately heritable 
traits in dairy cattle (Walsh et al., 2014; Nawaz et al., 
2018; Gobikrushanth et al., 2019), evidence also indi-
cates that the ovarian reserve might be influenced by 
the environment encountered during fetal life (Sloboda 
et al., 2011; Evans et al., 2012; Mossa et al., 2015; 
Mossa et al., 2019). Growing evidence indicates that 
a ruminant’s maternal nutritional status can influence 
the development of the reproductive system in female 
(Borwick et al., 1997; Rae et al., 2001; Sullivan et al., 
2009a,b; Mossa et al., 2013; Weller et al., 2016; Smith 
et al., 2019) and male offspring (Alejandro et al., 2002; 
Kotsampasi et al., 2009; Mossa et al., 2018). Other 
environmental conditions may influence the establish-
ment of the ovarian follicular population; for instance, 
cows with a chronic mammary gland infection during 
gestation gave birth to heifers with reduced AMH con-
centrations (Ireland et al., 2011).

Maternal exposure to high environmental tempera-
tures and humidity may be among the factors that 
have an effect on the establishment of the ovarian re-
serve, and evidence indicates that heat stress affects 
dairy cows in several parts of Italy. Negative effects 
on productive performances (Bernabucci et al., 2014), 
metabolic and hormonal acclimation (Bernabucci et al., 
2010), nonreturn rate (Biffani et al., 2016), and mortal-
ity (Vitali et al., 2009) in cattle have been reported in 

Italy. Significant increases in rectal temperature and 
respiratory rates, as well as reductions in DMI have 
been documented in Italian Holsteins exposed to high 
air temperatures (Nardone et al., 1997; Bernabucci et 
al., 1999). Moreover, high humidity and temperatures 
have been recorded in Sardinia, the region were we con-
ducted this study (Atzori and Cannas, 2011). In dairy 
cows, heat stress during gestation adversely affects birth 
weight, immunocompetence, and growth of the calves 
(Tao and Dahl, 2013; Tao et al., 2014; Monteiro et al., 
2016). Furthermore, heifers born to cows exposed to 
heat stress during late gestation require more services 
per conception (Monteiro et al., 2016). Recent evidence 
suggests that cows exposed to heat stress during the 
second and third trimester of gestation produce female 
offspring with lower AMH concentrations (Akbarinejad 
et al., 2017).

Based on the evidence that identifies the first tri-
mester of gestation as crucial for follicular formation 
(Erickson, 1966; Rüsse, 1983; Tanaka et al., 2001; Bur-
khart et al., 2010), we tested the hypothesis that high 
environmental temperatures during the first trimester 
of fetal life are negatively associated with the establish-
ment of the ovarian reserve and fertility in Holstein 
Friesian female cattle.

MATERIALS AND METHODS

All animal experiments were performed in accordance 
with DPR 27/1/1992 (Animal Protection Regulations 
of Italy) in conformity with European Community 
regulation 86/609, and were approved by the local 
Committee for the Animal Welfare of the University 
of Sassari.

Animals and Assessment of AFC and Peripheral 
AMH Concentrations

This study was conducted on 4 commercial dairy 
farms located in Sardinia, Italy (farm 1: 39°44′ N, 8°34′ 
E; farm 2: 39°44′ N, 8°31′ E; farm 3: 40°35′ N, 8°53′ E; 
farm 4: 39°44′ N, 8°34′ E). The herds ranged in size 
from 90 to 480 cows, with an average annual milk yield 
of 8,800 to 9,900 kg/cow. All animals (both cows and 
heifers) were housed in freestall barns with roofs and 
open side walls. No cooling systems operated in the 
farms during the study. Holstein Friesian heifers (n = 
310) born between February 2016 and May 2017 were 
studied from August to September 2017, November 
2017 to April 2018, and June to September 2018 (16.1 
± 1.32 mo of age; mean ± SD). To estimate the size of 
the ovarian reserve, peripheral AMH concentrations (n 
= 310) and AFC (n = 258) were determined. The ani-
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mals subjected to AFC evaluation were less than those 
submitted to AMH dosage due to a technical problem 
that occurred with the transrectal ovarian ultrasonog-
raphy. On a random day of the estrous cycle, a single 
blood sample (10 mL) was collected from the coccygeal 
vein using an additive-free tube. Samples were refriger-
ated (4°C) for 24 h and centrifuged at 2,000 × g at 
4°C; serum was removed and stored at −20°C until as-
sayed. Serum AMH concentrations were measured with 
an AMH (bovine) ELISA commercial kit (Ansh Labs, 
Webster, TX) with an analytical sensitivity of 11 pg/
mL. All assays were performed in duplicates, and mean 
values were calculated. If a difference greater than 10% 
was detected between duplicates of the same samples, 
samples were re-analyzed. The intra- and interassay 
coefficients of variation were 3.8 and 9.5%, respectively.

