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Abstract

Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences

on crop yields of the main agricultural commodities is well known, the global socio-economic

consequences of ENSO still remain uncertain. Given the global importance of wheat for

global consumption by providing 20% of global calories and nourishment, the monitoring

and prediction of ENSO-induced variations in the worldwide wheat market are essential for

allowing national governments to manage the associated risks and to ensure the supplies of

wheat for consumers, including the underprivileged. To this end, we propose a global

dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices,

exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six

main wheat-exporting countries—the United States, Argentina, Australia, Canada, the

EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakh-

stan—plus the rest of the world. The study shows that La Niña exerts, on average, a stron-

ger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El

Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidenc-

ing, once again, its steady impact in both the short and long run. Our findings emphasize the

importance of the two ENSO extreme phases for the worldwide wheat market.

Introduction

In November 2016 the National Oceanic and Atmospheric Administration (NOAA) issued a

warning that weak La Niña conditions were observed during October 2016. These conditions

are likely to persist during the winter of 2016–2017. La Niña and El Niño conditions are oppo-

site phases of what is known as the El Niño-Southern Oscillation (ENSO) cycle. ENSO is a

cyclical ocean-atmosphere phenomenon which originates in the tropical Pacific. The El Niño

phase is a periodic warming of sea surface temperatures across the central and central east

equatorial Pacific. While El Niño brings heavy rains to south-eastern South America, western

North America and eastern Africa, it creates droughts in Australia, India and Indonesia. The

opposite phase, known as La Niña, is a periodic cooling of ocean surface temperatures in the

central and central east equatorial Pacific. La Niña spreads heavy rains in the western Pacific,

including Australia, and a colder than average temperatures in Canada and the western and
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northern United States, [1, 2]. It is now clear that ENSO can trigger noticeable anomalies in

rainfall and temperature patterns around the globe, including Europe [3, 4].

ENSO influences, through “teleconnections”, the global dynamics of seasonal winds, rain-

fall and temperature. Although the development and evolution of ENSO events and their

impacts on crop yields of the main agricultural commodities are known [5, 6, 7, among oth-

ers], the global socio-economic consequences of ENSO are still uncertain. [8] used several vec-

tor autoregressive (VAR) models to examine the historical effects of the ENSO cycle on world

primary commodity prices and on some indicators of economic activity. He found that a posi-

tive shock to the ENSO variable raises real commodity price inflation between 3.5 and 4 per-

centage points. In addition, he found that ENSO appears to account for almost 20% of

commodity price inflation movements. [8]’s evidence confirmed that ENSO influences world

consumer price inflation and world economic activities. [9] used correlation and Granger cau-

sality tests to study the effects of the ENSO phenomenon upon 22 economies and their busi-

ness cycles. They found that the ENSO impact is much weaker compared to the study by [8].

Their main result shows that El Niño has relatively few detectable effects on the business cycles

of most of the countries, with the exceptions of South Africa, Australia and India. More

recently, [10] employed a dynamic multi-country model to analyze the international macro-

economic transmission of ENSO weather shocks. Their results highlight that there are consid-

erable heterogeneities in the responses of different countries to ENSO-positive (i.e. El Niño)

shocks. Notably, while some countries experience short-lived falls in economic activity in

response to the event, for other countries (the United States and the European region), the El

Niño occurrence has a growth-enhancing effect. In addition, most countries experience short-

run inflationary pressures as both energy and non-fuel commodity prices increase. Other

researchers have examined the microeconomic impact of ENSO on commodity prices such as

vegetable oil and coffee, [11–12]. [11] demonstrated the asymmetric effects of El Niño and La

Niña events on coffee prices and [12] found that El Niño events result in the increase of vegeta-

ble oil prices.

Given the importance of wheat in providing more nourishment for human consumption

than any other food source, the monitoring and prediction of ENSO-induced variations on

wheat yields, export prices and stocks are essential in ensuring that national governments have

sufficient supplies of wheat for consumers, including poor segments of the population. Wheat

is the leading source of vegetable protein providing around 20% of world calories for human

consumption. In 2014, more than 221 million hectares were planted and produced approxi-

mately 174 million metric tons. The global wheat trade is close to that of maize and rice com-

bined (184 million tons in the marketing year 2015–2016). In order to fill the knowledge gap

of ENSO variations and effects on the worldwide wheat market, we propose a global dynamic

model to investigate the impact of ENSO occurrences on wheat yields, export prices, stocks

and exports.

Since interdependencies exist among different countries and regions, a global dynamic

model allows us to take into account both the temporal and cross-sectional dimensions of

wheat data. We think this is an important feature as we expect that ENSO occurrences affect

both the domestic and the global wheat markets. Specifically, we use a new version of the

global vector autoregressive (GVAR) model presented by [13] to analyze the impacts of El

Niño and La Niña on wheat export prices, yield anomalies, stocks and exports. Our framework

focuses on seven country and region-specific models: the six main wheat-exporting countries

and regions the United States, Argentina, Australia, Canada, the EU, the main Black Sea

wheat-exporting countries of Russia, Ukraine and Kazakhstan (RUK) plus the rest of the

world (ROW). We estimate a vector error correction model for each country/region, where

the domestic endogenous variables of wheat yield anomalies, prices, stocks, exports and food
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prices are linked to the corresponding foreign variables to match the international relation-

ships of the country or region under consideration. The individual models are then aggregated

by using trade weights to generate the global dynamic model. To deal with the multiple aspects

of ENSO, it has been suggested [14] that more than one index could be combined into a com-

posite index. The Multivariate ENSO Index (MEI) links six different ENSO indicators and is

considered as one of the most representative measure of ENSO events [15]. In each of the indi-

vidual models, we include a measure of the intensity of ENSO occurrence through the MEI

measure. Positive values of the MEI represent the warm ENSO phase, i.e. El Niño, while nega-

tive MEI values represent the cold ENSO phase, i.e. La Niña. Exogenous shocks connected to

El Niño or La Niña anomalies can be easily taken into account in the GVAR model which

admits for direct, or first-round, effects on economies of individual countries as well as sec-

ond-round effects originating from the international market, thus allowing for complex inter-

actions and interdependency at a variety of levels (domestic and international).

