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We report on the influence of ~22 million variants on 731 immune cell traits in a cohort of 

3,757 Sardinians. We detected 122 significant (P < 1.28 × 10−11) independent association signals 

for 459 cell traits at 70 loci (53 of them novel) identifying several molecules and mechanisms 

involved in cell regulation. Furthermore, 53 signals at 36 loci overlapped with previously reported 

disease-associated signals, predominantly for autoimmune disorders, highlighting intermediate 

phenotypes in pathogenesis. Collectively, our findings illustrate complex genetic regulation of 

immune cells with highly selective effects on autoimmune disease risk at the cell-subtype level. 

These results identify drug-targetable pathways informing the design of more specific treatments 

for autoimmune diseases.

Assessing the impact of natural genetic variation on quantitative and discrete immune

related traits provides a powerful route to better understand immune system function and 

dysfunction.

We thus previously performed a genome-wide association study (GWAS) on 272 

blood immune-cell-related traits profiled by flow cytometry in 1,629 general population 

individuals from the founder population of Sardinia1. We found significant association 

signals at 13 loci, 3 of them coinciding with autoimmune disease risk (‘coincident 

associations’), revealing possible contributions from these loci to disease pathophysiology. 

The approach differed from comparisons of immune cell traits in case–control cohorts, 

which can be influenced by disease process and therapy.

Using a similar approach, four subsequent GWASs analyzed up to 1,000 individuals and 

detected 28 additional loci associated with immune cell traits2–5. All of these studies 

provided mechanistic clues about the genetic regulation of immune cells but had some 

limitations, including relatively small sample sizes and number of cell traits tested by 

GWAS, and only partial coverage of genetic variation. Furthermore, our previous analysis1 

and another study3 did not consider median fluorescence intensities (MFIs) reflecting the 

levels of cell surface antigens, and a third study considered proportions of cells but not 

absolute cell counts2.

Interpretation of the coincident associations detected thus far has been hampered by the 

observation that a variant associated with a clinical outcome often influences multiple 

immune phenotypes (‘pleiotropy’), and it is not always clear which specific immune 

phenotype is truly implicated in the disease process. Moreover, the true disease-related 

immune phenotype may not even have been measured in previous studies, supporting the 

need to analyze by GWAS even larger numbers of immune traits. This could lead to the 

identification of multiple independent genetic associations with effects on the same pairs of 

immune trait and disease risk (‘multiple coincident associations’), giving further support to 

a possible causal relationship between levels of that immune cell type and that particular 

disease.

To overcome previous limitations, we have performed a new GWAS with almost three 

times the number of immune cell traits and more than double the number of individuals 

previously studied. We have also improved considerably the information content of the 

genetic map, interrogating ~22 million genetic variants derived from our population-specific 
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whole-genome sequencing effort6. The enhanced power of the study increased considerably 

the number of reported associations with immune cell traits and coincident associations 

with disease risk, revealing numerous potential druggable protein targets for autoimmune 

diseases.

Results

Heritability and genetic associations of immune cell traits.

We profiled by flow cytometry 539 immune traits, including 118 absolute cell counts, 389 

MFIs of surface antigens and 32 morphological parameters. In addition, we considered 192 

relative counts (ratios between cell levels) for a total of 731 cell traits assessed in a general 

population cohort of 3,757 Sardinians (Fig. 1, Extended Data Figs. 1–6, Supplementary 

Table 1 and Supplementary Information).

Using our unique family-based cohort of individuals with varying degrees of genetic 

relatedness (Methods), we first provided robust estimates of the proportion of phenotypic 

variation in immune traits attributable to inherited variation (‘heritability’). Narrow-sense 

heritability of the assessed traits—which captures the proportion of phenotypic variation due 

to additive genetic effects—had a median value of 37.0% (Supplementary Information and 

Supplementary Table 2).

Focusing on cell counts, lymphoid cells were more heritable than myeloid cells (median 

values, 37.7% versus 32.3%, respectively), which roughly overlap with higher heritability 

of adaptive immunity compared to innate immunity (37.7% versus 32.6%, respectively). 

Among lymphoid cell counts, CD4 T cells were the most heritable followed by B-cell and 

CD8 T-cell traits (42.6%; 38.9%; 33.8%, respectively). The maturation stages of T- and 

B-cell counts had a clearer heritability pattern: naive cells were more heritable than memory 

cells (naive T: 47.0% versus memory T: 37.1%; naive B: 44.7% versus memory B: 38.9%). 

This pattern is most likely due to the fact that memory cells are more strongly influenced 

by previous encounters with environmental exposures. In fact, the terminally differentiated 

(TD) T cells, which are the last maturation state of memory T cells, were among the least 

heritable T-cell subsets (29.3% for TD CD4 and 30.6% for TD CD8 T cells).

From these findings, we inferred that the cell types with the highest heritability, which 

roughly correspond to adaptive immunity, are those with more sophisticated functions—

and are also the last to appear during ontogenesis and after hematopoietic stem cell 

transplantation7,8.

Overall, our results are in line with those obtained in previous studies on immune traits9, in 

which, although the importance of environmental exposure in immune system modulation 

was emphasized, a mean heritability comparable to ours was obtained.

To identify the genetic variation accounting for the inherited component of the 731 

immunophenotypes, we next performed a GWAS, testing 20,143,392 SNPs and 1,688,858 

indels, either genotyped with high-density arrays or imputed through our Sardinian 

sequence-based reference panel of 3,514 individuals6.
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At the genome-wide significant threshold of P < 1.28 × 10−11—based on our empirical 

genome-wide P value (P = 6.9 × 10−9)6 corrected for 539 independent traits tested 

(Methods)—we found 122 independent associations (111 outside the HLA region). These 

signals were localized at 70 loci, 53 of them novel, and resulted in a total of 763 trait–variant 

associations (Fig. 2). Of the 122 association signals, 49 (40%) were purely cis (locally 

acting) associations, 57 (47%) were trans (acting at distant sites), and 16 (13%) were both 

cis and trans.

At a more relaxed standard GWAS threshold of P < 5 × 10−8, we identified an additional 198 

independent associations at 154 loci (152 of them novel; Supplementary Table 3A–C).

Identification of candidate causal variants and genes.

To identify candidate causal variants driving the observed association profiles, we 

determined for each association signal the so-called ‘credible set’, or the minimum set 

of variants with a 95% summed posterior probability of including the causal variant 

(Supplementary Table 3D,E)10.

Among the 24 signals with only 1 likely causal variant in their credible set, 6 were driven by 

protein-altering variants (25%), 8 by variants within regulatory regions, and the remaining 

10 were variants without an obvious functional impact (synonymous, intronic or intergenic), 

although 8 of these were annotated as molecular quantitative trait loci (QTLs) in the LinDA 

QTL Catalog (http://linda.irgb.cnr.it/, Methods and Supplementary Table 4A).

Using a combination of criteria (Methods), we also detected candidate causal genes for the 

122 independent signals. Importantly, 83 of 122 signals overlapped (linkage disequilibrium 

(LD) with r2 > 0.7 between lead variants) with expression QTLs (eQTLs), which overall 

were significantly enriched among our signals (odds ratio (OR) = 16.54, P = 1.88 × 10−42, 

Fisher’s exact test). Likewise, 64 of the 198 association signals with 1.28 × 10−11 < P 
< 5 × 10−8 (suggestive set) showed significant enrichment for eQTLs (OR = 4.87, P = 

1.39 × 10−19), consistent with a number of these signals representing genuine associations 

(Supplementary Table 4B,C).

