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ABSTRACT

The aim of this study was to apply Bayesian models 
to the Fourier-transform infrared spectroscopy spectra 
of individual sheep milk samples to derive calibration 
equations to predict traditional and modeled milk co-
agulation properties (MCP), and to assess the repeat-
ability of MCP measures and their predictions. Data 
consisted of 1,002 individual milk samples collected 
from Sarda ewes reared in 22 farms in the region of 
Sardinia (Italy) for which MCP and modeled curd-
firming parameters were available. Two milk samples 
were taken from 87 ewes and analyzed with the aim 
of estimating repeatability, whereas a single sample 
was taken from the other 915 ewes. Therefore, a total 
of 1,089 analyses were performed. For each sample, 2 
spectra in the infrared region 5,011 to 925 cm−1 were 
available and averaged before data analysis. BayesB 
models were used to calibrate equations for each of the 
traits. Prediction accuracy was estimated for each trait 
and model using 20 replicates of a training-testing vali-
dation procedure. The repeatability of MCP measures 
and their predictions were also compared. The corre-
lations between measured and predicted traits, in the 
external validation, were always higher than 0.5 (0.88 
for rennet coagulation time). We confirmed that the 
most important element for finding the prediction accu-
racy is the repeatability of the gold standard analyses 
used for building calibration equations. Repeatability 
measures of the predicted traits were generally high 
(≥95%), even for those traits with moderate analytical 
repeatability. Our results show that Bayesian models 
applied to Fourier-transform infrared spectra are pow-
erful tools for cheap and rapid prediction of important 
traits in ovine milk and, compared with other methods, 
could help in the interpretation of results.
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INTRODUCTION

Sheep milk is mainly used for cheese production 
(Zhang et al., 2006; FAOSTAT, 2015). Many traditional 
high-quality cheeses in the European Union are made 
using ovine milk and are often labeled with protected 
designation of origin (PDO) certification (Lerma-Gar-
cía et al., 2010).

It is important for both the dairy industry and the 
milk payment system to obtain quality parameters for 
the cheesemaking aptitude of milk (Pellegrini et al., 
1997; Sevi et al., 2000; Jaramillo et al., 2008; Abilleira 
et al., 2010). Several techniques and instruments are 
used to analyze milk coagulation properties (MCP) 
in ovine as well as bovine species (Bencini, 2002). Tra-
ditional MCP, determined by mechanical lactodyna-
mographic instruments, are single point measurements 
of rennet coagulation time (RCT, min), curd-firming 
time (k20, min), and curd firmness [over 30 min (a30), 
mm]. However, in the bovine species, analysis of milk 
coagulation by traditional MCP is inadequate because 
of the growing number of noncoagulating (no MCP 
trait available) and late-coagulating (no k20 available) 
samples. The duration of the lactodynamographic test 
of 30 min is too short, and the 3 traditional single-point 
traits are inadequate for capturing important informa-
tion generated during the test (Bittante et al., 2012, 
2013). Traditional MCP cannot fully represent milk co-
agulation and curd-firming process in the ovine species, 
but for the opposite reason: sheep milk coagulates much 
faster than bovine milk, curd firming is more rapid and 
intense, and curd syneresis begins earlier (Bittante et 
al., 2012). Vacca et al. (2015), in a large survey on dairy 
Sarda sheep, reported that about two-thirds of milk 
samples reached the maximum curd firmness within 30 
min after rennet addition. This means that only one-
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third of a30 is measured in the growing phase of the 
lactodynamographic curve (as it normally happens for 
bovine milk samples), and two-thirds in the decreasing 
phase after the attainment of maximum curd firmness 
when syneresis is prevailing on curd firming (Bittante 
et al., 2014). To better explore the coagulation and 
curd-firming phases of milk, Bittante (2011) proposed 
a new approach based on modeling curd-firming over 
time (CFt), and, to also predict syneresis, on prolong-
ing the duration of the test (Bittante et al., 2013). The 
new modeled parameters [modeled rennet coagulation 
time (RCTeq, min); asymptotic potential value of curd 
firmness at an infinite time (CFP, mm); curd-firming 
instant rate constant (kCF, % × min−1); syneresis in-
stant rate constant (kSR, % × min−1); maximum curd 
firmness (CFmax, mm); time to reach CFmax (tmax, 
min)] overcome the disadvantages of traditional MCP 
and also provide information about the syneresis pro-
cess. The use of CFt modeling has already been tested 
on sheep milk from Alpine breeds (Bittante et al., 2014) 
and Sarda (Vacca et al., 2015).

Mechanical analysis is required to determine tradi-
tional MCP and, consequently, modeled MCP. These 
techniques are expensive and time-consuming, making 
it impossible to perform the analyses routinely on a 
large number of animals.

The income from a single ewe is lower than that from 
a dairy cow, and the cost of phenotyping with respect 
to its return is proportionally higher (Carta et al., 
2008). Therefore, it is important to study new analyti-
cal techniques that can reduce the cost of phenotyping.