The results show that ENSO occurrence affects all export countries, and it has differentiated

relevant first and second-round effects in the short as well as the long run. El Niño and La

Niña exert asymmetric effects on wheat yields, prices, stock-to-use ratios and exports. At the

global level, El Niño events have negative impacts on wheat yields (especially during the first

semester), with Australia experiencing the highest negative impact. Among the main wheat

exporters, however, Argentina and the EU are exceptions, showing positive reactions to the

shocks. La Niña, on the other hand, creates an average a stronger negative effect than El Niño,

with the exception of the US, which presents an increased wheat yield in the first semester.

From observing wheat export prices, it is evident that La Niña presents positive, significant

and steady effects, with exports and stocks mimicking the yield movements.

Background

It is now recognized that atmospheric and oceanic cycles can induce climate anomalies with

several studies emphasizing the role of two extreme anomalies, El Niño and La Niña, in influ-

encing agricultural commodity production [16, 17, 18, 19, 20, 7].

Different measures of ENSO are available. Some of them are presented in Fig 1. All the indi-

cators are calculated as bimonthly averages. The first graph shows the Multivariate ENSO

Index (MEI). It consists of the six main observed climatic variables in the tropical Pacific: sea-

level pressure, zonal and meridional components of the surface wind, sea surface temperature,

surface air temperature, and percentage of total cloud cover. The MEI is calculated as the first

unrotated principal component of all six combined fields. This is accomplished by the initial

normalization of the total variance of each field, followed by the extraction of the first principal

component, [21]. While MEI takes into account the different indicators of climate anomalies,

the other two ENSO measurements refer to single indicators. The Sea Surface Temperature

(SST) anomalies are computed as deviations between sea surface temperatures in the 3.4

Pacific region (i.e. the central and central-eastern equatorial Pacific), and the region’s historical

average. Following this indicator, El Niño and La Niña refer, respectively, to warmer or cooler

sea temperatures in the 3.4 zone of the Pacific. The last index is the Southern Oscillation Index

(SOI). It measures the differences in air pressure in the South Pacific (between Tahiti and Dar-

win). Deviations of the SOI from its historical averages indicate the presence of El Niño (the

warm phase of the Southern Oscillation cycle) or La Niña (the cold phase of the Southern

Oscillation cycle). A further measure is the Oceanic Niño Index (ONI) which uses the same

data as SST but it is defined as a three-month running mean. In this scenario, to be classified

as an El Niño or La Niña phase, the anomalies must exceed +0.5C or −0.5C for at least five con-

secutive months.

ENSO impact on worldwide wheat market
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The previous indicators have been extensively used in the analysis of the impacts of ENSO

anomalies mainly on crop yields and prices. In a recent paper, [7] used the ONI measure to

provide global maps that describe ENSOs effects on some crop yields, including wheat. Analy-

ses of yield anomalies (deviations from the five-year running mean) show significant negative

impacts of El Niño on the wheat yields in parts of China, the United States of America, Austra-

lia, Mexico and parts of Europe. Positive impacts of El Niño are recorded in Argentina,

Kazakhstan, and parts of South Africa. Significant negative impacts of La Niña appear in parts

of North, Central and South America, and Ethiopia. The La Niña phase exerts significant posi-

tive impacts in parts of South and West Africa. In terms of the global mean, wheat yields in

both El Niño and La Niña years tend to be below normal (-4.0 to -0.2%, [7]), with La Niña

Fig 1. ENSO event indicators: El Niño years (black), La Niña years (grey). Standardized variables.

https://doi.org/10.1371/journal.pone.0179086.g001
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generally showing a stronger and negative impact. The main differences between [7] and our

work are, firstly, that [7] presented grid-cell crop yields movements following ENSO anomalies

at global level for the period 19822006. Due to lack of data for the main economic variables, we

are only able to focus on the main wheat export countries and a Rest of World regions ana-

lyzed during a different period, 2000–2016. Moreover, we are more interested in the analysis

of the dynamic responses of wheat yield anomalies, export prices, wheat exports, and stock-to-

use ratio following an ENSO shock, rather than in providing a world map of the average

impacts of ENSO on the wheat yields. Interestingly, despite the differences in the approach,

the two studies show similar results with respect to the ENSO impacts on yields.

Given the severe effects of ENSO occurrence on crop yields, some studies have also ana-

lyzed its impact on commodity prices. Using home market models (i.e. without trade) and the

SOI index, [22] shows that a statistically significant correlation exists between extreme ENSO

occurrence and soya bean futures prices. However the same is not true for wheat and corn

futures prices. Similar results have been shown by [9]. [12] examined the effects of El Niño on

market dynamics of major vegetable oil prices. Using a smooth transition model they showed

that El Niño events result in the vegetable oil price increasing, while La Niña occurrence results

in a price decrease. [11] also demonstrated the asymmetric effects of El Niño and La Niña

events on coffee prices.

In contrast to the previous works that focus on the analysis of country-specific markets, we

employ a dynamic multi-country model to analyze effects of El Niño and La Niña occurrences

on wheat markets, taking into account trade effects. We expect that a multi-country specifica-

tion has many advantages. First, the model allow to examine the market fluctuations and inter-

actions among countries. This is important given the world dimensions of wheat price

dynamics that involve different countries. Secondly, it allows us to model for example the evo-

lution of wheat export prices generated by possible shocks on domestic variables such as wheat

yield, the nominal exchange rate, and input costs, and by the impacts of foreign variables—i.e,

variables that are strictly linked to domestic variables that may influence the domestic econ-

omy. Finally, and most importantly, a dynamic multi-country model can take into account not

only first-round impacts of ENSO events on the home markets but also second-round effects

such as, for instance, export price propagation of shocks through the international markets.