Coincident associations with disease risk.

GWASs performed thus far have identified thousands of signals associated with immune

related diseases, but the underlying mechanisms and the specific immune cell subtypes 

involved remain largely unknown or speculative. To overcome this gap in knowledge, a 

useful approach is to identify overlaps (‘coincident associations’) between disease risk 

and blood immune-cell-level association signals, pointing to intermediate quantitative 

phenotypes that bridge the mechanistic lacunae between genetic variation and disease 

endpoints1,11.

We found that 53 independent association signals with immune cell traits at 36 loci (of 

which 27 are newly identified) overlapped with reported GWAS associations with disease 

risk (lead variants with r2 > 0.7; Fig. 3, Supplementary Fig. 1 and Supplementary Table 

5A). The association profiles were also assessed for colocalization (posterior probability 
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> 0.8) with disease GWAS with available genome-wide summary statistics (Methods and 

Supplementary Table 5B).

Furthermore, some of the associations with immune traits we report here were driven by 

genetic variants far more common in Sardinia than elsewhere and may thus have been 

missed by disease GWASs in other populations. For instance, among the 122 independent 

significant signals, 16 (not showing overlap with disease in published GWASs) have a low 

frequency in Europeans from the 1000 Genome Project (<2%) but at least twofold higher 

frequency in Sardinians (Supplementary Table 3A,F and Supplementary Information).

Among the 53 coincident association signals, 32 (60.4%) act in trans, 16 (30.2%) in cis, and 

5 (9.4%) both in cis and trans (Supplementary Table 5A). Overlaps include signals involved 

in the risk of one or, more frequently, multiple diseases, and the direction of the effects 

on risk can be opposite for different diseases. Furthermore, in some instances, multiple 

independent coincident association signals coherently pointed to the same cell trait and 

disease, further supporting the causal involvement of that cell trait in that disease (Table 1 

and Supplementary Table 6A).

A more comprehensive treatment of the observed coincident associations is provided in 

Supplementary Information. Below are details for some examples with especially strong 

biological and clinical implications. Unless otherwise specified, we refer to the effects due to 

the derived (mutated) allele.

Genetic regulation of plasmacytoid cells.—A signal led by rs876039[C] in the 

SPATA48–IKZF1 intergenic region decreased the level of plasmacytoid dendritic cells 

(pDCs; effect −0.20 s.d., P = 9.51 × 10−13) and colocalized with decreased risk for systemic 

lupus erythematosus (SLE)12. Promoter capture Hi-C data suggest enhancer–promoter 

contacts between DNA sequence variation marked by this signal and the IKZF1 gene13, 

which encodes for the eponymous transcription factor. Furthermore, this signal coincided 

with several eQTLs acting in trans14 (Supplementary Table 4A), suggesting an even more 

complex regulation that could likely be mediated by IKZF1 action. Interestingly, another 

independent signal, localized in LCT-AS1, decreased the levels of pDCs (ancestral allele 

rs2164210[T], effect −0.20 s.d., P = 2.12 × 10−13). This signal overlapped with associations 

decreasing risk for SLE12,15. The potential causal role of the downregulation of pDCs 

in inherited protection from SLE is further supported by Mendelian randomization (MR) 

analyses (Methods, Supplementary Information and Supplementary Table 6) and may have 

implications for SLE therapy.

Genetic regulation of CD40 and CD27 in B-cell involvement in autoimmunity.—
A signal led by rs1883832[T] in the 5′ untranslated region of CD40 increases in trans the 

expression of CD27 on memory-B-cell subsets (effect +0.64 s.d., P = 6.21 × 10−147) and 

decreases the level of a specific B-cell subset that does not express CD27 (IgD−CD27−; 

effect −0.39 s.d., P = 7.20 × 10−50). The signal overlaps with reported increased risk 

of multiple sclerosis (MS), inflammatory bowel disease (IBD), Crohn’s disease, SLE and 

chronic hepatitis infection, but with reduced risk of rheumatoid arthritis (RA) and Kawasaki 

disease16–20 (Fig. 3).
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As CD40 was not included in our original panel to assess B cells, we then measured 

both CD40 and CD27 on B-cell subsets in an additional group of 999 individuals and 

found that rs1883832[T] was indeed associated with decreased CD40 expression as well as 

increased CD27 expression on B-cell subsets (Supplementary Table 7A). Notably, CD40 is 

consistently downregulated by rs1883832[T] in all B-cell subsets (both naive and memory), 

with the strongest effect in IgD−CD27− B cells (effect −0.73 s.d.; P = 4.55 × 10−66). 

This variant lies in the Kozak consensus sequence of the CD40 gene and might thereby 

directly affect ribosome binding and translation of CD40 messenger RNA. Furthermore, it 

lies in a region recognized by numerous transcription factors, suggesting that variants in that 

region could also influence CD40 gene transcription. Consistent with that possibility, the 

signal led by rs1883832[T] overlaps with a cis eQTL decreasing CD40 mRNA (Fig. 4 and 

Supplementary Table 4A).

MR analyses (Methods) supported a unidirectional negative effect of CD40 on CD27 at 

the protein level (P = 1.75 × 10−5; Supplementary Table 7B,C), contributing to the inverse 

correlation observed between the two proteins on memory B cells (Spearman correlation ρ = 

−0.198, P = 2.53 × 10−10). We then assessed whether the association in trans of rs1883832 

with CD27 levels on memory B cells was completely mediated by the CD40 protein or 

whether it was also due to horizontal (independent) pleiotropy. Our results show that the 

effect of this variant on CD27 is only 2% mediated by CD40 (Methods and Supplementary 

Table 7D). We thus hypothesize that the signal in the CD40 region has two cis-acting 

effects: one leading to direct downregulation of the corresponding protein, which in turn 

directly contributes to a relatively modest extent to the observed increase of CD27, while 

the second, mediated by a nearby but still undetermined gene, accounts for most of the 

increase of CD27 due to variation in the CD40 gene region. This latter mechanism is 

consistent with interactions between rs1883832 (and/or other variants in LD with it) with 

regulatory elements affecting expression in nearby genes (see https://genome.ucsc.edu/ and 

https://www.chicp.org).

Further MR analyses (Methods and Supplementary Tables 6 and 7E) suggested that 

decreased CD40 leads to increased risk for MS, whereas decreased CD27 leads to increased 

risk for Crohn’s disease. A causal role of increased CD27 expression on memory B cells 

in increased risk for Crohn’s disease is further supported by another independent and 

coherent coincident association led by the ancestral allele rs1801274[A], encoding His, in 

the FCGR2A gene (effect +0.29 s.d., P = 2.48 × 10−28; Supplementary Table 6A)17.

Complex coincident associations.

In some cases, the observed associations show particularly complex effects such as the 

presence of multiple independent signals in one or more gene regions that influence the 

expression of a given surface marker in different cell subtypes with distinct consequences on 

disease risk. Such complex regulation is exemplified below by variation at the IL2RA locus, 

affecting the expression of CD25, and by variation at the CD28–CTLA4 and BACH2 loci, 

affecting the expression of CD28 and CD80.
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IL2RA, a complex autoimmunity locus.—IL2RA (CD25), encoding the alpha chain 

of the IL-2 receptor, contains seven independent signals, four of them also associated with 

diseases. As previously reported1, one signal driven by rs61839660[T], indicated as the 

candidate causal variant by fine-mapping analyses, increased the expression of CD25 on 

CD25hi memory helper T cells (effect +0.61 s.d., P = 6.70 × 10−28) as well as the levels of 

these cells (effect +0.62 s.d., P = 2.78 × 10−28) and was also associated with increased risk 

for allergic disease, Crohn’s disease and SLE, but decreased risk for type 1 diabetes (T1D), 

juvenile RA and primary sclerosing cholangitis15,21–24.