Fourier-transform infrared spectroscopy (FTIR) in 
the range of near- and mid-infrared wavelengths is a 
technique widely used for routine analysis in many 
laboratories and by breeders’ associations in their milk 
quality-recording systems. Fourier-transform infrared 
spectroscopy is a cheap and fast analytical method, 
already recognized for predicting major milk compo-
nents (ICAR, 2012). Many studies have assessed FTIR 
prediction of new phenotypes in cow milk (De Marchi 
et al., 2014), including traditional MCP (Dal Zotto et 
al., 2008). The feasibility of using FTIR prediction for 
genetic improvement has also been demonstrated (Cec-
chinato et al., 2009).

The species of ruminant influences the composition 
and properties of milk, and, as a consequence, the FTIR 
spectra. In particular, specific calibrations are needed 
for sheep, which are different from those for cows and 
goats (Nicolaou et al., 2010).

The accuracy of predictions obtained by FTIR de-
pends on many factors, among them the reliability of 
the reference values and chemometric techniques (i.e., 
selection of wavelengths, pretreatment of spectra, and 
the statistical model). The selection of informative 

variables has been shown to be important for removing 
noise in the spectra and for improving the equation, 
and for predicting milk fatty acids in ewes, cows, and 
goats using the partial least squares regression model 
(Ferrand-Calmels et al., 2014; Caredda et al., 2016). 
Ferragina et al. (2015) reported that Bayesian mod-
els commonly used for genomic data, in particular 
the variable selection model BayesB, could improve 
the prediction of some cow milk parameters, includ-
ing RCT. Moreover, that technique offers some insight 
into the importance of individual wavelengths for trait 
prediction. Thus, the aim of our study was to apply the 
BayesB model to the FTIR spectra of a large number 
of individual sheep milk samples to predict traditional 
and modeled MCP, and compare the repeatability of 
the measured and predicted traits.

MATERIALS AND METHODS

Animals, Milk Sampling, and Coagulation Properties

Details concerning the animals and the sampling 
procedure have already been described in Pazzola et 
al. (2014). For the present study, we sampled 1,002 
Sarda ewes reared in 22 farms in the region of Sardinia, 
Italy. Two milk samples were taken from 87 randomly 
selected ewes reared on 18 farms and analyzed with the 
aim of estimating repeatability, whereas 1 sample was 
taken from the other 915 ewes (about 1 double-sampled 
for every 10 single-sampled ewes) and analyzed (1,089 
samples and analyses in total). The single-sample set 
and the double-sample set were statistically analyzed 
separately.

Analyses for chemical composition (protein, ca-
sein, fat, lactose, and urea) were carried out using a 
MilkoScan FT6000 (Foss Electric A/S, Hillerød, Den-
mark). Calibration was done according to the following 
reference methods: fat (ISO 1211:IDF 1; gravimetric 
method, Rose-Gottlieb; ISO, 2010); protein (ISO 
8968e2:IDF 20; titrimetric method, Kjeldahl; ISO, 
2014); casein (ISO 17997e1:IDF 29; titrimetric method, 
Kjeldahl; ISO, 2004); and lactose (ISO 5765:IDF 79; 
enzymatic method; ISO, 2002).

Milk samples were mixed into a 200-μL rennet solu-
tion [Hansen Naturen Plus 215 (Pacovis Amrein AG, 
Bern, Switzerland), with 80 ± 5% chymosin and 20 
± 5% pepsin and 215 international milk clotting units 
(IMCU)/mL, diluted to 1.2% (wt./vol) in distilled wa-
ter to obtain a solution with 0.0513 IMCU/milk mL] 
to achieve the traditional single-point MCP extended 
to 60 min [RCT, k20, a30, and curd firmness over 45 
and 60 min (a45 and a60, respectively)] were measured 
using a Formagraph (Foss Italia S.P.A., Padua, Italy), 
as described in Pazzola et al. (2014). The 240 CFt mea-
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sures per sample (1 every 15 s for 60 min after rennet 
addition) were used to estimate the parameters of the 
individual equations (RCTeq, CFP, kCF, and kSR), and 
the derived traits relative to the maximum curd firm-
ness of each sample (CFmax and tmax). As reported in 
Vacca et al. (2015), 2 model equations were used: the 
4-parameter (4p) model described by Bittante et al. 
(2013)

	 CF CFt P
k RCT k RCTCF eq SR eq= − ×
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and the 3-parameter (3p) model described in Bittante 
(2011)
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where e = exponent and t = time from rennet addition.

FTIR Spectra and Statistical Analysis

Spectra Editing. Prior to data analysis, the spec-
tra (each single wavenumber) were standardized to a 
null mean and a unit sample variance. Mahalanobis 
distances were calculated by means of the “mahalano-
bis” function of the R software (R Core Team, 2015), 
the inverse of the spectral covariance matrix and the 
“center” statement as a vector of 0. The spectra with a 
distance value greater than the mean plus 3 standard 
deviations were classified as outliers. The spectra were 
used without mathematical pretreatment, except the 
aforementioned standardization. Using the BayesB 
method, we also used the spectral regions typical of 
water absorption, which are characterized by high vari-
ability and, in many cases, are not used for the calibra-
tion (Bittante and Cecchinato, 2013).