A GVAR-climate model

The dynamic multi-country model is mainly based on the Global Wheat Market Model

(GLOWMM) proposed by [13]. Specifically, we use a global vector autoregression (GVAR)

model that is particularly suited to the analysis of the channels of transmission of shocks from

one country, or region, to others markets. As previously reported, we believe this is a funda-

mental characteristic that any commodity model must contain in order to allow analysis of

how exogenous shocks, like an ENSO occurrence, impact different economies and spread

around the world. The GLOWMM considers the six main export regions: the United States,

Argentina, Australia, Canada, the EU, the group of Black Sea countries, Russia, Ukraine and

Kazakhstan (RUK). A further region is given by the rest of the world (ROW) and is included

in order to take into account for the effects exerted on the market by all other countries. For

each country, we consider as endogenous variables the wheat export prices peit quoted in US

dollars, the wheat stock-to-use ratio zit, defined as the sum of ending stocks divided by the

total utilization, and the nominal exchange rate eit defined as the local currency in region i per

unit of US dollar. The index of consumer food prices is represented as pcit . This latter variable is

used as a benchmark for food inflation in each region i. We also include the fertilizer price pfit
is defined in local currency. In this version of the paper, the total exports xeit and the wheat

ENSO impact on worldwide wheat market

PLOS ONE | https://doi.org/10.1371/journal.pone.0179086 June 8, 2017 5 / 22

https://doi.org/10.1371/journal.pone.0179086


yield anomalies yait. This variable is obtained as deviations of the log of yield in each country

or region from their trend cycles computed by the [23] filter. Supporting information section

includes details and information on the dataset. The interested reader can refer to [24, 25], or

[26] recent book on GVAR modelling, and [13] for a review of this research field of analysis.

The previous variables, excluding yait and zit, are the log of indexes with the base year July/

2000-June/2001. Each country’s system of variables is also influenced by global exogenous var-

iables such as the oil price pot and by the ENSOt measurement. We focus the analysis on the

Multivariate ENSO Index (MEI) measurements, which synthesize a larger number of meteoro-

logical variables that can affect the ENSO event. As we will see in the “Robustness Checks” sec-

tion, although the signs and shapes of the effects of SST or SOI anomalies on wheat prices are

similar to the MEI indicator, some differences in the intensity of the effects have been

observed. Specifically, the MEI and SST generally report similar impacts, while the SOI

measurement shows minor effects on endogenous variables. One of the features of GVAR

specification is that it can include what are called “foreign variables”. In our case, they are

given by the average competitor prices pe�it ¼
P

j6¼iwjpejt, the average stock-to-use ratio

z�it ¼
P

j6¼iwjzjt, the effective exchange rate e�it ¼
P

j6¼iwjejt, the average of the food price indexes

pc�it ¼
P

j6¼iwjpcjt, the average yield anomalies and ya�it ¼
P

j6¼iwjyajt, xe�it ¼
P

j6¼iwjxejt that is the

average exports. The weights wj are given by the average export weights computed for the

wheat marketing years 2014-2016. Each foreign variable is defined using the constraint that

∑j 6¼ i wj = 1, and wii = 0. The choice of trade weights is based on the motivation that exogenous

shocks, including ENSO shocks, could be passed on in all countries or regions through the

trade channel.

The GVAR model specification requires two steps. In the first step a vector autoregressive

model with exogenous X variables, labelled VARX(pi, qi), is specified, where pi and qi are the

number of lags of the endogenous and exogenous variables, and the index i indicates the coun-

try or region i.
Hence the VARX(pi, qi) for each country is specified as,

�iðL; piÞyit ¼ ai0 þ LiðL; qiÞy�it þCiðL; qiÞxt þ εit i ¼ 1; . . . ;N; t ¼ 1 . . .T; ð1Þ

where ai0 is a (ki × 1) coefficient vector of the deterministic intercept, with ki the number of

endogenous variables in country i; yit is a (ki × 1) vector of country specific variables and

related (ki × ki) matrices of lagged coefficients �iðL; piÞ ¼ I �
Ppi

p¼1
�iLi, where L is the lag

operator. The variable y�it is a ðk�i � 1Þ vector of trade-weighted foreign variables and the corre-

sponding ðki � k�i Þmatrix lag polynomial denoted by Λi(L, qi). Ci(L, qi) is a matrix lag polyno-

mial connected to the global exogenous variables xt. The distinction between foreign variables

yit and the global exogenous variable xt is important for the analysis of the dynamic and statis-

tical properties of the GVAR model. Finally, εit is a (ki × 1) vector of zero mean, serially uncor-

related country-specific errors with a time-invariant variance matrix Sii i.e. εit * iid(0, Sii).

For inference and estimation purposes, we assume the weak exogeneity of y�it and rules out

long-run feedbacks from yit to y�it . Estimation of Eq (1) is performed using a vector error cor-

rection specification (VECMX) in order to take into account the integration properties of the

series. The VECMX country models are estimated separately for each country or region i. As is

well known a VARX form can always be rewritten as a VECMX form, and vice versa.

[13] showed (see pg. 1497-1498) that, by stacking all individual vector autoregressions in

Eq (1) and linking them by using a matrix of weights, it is easy to obtain the following global

vector autoregression

yt ¼ b0 þ F1yt� 1 þ F2yt� 2 þ . . .þ Fpyt� p þY0xt þY1xt� 1 þ . . .þYqxt� q þ vt ð2Þ
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where p and q are the maximum value of lags among the country-units i. Eq (2) can be used to

compute the marginal impact of the xt exogenous variable on the vector of endogenous yt. To

do this, it is useful to rewrite Eq (2) in a simpler GVAR(1,0) form [27] pp. 402-403,

Yt ¼ C þ AYt� 1 þ BXt þ Ut ð3Þ

From Eq (3), by successive substitution for lagged Yt’s and using the matrix J = [IK 0 � � � 0]

of dimension (K × (Kp + KXq)), where KX is the number of global exogenous variables in the

model, to select all the endogenous variables, we obtain

Ytþh ¼ JC
Xh� 1

j¼0

Aj þ JAhYt þ
Xh� 1

j¼0

JAjBxtþh� j þ
Xh� 1

j¼0

JAjJ 0vtþh� j; ð4Þ

and the coefficient matrices of the exogenous variables in the final form representation will be

given by

Dj ¼ JAjB; j ¼ 0; 1; . . . ; ð5Þ

Thus, the matrices Dj reflect the marginal impact, in the period j, of changes in the exogenous

variables on the endogenous variables of the system. In other words, after solving the Global

VAR model, the possible differential effects of El Niño and La Niña shocks on the endogenous

variables of different countries can be examined using the multipliers Eq (5).