On the same day of blood sampling, AFC was as-
sessed (n = 258) by transrectal ovarian ultrasonogra-
phy (MyLabOne, Esaote, Genova, Italy) performed by 
the same operator. Each ultrasonography was recorded, 
and the number of antral follicles ≥3 mm in diameter 
was counted (Burns et al., 2005; Ireland et al., 2008; 
Mossa et al., 2010a; Mossa et al., 2012) on farm and 
on video.

Reproductive Management and Measures

Heifers were inseminated either during the same 
estrous cycle in which AMH concentrations and AFC 
were assessed or in a subsequent cycle. Heifers were ar-
tificially inseminated by the same technician following 
detection of estrus. Animals detected in estrus before 
morning milking (0630 h) were inseminated that after-
noon, whereas heifers detected later in the day were 
inseminated the following morning. Pregnancy diagno-
sis was performed using ultrasonographic examinations 
of the reproductive tracts at approximately 25 to 36 
and 60 to 66 d post-AI. The following reproductive 
variables were calculated: age at first insemination, age 
at first conception, age at first calving, and number of 
services per conception.

Climate During the First Trimester of Fetal Life

Dates of conception of each heifer were retrieved from 
farm records. Based on the season from conception to 
the end of the first trimester of their fetal life, heifers 
were placed into 2 groups: heifers born to mothers that 
conceived and spent the first trimester of pregnancy 
during May through August of 2015 and 2016 (summer 
group) or November 2015 through March 2016 (winter 
group). To test whether exposure of dams to high envi-
ronmental temperatures during early gestation resulted 

in diminished AFC and AMH and impaired fertility in 
their progeny (as young adult heifers), climatic condi-
tions during the months of interest were determined 
using data collected from 2 weather stations of the Sar-
dinian Regional Agency for the Environment Protection 
(Agenzia Regionale per la Protezione dell’Ambiente 
della Sardegna, ARPAS) for the years 2015 to 2016. 
The first climatic station was located within 10 km of 
farms 1, 2 and 4; the second climatic station was ap-
proximately 54 km away from farm 3. Daily minimum 
and maximum air temperature (Ta; expressed as °C) 
and relative humidity (RH; expressed as percentage) 
were used to calculate the mean monthly temperature-
humidity index (THI; °C) using the following formula 
(Johnson et al., 1964):

	 THI = [1.8 × Ta − (1 − RH/100) 	  

× (Ta − 14.3)] + 32.

A THI ≥68 was considered an indicator of high en-
vironmental temperatures and potential heat stress 
(Zimbelman et al., 2009; De Rensis et al., 2015). The 
experimental protocol is summarized in Figure 1.

Statistical Analysis

All data were analyzed with MiniTab and SAS Uni-
versity Edition version 3.6 (SAS Institute Inc., Cary, 
NC). The normal distribution of data was investigated 
by Kolmogorov-Smirnov normality test with MiniTab. 
As most of the data were not normally distributed, 
data were log-transformed, but natural numbers are 
reported in the text. Relations among variables were 
analyzed with Pearson Correlation with SAS.