Statistical Analysis. Separate models were fitted 
for all the traits. In the present study, we used a Bayes-
ian model, specifically the BayesB model, implemented 
in the BGLR package of the R software (de los Campos 
and Perez Rodriguez, 2015), as previously described 
by Ferragina et al. (2015). Basically phenotypes were 
regressed on standardized spectra covariates using the 
linear model

	 y xi ij jj i= + +
=∑β β ε0 1

1 060, , 	

where yi is the measured phenotype of ith sample, β0 is 
an intercept, {xij} are standardized FTIR spectra-de-
rived wavelength data (j = 1, …, 1,060), βj are the 

effects of each of the wavelengths, and εi are model re-
siduals assumed to be independent and identically dis-
tributed with normal distribution centered at zero with 
variance σε

2. Given the above assumption, the condi-
tional distribution of the data given effects and vari-
ance parameters was

	 P y N ii
n| , ,θ µ σε( ) = ( )=∏

2
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where θ represents the collection of model parameters 
θ β β,σε= { }0

2, , N i= ( )µ σε, 2  is a normal distribution cen-

tered at µ β βi ij jj
x= +

=∑0 1

1 060, , and with variance σε
2, 

and β {βij} is a vector containing the effects of the indi-
vidual spectra-derived wavelengths. Specification of the 
Bayesian model is completed by assigning prior distri-
bution to the unknowns, θ. In the Bayesian models 
considered here, the prior density was as follows:

	p N df S p pjj
θ β χ σ βε ε ε( ) = ×( ) ( ) ( ){ } ( )−

=∏0
5 2 2
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Here, the intercept is assigned a normal prior with a 
very large variance, the residual variance is assigned 
a scaled-inverse chi-squared density with degree of 
freedom dfε and scale parameters Sε, and the effects of 
wavelengths are assigned independent and identically 
distributed priors, p(βj|Ω), indexed by a set of hyper-
parameters, Ω, which are also treated as random. The 
default values of the built-in BGLR rules were used for 
all the hyperparameters of the model, and the infer-
ences were based on 30,000 iterations and a burn-in of 
10,000.

Assessment of Prediction Accuracy Through 
Cross-Validation. The accuracy of the model and 
the prediction equation were assessed by a training-
testing procedure using the sample set with 915 single 
measures. A training data set (80% of the total records) 
was used to build the equation, and a testing data set 
(20% of the total) was used as validation. The samples 
in the training and testing sets were randomly assigned 
and the training-testing procedure was repeated 20 
times for each trait, changing the training and testing 
set samples each time. The training-testing procedure 
was used for all the 14 studied traits. For each of the 
20 training-testing trials of the prediction procedure of 
one trait, the observed and the predicted values of the 
testing data set were used to calculate the coefficient 
of correlation of validation (RVAL) and the root mean 
square error of validation (RMSEVAL). Also the coef-
ficient of correlation of calibration (RCAL) was calcu-
lated using the measured and predicted values of each 
training data set. The final RCAL, RVAL and RMSEVAL 



Journal of Dairy Science Vol. 100 No. 5, 2017

PREDICTION OF SHEEP MILK COAGULATION 3529

for each trait are the averages of the 20 training-testing 
trials carried out.

Final Prediction Equation, External Valida-
tion, and Repeatability. For each trait, a further 
calibration was carried out using the entire set of single 
measure samples (915 samples) as training data set, 
and the obtained prediction equations were externally 
validated using the data set of double measure samples. 
The coefficient of correlation between predicted and 
measured values of external validation (REXT) and 
the root mean square error of validation (RMSEEXT) 
were calculated. Also the estimated coefficients for each 
model and the Pearson correlations between the milk 
absorbance at a given wavelength and each phenotype 
were studied. To better describe the results along the 
spectral range, we divided the spectrum in 5 regions 
(Bittante and Cecchinato; 2013): short wave infrared 
(SWIR, often called near-infrared or NIR), transition 
between near- and mid-infrared (SWIR-MWIR), 
MWIR-1, MWIR-2, and transition between mid- and 
long-infrared (MWIR-LWIR).

The repeatability coefficients of the measured and 
predicted values were also estimated and compared. 
Estimation of variance components was accomplished, 
separately for each MCP and CF phenotype, using the 
SAS 9.4 MIXED procedure (SAS Institute Inc., Cary, 
NC), and the following linear model:

	 yijk = μ + Herd/Datei + Animalj + eijk,	

where yijk is the observed trait (measured and predicted 
MCP and CF phenotypes); μ is the overall intercept of 
the model; Herd/Datei is the random effect of the ith 
class of herd-test date; Animalj is the random effect of 
the jth animal; and eijk is the random residual. Herd/
Date, Animal, as well as residual, were assumed to be 
independently and normally distributed with a mean of 
zero and variance σ σ σHD animal, , and 2 2 2

e , respectively. Re-
stricted maximum likelihood was used as the method of 
estimation of variance components.

The coefficient of repeatability (REP) was estimated 
as

	 REP
e

=
+

+ +
×

σ σ

σ σ σ
HD animal

HD animal

2 2

2 2 2
100. 	