The second signal, led by rs10905719[A], increased CD25 expression on naive helper T 

cells (effect +0.23 s.d., P = 2.56 × 10−14) and predisposed to primary sclerosing cholangitis, 

alopecia areata, psoriasis and MS25–28.

The third signal, driven by rs706779[C], was associated with lower CD25 on IgD−CD38− B 

cells (effect −0.29 s.d., P = 6.64 × 10−31) and decreased risk for vitiligo and autoimmune 

thyroiditis29,30. The fourth signal, led by rs41294937[C], was associated with increased 

expression of CD25 on B cells, especially IgD−CD38dim (effect +0.57 s.d., P = 9.24 × 

10−48), and overlapped with increased risk for asthma and hay fever21.

Three other signals regulated the levels or expression of CD25 in subsets of B and T cells, 

but have thus far not been correlated with any disease risk association (Supplementary Table 

3A).

Overall, our correlations show the influence of the expression of CD25 in specific 

cell subtypes, including non-T cells, in predisposition to or protection from different 

autoimmune diseases.

Genetic regulation of CD28 and CD80 and autoimmunity risk.—CD28 is a key co

stimulatory molecule expressed on T cells, binding CD80 and CD86 on antigen-presenting 

cells and promoting T-cell activation. In the CTLA4–CD28 gene region, two partially 

correlated (r2 = 0.36) cis-acting signals, led by rs1973872[T] and rs3116493[G] (ancestral 

alleles), reduced CD28 levels on a number of T-cell subsets, especially CD4+ T cells 

and CD39+ activated regulatory T cells (Tregs; effect −0.39 s.d., P = 2.24 × 10−42 and 

effect −0.30 s.d., P = 8.44 × 10−30, respectively) and overlapped with predisposition to 

celiac disease, ulcerative colitis and IBD, but with protection against MS16,19,22,25,31–33. 

A further independent signal led by rs4675369[G] in the same gene region reduced CD28 

expression in resting Tregs (effect −0.21 s.d., P = 2.23 × 10−10) and coincided with reported 

predisposition to primary biliary cholangitis34.

The expression of CD28 on T cells was also affected by genetic variation in the BACH2 
gene region. Here a single fine-mapped variant, rs72928038[A], associated with increased 

CD28 expression on CD45RA+ cells—both CD8+ (effect +0.59 s.d., P = 5.13 × 10−67) and 

CD4+ (effect +0.53 s.d., P = 1.61 × 10−55) subsets—and overlapped with increased risk for 

MS, T1D, autoimmune thyroiditis and vitiligo16,22,23,30,35,36. After conditional analysis, a 

second signal, led by the ancestral allele rs619192[T], was found positively associated with 

the same cell traits (effect +0.20 s.d., P = 2.97 × 10−10) and overlapped with increased 
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risk for T1D and SLE37,38. Notably, both the CD28–CTLA4 and BACH2 gene regions 

were associated with expression of CD28 on CD4+ T cells and overlapped with risk for 

MS16, further supporting the predisposing role of increased CD28 levels in MS (related 

MR analyses are in Supplementary Information and Supplementary Table 6). Adding an 

additional layer of complexity, a third signal in BACH2, led by rs12199079[G], increased 

CD80 on myeloid DCs (effect +0.23 s.d., P = 7.54 × 10−16) and overlapped with decreased 

risk for allergic disease, Crohn’s disease and IBD17,21. These findings link genetic variation 

in BACH2 to CD28 and CD80 regulation and add to the reported transcriptional activity of 

BACH2 a pivotal role in directing T-cell fate toward inflammatory or regulatory status39.

Druggability and therapeutic implications of findings.

To further assess the potential therapeutic utility of our findings, we explored the 

druggability of the implicated proteins (Table 2 and Supplementary Table 8A). We 

considered as a druggable target any protein: whose expression (here measured as MFI) 

was influenced in cis or in trans by the associated signals (pQTLs) underlying coincident 

associations; whose pharmacological modulation might reproduce a therapeutic protective 

effect on disease risk40,41; and for which an approved or investigational drug was 

available. Of the 29 proteins identified through pQTL associations, 24 were classified as 

drug targets in the Pharmaprojects database from Citeline (https://pharma.id.informa.com; 

Supplementary Table 8A,B).

Using a recently developed drug target prioritization score (Pi rating)42, we then found that 

overall the 29 proteins (Supplementary Table 8B) are highly scored to be pharmacologically 

relevant (Fig. 5). Specifically, we retrieved the Pi ratings of 137 gene–disease pairs (IgD, 

HLA, CD45RA and CD3 have been excluded because the Pi rating was not available) 

resulting from our coincident association data, and found that their median is higher than the 

95th percentile of all the disease–gene pair ratings in the Pi database (Fig. 5). We observed 

a high Pi rating for gene–disease pairs regardless of whether they were supported or not by 

genetic associations in the Pi-score database (Extended Data Fig. 7), demonstrating that our 

results were not biased by the fact that both our protein selection pipeline and the Pi-score 

computation leverage genetic information.

As a proof of concept of our approach to select drug targets, the two signals in the 

SPATA48–IKZF1 intergenic region and in LCT-AS1—associated with decreasing levels 

of pDCs and decreased risk for SLE12,15—point to the downregulation of pDCs as a 

promising therapeutic route for SLE. Proteasomal degradation of the protein target IKZF1, 

also known as IKAROS, enhanced by the antitumoral drug lenalidomide, decreases pDC 

numbers in vivo43 and has been shown to be efficacious in treating patients with refractory 

cutaneous lupus erythematosus44. Furthermore, another existing route to SLE therapy is 

based on the downregulation of pDCs through the inhibition of the protein product of the 

gene BDCA2 (blood DC antigen 2), whose expression is regulated in trans by the IKZF1 
signal overlapping with SLE protection (Supplementary Table 4). The BDCA2 product, 

also known as CLEC4C, is a pDC-specific receptor that following engagement inhibits the 

production of type I interferons (IFN-1), implicated in the pathogenesis of SLE43,45. An 
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anti-BDCA2 monoclonal antibody, BIIB059, indeed suppresses the ability of human pDCs 

to produce IFN-146–48 and is currently in a phase 2 trial for SLE therapy (NCT02847598).

On the basis of our data, some drugs already approved or under clinical investigation against 

single target antigens could be repurposed to meet new needs. For instance, the anti-CD28 

drug lulizumab pegol, developed for SLE and Sjogren’s syndrome therapy, could potentially 

be repositioned for MS, given the above-mentioned coincident association signals affecting 

increased expression of CD28 on both CD4 and CD8 T cells and MS risk.

However, on the basis of our findings, drugs directed against a single target antigen may 

not be an optimal therapeutic choice, especially when the antigen is expressed in different 

cell subtypes with opposing direction of effect on different disease risk. In such situations, 

it seems advisable to target more than one antigen to ensure cell-subtype specificity. For 

instance, CD25 needs to be modulated differently in diverse T- and B-cell subsets on the 

basis of the associated disease. Thus, our data suggest a possible explanation for why some 

trials have not been successful, and predict the efficacy of other drugs currently under 

clinical trial. Of note, trials of daclizumab, an CD25 antagonist, for T1D were ceased, and 

its efficacy was likely limited49 because, as our genetic data suggest, in this disease CD25 

should be activated instead of inhibited—and in a specific T-cell subset (Supplementary 

Table 8A and Table 2).