To investigate the effect of the environmental con-
ditions during gestation on the establishment of the 
ovarian reserve, serum concentrations of AMH, AFC, 
number of services per conception, age at first service, 
and age at first conception in the heifers were ana-
lyzed with a mixed model (Proc MIXED procedure of 
SAS) considering the main effects of season during the 
first trimester of fetal life (summer vs. winter), age at 
sampling and ultrasonography, maternal lactation sta-
tus (nonlactating heifers vs. lactating cows), lactation 
number of the dam (0, 1, or ≥2), and their interaction. 
The farm (1, 2, 3 or 4) was included as a random factor. 
Tukey test was used for comparisons in all the models. 
To test the hypothesis that cattle with a high ovarian 
follicular population are more fertile than herd mates 
with a smaller ovarian reserve, heifers were ranked into 
3 groups (low = 20%, intermediate = 60%, high = 20%) 
based on AMH concentrations and AFC, respectively. 

Succu et al.: MATERNAL HEAT STRESS AND FETAL OVARIAN RESERVE
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Differences among groups in age at first service, number 
of services per conception, and age at first conception 
were analyzed with ANOVA. Differences with P ≤ 0.05 
were considered significant. All results are expressed as 
mean ± standard error.

RESULTS

The AFC and Peripheral AMH Concentrations  
in Young Adult Heifers

The mean circulating AMH concentrations per 
heifer (±SEM) were 512.48 ± 25.01 pg/mL, ranging 
from 16.83 to 3909.44 pg/mL per animal (n = 310). 
The mean AFC was 10.61 ± 0.32, and individual AFC 
ranged from 3 to 36 (n = 258). Distributions of heifers 
by AMH concentrations (panel A) and AFC (panel B) 
are presented in Figure 2. Serum AMH concentrations 
and AFC were highly positively correlated (R = 0.70; 
P < 0.0001; Figure 3).

The THI During Summer and Winter

The mean monthly THI during the months of the 
study are reported in Figure 4. During the first tri-
mester of fetal life of heifers in the summer group, the 
average monthly THI was 69.78 ± 2.58 from May to 
August 2015 and 68.89 ± 2.63 from May to August 
2016, respectively. During the season of conception of 
the winter group, the mean monthly THI was 54.91 ± 
1.08.

Influence of Season on AFC and Peripheral AMH 
Concentrations in Offspring

Both serum AMH concentrations (Figure 5, panel A) 
and AFC (Figure 5, panel B) were lower (P < 0.0001) 
in summer compared with winter heifers. Neither AMH 
nor AFC were influenced by farm and by age at sam-
pling and ultrasonography.

Influence of Lactation Status of Dams on AFC  
and Serum AMH Concentrations in Offspring

Heifers born to dams that were not being milked dur-
ing gestation had lower AMH concentrations and AFC 
compared with offspring of cows on their first lactation 
(P < 0.05), whereas no difference was detected with 
daughters of cows on second or greater compared with 
first lactation (Table 1). The AMH and AFC were simi-
lar between offspring of cows on their first and second 
or greater lactation (Table 1).

Influence of Season on Offspring Fertility

Heifers in the summer and winter groups had a simi-
lar age at first service (summer 15.40 ± 0.16; winter 
14.43 ± 0.15 mo), at first conception (summer 16.13 
± 0.20; winter 15.29 ± 0.19 mo), and at first calving 
(summer 25.18 ± 0.18; winter 24.43 ± 0.20 mo). No 
difference was observed between groups in the number 
of services per conception (summer 1.48 ± 0.07; winter 
1.54 ± 0.08).