RESULTS AND DISCUSSION

Traditional MCP and Curd-Firming Model Parameters

Table 1 shows the descriptive statistics for the MCP 
measured by the Formagraph and for the CFt model 
parameters obtained using the 3p (without syneresis) 

and 4p (with syneresis) models on the set of single 
measure samples. The results of the traditional single-
point MCP obtained in our study are very similar to 
those obtained from the same data set by Pazzola et al. 
(2014); in the case of k20 and a30, they are also similar 
to the results obtained from the same breed, but differ-
ent data sets, by Battacone et al. (2005) and Manca et 
al. (2016). The CFt parameters we found were similar 
to those from the Alpine sheep breeds (Bittante et 
al., 2014), with the sole exception of kCF, which was 
smaller in the Sarda milk samples. Two models were 
used in this study: the 3p model described by Bittante 
(2011) and the 4p model described by Bittante et al. 
(2013). The RCTeq obtained with the 2 models were 
almost identical and, on average, 1 min longer than 
the traditional RCT. The 3p model had a higher kCF 
and lower CFP (30.9% × min−1 and 55.0 mm, respec-
tively) than the 4p model (28.0% × min−1 and 61.1 
mm, respectively). Differences were due to the effect 
of syneresis taken into account in the latter but not 
the former model (Bittante et al., 2013). The time to 
achieve the maximum CF of 54.6 mm was 28.6 min, not 
much different from that obtained with milk samples 
from Alpine breeds (Bittante et al., 2014).

FTIR Prediction Models

Analysis of MCP is an expensive, time-consuming 
technique, especially when individual milk samples at 
the population level need to be analyzed. Furthermore, 
as mentioned above, traditional MCP are not exhaus-
tive in terms of describing the coagulation process of 
ewe milk (Bittante et al., 2014; Vacca et al., 2015); 
thus, they need to be integrated with supplementary 
information (i.e., CFt model parameters), which re-
quires additional time and knowledge.

Interest has been growing in using FTIR technology 
to analyze milk and dairy products in recent decades 
because, with proper calibration, it is a fast and cheap 
technique (De Marchi et al., 2014). To our knowledge, 
no studies have used FTIR spectroscopy to predict 
traditional MCP- and CFt-modeled parameters of ewe 
milk, so we were only able to compare the FTIR predic-
tion results reported in the current paper with those 
obtained from cow milk and using different analyses of 
the references and calibration procedures.

Table 1 shows the prediction statistics for each trait. 
For RCAL, RVAL, and RMSEVAL, the average values and 
standard deviations of the 20 calibration rounds per-
formed for each trait using the training-testing proce-
dure are reported.

The averaged coefficients of correlation between the 
measured and predicted traits of the training data set 
(RCAL) varied from 89% (SD = 0.01) for the 3 RCT 
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traits (the traditional and the 2 obtained by model-
ing all the CFt observations) to 55% (SD = 0.02) for 
the kSR. For these same traits, the averaged correlation 
between measured and predicted traits in the testing 
data set (RVAL) ranged from 0.83 (SD = 0.04) to 0.42 
(SD = 0.07), respectively. The RVAL and RCAL were 
strictly linked (r = 0.96); as expected, the former was 
always smaller than the latter, ranging from 3 (CFP 
and CFmax) to 13 (kSR) percentage points.

Using the same prediction model and a large number 
of individual cow milk samples, Ferragina et al. (2015) 
find a prediction accuracy of 0.79 (RVAL) for RCT, simi-
lar to our result (0.83). In their study on RCT and a30 
prediction, Dal Zotto et al. (2008) used different instru-
ments to measure the MCP and to acquire the FTIR 
spectra, as well as a different prediction model and 
mathematical treatment of the spectra. Their results 
(coefficient of correlation of cross-validation) for RCT 
and a30 prediction were 0.80 and 0.59, respectively, 
whereas the results in the present study were 0.89 and 
0.69, respectively.

Validation of the calibration procedure based on 
FTIR spectra is more correctly carried out using real 
external samples, not those used for calibration or 
cross-validation. In the present study, the data set com-
prising 2 analyses of each of 87 ewes (174 data for each 
trait) never used for calibrations was used as the exter-

nal data set. The REXT was also similar to RCAL (r = 
0.81), although the relationship between RCAL and RVAL 
was emphasized (r = 0.96). Moreover, it is interesting 
to note (comparing Table 1 and Table 2) that REXT is 
always greater than RVAL, the only exception being k20, 
and that the calibrations obtained using the BayesB 
method on the lactodynamographic traits of ovine milk 
seem to be effective in predicting those traits.

Repeatability

The reliability of the reference values significantly in-
fluence the accuracy of the prediction model (Caredda 
et al., 2016). The FTIR spectroscopy measures the 
transmission of more than 1,000 different waves. When 
the frequency of a wave is the same as the frequency of a 
chemical bond, absorption occurs, reflecting the amount 
of chemical bonds. Given that infrared spectroscopy is 
a secondary method for predicting the chemical com-
position of a sample, requiring prior calibration based 
on a set of spectra and relative references, spectra and 
reference values need to be of high quality to obtain a 
good calibration.