Discussion

By combining high-resolution immune and genetic profiling in a Sardinian cohort, we have 

greatly increased the number of known genetic variants affecting the regulation of immune 

cell types. Our findings have linked specific cells to immune-related disorders such as MS, 

T1D, RA, IBD, asthma and Kawasaki disease. The analysis of quantitative immune traits 

has also facilitated fine-mapping of many overlapping disease association signals to one or 

a few variants. Furthermore, in several instances we have identified candidate causal genes 

and established the direction of effect of the underlying disease associations via overlapping 

eQTLs and pQTLs.

In particular, the assessment of pQTLs in numerous cell subtypes reported here overcomes 

limitations such as the restricted availability of RNA-seq data from cell subtypes, and post

transcriptional effects in gene expression that cannot be detected through eQTL analysis. 

The unbiased genetic approach and the large number of coincident associations detected 

help to reveal or validate therapeutic target proteins controlling disease-related intermediate 

phenotypes. Candidate targets include co-stimulatory molecules and cell surface receptors 

that control key immune participants in the pathogenesis of disease. Many of these targets, 

including CD27 and CD80, were detected only through trans pQTL associations, which can 

uncover molecules whose relation to disease would otherwise remain hidden.

Furthermore, in some cases, MR analyses and multiple independent signals that associated 

the same cell trait and disease risk provided additional support for the causal involvement of 

some targets in a given disease (Table 1 and Supplementary Table 6A).
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However, the complex genetic regulation of immune cell levels impacting immune-related 

diseases also suggests that their therapeutic modulation may be just as complex. Indeed, we 

report many examples, including effects on CD28, CD27, CD25 and CD40 that strongly 

support the dependence of the efficacy of new therapies on the direction and extent 

of modulation of the targets in specific cell subtypes. For instance, multiple coincident 

associations in both the CD28–CTLA4 and BACH2 gene regions increased the expression 

of CD28 on CD4+ T cells and overlapped with higher risk for MS16, consistent with 

inhibition of CD28 on this cell subtype as a potential therapeutic route in MS. Likewise, 

two signals in the CD40 and FCGR2A gene regions were associated with higher CD27 

expression on memory-B-cell subsets and overlapped with signals increasing risk for IBD, 

especially Crohn’s disease17, thus supporting therapeutic inhibition of CD27 on B cells 

in these diseases. In another instance, two signals in the TNFSF13B and CD40 genes 

(Table 1 and Supplementary Table 7B) support a causal role of unswitched memory B cells 

(IgD+CD27+) in MS and SLE pathogenesis, pointing to a targeted inhibition/depletion of 

this B-cell subtype as a therapy of these diseases. Instead, current anti-CD20 monoclonal 

antibodies approved or in clinical trials for MS and SLE50 are based on a broad depletion of 

B cells.

Thus, in contrast to classical autoimmune disease treatments directed against individual 

protein targets, future therapies of greater efficacy and safety may more usefully co-target 

two or more proteins to discriminate a particular cell subtype51 or could be based on the 

targeted delivery of a drug to a specific cell type—for example, by poly-specific monoclonal 

antibodies or other carriers for small molecules.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41588-020-0684-4.

Methods

The SardiNIA dataset.

The SardiNIA project is a longitudinal study57 comprising 6,602 general population 

individuals (57% females, 43% males), ranging from 18 to 102 years, native of the 

central east coast of Sardinia, Italy. As detailed below, all volunteers are deeply genetically 

characterized and 3,757 of them are immune profiled. All participants signed informed 

consent to study protocols approved by the Sardinian Regional Ethics Committee (protocol 

no. 2171/CE).

Flow cytometric measurements.

Donors’ peripheral blood was collected in heparin tubes, and then antibody-stained and 

processed for flow cytometry. Data were acquired with two standardized BD FACSCanto 

II flow cytometers and analyzed by BD FACSDiva software (BD Biosciences). The cell 

populations were manually gated by the same specialist to increase consistent processing 
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of the data. To minimize time-dependent artifacts, cell phenotyping was performed in the 

same recruitment center within 2 h after blood collection and using erythrocyte-lysed fresh 

samples. BD Lyotube technology and a lyse–wash protocol were used for all panels except 

for TBNK; for that panel, a lyse–no-wash protocol was applied to obtain more precise cell 

concentrations. Samples were stained with the following antibody panels.

TBNK panel.—Leukocytes (CD45+) were divided into granulocytes, monocytes and 

lymphocytes on the basis of morphological parameters (forward scatter (FSC)-A and side 

scatter (SSC)-A, which are proportional to the size and intracellular complexity of cells, 

respectively). Lymphocytes were divided into CD3+, corresponding to T cells, and CD3−, 

including B cells (CD19+) and natural killer cells (CD16+ or CD56+). T lymphocytes were 

split into six subsets based on the expression of the CD4 and CD8 markers: CD4−CD8− 

(DN), CD4−CD8dim (CD8dim), CD4−CD8bright (CD8br), CD4+CD8br (DP), CD4+CD8dim, 

CD4+CD8− (CD4+). The HLA DR positivity of CD4+ and CD8br T cells and NK cells 

was considered as an activation marker. The gamma–delta antigen was also measured on 

T cells. To get absolute cell counts, BD TruCount absolute counting tubes were used. The 

concentrations of T cells, B cells and monocytes from this panel were used to calculate the 

absolute counts in the other antibody panels assessed (except for the circulating DC panel in 

which liquid counting beads were included).

Treg panel.—Tregs were identified on the basis of high expression of CD25 

and low expression of CD127 surface antigens (CD25hiCD127lo) and further 

subdivided into activated (CD25+++CD45RA−), resting (CD25++CD45RA+) and secreting 

(CD25++CD45RA−). Tregs were subtracted from CD4+CD25hi T cells, resulting in the 

CD25hiCD4+ not Treg population (CD25hiCD127hi), which was further subdivided on the 

basis of CD45RA expression. In this panel, the CD8 T cells were divided according to their 

expression of CD28 and CD45RA antigens. The high positivity for CD25 and the negativity 

for CD127 on CD28− CD8 cells were also measured. Finally, Treg subsets, CD4+ and CD8+ 

T cells were also subdivided on the basis of the expression of CD39.

Maturation stages of T-cell panel.—The maturation status of CD4+, CD8br and 

CD4−CD8− T lymphocytes was assessed on the basis of the expression of CD45RA and 

CCR7. Naive (CD45RA+CCR7+), central memory (CCR7+CD45RA−), effector memory 

(CD45RA−CCR7−) and TD (CCR7−CD45RA+) maturation stages were identified.

DC panel.—DCs were identified on the basis of their positivity for HLA DR and 

their negativity for the lineage cocktail (Lin) targeting CD3, CD14, CD16, CD19, CD20 

and CD56 markers. The DCs were subdivided into myeloid (CD11c+) and plasmacytoid 

(CD123+) cells. Their maturation and activation status were ascertained by the adhesion 

molecule CD62L and the co-stimulatory molecules CD80 and CD86. In addition, monocytes 

were morphologically ascertained and analyzed for HLA DR, CD62L and CD11c 

expression. The absolute number of cells was estimated by adding BD Liquid Counting 

Beads to the samples.