As previously reported, the GLOWMM allows for six country models that refer to the main

export countries or regions, plus a further model for the rest of the world (ROW). These mod-

els are estimated separately at monthly frequency during the period June 2000 to June 2016.

As we have seen before, we consider the following set of endogenous variables

yit � ½peit; yait; xeit; zit; eit; p
c
it; p

f
it�
0
; i ¼ 0; 1; . . . ; ð6Þ

The yait variable is obtained as deviations of the log of yields in each country or region and

their trend cycles are computed by the [23]. We use a smoothing parameter of λ = 129600, as

suggested by [28] for monthly series. We do not include the exchange rate variable eit in the

US model as well as the export price in the ROW model that we assume is exogenously deter-

mined in the international wheat market [13]. Rather, export prices will influence the ROW

region from the foreign-specific variable. In addition we include the foreign-specific variables

constructed as (geometric) averages of the country-specific variables using as weights the

wheat-exporting country’s shares, i.e. the average competitor price pe�it , the average wheat

exports xe�it and yields ya�it , the effective exchange rate e�it—i.e. the average of a country’s bilat-

eral exchange rate—the average stock-to-use ratio z�it , and the average food price pc�it . Finally,

each country’s system of variables is also influenced by global (exogenous) variables given by

the world oil price pot , and by the ENSOt indicators. We define the ENSOt anomalies and

include them in the model through the deviation of the MEI index from the average values

during the period 2000–2016 and divided by the standard deviations. Positive values, greater

than 1, identify ElNiñot anomalies and negative values, below -1, identify LaNiñat anomalies.

Thus the GLOWMM model allows us to analyze the domestic and international effects of a

shock to ElNiñot or LaNiñat on wheat market variables.

Results

Before analyzing the results from the GVAR model, it is useful to introduce a brief analysis of

the main data used in the paper. Moreover, we will focus on the correlations among El Niño,

La Niña, extreme events and some economic endogenous variables which characterize the

ENSO impact on worldwide wheat market
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global wheat market, i.e. the average export prices, global yields, exports in volume and the

average stock-to-use ratio. Table 1 provides a summary of the statistics. As shown in Fig 2, the

wheat export prices in 2007-2008 were characterized by an astonishing rise (the wheat price

reached its maximum in the main export countries during February-March 2008), followed by

a sudden decline. Compared to the minimum value of the 2000-2016 period, the average

wheat export prices in 2008 rose by 158%, see Table 1. The literature has proposed numerous

factors to explain the commodity price movements, including growing food demand in devel-

oping countries, cost of inputs, weak US dollar, speculation in the commodity markets and

adverse weather impacts [29]. In Table 1 we also included statistics on wheat yield anomalies

(computed as log difference from yield trend-cycle), as well as exports and stock-to-use ratio.

Interestingly, during the months between February and March 2008, severe yield anomalies,

and export and stock-to-use ratio reductions were registered. Lastly, during the period of anal-

ysis, the variables reported in Table 1 were approximately symmetric given the low values of

the second Pearson’s coefficients.

Table 1. Key economic indicators of the global wheat market.

Variables Median Std Dev. Max Min Skewnessb

Export pricesa 5.16 0.38 6.06 4.48 0.03

Yields anomalies 0.90 8.39 17.04 -25.72 -0.27

Exportsa 4.96 0.33 5.49 4.00 -0.07

Stock-to-use ratio 0.34 0.08 0.57 0.17 0.27

Notes:
aLogarithms of index, base 2000.7-2001.6 = 100.
bThe skewness statistic is the second Pearson’s coefficient of skewness.

https://doi.org/10.1371/journal.pone.0179086.t001

Fig 2. Logs wheat export prices: July 2000June 2016. Index July 2000–June 2001 = 100.

https://doi.org/10.1371/journal.pone.0179086.g002
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We then analyzed possible correlation among the previous variables and El Niño and La

Niña extreme phases. To this end, we used percentiles. Specifically, values of the MEI indicator

higher than 0.637 (the 70th percentile) may indicate El Niño moderate or strong events and

values lower than −0.243 (the 30th percentile)denote strong or weak La Niña conditions. Val-

ues in the -0.243 to 0.637 interval were interpreted as ENSO neutral phase. Following the pre-

vious criteria, during the period of analysis between July 2000 and June 2016, 58 months were

characterized by El Niño conditions and approximately the same number of months (57) were

identified as La Niña extreme events. The remaining 78 months belong to the neutral phase.

Then, we computed the deviations of the economic variables from their trend-cycles and

selected these values according to the three ENSO’s phases. The correlation analysis among

these variables and the three ENSO phases can give a first insight into the ENSO impacts on

the wheat market. In Table 2 we noted that strong relationships with the economic variables

were evidenced by La Niña extreme events. Intensification of La Niña events gave rise to a

lower level of wheat yields and exports and increase in the wheat export prices. Although a

negative correlation was reported in the Table 2, the stock-to-use ratio was not significantly

influenced by La Niña conditions. El Niño events seemed to have minor effects at a global

level. The correlation coefficients were generally not significant, with the exception of exports

in volume. Similar results were reported for the ENSO neutral phase.

Despite the previous results being interesting, as they evidenced possible relationships

between ENSO events and economic variables, it is well known that the value of one economic

variable is usually connected with its own lags and depends on the values of other variables. In

other words, it is necessary to analyze the system of dynamic interrelationships between a

number, sometimes many, of economic variables. The GVAR model can accomplish this task.

This is crucial in the case of wheat market, given the global dimension, for example, of the

commodity-price dynamics, and the interconnected economic movements in most of

countries.

The first step of the GVAR model is the analysis of the non-stationary properties of the

series in the model. We compute the ADF test for the null hypothesis of the non-stationarity

of the series. The majority of the series are I(1), i.e. non-stationary, with the exception of the

ElNiñot, LaNiñat, and yield anomaly measures for which we reject the null hypothesis of non-

stationarity. The country-specific models are estimated subject to the reduced cointegration

rank restrictions [30, 31].