The MCP are characterized by a lower instrumental 
repeatability and reproducibility than analyses of milk 
chemical composition. We were able to calculate the 
coefficients of repeatability for all the measured and 

Table 1. Descriptive statistics of traditional coagulation properties and curd-firming (CFt) model parameters (from 2 different models) and 
results of calibrations using Fourier-transform infrared spectra of individual milk samples

Item1

Descriptive statistics2

 

Prediction statistics3

N Mean SD P5 P95 Skewness Kurtosis RCAL RVAL RMSEVAL

Traditional MCP          
  RCT, min 894 8.9 4.1 5.1 16.3 2.7 14.3   0.89 ± 0.01 0.83 ± 0.04 2.3 ± 0.35
  k20, min 886 1.9 0.5 1.5 3.0 1.5 7.5   0.73 ± 0.01 0.67 ± 0.03 0.4 ± 0.03
  a30, mm 889 50.2 11.6 29.4 64.4 −0.8 3.2   0.69 ± 0.01 0.63 ± 0.05 9.0 ± 0.56
  a45, mm 893 46.0 14.7 20.0 65.1 −0.5 2.3   0.66 ± 0.01 0.58 ± 0.05 11.9 ± 0.68
  a60, mm 893 42.3 16.3 15.0 65.9 −0.2 2.2   0.61 ± 0.01 0.53 ± 0.05 13.8 ± 0.56
CFt modeling-3p          
  RCTeq, min 894 9.9 4.0 6.0 17.4 2.6 13.9   0.89 ± 0.01 0.83 ± 0.04 2.3 ± 0.34
  CFp, mm 850 55.0 7.3 42.4 64.9 −0.7 3.7   0.71 ± 0.01 0.66 ± 0.03 5.5 ± 0.35
  kCF, % × min−1 894 30.9 7.2 19.8 42.7 0.1 4.0   0.69 ± 0.02 0.58 ± 0.06 5.9 ± 0.35
CFt modeling-4p                      
  RCTeq, min 895 9.8 4.3 5.6 17.6 2.9 17.8   0.89 ± 0.01 0.82 ± 0.05 2.4 ± 0.34
  CFp, mm 895 61.1 10.0 43.8 74.9 −0.5 3.0   0.72 ± 0.01 0.69 ± 0.03 7.3 ± 0.27
  kCF, % × min−1 895 28.0 11.9 13.5 47.8 1.8 10.0   0.58 ± 0.02 0.48 ± 0.06 10.4 ± 0.97
  kSR, % × min−1 894 0.9 0.7 0.3 2.2 2.3 10.8   0.55 ± 0.02 0.42 ± 0.07 0.6 ± 0.05
  CFmax, mm 895 54.6 9.0 39.1 66.9 −0.5 3.0   0.72 ± 0.01 0.69 ± 0.03 6.5 ± 0.24
  tmax, min 895 28.6 9.5 15.2 45.0 0.3 2.0   0.60 ± 0.02 0.53 ± 0.05 8.1 ± 0.36
1Traditional milk coagulation properties: RCT = rennet coagulation time; k20 = curd firming time; a30, a45, and a60 = curd firmness 30, 45, and 
60 min after rennet addition. CFt model parameters according to 3- and 4-parameter models: CFp = asymptotical curd firmness; kCF = instant 
curd firming rate constant; kSR = instant syneresis rate constant; CFmax = maximum curd firmness; tmax = time from rennet addition to the 
attainment of the CFmax. CFmax and tmax traits were extracted from all curd firmness points (CFt) measured every 15 s by a lactodynamograph 
instrument for the 4-parameter model.
2P5 = 5th percentile; P95 = 95th percentile.
3RCAL, RVAL, and RMSEVAL = average ± SD from 20 replications of the coefficient of correlation of calibration, of the coefficient of correlation 
of validation and of the root mean squared error of validation, respectively.
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predicted traits studied in this work (Table 2) using a 
data set composed of 2 analyses for each of the animals.

The repeatability of the traits measured for sheep 
milk in the present study was similar to the repeat-
ability measured in bovine species for both traditional 
single-point MCP and for modeled CFt equation pa-
rameters (Dal Zotto et al., 2008; Stocco et al., 2015, 
2017).

The repeatabilities of the FTIR predicted traits were 
very high (≥95%) for all traits because the σaliquot

2  was 
much lower for predicted than for measured traits 
(Table 2). This meant that the spectra (and chemical 
composition) of the 2 samples of each ewe were very 
similar and that the modest repeatability often found 
for the lactodynamographic traits is not due to sam-
pling problems, but rather to instrumental problems.

Our results confirmed that prediction results were 
highly influenced by the repeatability of the references. 
Indeed, we found a strong correlation between RCAL 
and the repeatability of the gold standard reference 
value (Figure 1). Improvement in the FTIR prediction 
accuracy depends on improvement in the repeatability 
of the gold standard analyses through technical modifi-
cation or by using, for calibration, a data set composed 
of the averages of 2 or more replicates per sample.

Use of FTIR-Selected Waves for Trait Interpretation

A first step in evaluating the importance of milk ab-
sorbance at the individual 1,060 waves tested through 
FTIR is to examine the Pearson correlations between 
the milk absorbance at a given wavelength and a given 

Table 2. Results from ANOVA, repeatability (REP), and statistics of prediction equations of traditional coagulation properties and curd-
firming (CFt) model parameters (from 2 different models) using an external data set of individual milk ewes samples (87 animals double-
sampled; 174 observations)