Succu et al.: MATERNAL HEAT STRESS AND FETAL OVARIAN RESERVE

Figure 1. Experimental protocol. Based on the season from conception to the end of the first trimester of their fetal life, young adult heif-
ers were placed into 2 groups: heifers born to mothers that conceived and spent the first trimester of pregnancy during May through August 
(summer group) or November through March (winter group), and the mean monthly temperature-humidity index (THI) was determined. To 
test whether exposure of dams to high environmental temperatures during early gestation resulted in diminished ovarian follicular population in 
their progeny (as young adult heifers), the total number of follicles ≥3 mm in diameter (antral follicle count; AFC) and anti-Müllerian hormone 
(AMH) peripheral concentrations were determined. Reproductive parameters were recorded to test the hypothesis that high environmental tem-
peratures during the first trimester of fetal life are negatively associated with fertility in Holstein Friesian female cattle.
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Fertility, AFC, and AMH

When they were inseminated for the first time, heif-
ers with low AMH concentrations were older compared 
with herd mates with intermediate AMH concentrations 
(Table 2), but no difference was detected between the 

low and high AMH group in age at first service. Age at 
first conception and at first calving, and the number of 
services per conception were similar among heifers with 
different AMH concentrations (Table 2). No difference 
was detected in any of the fertility measures among 
AFC groups (data not shown).

Succu et al.: MATERNAL HEAT STRESS AND FETAL OVARIAN RESERVE

Figure 2. Frequency distribution of anti-Müllerian hormone (AMH) peripheral concentrations (panel A; n = 310) and the total number of 
follicles ≥3 mm in diameter (antral follicle count; AFC) detected using ovarian ultrasonography (panel B; n = 258) on a random day of the 
estrous cycle in 16-mo-old Holstein heifers.
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DISCUSSION

The most relevant findings of this study were that (1) 
AMH and AFC (2 markers of the number of healthy fol-
licles) were lower in young adult heifers exposed to high 
environmental temperatures during the first trimester 
of fetal life compared with heifers that were not exposed 
to high environmental temperatures and humidity in 
their early uterine life, (2) AMH and AFC were lower 
in heifers born to nonlactating dams compared with 
daughters of lactating cows, and (3) despite the nega-
tive effect of environmental temperature and humidity 
and lactation on size of the ovarian follicular popula-
tion, fertility at first conception was not impaired.

In cattle, high temperatures and humidity interfere 
with follicular development, peripheral hormonal con-
centrations, and uterine environment, thus impairing 
oocyte competence and early embryonic development 
(Zeron et al., 2001; De Rensis and Scaramuzzi, 2003; 
Dash et al., 2016; Santana et al., 2017). Also, mater-
nal exposure to heat stress during gestation can affect 
development of the conceptus with long-term conse-
quences after birth. In dairy cows, maternal heat stress 
in late gestation induced low birth weight, reduced to-
tal plasma protein concentrations and hematocrit, and 
impaired the immunocompetence of the calves (Tao 
and Dahl, 2013; Tao et al., 2014; Monteiro et al., 2016). 
For the first time, we provided evidence that high air 
temperatures and humidity in the preconception period 

and in the earliest stages of gestation are linked to a 
small population of healthy ovarian follicles in the off-
spring of female cattle. The developing gonad may be 
highly sensitive to external stimuli during this early 
window of exposure because it coincides with the peak 
in number of germ cells in the bovine fetus (Erickson, 
1966; Rüsse, 1983; Tanaka et al., 2001). This finding is 
in contrast with recent evidence of the lack of difference 
in AMH concentrations between cows born to dams 
exposed to heat stress in the first trimester of gesta-
tion compared with unexposed mothers (Akbarinejad 
et al., 2017). Such discrepancy between the 2 studies 
may be due to the differences in the number of animals 
enrolled and in the age at AMH assessment (heifers vs. 
cows). Here, AMH and AFC were assessed when ani-
mals were 1.4 yr old, sexually mature, yet nulliparous. 
This postpubertal time frame was chosen because AMH 
concentrations vary in prepubertal heifers (Monniaux 
et al., 2012; El-Sheikh Ali et al., 2017; Mossa et al., 
2017), but are stable during estrous cycles (Ireland et 
al., 2011; Monniaux et al., 2012; Ribeiro et al., 2014). 
In women, higher AMH concentrations were recently 
observed in early postmenarchal girls compared with 
adult women with regular, ovulatory cycles (Ortega et 
al., 2020), but others report that AMH concentrations 
are stable from childhood to early adulthood (Hagen et 
al., 2011; Kelsey et al., 2011) In cattle, there is no evi-
dence indicating that AFC or AMH are affected by the 
number of estrous cycles since puberty. Also, neither 
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Figure 3. Association between anti-Müllerian hormone (AMH) peripheral concentrations and the total number of follicles ≥3 mm in diam-
eter (antral follicle count; AFC) detected with ovarian ultrasonography on a random day of the estrous cycle in 16-mo-old Holstein heifers (n = 
258). Serum AMH concentrations and AFC were highly positively correlated (r = 0.70; P < 0.0001).
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AMH nor AFC were influenced by age at sampling and 
ultrasonography and by farm in our study, indicating 
that the observed differences in the size of the ovarian 
follicular population may be attributed to the environ-
mental conditions in early fetal life.