B-cell panel.—Total B cells were identified as CD19-positive and were further 

subdivided using several classification approaches. CD24 versus CD38 classification 
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identified transitional (CD24+CD38hi), memory (CD24+CD38−/dim) and naive mature 

(CD24−CD38−/dim) subsets. CD27 versus IgD classification discriminated switched memory 

(CD27+IgD−), unswitched memory (CD27+IgD+), naive (CD27−IgD+) and CD27−IgD− 

B cells. IgD versus CD38 classification, also known as Bm1–Bm5 classification, 

distinguished six B cell subsets: Bm1 (IgD+CD38−) mainly virgin naive cells; Bm2 

(IgD+CD38dim) activated naive cells; Bm2′ (IgD+CD38br) pre-germinal center cells; 

Bm3–Bm4 (IgD−CD38br) centroblasts and centrocytes present in germinal center cells 

but very low/absent in blood; early Bm5 (IgD−CD38dim); and late Bm5 (IgD−CD38−) 

memory cells. CD24 versus CD27 classification identified CD24+CD27+ memory cells. IgD 

versus CD24 classification subdivided B cells into four subsets: IgD+CD24+; IgD−CD24+; 

IgD−CD24; and IgD+CD24−. CD20 versus CD38 discriminated plasma blasts/plasma cells 

(as CD20−CD38hi) and CD20−CD38− cells.

Monocyte panel.—Monocytes were identified on the basis of morphological parameters 

and HLA DR positivity. Monocytes were then subdivided into classical (CD14+CD16−), 

non-classical (CD14−CD16+) and intermediate (CD14+CD16+). Each subset was assessed 

for CD40, CD64, CCR2, CX3CR1 and PD-L1 expression level.

Myeloid cell panel.—The fluorescent intercalator 7-aminoactinomycin D was used to 

recognize and exclude dead cells. In parallel, a cocktail including CD19, CD20 and CD3 

antibodies was used to remove lymphoid cells. The resulting myeloid-enriched cells were 

subdivided on the basis of CD14 high positivity (corresponding to classical monocytes) and 

into five subsets based on CD33 and HLA DR expression. CD11b and CD66b antibodies 

were used for additional sub-characterization. The CD33dim HLA DR− were subdivided 

into: granulocytic myeloid-derived suppressor cells (MDSCs), based on the high positivity 

for CD66b cells; immature MDSCs, which are negative for CD11b; and basophils, which are 

positive for CD11b. Monocytic MDSCs were identified on the basis of their high positivity 

for CD14 and CD33 and weak positivity for HLA DR. Finally, hematopoietic stem cells 

were identified as CD34+CD45dim.

Four of these seven panels (that is, TBNK, Treg, maturation stages of T cell and cDC) 

have been described previously in a smaller set of individuals1, but without assessing 

MFIs or morphological parameters (FSC and SSC). As the name suggests, MFI represents 

the median expression level of a fluorescent-conjugated antibody bound to a cell and is 

proportional to the median amount of antigen expressed in that cell. To control for batch 

effects in MFIs due to variability in antibody lots and any seasonal shifts, the distribution 

was normalized for overall and daily changes as in Steri et al.11. Briefly, values for each 

trait were normalized by calculating the cohort means of all the samples and the daily 

means of the samples analyzed in the same day. Each MFI value was then multiplied by 

the ratio between cohort mean and daily means to compensate for daily fluctuations. The 

normalization was calculated independently for each MFI trait. Morphological parameters 

were assessed by light scattering measured by two optical detectors. One detector measured 

scatter along the path of the laser, namely FSC, primarily due to light diffraction around 

the cell, and is proportional to the diameter and the size of the cell. The other detector 

measured scatter in a perpendicular direction relative to the laser, namely SSC, caused by 
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the refraction or reflection of the interface between the laser and intracellular structures, and 

provided information about the internal complexity (that is, granularity) of a cell.

Measures to ensure reproducibility of measurements have already been described1. Briefly, 

the internal parameters of the two FACS CantoII analyzers used to measure immune traits 

were adjusted daily by standardized fluorescent beads to check and correct for laser wear 

and fluidic instability. Actual cell counts were validated weekly by processing stabilized 

blood samples with characterized cell concentrations. To directly assess reproducibility, 

we repeated the FACS measurements in 35 participants for the TBNK, Treg, maturation 

stages of T cell and DC panels as previously described1, in 87 individuals for the monocyte 

panel and in 91 volunteers for the B cell panel. Reproducibility was assessed between 

paired samples using a two-sided Pearson’s product moment correlation coefficient on the 

inverse-normalized traits, finding overall high reproducibility.

Statistical and bioinformatic analyses.

Heritability estimation.—Broad heritability (the ratio of the total genetic variance 

to the phenotypic variance of a trait) and narrow heritability (the proportion of broad 

heritability due to additive effects of genes on phenotype) were estimated according to 

models previously described1. Among the 3,757 immunoprofiled individuals, 3,371 were 

grouped into 847 multigenerational families (ranging from 1 to 5 generations, average 

2.66), comprising 2,405 sib pairs (including 4 monozygotic twins), 79 half-sib pairs, 

2,258 cousins pairs, 1,587 parent–child pairs, 88 grandparent–grandchild pairs and 2,997 

avuncular pairs. Heritability estimates were obtained with the poly-0.5.1 software57; all 

models were adjusted for age and sex, and traits were first normalized using inverse-normal 

transformation on the same traits or, when necessary, on the covariate-adjusted residuals. 

Statistical significance of the difference in the average heritability among the defined trait 

categories was evaluated by non-parametric tests (a two-sided Wilcoxon signed-rank test for 

pairwise comparisons and a Kruskal–Wallis test for multiple comparisons), with P < 0.05 

considered as significant.

Bivariate analysis.—Phenotypic and genetic correlations were estimated for MFIs and 

cell counts/ratios separately. Phenotypic correlations were calculated for trait pairs using 

the Spearman coefficient in R (version 3.5.3). Genetic correlations between trait pairs, 

proportional to the cross trait–cross individual additive genetic covariance, were obtained 

using poly-0.5.1 software, as previously described1. A hierarchical clustering based on 

estimated correlation coefficients was also performed using the heatmap.2() function in R 

with default settings (Euclidean distance and the complete clustering method).

Genotyping and imputation.—All the genetic analyses were performed using a genetic 

map based on 6,602 samples genotyped with 4 Illumina arrays (OmniExpress, ImmunoChip, 

Cardio-MetaboChip and ExomeChip) as previously described6. Imputation was performed 

on a genome-wide scale using a Sardinian sequence-based reference panel of 3,514 

individuals and the software Minimac58 on pre-phased genotypes6. After imputation, only 

markers with imputation quality (RSQR) > 0.3 for estimated minor allele frequency (MAF) 
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≥ 1% or > 0.6 for MAF < 1% were retained for association analyses59, yielding ~22 million 

variants (20,143,392 SNPs and 1,688,858 indels) useful for analyses.

Association analyses.—Genome-wide association analysis for each quantitative 

immune trait was carried out using the q.emmax (quantitative EMMAX–Efficient 

Mixed Model Association eXpedited) function included in EPACTS −3.2.6 (https://

genome.sph.umich.edu/wiki/EPACTS). The method implemented in this software accounts 

for a wide range of sample structures, such as cryptic relatedness and population 

stratification, by applying a linear mixed model adjusted for a genomic-based kinship matrix 

obtained from quality-checked genotyped autosomal SNPs with MAF > 1%6. All assessed 

traits were normalized with inverse-normal transformation and adjusted for sex, age and 

age2 as covariates. To evaluate any significant deviation of summary association statistics 

from the null distribution, the genomic inflation factor was calculated: lambda values ranged 

from 0.95 to 1.035 (median = 0.994, mean = 0.995, s.d. = 0.017). Genomic correction was 

then not applied.