Table 2. Contemporaneous correlation between of El Niño, La Niña, and Neutral phases and main eco-

nomic variables.

Variables El Niño La Niña Neutral

Export prices -0.12

(0.19)

0.39

(0.00)

-0.15

(0.26)

Yields -0.13

(0.17)

-0.53

(0.00)

0.04

(0.33)

Exports -0.44

(0.00)

-0.47

(0.00)

0.01

(0.49)

Stock-to-Use ratio -0.03

(0.41)

-0.13

(0.17)

0.12

(0.28)

N. Observations 58 57 77

Notes: In parentheses the p-value statistics. La Niña variable has been multiplied by -1 to facilitate sign

comparison.

https://doi.org/10.1371/journal.pone.0179086.t002
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For each country VARX model in Eq (1), we use the Akaike criterion to infer the pi and qi
lag orders. We choose as maximum values pi = 3 and qi = 2. The Akaike criterion suggests val-

ues of pi = 2, 3, see Table 3, while the qi order is always equal to qi = 1. Further, for each regres-

sion and in each country model, we compute tests for the residual autocorrelation using the

modified LM statistic proposed in [32, 33]. On the whole, the results do not refuse the white-

noise residual autocorrelations hypothesis.

The previous results allow the estimation of the VARX eq (1) as a vector error correction

specification (VECMX). We analyze how the deterministic component enters the model. We

investigate two possible cases. In the first, we allow for an unrestricted intercept and no trend

coefficients. We also allow for a model with a co-trending restriction or an unrestricted inter-

cept [15]) and a test of whether the cointegrating relations are trended or not trended has been

carried out. The deterministic setup used for each region—case III (unrestricted intercept and

no trend coefficients) or case IV (unrestricted intercept and a co-trending restriction)—is pre-

sented in the fourth column of Table 3. The effects of shocks to the system model have been

considered using persistence profiles. On impact, the persistence profiles are normalized and

the rate at which they tend to zero provides information on the speed with which equilibrium

correction takes place in response to shocks. The estimated persistence profiles initially over-

shoot, i.e they exceed the value of one, but they tend to zero highlighting the cointegration

properties of the system. We note that the speed of convergence is very fast for all countries,

with the US showing the lowest rate of convergence.

The cointegrating rank was computed using the maximal eigenvalue test [31], as set out in

[34] for models with weakly exogenous I(1) regressors. The statistic is calculated at the 95%

significance level for case III or case IV depending on the results obtained from a likelihood

ratio test statistic. The case used for each region is also presented in Table 3. The number of

cointegrating equation is reported in Table 3. In all cases, the exact identity matrix of normal-

ized cointegrating vectors has been computed [27], pp. 249-250. For cointegrated models, the

coefficients structural stability can be as relevant in the short run as it is the long run. We pro-

pose different structural stability tests to analyze for possible parameter instability, using [35]

maximal OLS cumulative sum (CUSUM) statistic, and its mean square variant and [36] test.

The results show parameter stability during the period of analysis.

In Fig 3 we plot the predicted values (X-axis) versus the observed values (Y-axis) for yield

anomalies, export prices, export and stock-to-use ratio. The GVAR model seems very accurate,

showing a strong correlation between the models predictions and its actual results. The values

of the correlation coefficient range from the lowest value of 0.972 for the stock-to-use variable

and 0.998 for the export variable.

Table 3. Order, case and number of cointegrating relationships.

Country pi qi Case Cointegrating Relationships

USA 3 2 (III) 3

ARG 3 1 (IV) 2

AUS 3 1 (III) 3

CAN 2 2 (III) 1

RUK 3 2 (III) 2

EU 2 2 (IV) 3

ROW 3 2 (III) 2

Notes: Rank orders are derived using Johansen’s trace statistics at the 95% critical value level. The VARX pi

and qi orders are computed using Eq (1)

https://doi.org/10.1371/journal.pone.0179086.t003
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Using Eq (2), we simulate ENSO impulse responses on some endogenous variables intro-

ducing in the system one standard deviation shock to the ElNiñot and LaNiñat variables. We

derive the empirical distribution of impulse responses by employing a sieve bootstrap method

with 1000 replications. The endogenous variables are wheat yield anomalies, export price,

exports in volume and stock-to-use ratio. Fig 4 summarizes the main results that emerged

from the empirical experiment, plotting the distribution of the impact response of the endoge-

nous variables at time 0. La Niña exerts stronger and negative impacts on global yields, exports

and stock-to-use ratios than El Niño. Export prices generally increase following an ENSO

shock, with La Niña exerting, on average, the highest impact. Normal distributions have been

estimated from the 1000 impulse response replications since the Anderson-Darling and Jar-

que-Bera tests do not reject the null hypothesis that the samples are drawn from this

distribution.

Since the GLOWMM allows us to analyze how the shocks influence the endogenous vari-

ables and distribute among countries, in the following tables we report the contemporaneous

impacts of El Niño and La Niña one standard deviation shocks on various endogenous vari-

ables, as their cumulated effects after 1, 3, 6, 12, 24 and 48 months with their statistical signifi-

cance at one or two standard deviations. We start reporting the estimated median (computed

from the 1000 bootstrap replications) impulse responses on wheat yield anomalies. The results,

Fig 3. Scatter plot predicted (X-axis) and actual (Y-axis) values for some endogenous variables.

https://doi.org/10.1371/journal.pone.0179086.g003
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presented in Table 4, show that El Niño events generally have a negative impact on yield. Only

Argentina and the EU, among the export countries, show an increase in yields, while Australia

experiences the highest negative impact. These phenomena are largely known. [7] report that

Argentina’s wheat yield anomalies are positively related to El Niño, with the occurrence of pre-

cipitations higher than normal during the season of November-February, while Australia is

negatively affected, especially in the east coast, with hot and dry summers and increased fre-

quency of bush fires that cause yield reductions. Focusing on the effects of La Niña on wheat

yields, our results generally report a reduction of yields, with the exception of the USA, which

shows an increase in the first semester.