Moreover, a stringent correlation between AMH and 
AFC was observed, as previously reported (Ireland et 
al., 2008; Rico et al., 2009; Baldrighi et al., 2014; Batis-
ta et al., 2014; Ghanem et al., 2016), providing further 
evidence for their reliability as markers of the number 
of healthy ovarian follicles and oocytes. Nevertheless, 
irrespective of season of conception, AMH peripheral 
concentrations in all heifers were highly variable among 
individuals and similar to previously reported values 
in Holstein cattle (Guerreiro et al., 2014; Ribeiro et 
al., 2014), whereas the mean AFC was lower compared 
with other reports (Mossa et al., 2012; Martinez et al., 
2016). Indeed, in our previous studies the mean AFC 
ranged from 4 to 61 per cow, whereas in the present 
work AFC varied from 3 to 36 follicles per heifer. The 
reason for this narrow AFC range is unclear. It could 
be due to (1) an inherent variation in the AFC among 
genetic strains (Baldrighi et al., 2014; Batista et al., 
2014), similar to the racial and ethnic differences ob-
served in women (Schuh-Huerta et al., 2012; Tal and 
Seifer, 2013), (2) differences in the detection of the 
antral follicles by ultrasonography among operators, 
or (3) the presence of numerous early follicles with a 
reduced diameter that, although producing AMH, may 
not be visualized by ultrasonography.

The biological pathways by which high air tempera-
tures and humidity may have negatively influenced fe-
tal follicular development were beyond the scope of this 
study. Nevertheless, we speculate that high THI during 
summer may have increased the body temperature of 
pregnant dams, resulting in hyperthermia. Cattle ex-
posed to heat stress reduce their feed intake (Ominski 
et al., 2002), and we have previously demonstrated that 
heifers born to nutritionally restricted mothers during 
the first trimester of gestation had a diminished ovarian 
population of healthy follicles and oocytes (Mossa et 
al., 2013). This is demonstrated by consistently lower 
circulating AMH concentrations from 4 mo to 1.8 yr 
of age, lower AFC (number of antral follicles growing 
during follicular waves) from 7 wk to 1.6 yr of age, 
and increased follicle-stimulating hormone concentra-
tions, a phenotypic characteristic of cattle with a low 
AFC (Burns et al., 2005; Ireland et al., 2007; Jimenez-
Krassel et al., 2009; Mossa et al., 2010b). Thus, it is 
plausible that the exposure to high air temperatures 
and humidity may have impaired feed intake in the 
mothers during early gestation, thus reducing the en-
ergy supply during fetal gonadal development. Indeed, 
other factors associated with summer may have influ-
enced fetal follicular development. Dietary ration may 
have been different in summer versus winter, as the 
TMR was composed of home-grown forage crops, which 
were harvested once a year and either ensiled (corn) 
or stored as hay. Silage storage may have influenced 
the nutritional quality of the ration offered to dams 
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Figure 4. Mean (±SEM) monthly temperature-humidity index (THI) recorded in 2 climatic stations (CS1, black bars, and CS2, gray bars) 
from March 2015 to December 2016. Heifers were conceived and spent the first trimester of their fetal life during May through August in 2015 
and 2016 for the summer group (n = 176), and November 2015 through March 2016 for the winter group (n = 134), respectively. A THI ≥68 
(dashed line) was considered an indicator of high environmental temperatures and potential heat stress (Zimbelman et al., 2009).
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and offspring in the different seasons (Bernardes et al., 
2018), and moderate variations in ration formulation 
may have occurred during the duration of the study as 
part of the routine herd management practices. Other 
management practices, such as number and time of 
milking, were constant through the summer and winter. 
Nevertheless, because the experimental design of this 
study did not allow to control for several managerial 
and environmental variables, the observed differences 
in the ovarian follicular population of the offspring 