To adjust for multiple testing, Bonferroni correction was applied to the empirical 

significance threshold (P = 6.9 × 10−9)6, taking into account the total number of absolute 

cell counts, MFIs and morphological parameters assessed here (N = 539) to establish a 

final threshold of P < 1.28 × 10−11. Conditional analyses were performed for each trait that 

reached standard genome-wide significance (P < 5 × 10−8) by adding the top associated 

variant as a covariate to the model adjusted for sex, age and age2.

Specific analyses in the FGCR2A locus.—Specific association analyses in the 

FGCR2A locus on 117 volunteers were carried out comparing the two homozygous 

genotypes using a non-parametric model (two-sided Wilcoxon signed-rank test) on the raw 

phenotypes.

Definition of signals using LD.—To establish ‘independent variants’ for each signal 

that reached the standard threshold for genome-wide significance, the clumping function in 

PLINK60 and LD patterns in the SardiNIA genetic map were used. In particular, the options 

--clump-p1 0.00000005 --clump-p2 0.00000005 --clump-r2 0.1 --clump-kb 500 were used to 

clump into single-group variants with P < 5 × 10−8 and r2 > 0.1 in a 1-megabase window. 

The same clumping procedure was applied to define ‘sentinel’ variants using r2 > 0.7 at each 

gene region (‘locus’).

Allele frequency differentiation and positive selection.—Analysis of allelic 

differentiation was carried out on associated variants and on data from the 1000 Genomes 

Project Phase 3 (http://www.internationalgenome.org/category/phase-3/).

We identified highly differentiated variants by calculating the difference in allelic frequency 

between Sardinians and Europeans (SardiNIA MAF − 1000G-EUR AF = ΔAF) with respect 

to the minor allele in the Sardinian data.

For a subset of variants, we also investigated evidence of positive selection by using standard 

statistical tests based on allelic frequency (population-branch statistic) and haplotype 
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diversity (integrated haplotype score, cross-population extended haplotype homozygosity 

and the number of segregating sites by length), as previously described11. For each variant, 

we calculated a ‘genomic percentile’, ranking each statistic value with that obtained for 

a set of variants sampled across the genome and matched for MAF in Sardinians, local 

recombination rates and levels of background selection11.

Replication and validation of findings.—For each association at P < 5 × 10−8, we 

considered a signal replicated if the top variant or its proxy with r2 > 0.8 was already 

reported as significantly associated with a related trait in GWASs from Ferreira et al.61, 

Roederer et al.2, Aguirre-Gamboa et al.3, Patin et al.4 or Lagou et al.5. Furthermore, for each 

genome-wide significant association (P < 1.28 × 10−11), we considered a signal validated if 

the top variant was genotyped or in LD with a genotyped proxy (r2 > 0.80) with a P < 1.28 × 

10−11.

Fine-mapping and credible sets.—Credible set analyses were performed for 584 

trait–locus associations having at least one SNP with P < 1.28 × 10−11. Credible sets 

were obtained using FINEMAP v1.310 and setting at most ten causal variants for each 

association profile (–n-causal-snps 10). These variants were annotated with VEP (https://

www.ensembl.org/Tools/VEP) to evaluate which signals contain any variant(s) with strong 

predicted functional impact in their credible sets.

Definition of causal genes at associated loci.—To infer candidate causal genes 

underlying association signals, we used a combination of criteria that included: lead 

variant, or one variant in the credible set, with a clear functional impact (for example, a 

biochemically relevant coding variant) located in a specific gene; overlap with molecular 

QTLs in LD with r2 ≥ 0.7 (based on the Sardinian genetic map) assessed using the LinDA 

Catalog (Version 20190109), which included eQTLs as well as QTLs for other molecular 

traits such as alternative splicing, polyA usage, histone modifications and DNA methylation; 

overlap with a cis pQTL for levels of the measured surface protein.

Enrichment of molecular QTLs in immune trait association signals.—To test 

for the enrichment of molecular QTLs in immune trait association signals, we used a set 

of background variants determined as follows. We considered each lead variant of the 

LD-independent immune trait loci, and we randomly selected 50 variants matched for MAF 

(±0.05), imputation quality (±0.05), distance from the nearest transcriptional start site (±1 

megabase) and LD-independent (between each other and with respect to the immune trait 

loci lead variants). The LD-independent loci have been chosen in the LD-clumped Sardinian 

genetic map (PLINK version 1.90_b3.38, with parameters --clump-r2 0.1 --clump-kb 1,500) 

and excluding sex chromosomes and the HLA region (chr6: 27000000–33000000). The 

positions of the resulting background variants were checked for any molecular QTLs with 

r2 ≥ 0.7 (in the Sardinian genetic map) in the LinDA molecular QTL Catalog. The Fisher 

exact test was used to test for enrichment of molecular QTLs in the LD-independent immune 

trait loci. Only molecular QTLs having more than 10 LD overlapping hits among the 

LD-independent immune loci were considered for enrichment.
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Coincident associations of immune traits and disease.—To identify associations 

overlapping with previously described complex disease associations (‘coincident 

associations’), both the GWAS Catalog (https://www.ebi.ac.uk/gwas/home, version 

v1.0, Ensembl release version e93, date 2018–08-28) and the ImmunoBase (https://

genetics.opentargets.org/immunobase, version 12-May-2016) websites were screened for 

variants in LD (r2 ≥ 0.7) with the top associations for any of the assessed traits. For 

a primary group of diseases (RA19, SLE62, MS16, T1D63, Crohn’s disease55, ulcerative 

colitis55, IBD55, allergy21), we performed colocalization analyses using the coloc v2.3–

1 package64 with default settings. Trait and disease were considered colocalized if the 

probability of colocalization (coloc_P) ≥ 0.8. Colocalizations with coloc_P ≤ 0.2 were 

considered as not colocalized. Intermediate values (0.2 < coloc_P < 0.8) were called 

‘uncertain’. To establish the direction of a genetic signal effect on traits and diseases, we 

considered as the ‘effect allele’ the ‘derived’ allele for variants associated with immune 

parameters, and the allele corresponding by LD (r2 ≥ 0.7) to the derived immune trait 

allele for variants associated with diseases. For each associated variant, we inferred the 

ancestral/derived allele by comparing Sardinian sequences with the ancestral sequences 

for Homo sapiens (GRCh37) extracted from the alignment set ensembl_compara_59@ens

livemirror:3306 (using 6 primates EPO (474)).

The confidence in the ancestral call was determined according to the 1000 Genomes Project 

pipeline (described in ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/

supporting/ancestral_alignments/human_ancestor_GRCh37_e59.README).

MR.—To assess the causal role of the immune traits (‘exposures’) on the identified 

coincident diseases (‘outcomes’), we applied a two-sample multivariable MR approach on 

seven clinical outcomes detailed in Supplementary Table 6A showing multiple coincident 

associations.

For each multiple coincident association, we prioritized the seven most representative 

phenotypes by selecting, for each coincident disease, the trait showing the most significant P 
value at one of the associated coincident loci (Supplementary Table 6B).