Given the negative effects on wheat yields, we expect that export prices will be affected by

the two ENSO phases. In Table 5, we report the results. They highlight the strong, positive and

significant influence exerted by La Niña occurrences. A one standard deviation La Niña

weather shock has an impact on global wheat export prices of +2.3%, with a cumulated effect

of +7.4% after one year. The exporting countries that appear more reactive are the USA and

Australia, which experience an increase in wheat prices of +7.3% and +9.5%, respectively, after

one year. El Niño anomalies have a positive impact on wheat export prices. However, the

impulse responses are generally not significant at 5% or 16% level. Moreover, starting from the

first month, the shapes of El Niño cumulated responses are negative for most export countries.

Fig 4. Bootstrapped global impulse response distributions: El Niño (black), La Niña (grey) shocks.

https://doi.org/10.1371/journal.pone.0179086.g004
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Table 4. Impact of an El Niño and La Niña shocks on wheat yield anomalies (in percent).

Country Impact El Niño

Cumulated Responses After

1 Month 3 Months 6 Months 12 Months 24 Months 48 Months

USA -0.16 -0.46* -0.77* -0.60 -0.18 0.38 0.77

ARG 0.66 1.35* 1.64* 0.85 0.48 0.81 1.24

AUS -0.16 -0.96 -3.60* -4.79* -3.03 -2.10 -1.27

CAN -0.83 -1.31* -2.57* -2.97* -1.30 -1.22 -1.06

RUK -0.06 -0.58 -0.34 1.33 1.70 0.86 0.42

EU 0.07 0.20 0.17 0.40 0.99 1.04 0.92

ROW -0.07* -0.03 0.11 0.18 0.16 0.12 0.11

Weighted Average -0.14 -0.42 -0.85 -0.57 0.11 0.12 0.18

Country Impact La Niña

Cumulated Responses After

1 Month 3 Months 6 Months 12 Months 24 Months 48 Months

USA 0.16 0.41* 0.49 0.26 -0.37 -0.72 -0.91

ARG -0.48 -0.89 -0.94 -0.49 -0.68 -1.37 -1.79

AUS -1.53* -2.11* -2.67 -1.90 -2.36 -2.40 -1.02

CAN -1.12** -2.19** -2.25* -1.91* -2.87* -3.09* -2.52

RUK -0.60* -1.40* -1.91* -2.01 -1.65 -0.97 -0.50

EU -0.42* -0.71* -1.01* -1.03 -1.21 -1.18 -0.86

ROW -0.03 -0.08 -0.13 -0.18 -0.11 -0.07 -0.03

Weighted Average -0.56* -1.01* -1.26 -1.18 -1.41 -1.34 -0.96

Notes: Figures are median impulse responses to a one standard deviation increase of ElNiñot or reduction of LaNiñat variables. The impact is in percentage

points and the horizon is monthly. Symbols ** and * denote significance at 5–95% and 16–84% bootstrapped error bounds respectively.

https://doi.org/10.1371/journal.pone.0179086.t004

Table 5. Impact of an El Niño and La Niña shocks on wheat export prices (in percent).

Country Impact El Niño

Cumulated Responses After

1 Month 3 Months 6 Months 12 Months 24 Months 48 Months

USA 1.61 0.62 -0.24 -1.45 -2.16 -2.20 -1.58

ARG 2.51* 2.02 0.63 -0.07 -1.25 -1.07 -0.93

AUS 1.13 0.97 1.07 0.03 -1.67 -1.83 -1.46

CAN -1.57 -0.45 -1.03 -1.74 -2.15 -2.21 -2.20

RUK 0.78 -0.28 -1.48 -3.14 -4.53 -3.62 -2.91

EU -0.90 -1.82 -2.61 -4.34 -4.75 -3.94 -2.91

Weighted Average 0.32 -0.23 -1.02 -2.36 -3.30 -2.89 -2.30

Country Impact La Niña

Cumulated Responses After

1 Month 3 Months 6 Months 12 Months 24 Months 48 Months

USA 3.59** 5.88** 6.11** 7.54** 7.79** 7.75* 6.47

ARG 1.10 2.56* 3.20* 4.09* 4.30 4.02 2.64

AUS 3.55** 6.69** 7.95** 9.56** 10.14* 9.66* 7.36

CAN 1.82* 3.65* 4.61* 6.28* 6.85* 6.87* 5.81

RUK 1.13 5.90** 7.65* 8.37* 8.68* 8.12* 6.26

EU 2.70* 4.36 5.89* 6.98* 7.29* 6.76* 5.29

Weighted Average 2.31* 5.17** 6.38** 7.57** 7.94* 7.58 6.00

Notes: Figures are median impulse responses to a one standard deviation increase of ElNiñot or reduction of LaNiñat variables. The impact is in percentage

points and the horizon is monthly. Symbols ** and * denote significance at 5–95% and 16–84% bootstrapped error bounds respectively.

https://doi.org/10.1371/journal.pone.0179086.t005
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Focusing on wheat exports, in Table 6 we note that global exports are negatively related to

ENSO anomalies. As for wheat yields, El Niño exerts a positive, and statistically significant,

impact on Argentina’s exports. Canada is negatively affected by La Niña, with a cumulated

effect of -5.0% two years after the shock. The group of Russia, Ukraine and Kazakhstan is also

negatively affected, and a La Niña shock has a negative impact on worldwide wheat exports,

with a cumulated effect of -2.2% during the first year following the shock. Bucking this trend,

the US shows strong improvement of exports.

Finally, in Table 7 we show that a one standard deviation shock to El Niño after one year

produces an increase of 2% of the stock-to-use ratio rate in the US. The impulse responses are

also positive for Argentina and the EU. The strongest negative effect is observed for Canada,

where the stock-to-use ratio is always significantly negative, with a reduction of 1.7 percentage

points. On average, the effect of El Niño is negative (but not significant). In accordance with

the previous results, many countries exhibit a significant reduction of the stock-to-use ratio as

result of La Niña shocks.