cannot be exclusively attributed to the environmental 
conditions in early pregnancy.

Vitamin D is a steroid hormone whose deficiency 
has been associated with a 25% fertility reduction in 
rats (Halloran and DeLuca, 1980), and recent evidence 
suggests that low vitamin D levels have a negative 
effect on the ovarian reserve in women (Shahrokhi et 
al., 2018). Cattle synthetize vitamin D3 (cholecalcif-
erol) following exposure to sunlight, and obtain both 
vitamin D2 (ergocalciferol) and D3 through dietary 
sources (Hidiroglou et al., 1985; Hymøller and Jensen, 
2010). Although animals enrolled in this study were 
permanently housed in freestall barns with a shed, the 
increase in the number of hours of daylight during sum-
mer may have led to higher peripheral concentrations 
of vitamin D in early gestation in dams of the summer 
group. Vitamin D significantly decreased AMH expres-
sion from hen granulosa cells of small growing follicles 
and caused a significant increase in the expression of 
FSHR (Wojtusik and Johnson, 2012). Because AMH is 
considered to reduce premature exhaustion of the ovar-
ian reserve by inhibiting primordial follicular growth 
(Dewailly et al., 2014), the AMH decrease in the first 
trimester of pregnancy of dams in the summer group 
may have resulted in a premature activation of follicu-
lar growth and consequent early follicular depletion in 
fetal ovaries.

Another important finding of this work was that 
AFC and AMH were lower in heifers born to nonlactat-
ing dams compared with daughters of cows in their first 
lactation, irrespective of season of early fetal develop-
ment. This finding is in accordance with evidence from 
our previous study conducted on Irish Holstein Friesian 
cattle in a pasture-based system, where daughters of 
heifers had on average 3 follicles less than daughters 
of lactating dams (Walsh et al., 2014). Similarly, AMH 
concentrations were greater in Holstein heifers born 
to multiparous cows compared with nulliparous heif-
ers (Akbarinejad et al., 2018), and beef heifers born to 
cows had more antral follicles than herd mates born to 
cows (McNeel et al., 2017). The repeatability of this 
finding across independent studies conducted in dif-
ferent countries and farming conditions is remarkable; 
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Figure 5. Mean (±SEM) peripheral concentrations of anti-Mülle-
rian hormone (AMH; panel A) and total number of follicles ≥3 mm in 
diameter (antral follicle count; AFC; panel B) on a random day of the 
estrous cycle in 310 sixteen-month-old Holstein Friesian dairy heifers 
that were conceived and spent the first trimester of their fetal life in 
May through August (summer; n = 176) or November through March 
(winter; n = 134). Different letters a,b indicate a significant difference 
(P < 0.0001).

Table 1. Effect of lactation number of the dam at conception on the mean (±SEM) peripheral concentrations 
of anti-Müllerian hormone (AMH) and total number of follicles ≥3 mm in diameter (antral follicle count; AFC) 
detected on a random day of the estrous cycle in 16-mo-old Holstein heifers

Item Lactation 0 Lactation 1 Lactation ≥2 P-value

Number of heifers 147 76 86  
AMH (pg/mL) 441.53 ± 28.63a 612.75 ± 63.05b 543.99 ± 48.91ab <0.01
Number of heifers 124 63 74  
AFC 9.64 ± 0.43a 11.79 ± 0.80b 11.22 ± 0.54ab <0.05
a,bDifferent superscripted letters within the same row indicate statistical differences (P < 0.05).