Item1   Method2 Mean HD3 Animal3 Aliquot3 REP REXT
4 RMSEEXT

4

Traditional MCP                
  RCT, min LDG 9.05 1.9 3.2 0.8 95.9    
  FTIR 9.51 2.1 2.9 0.8 95.6 0.82 2.3
  k20, min LDG 2.03 0.0 0.7 0.4 81.1    
    FTIR 2.05 0.2 0.3 0.1 97.0 0.57 0.7
  a30, mm LDG 48.73 7.2 6.4 6.2 70.9    
  FTIR 46.21 7.8 5.1 1.2 98.3 0.67 9.3
  a45, mm LDG 44.33 9.3 4.6 8.4 60.8    
  FTIR 41.56 8.7 5.4 1.5 98.0 0.65 11.0
  a60, mm LDG 40.96 9.5 4.6 10.7 49.3    
  FTIR 38.61 7.9 4.8 1.5 97.4 0.57 13.2
CFt modeling-3p                
  RCTeq, min LDG 9.98 1.9 3.2 0.4 99.1    
  FTIR 10.16 2.5 3.1 0.7 97.2 0.88 2.0
  CFp, mm LDG 54.30 3.8 5.2 2.6 85.9    
  FTIR 53.07 4.3 3.3 0.9 97.2 0.67 5.7
  kCF, % × min−1 LDG 31.48 3.4 5.4 2.8 84.0    
  FTIR 31.51 3.6 4.0 1.3 94.7 0.65 5.3
CFt modeling-4p                
  RCTeq, min LDG 9.97 1.8 3.3 0.4 98.8    
  FTIR 10.17 2.0 2.6 0.6 96.6 0.88 1.8
  CFp, mm LDG 59.73 5.4 6.3 3.5 84.8    
  FTIR 58.15 6.0 5.0 1.5 96.6 0.71 7.0
  kCF, % × min−1 LDG 29.53 7.5 2.8 7.0 56.6    
  FTIR 29.93 5.9 2.7 1.3 95.9 0.57 8.7
  kSR, % × min−1 LDG 0.93 0.4 0.0 0.4 46.7    
  FTIR 0.99 0.3 0.1 0.1 95.8 0.51 0.5
  CFmax, mm LDG 53.33 4.8 5.6 3.1 84.8    
  FTIR 51.83 5.7 4.5 0.9 98.5 0.74 6.1
  tmax, min LDG 27.08 6.3 3.8 5.7 62.4    
  FTIR 26.76 4.3 2.9 0.8 97.5 0.67 7.2
1Traditional milk coagulation properties (MCP): RCT = rennet coagulation time; k20 = curd firming time; a30, a45, and a60 = curd firmness 30, 
45, and 60 min after rennet addition. CFt model parameters according to 3- and 4-parameter (3p and 4p) models: CFp = asymptotical curd 
firmness; kCF = instant curd firming rate constant; kSR = instant syneresis rate constant. CFmax = maximum curd firmness; tmax = time from 
rennet addition to the attainment of the CFmax. CFmax and tmax traits were extracted from all curd firmness points (CFt) measured every 15 s 
by lactodynamograph instrument for 4p.
2LDG = lactodynamograph; FTIR = Fourier-transform infrared.
3Random factors [herd date (HD), animal, and aliquot] expressed as root of mean squared values.
4REXT, RMSEEXT = coefficient of correlation and root mean squared error of validation for the external subset, respectively.
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lactodynamographic trait. As an example, Figure 2 il-
lustrates the correlation with RCT, which for the large 
majority of waves appears to be moderate, positive, or, 
more often, negative. The FTIR spectrum is fraction-
ated in the 5 regions proposed by Bittante and Cec-
chinato (2013) for bovine milk. It can be seen that the 
absorbance of all the waves in the SWIR region (i.e., 
near-infrared or NIR, spans wavenumber 5,000 to 3,673 
× cm−1, corresponding to wavelengths from 2.00 to 2.72 
μm and frequencies from 149.9 to 110.1 THz) had mod-
erate negative correlations with RCT. In the second 
region of the spectrum, the SWIR-MWIR (spanning 
wavenumber 3,669 to 3,052 × cm−1, corresponding to 
wavelengths from 2.726 to 3,277 μm and frequencies 
from 110.0 to 91.5 THz), the correlations with RCT 
were very low because this region is known to be af-
fected by considerable phenotypic variability caused by 
the major component of milk (i.e., water). The third 
region, MWIR-1 (a central part of the mid-infrared 
region spanning wavenumber 3,048 to 1,701 × cm−1, 
corresponding to wavelengths from 3.281 to 5.878 μm 
and frequencies from 91.4 to 51.0 THz), was character-
ized by variable correlations with RCT, mainly nega-
tive, exceeding in several cases the value of −0.50. The 
fourth, MWIR-2 (wavenumber 1,698 to 1,586 × cm−1, 
corresponding to wavelengths 5.891 to 6.307 μm and 
frequencies from 50.9 to 47.5 THz), was a very short 
region affected by water and it yielded almost null cor-
relations. Lastly, the MWIR-LWIR region (spanning 
from wavenumber 1,582 to 930 × cm−1, corresponding 
to wavelengths 6.322 to 10.76 μm and frequencies from 
47.4 to 27.9 THz) was characterized by variable correla-
tions with RCT, both positive and negative, always in 
the range −0.50 to +0.50.

Use of the BayesB model allowed us to identify the 
combination of individual waves whose absorbance 
best predicts the studied trait. Figure 2 shows that 

a few waves had calibration coefficients much higher 
than the others. Figure 2, which relates to the RCT of 
sheep milk, shows the Pearson correlations and BayesB 
coefficients to have many similarities with the figures 
reported by Ferragina et al. (2015) for the RCT of cow 
milk.