Robustness checks

Export shares drastically changed during the years 2000-2016. Table 8 reports the values. The

highest export share is now shown by Black Sea countries, accounting for 25.5% of the world’s

wheat exports during 2014-2016 (approximately 45 millions of metric tons in 2016 marketing

year). In 2000, the share was only 11%. The USA has seen its share reduce from 26.6% in the

2000 marketing year to 15.2% in the 2016 marketing year. Minor reductions are shown by

Table 6. Impact of an El Niño and La Niña shocks on wheat exports (in percent).

Country Impact El Niño

Cumulated Responses After

1 Month 3 Months 6 Months 12 Months 24 Months 48 Months

USA -0.27 -0.64 -1.00 -1.52 -2.20 -2.08 -2.08

ARG 3.24** 6.04** 7.59* 6.94* 6.97* 5.75 5.49

AUS 0.30 0.48 -0.79 -1.71 -0.35 0.63 1.09

CAN -0.35 -1.35* -3.00* -3.88* -2.91 -2.50 -2.25

RUK -0.13 -1.34 -0.38 2.54 2.48 0.30 -0.84

EUR -0.10 -0.34 0.30 1.85 4.00 3.93 2.75

ROW -1.34* -2.02* -2.13 -1.87 -3.99 -3.68 -4.17

Weighted Average -0.13 -0.62 -0.62 0.12 0.47 0.08 -0.42

Country Impact La Niña

Cumulated Responses After

1 Month 3 Months 6 Months 12 Months 24 Months 48 Months

USA 1.10** 3.37** 5.56** 6.58** 7.04** 7.18* 6.67*

ARG -0.95 -0.38 0.99 2.81 4.44 6.03 5.51

AUS -0.87* -1.08* -2.57 -2.51 -2.92 -2.36 -1.10

CAN -1.29** -2.30** -2.83** -3.14* -4.49* -4.97* -4.83*

RUK -2.50 -7.03** -10.73** -12.46* -11.22* -10.01* -9.24

EU 0.13 -0.26 -0.99 -0.86 -1.06 -1.19 0.16

ROW 1.77** 3.45** 5.41** 6.24* 7.69* 8.01* 7.38

Weighted Average -0.56 -1.39 -2.10 -2.23 -1.89 -1.49 -1.04

Notes: Figures are median impulse responses to a one standard deviation increase of ElNiñot or reduction of LaNiñat variables. The impact is in percentage

points and the horizon is monthly. Symbols ** and * denote significance at 5–95% and 16–84% bootstrapped error bounds respectively.

https://doi.org/10.1371/journal.pone.0179086.t006
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Canada and Australia, while the EU increased its export share during the period 2000-2016.

The choice of trade weights to aggregate single country/region models is based on the rationale

that the exogenous shocks, including ENSO shocks, could be passed on to all countries

through trade channels. Thus, we check whether possible changes of trade shares to aggregate

country’s models and to generate the foreign variables may affect the impulse responses.

Table 7. Impact of an El Niño and La Niña shocks on stock-to-use ratio.

Country Impact El Niño

Cumulated Responses After

1 Month 3 Months 6 Months 12 Months 24 Months 48 Months

USA 0.10 0.16* 0.45** 0.90* 1.87* 2.48* 2.80

ARG 0.06* 0.15* 0.32 0.43 0.23 -0.47 -0.51

AUS -0.27* -0.89* -1.98 -2.94 -2.60 -2.71 -2.73

CAN -0.54* -1.33* -3.03* -2.87 -1.06 -1.13 -1.18

RUK -0.10 -0.15 -0.43 -0.94 -1.09 -0.84 -0.70

EU 0.09* 0.15 0.20 0.07 0.09 0.11 0.09

ROW -0.07 0.16 0.45 0.73 0.95 0.86 0.70

Weighted Average -0.10 -0.24 -0.57 -0.71 -0.30 -0.20 -0.14

Country Impact La Niña

Cumulated Responses After

1 Month 3 Months 6 Months 12 Months 24 Months 48 Months

USA -0.02 -0.31 -1.09* -1.83* -2.70* -3.18* -2.78

ARG -0.03 -0.08 -0.08 0.12 0.83 1.53 1.31

AUS -1.13* -1.95* -1.86 -2.35 -3.02 -3.68 -3.68

CAN -1.72** -2.94** -3.43** -3.59* -4.44* -4.38* -3.84*

RUK 0.27** 0.60** 0.85* 1.07* 1.20 1.07 0.82

EU -0.13* -0.33** -0.50* -0.58** -0.56 -0.58 -0.50

ROW 0.01 -0.36* -0.80* -1.07* -1.13* -1.22 -1.26

Weighted Average -0.32* -0.62* -0.81* -0.99 -1.25 -1.41 -1.34

Notes: Figures are median impulse responses to a one standard deviation increase ElNiñot or reduction LaNiñat variables. The impact is in percentage

points and the horizon is monthly. Symbols ** and * denote significance at 5–95% and 16–84% bootstrapped error bounds respectively.

https://doi.org/10.1371/journal.pone.0179086.t007

Table 8. Wheat export shares (percentage).

Country Periods

2000.7–2005.6 2005.7–2010.6 2010.7–2014.6 2014.7–2016.6

ARG 9,72 6,51 4,95 3,97

AUS 14,65 11,97 13,11 11,26

CAN 14,60 14,95 13,47 13,45

RUK 10,94 20,49 19,49 25,51

EU 12,86 13,54 14,45 19,57

USA 26,61 23,29 21,80 15,23

ROW 10,61 9,25 12,71 11,02

WORLD 100,00 100,00 100,00 100,00

Notes: USDA, Grain: World Markets and Trade Dataset

https://doi.org/10.1371/journal.pone.0179086.t008
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In Figs 5 and 6, we present the impulse responses for the endogenous variables of wheat

yield and export prices calculated through the use of the average weights during the period

2000–2016 and for the period 2014–2016. For both cases, i.e. El Niño and La Niña events, we

report the median impact on the global wheat market and one standard error bars. From the

Figs 5 and 6 it emerges that while the shapes are similar, some differences are noted. The

cumulated effects of impulse responses for the model estimated with 2000–2016 weights are

generally higher than those computed with the trade weights for 2014–2016. However, this is

not true for export prices, where the long-run response to a La Niña shock is higher using the

latter weights. This simulation study underlines the importance of updating the trade weights

in order to take into account possible trade shifts and the way shocks transmit across the world

wheat market.