Journal of Dairy Science Vol. 103 No. 12, 2020

11965

thus, it is likely that nutrients are partitioned toward 
maternal rather than fetal growth in pregnant heifers 
(Scholl et al., 1994), resulting in the impairment of the 
ovarian follicular reserve in the progeny. This possi-
bility is further confirmed by the lack of association 
between dam milk production before conception and 
during pregnancy with daughter AFC in Holstein cows 
(Walsh et al., 2014). Nevertheless, in the present study, 
heifers born to cows in their second or later lactation 
had similar AFC and AMH compared with daughters 
of nulliparous and primiparous dams. Thus, the poten-
tial association between lactation number of the dam 
and the ovarian follicular population of the progeny is 
not clear and warrants further investigation.

The lack of association between season of conception 
and fertility contradicted our initial hypothesis. Due to 
the project time frame, we only collected reproductive 
measurements from the first calving of the progeny, but 
the potential decrease in fertility in animals exposed 
to heat stress as fetuses may be evident when cows 
are lactating, and thus more prone to reproductive 
failure. It is also possible that the number of animals 
enrolled in this study was insufficient to detect differ-
ences in fertility. Indeed, heifers in the winter group 
were on average 22 d younger at first calving compared 
with animals in the summer group, yet no statistically 
significant difference was observed. It should also be 
noted that heifers in the summer group received their 
first service during months with higher THI and longer 
days (March–September) compared with heifers in the 
winter group, which were inseminated for the first time 
from September to April, when days were shorter and 
air temperatures were lower. It is likely that heifers in 
the summer group were exposed to heat stress at the 
time of their first service, but because the months at 
first insemination partially overlapped between groups, 
the potential cumulative effect of heat stress occur-
ring both before and after birth on a heifer’s fertility 
may have not been detected. Therefore, it should be 
investigated with controlled experiments. Indeed, re-
cent evidence from more than 600,000 lactation records 

indicates that cows conceived in winter were on aver-
age 10 d younger at their first calving compared with 
herd mates conceived in summer (Pinedo and De Vries, 
2017).

Dairy farmers often use lower-cost semen in summer 
because fertility declines when air temperatures and 
humidity are high (Collier et al., 2006). This practice 
may result in lower genetic merit for heifers conceived 
in summer compared with those conceived in winter. 
Higher parent-average (estimates of the genetic merit 
underlying the survival, fertility, and milk yield of the 
cow based on her sire and dam) for milk, fat, protein, 
productive life, and net merit have been reported in 
cows conceived in winter compared with herd mates 
conceived in summer (Pinedo and De Vries, 2017). Yet, 
parent-average for daughter pregnancy rate were higher 
in cows conceived in summer, and authors suggest that 
the lower performance of cows conceived in summer 
could not be completely explained by use of lower 
quality genetics in summer breedings (Pinedo and De 
Vries, 2017). Although we did not collect genetic data, 
farmers used the same pool of bull in different seasons; 
therefore, it is unlikely that the difference in the AFC 
and AMH between summer and winter heifers could 
have been influenced by the use of semen with lower 
genetic merit during the summer months.

Nevertheless, albeit similar in fertility, cattle exposed 
to high temperatures and humidity in early pregnancy 
may have a shorter life compared with cattle conceived 
in winter. We previously tested the hypothesis that 
AMH in heifers was positively linked to productive 
herd life (time in herd after calving). Results showed 
that cows in the quartile (Q) with the lowest AMH 
concentrations as heifers (Q1) completed fewer lacta-
tions compared with Q3 cows and had a 180-d average 
shorter productive herd life compared with Q2 and Q3 
cows. Moreover, the probability of being culled after 
birth of the first calf was higher for the Q1 compared 
with Q2, Q3, and Q4 cows, documenting that a single 
determination of AMH concentrations in young adult 
Holstein heifers is predictive of their future herd lon-
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Table 2. Reproductive performance in Holstein heifers (mean ± SEM) with low (20%), intermediate (60%), and high (20%) peripheral anti-
Müllerian hormone (AMH) concentrations