We then identified the instrumental variable (IV) models by extracting from our GWAS: 

variants with P < 1 × 10−5; independent variants (that is, variants showing a LD r2 < 0.1 

in a 500-kilobase window, with r2 calculated in our SardiNIA genetic map using PLINK 

v1.9060); when a variant was not included in the outcome GWAS, we replaced it with its 

best proxy in 1000G-EUR data (r2 > 0.8); when a proxy was not available, the variant was 

excluded from the analyses. For each selected IV, we extracted its summary statistics, in 

particular effects and standard errors, to be used in MR analyses.

To guarantee the robustness of the association of the IVs with exposure and ensure the 

statistical significance of the IV models, we evaluated the F-statistic according to the 

following formula:
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F = R2 × (n − 1 − k)
1 − R2 × k

where n is the number of individuals analyzed in the exposure GWAS, k is the number 

of variants included in the IV model and R2 is the variance explained by the genetic 

instrument(s). For each variant, R2 was calculated as

R2 = 2 × MAF × (1 − MAF) × β2
var(exposure)

with β being the estimated effect of the variant on the exposure and var(exposure) being 

the variance of the tested exposure. For multivariable IV models, R2 was calculated on 

single-regression-model fitting all of the IVs. An F-statistic > 10 was required to define an 

IV model as significantly informative in MR analyses65.

To perform MR analyses, we applied different methods: the random-effects inverse

variance-weighted (IVW) method, weighted median (WM), MR-Egger and MR-PRESSO66. 

All of the analyses were carried out with the Two-SampleMR version 0.4.22 and the MR

PRESSO version 1.0 packages implemented in R (https://cran.r-project.org/).

We estimated the heterogeneity for the IVW and MR-Egger methods using the 

mr_heterogeneity() function, and when the Cochran’s Q statistic indicated a significant 

value, IVW was replaced by WM. Similarly, we tested for MR-Egger intercept pleiotropy 

with the mr_pleiotropy_test() function. When MR-Egger showed significant heterogeneity 

and/or pleiotropy and the number of IVs was >3, we applied MR-PRESSO to identify and 

discard significant pleiotropic IVs (P < 0.05), defined as ‘outliers’; the global P value of 

the model, referring to the hypothesis of no directional pleiotropy, raw and outlier-corrected 

causal estimations were reported; again, if the number of filtered IVs was >3, IWV, WM and 

MR-Egger were carried out on outlier-corrected models.

A significance threshold of P < 7.1 × 10−3 was established on the basis of the seven 

exposures analyzed. MR results were considered robust if confirmed by at least two different 

methods. When reported in the text, the P values refer to the WM test, with outliers removed 

if necessary.

Analyses in the CD40 locus.—To establish the relative causal impact of CD40 and 

CD27 protein levels in the CD40 locus association, a series of analyses were performed 

to: understand whether the expression of CD27 is regulated by rs1883832 or is mediated 

by CD40 protein levels; quantify the amount of rs1883832 effect on CD27 protein levels 

mediated by CD40 protein levels; understand whether the association with autoimmune 

disease at this locus is mediated by CD40 or CD27 expression.

First, bidirectional one-sample multivariable MR analyses were applied to check whether 

rs1883832 showed a horizontal pleiotropic effect on both CD40 and CD27 protein levels, 

or CD40 protein levels mediate CD27 protein levels. We extracted instrumental variables 
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associated with CD40 and with CD27 expression on IgD−CD38dim B cells as already 

described. We then applied two different MR methods: the Wald ratio test (implemented 

in the TwoSampleMR version 0.4.22 package in R) on rs1883832 as a single-variant 

instrument; the two-stage least squares regression method using the tsls() function of the 

sem version 3.1–9 package in R67. In particular, we tested three different models with 

two-stage least squares: a model including only rs1883832, to compare results with the 

Wald ratio test; a model including all of the selected IVs; a model including all IVs, except 

pleiotropic variants according to the MR-PRESSO test (only rs1883832 was excluded). A 

Bonferroni correction was applied considering the four tests performed (two traits analyzed 

in two different variant settings), and a significance threshold of P < 1.25 × 10−2 was 

established.

Second, the proportion of the rs1883832 effect on CD27 mediated by the CD40 protein was 

estimated using nested linear regression models as follows: first, we evaluated a baseline 

model regressing out rs1883832 on CD27 protein levels (model 1); then a second model 

regressing out the rs1883832 effect adjusted for the CD40 protein level effect (model 2); 

finally, a third model regressing out the rs1883832 effect adjusted for the effect on CD40 

expression of all IVs used in MR (model 3). In all models, CD27 and CD40 protein levels 

were inverse-normalized and adjusted for sex, age and age2 before the analyses. A likelihood 

ratio test was applied to compare nested models. We calculated the proportion of the SNP 

effect on CD27 mediated by the CD40 protein as the difference of the R2-adjusted between 

model 1 and model 2, and between model 1 and model 3, obtaining comparable results.

Finally, we also carried out two-sample MR analyses with CD40 and with CD27 expression 

on IgD−CD38dim B cells as exposures, and MS and RA as outcomes, using the same 

procedure described above. A multiple-testing-adjusted significance threshold of P < 1.25 × 

10−2 has been considered (two traits in two diseases).

Selection of drug targets and their prioritization score.—To investigate the 

potential for drug discovery of the observed coincident associations between immune

related trait and disease risk, we applied a set of rules to define optimal candidates for 

pharmaceutical development40,41.

Overall, we ranked our targets into three broad categories: biological targets for which MFIs 

and expression data indicated a loss/reduction of function associated with disease protection 

(or a gain of function associated with disease predisposition), thus supporting possible 

therapeutic inhibition; biological targets for which MFIs and expression data indicated a 

gain of function associated with disease protection, thus supporting possible therapeutic 

activation of the gene product; more complex situations where the same biological target 

was associated with more than one disease but with discordant directions of effects.

We used the priority index (PI) to score each gene as a potential drug target for a specific 

disease42.
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Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

Full GWAS summary statistics have been deposited in the GWAS Catalog with accession 

numbers from GCST0001391 (https://www.ebi.ac.uk/gwas/studies/GCST0001391) to 

GCST0002121 (https://www.ebi.ac.uk/gwas/studies/GCST0002121). The accession number 

for each trait is reported in Supplementary Table 1B.

Disease summary statistics used to identify coincident associations were obtained from the 

GWAS Catalog (https://www.ebi.ac.uk/gwas/home, version v1.0, Ensembl release version 

e93, date 2018–08-28) and from ImmunoBase (https://genetics.opentargets.org/immunobase, 

version 12-May-2016). Summary statistics for colocalization analyses were downloaded 

from the respective web pages: RA (http://plaza.umin.ac.jp/~yokada/datasource/

files/GWASMetaResults/RA_GWASmeta_European_v2.txt.gz); T1D (https://datadryad.org/

stash/dataset/doi:10.5061/dryad.ns8q3); MS (http://imsgc.net/publications/); SLE 

(http://insidegen.com/insidegen-LUPUS-data.html); allergy (https://genepi.qimr.edu.au/staff/

manuelf/gwas_results/SHARE-without23andMe.LDSCORE-GC.SE-META.v0.gz); IBD, 

Crohn’s disease and ulcerative colitis (ftp://ftp.sanger.ac.uk/pub/project/humgen/

summary_statistics/human/2016-11-07/). Molecular QTLs are from the LinDA QTL Catalog 

(http://linda.irgb.cnr.it/, version 20190109). Source data are provided with this paper.