Comparing the graphs for the traditional single-point 
MCP (Figure 2: RCT, k20, and a30; a45 and a60 are not 
shown because of their similarity with a30), the param-
eters of the CFt model equations (Figure 3: CFP, kCF, 
and kSR; RCTeq is not shown because of its similarity 
with RCT), and the derived traits (Figure 4: CFmax, 
and tmax), it should be noted that the regions of the 
milk spectrum were characterized by different wave 
incidences with large coefficients, and that only some 
waves were selected for the prediction of different traits.

In particular, the waves of the SWIR region, despite 
frequent good Pearson correlations, were never selected 
because of high coefficients for any of the studied traits. 
The same occurred for the SWIR-MWIR region (first 
water region), which is often discarded before calibra-
tion (Karoui et al., 2010).

The MWIR-1 region was, on the contrary, very im-
portant for MCP calibration with the BayesB model, 
as it yielded several waves that are very important for 
various MCP traits. The most important is the wave-
number in the range of 2,963 to 2,951 × cm−1 (corre-
sponding to wavelengths 3.37 to 3.39 μm). Among the 
5 most important waves for calibrating each one of the 
various traits, this wave region was selected for 8 out 
of the 14 traits studied, and was the most important 
wave for 4 traits (k20 and RCTeq-3p, with positive coef-
ficients, and CFP-3p and CFP-4p, with negative coef-
ficients). Moreover, 3 very close individual waves were 
selected in this interval for calibrating CFmax derived 
traits (2,963, 2,955, and 2,951 × cm−1). These waves 
are in an area known for being affected by C-H bonds 
(Bittante and Cecchinato, 2013) and close to the area 
known as “fat B” (2,870–2,778 × cm−1), which, through 
specific filters, is used to analyze the fat content in 
milk (Lynch et al., 2006; Kaylegian et al., 2009). Three 
areas in the wavenumber range 2,577 to 2,357 × cm−1 
(corresponding to wavelengths 3.88 to 4.24 μm) were 
often selected: 2,577 to 2562, 2,465 to 2,422, and 2,365 
to 2,357 × cm−1. These were present in the first 5 cali-
bration waves in 7 out of 14 MCP traits (5 of which 
differ from those predicted on the basis of absorbance 
at 2,963–2,951 × cm−1). Three out of the 5 major cali-
bration waves belong to this range for a45, a60, and kSR, 
2 of them for kCF-4p and tmax. This area of the milk 
spectrum, which is not known for specific relationships 
with milk chemical composition, is also found to be im-
portant for predicting the RCT of bovine milk, as well 
as cheese yield and the percentage recovery of milk fat 

Figure 1. Correlations between coefficient of correlation of valida-
tion (RVAL) and repeatability of measured traits (REP).
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Figure 2. Graphical representation of 1,060 Pearson correlations (dashed/black line) between traditional milk coagulation properties (RCT = 
rennet coagulation time; k20 = curd firming time; a30 = curd firmness 30 min after rennet addition) and Fourier transform infrared absorbance of 
waves (5,000 to 930 × cm−1), and of calibration coefficients (solid/green curve) obtained according to BayesB model. SWIR, MWIR, and LWIR 
= short-, mid-, and long-wave infrared regions, respectively. Color version available online. 
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Figure 3. Graphical representation of 1,060 Pearson correlations (dashed/black line) between curd-firming parameters (CFp = asymptotical 
curd firmness; kCF = instant curd firming rate constant; kSR = instant syneresis rate constant) and Fourier transform infrared absorbance of 
waves (5,000 to 930 × cm−1), and of calibration coefficients (solid/green curve) obtained according to BayesB model. SWIR, MWIR, and LWIR 
= short-, mid-, and long-wave infrared regions, respectively. Color version available online.
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and protein in cheese (Ferragina et al., 2015). Finally, 
another individual wave in the MWIR-1 region of the 
milk spectrum (wavenumber 1,748 × cm−1, correspond-
ing to wavelength 5.72 μm) was found to affect MCP 
calibration. In particular, this wave yielded the highest 
or second highest coefficient for predicting RCT and 
RCTeq-4p (positive) and kCF-3p (negative). This wave is 
within the area known as “fat A” (1,786–1,725 × cm−1) 
in the prediction of milk composition using specific 
filtered waves from the MIR spectrum (Lynch et al., 
2006; Kaylegian et al., 2009).

The FTIR spectrum region MWIR-2 is, such as the 
SWIR-MWIR region, characterized by water interfer-

ence so that it is often excluded in the calibration 
(Karoui et al., 2010). Also, in the present study, this 
region was characterized by a very high absorbance 
variability, almost null correlations between individual 
wave absorbance and MCP traits, and the absence of 
important waves for the BayesB calibration method 
(Figure 2, 3 and 4). One exception was the interval 
from 1,593 to 1,574 × cm−1, which is on the border 
with the last region of the FTIR spectrum (mid- to 
long-infrared, MWIR-LWIR, from wavenumber 1,582 
to 930 × cm−1, corresponding to wavelengths 6.322 to 
10.76 μm and frequency 47.4 to 27.9 THz). Discard-
ing all the absorbances of the second water region, 