Item

AMH category

P-valueLow Intermediate High

Number of heifers 61 186 63  
AMH (pg/mL) 155.08 ± 6.37 398.24 ± 9.74 1195.8 ± 65.8  
Age at first insemination (mo) 15.59 ± 0.26a 14.85 ± 0.15b 14.73 ± 0.26ab 0.038
Age at first conception (mo) 16.02 ± 0.32 15.73 ± 0.18 15.62 ± 0.32 0.65
Age at first calving (mo) 25.29 ± 0.31 24.82 ± 0.18 24.73 ± 0.30 0.28
Number of services per conception 1.45 ± 0.12 1.56 ± 0.07 1.39 ± 0.12 0.4
a,bValues within a row with no common superscript differ (P < 0.05).
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gevity (Jimenez-Krassel et al., 2015). In the present 
study, we were not able to investigate the survival of 
heifers in the herd after their first lactation, but we 
speculated that animals in the summer group may have 
had lower longevity compared with cattle in the winter 
group, possibly due to their impaired ovarian follicular 
population. Indeed, others report that the odds of sur-
vival to a second calving for cows conceived in winter 
were 1.21 times the odds of survival for cows conceived 
in summer (Pinedo and De Vries, 2017).

Moreover, we tested the hypothesis that, regardless 
of season during early fetal development, cattle with 
a high ovarian follicular population are more fertile 
than herd mates with smaller ovarian reserve. Age at 
first service was greater in heifers with low compared 
with intermediate AMH concentrations, but age at 
first calving and the number of services per concep-
tion were similar among heifers with different AMH 
concentrations. These findings indicate that the size of 
the ovarian follicular population in pubertal nulliparous 
heifers is not predictive of their fertility at first concep-
tion, and are in accordance with previous studies that 
conception rates to first AI, services per conception, 
and days open after calving until pregnant were similar 
among Holstein heifers in the different AMH quartiles 
(Jimenez-Krassel et al., 2015). Further, no association 
was previously detected between serum AMH, preg-
nancy outcomes at first service, and pregnancy risk up 
to 250 d postpartum (Gobikrushanth et al., 2018). On 
the other hand, we previously observed that dairy cows 
with a low AFC had a lower conception rate to first AI, 
greater number of AI to conceive, and higher calving 
interval compared with cows with an intermediate or 
high AFC (Mossa et al., 2012). Greater pregnancy rates 
and lower incidence of pregnancy loss in dairy cows 
with high AMH (Ribeiro et al., 2014), and lower preg-
nancy rates in beef heifers (Cushman et al., 2009) and 
dairy cows with low AFC (Martinez et al., 2016) were 
also reported. Therefore, the existence of an association 
between the size of the ovarian reserve and fertility in 
cattle is yet to be established.

CONCLUSIONS

This study investigated, for the first time, the poten-
tial long-term effect of high environmental temperatures 
and humidity in early pregnancy on gonadal develop-
ment and subsequent fertility in female offspring. We 
provided evidence for a negative association between 
high THI during the first trimester of fetal life and 
the size of the ovarian reserve in young adult heifers, 
as assessed by lower serum AMH concentrations and 
AFC in heifers conceived in summer compared with 
winter months. Results also showed that the size of the 

ovarian reserve was lower in daughters of nonlactating 
dams compared with heifers born to lactating cows. 
Collectively, these findings indicate that the number 
of ovarian follicles and oocytes in cattle can be nega-
tively programmed by high temperatures and humidity 
occurring in the first trimester of fetal life. Although 
a smaller ovarian reserve did not impair fertility in 
heifers, the effects of high environmental temperatures 
and humidity in early pregnancy on offspring gonadal 
development warrant further research, as the potential 
decrease in fertility and longevity in animals exposed 
to heat stress as fetuses may be evident later in life, 
when cows are lactating and more prone to reproduc-
tive failure.
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