In the second experiment, we check the robustness of the results using different ENSO indi-

cators, specifically the SST, the SOI and the ONI indicators. Since the MEI indicator is con-

structed as a bi-monthly average, we replace the raw variables SST and SOI with their bi-

monthly recursive averages (the ONI indicator is given by the three-monthly average of the

SST indicator). We standardize all the variables using the 2000–2016 average and standard

deviation values. Since La Niña phase seems to have more influence than an El Niño event, in

Fig 7 we present the impact and cumulated impulse responses to one standard deviation shock

of each of the four indicators—MEI, SST and SOI, plus the ONI indicator—during a La Niña

phase.

Fig 5. Varying wheat trade weights, El Niño and La Niña: Yield anomalies and error bars impulse

responses.

https://doi.org/10.1371/journal.pone.0179086.g005
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The impulse responses generally showed similar signs and shapes. However, differences of

magnitude could be noted. Among the four indicators, the lowest impact was reported by the

SOI indicator, especially in the case of export prices and stock-to-use endogenous variables.

The MEI, SST and ONI indicators showed smaller differences. This result introduces the

importance of choosing the ENSO indicator. In the following Table 9, we present the contem-

poraneous correlation matrix of the four indicators.

As expected by the visual inspection in Fig 1, the lowest correlation coefficients were those

included in the last row, i.e. for the correlations between the SOI indicator and the set of the

other ENSO indicators. The lowest values were reported during the El Niño phase and with

respect to the SST and ONI indicators. Since the SOI is based on the sea level pressure at just

two individual stations (Tahiti and Darwin, Australia), it can be affected by short-term fluctua-

tions unrelated to ENSO. However, averaging the SOI indicator over months may help to con-

sider for relevant deviations, like those associated with ENSO. Another limitation of the SOI

index is that, while MEI, SST and ONI indexes are measured in relatively the same region (i.e.

the equatorial Pacific closer to central and eastern Pacific), the SOI measurements are related

to the south of the equatorial Pacific. This may alter the ENSO signal [14] and thus explain the

differences in the set of estimated parameters, the diverse shapes of the impulse responses and

their higher variability. In this respect, since we focused our analysis on the MEI composite

indicator, the analysis and results can be protected from possible biased signals produced by

one single ENSO indicator. However, further studies are needed to explore this important

field of analysis.

Fig 6. Varying wheat trade weights, El Niño and La Niña: Export prices and error bars impulse

responses.

https://doi.org/10.1371/journal.pone.0179086.g006
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Conclusion

In this study, we analyze the El Niño-Southern Oscillation (ENSO) climate event to investigate

the effect of its shocks on the worldwide wheat market. We estimated a Global VAR (GVAR)

model for the six main export regions, plus the rest of the world region. Unlike other studies

that analyze the transmission of ENSO shocks using home-country models, which do not

allow for international interactions, we employ a dynamic multi-region model. This strategy

allows us to take into account economic interlinkages and spillovers across the world wheat

market. Further, the model permits the interplay of other important determinants such as

exchange rates, stock-to-use ratios, fertilizer prices, food prices and oil prices, thereby disen-

tangling ENSO anomalies from other possible sources.

Fig 7. La Niña IR responses: MEI, SST, ONI and SOI indicators.

https://doi.org/10.1371/journal.pone.0179086.g007
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In synthesis, our results show that in both the short run and long run, El Niño shocks have

smaller effects on important endogenous variables in the system, such as wheat yields, export

prices, exports and stock-to-use ratio than La Niña occurrences. At a global level, after El Niño

or La Niña shocks, we report a decrease of yields, exports and stock-to-use ratios, while wheat

export prices rise. Using the model, we are able to decompose the global shocks into impacts

and cumulated effects on individual countries/regions. Some interesting behaviours can be

noted. Following an El Niño shock, Argentina and the EU show an increase in wheat yields,

while Australia, as expected, shows a reduction of wheat yields. The effects of La Niña on yield

anomalies are negative for all countries, with the exception of the US, which shows an

increased yield in the first six months.

La Niña exerts important effects on wheat prices, especially in the US and Australia. One

year after the initial shock, the impulse responses of the two countries are +7.8% for the US

and +10.1% for Australia. By contrast, in the long run, El Niño seems to have a negative (but

not statistically significant) cumulated effect on wheat export prices. Focusing on exports,

Argentina is the country that experiences an increase in exports following El Niño events, as

with the US in the case of La Niña events. A one standard deviation El Niño shock produces

an increase of 2% of the stock-to-use ratio rate after one year in the US. The impulse responses

are also positive for Argentina and the EU, while the strongest negative effect is observed for

Canada, where the stock-to-use ratio is always significantly negative.

The coverage of research can be enlarged in different ways. One of the more promising

prospects is to include a climate model in the system. The El Niño-Southern Oscillation has a

large influence on seasonal precipitation and temperature patterns across the globe. A forecast

procedure of ENSO effects on precipitation and temperature can help in designing the future

dynamics of yields and wheat export prices, exports and stocks for the main export countries.

A complete model will improve the ability of national governments to introduce policies that

will allow them to reduce and manage wheat price volatility, minimizing the possible loss of

consumer and producer surplus. We believe that further studies are needed to explore this

important field of analysis. We leave these tasks for future research.
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Table 9. Contemporaneous correlation matrix of the MEI, SST, ONI and SOI indicators during El Niño,

La Niña phases: 2000.7-2016.6.

El Niño phase

MEI SST ONI SOI

MEI 1 - - -

SST 0.89 1 - -

ONI 0.86 0.94 1 -

SOI 0.62 0.61 0.61 1

La Niña phase

MEI SST ONI SOI

MEI 1 - - -

SST 0.92 1 - -

ONI 0.84 0.87 1 -

SOI 0.79 0.74 0.69 1

https://doi.org/10.1371/journal.pone.0179086.t009
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