Figure 4. Graphical representation of 1,060 Pearson correlations (dashed/black line) between the curd-firming derived traits (CFmax = maxi-
mum curd firmness; tmax = time from rennet addition to the attainment of the CFmax) and Fourier transform infrared absorbance of waves (5,000 
to 930 × cm−1), and of calibration coefficients (solid/green curve) obtained according to BayesB model. SWIR, MWIR, and LWIR = short-, 
mid-, and long-wave infrared regions, respectively. Color version available online.
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often done before applying the partial least squares 
regression technique, would have entailed the loss of 
important information in predicting 3 out of the 4 
MCP traits affected by these waves (CFmax, the most 
important wave, CFP-4p, the second most important, 
CFP-3p, 2 waves, and a30, the third wave). Bittante 
and Cecchinato (2013) and, more recently, Wang et 
al. (2016) found that the spectral areas typical of the 
water absorption bands contain important information; 
thus, although in some cases better prediction can be 
obtained by deleting these areas, important informa-
tion, mainly genetic, is lost. Using the BayesB model 
allowed the entire FTIR spectrum to be used without 
any deletion or data pretreatment.

In the MWIR-LWIR region, the correlations between 
all wave absorbances and MCP traits were extremely 
variable, with several individual waves selected by the 
BayesB model in the area from wavenumber 1,447 to 
1,080 × cm−1 (corresponding to wavelengths 6.91 to 
9.25 μm). In particular, the waves 1,447 to 1,420 × 
cm−1 affected the majority of the MCP studied (9 out 
of 14) and are close to the interval (1,547–1,478 × 
cm−1) used for predicting milk protein using filters to 
limit the MIR spectra (Lynch et al., 2006; Kaylegian et 
al., 2009). In addition, the waves 1,277 to 1,256, 1,173 
to 1,122, and 1,091 to 1,080 × cm−1 affected predic-
tion of all MCP traits with the exception of CFP-3p 
and CFmax. This spectral area has also been found to 
be important for predicting cheese yield traits and the 
content of some fatty acids in bovine milk (Ferragina 
et al., 2015).

Use of FTIR-Predicted Traits for the Dairy Sector

Although the repeatability of FTIR-predicted MCP 
traits was high, the variable correlations between the 
predicted and measured traits in the external data 
set, those not used for calibration, highlighted a few 
issues regarding effective utilization of these data. The 
parameters often used for evaluating the feasibility of 
infrared predictions (Williams and Norris, 2001; Karoui 
et al., 2006) are the ratio of performance deviation, 
the range error ratio, the relative prediction error, and 
the concordance correlation coefficient. The principle 
of each parameter is to quantify the prediction error 
without taking into account the analytical error of 
the golden standard method (assumed to be the real 
value of the sample). According to this principle, only 
RCT, especially if estimated from the model, could be 
considered useful in practice (e.g., for genetic selection 
and the milk payment scheme). In the case of MCP 
traits, we showed that instrumental repeatability was 
very high only for RCT, especially if obtained through 
CFt modeling, whereas it was far from 100% for all the 

other traits, and less than 50% in the case of a60 and 
kSR (Table 2). It was clear that the repeatability of the 
golden standard measures should be taken into account 
when evaluating the usefulness of the predicted traits. 
The RVAL coefficient (Table 1) was not much lower than 
instrumental repeatability (Table 2), especially for low 
repeatability traits. In these conditions, the FTIR pre-
dictions could be a useful alternative to instrumental 
testing, but further research is needed in the future.

In the case of genetic selection, the heritability of 
predicted traits was shown to be similar to or better 
than that of measured traits in dairy cattle. The most 
important finding is that the genetic correlations be-
tween measured and predicted traits are usually higher 
than the phenotypic correlations for MCP (Cecchinato 
et al., 2009). In the case of ovine milk, it has not yet 
been directly shown that FTIR-predicted traits can 
yield genetic information close to that obtained from 
measured traits. Given the finding that the heritability 
of ovine MCP is similar to that obtained in bovine spe-
cies (Bittante et al., 2016) and the similarity of predic-
tion accuracies obtained in the present study, it could 
be very interesting address future research in testing 
FTIR predictions for genetic selection in the ovine spe-
cies. This is potentially important for the dairy industry 
because direct selection based on measured traits is not 
feasible due to the high cost and sampling problems.

CONCLUSIONS

The present study has shown in ovine milk, for the 
first time, that FTIR spectroscopy, coupled with ad-
vanced Bayesian chemometric models, offers the pos-
sibility to predict all traditional and new lactodynamo-
graphic traits. Prediction accuracy is variable, high for 
milk rennet coagulation time, but lower for the other 
measured traits. Nevertheless, accuracy of calibration 
and cross-validation, and external validation of the 
various traits tested in ovine milk were similar to or 
greater than those obtained in bovine milk. We also 
confirmed that the first determinant of prediction ac-
curacy is repeatability of the gold standard analyses 
used for calibration. In any case, the repeatability of 
predicted traits is generally high for all traits, includ-
ing those characterized by low analytical repeatability. 
In conclusion, FTIR spectroscopy allows us to analyze 
ovine milk rapidly and cheaply, and, furthermore, it 
is possible to apply it directly to samples collected for 
milk recording. It allows us to obtain large individual 
data sets that could be used for genetic selection of 
traits that are important for the ovine dairy industry, 
such as milk coagulation, curd firming, and syneresis. 
The more accurate predictions could also be incorpo-
rated into the milk payment scheme.
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