Orrù et al. Page 19

Nat Genet. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ebi.ac.uk/gwas/studies/GCST0001391
https://www.ebi.ac.uk/gwas/studies/GCST0002121
https://www.ebi.ac.uk/gwas/home
https://genetics.opentargets.org/immunobase
http://plaza.umin.ac.jp/~yokada/datasource/files/GWASMetaResults/RA_GWASmeta_European_v2.txt.gz
http://plaza.umin.ac.jp/~yokada/datasource/files/GWASMetaResults/RA_GWASmeta_European_v2.txt.gz
https://datadryad.org/stash/dataset/doi:10.5061/dryad.ns8q3
https://datadryad.org/stash/dataset/doi:10.5061/dryad.ns8q3
http://imsgc.net/publications/
http://insidegen.com/insidegen-LUPUS-data.html
https://genepi.qimr.edu.au/staff/manuelf/gwas_results/SHARE-without23andMe.LDSCORE-GC.SE-META.v0.gz
https://genepi.qimr.edu.au/staff/manuelf/gwas_results/SHARE-without23andMe.LDSCORE-GC.SE-META.v0.gz
https://ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2016-11-07/
https://ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2016-11-07/
http://linda.irgb.cnr.it/


Extended Data

Extended Data Fig. 1 |. Flow cytometry gating strategy of TBNK, regulatory T cell, maturation 
stages of T cell, and dendritic cell antibody panel.
TBNK panel. a, Lymphocytes (violet) and granulocytes (blue). b, CD14+ monocytes (light 

blue). c, HLA DR++CD14+ monocytes. d, CD3+ (T cells, purple) and CD3− (green) 

lymphocytes. e, B and NK cells are CD19+ and CD16/CD56+, respectively. f, HLA DR+ 

NK cells. g, T cells are divided based on CD4 and CD8 expression. h, TCR-ϒδ+ T cells. 

i, NKT are CD3+ and CD16/CD56+. j, HLA DR+ T cells. HLA DR+CD4 and HLA 

DR+CD8 subsets are obtained by intersecting HLA DR+ T cell with CD4+ and CD8br 

lymphocytes. Regulatory T cell panel. a, CD4+ (blue) and CD8+ (violet) lymphocytes. 

b, CD4+ Tregs (green) are CD25high CD127low. c, Resting (CD45RA+CD25++, pink), 

activated (CD45RA-CD25+++, orange) and secreting (CD45RA-CD25++, purple) CD4+ 

Tregs. D-E) CD25hiCD4+ lymphocytes are divided based on CD45RA expression. F) CD4

CD8− T cells (DN, black) are divided in CD28+ and CD28−. G-H-I-J-K) CD39 expression 

on Treg subsets, CD4 and CD8br T cells, respectively. L) CD8br cells division based 

on CD45RA vs CD28 expression. M-N) CD25++CD28-CD8br and CD127-CD28-CD8br 

identification. Maturation stages of T cell panel. a, CD4+ (blue), CD8br (violet) and CD4

CD8− (black) T cells are analyzed for CD45RA vs CCR7 (plots B-C-D, respectively) 

identifying naïve (CCR7+CD45RA+), central memory (CM, CCR7+CD45RA−), effector 

memory (EM, CCR7-CD45RA−), and terminally differentiated (TD, CCR7-CD45RA+) 

subsets. Dendritic cell antibody panel. a, Monocytes (pink). b, c, DCs are Lineage (Lin) 

negative and HLA DR+. d, Myeloid (green) and plasmacytoid (violet) DCs are CD11c+ and 
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CD123+, respectively. e, f, CD86 and CD62L expression on cDC. G-H-I) CD11c, CD62L 

and HLA DR expression on monocytes.

Extended Data Fig. 2 |. Flow cytometry gating strategy of B cell, monocyte, myeloid cell antibody 
panel.
B cell panel. a-b, Lymphocyte (red). c, B lymphocytes (violet) are CD19+. d, IgD+ 

B cells. B cells classification based on e) CD24 vs CD38; f) CD27 vs IgD; g) IgD 

vs CD38; h) IgD vs CD24; i) CD24+CD27+ memory B cells. j, Plasma blasts/plasma 

cells (PB/PC) are CD20-CD38hi B cells. Monocyte panel. A-B-C) Monocyte (blue). 

D) Monocytes division into CD14+CD16− (classical), CD14-CD16+ (non-classical) and 

CD14+CD16+ (intermediate). Myeloid panel. A-B-C) Lympho-monocytes (red). d, Viable 

and myeloid-enriched cells (green) are obtained excluding lymphoid cells, which are 

lineage1 (Lin1) positive, and dead cells, which are 7-aminoactinomycin-D (7AAD) positive. 

e, Hematopoietic stem cells (HSC). f, CD14 vs CD66b expression and g) CD33 vs HLA 

DR expression on myeloid-enriched cells. The intersection of CD33dim/br HLA DRdim/− 

cells in g) with CD14+ monocytes (orange) in f) results in monocytic myeloid-derived 

dendritic cells (Mo MDSC). h, The deletion of CD14+ monocytes (orange) from cells in g) 

discriminates five subsets using CD33 vs HLA DR markers. i, CD66b+ cells were excluded 

from the CD33dim HLA DR− cells (blue) and j) the resulting CD33dimHLA DR-CD66− 

population was further divided into basophils and immature MDSC (Im MDSC) based on 

CD45 and CD11b expression. k, CD33br HLA DR+ cells (black) division into CD14 dim 

and CD14−. l, CD11b expression on CD33dim HLA DR+ cells (purple). Intersection of 

CD33dim HLA DR− in h) with CD66b++ cells in f) corresponds to granulocytic myeloid

derived dendritic cells (Gr MDSC).
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Extended Data Fig. 3 |. Phenotypic correlation among expression level of surface markers.
Heatmap of phenotypic correlations for MFI pairs calculated using the Spearman coefficient. 

Dendrograms represent the clustering: short branches indicate strong phenotypic correlation 

between traits, whereas long branches weak correlation. Color gradations represent the 

correlation strength, with red indicating direct correlation (from 0 to +1) and blue inverse 

correlation (from 0 to −1).
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Extended Data Fig. 4 |. Genetic correlation among expression level of surface markers.
Heatmap of genetic correlations for MFIs pairs calculated as previously described1. The 

description of the figure is as for Extended Data Fig. 3.
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Extended Data Fig. 5 |. Phenotypic correlation among cell levels.
Heatmap of phenotypic correlations for cell counts and T/B and CD4/CD8br ratios, 

calculated using the Spearman coefficient. The description of the figure is as for Extended 

Data Fig. 3.
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Extended Data Fig. 6 |. Genetic correlation among absolute cell counts.
Heatmap of genetic correlations for cell counts and T/B and CD4/CD8br ratios, calculated 

as previously described1. The description of the figure is as for Extended Data Fig. 3.

Extended Data Fig. 7 |. Drug target prioritization (Priority index, Pi) score of our drug targets 
candidates segmented by gene categories.
It is shown the distributions of the Pi-rating (computed in Fang et al., 42) of our candidate 

genes (colored boxplots) segmented for different gene categories (“All” genes, “eGenes”, 

“Seed” genes and cell surface genes) with the relative background distributions (grey 

boxplots, that is that consider all the genes belonging to the respective category). eGenes 

means that the gene has an eQTL colocalizing with the disease; seed gene means that 
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the genes have a genetic link to the disease (by eQTL, gene proximity or chromatin 

conformation) as defined in Fang et al., 42. The boxplot inside the violin plot reports a 

white circle indicating the median value, with the box limits indicating the upper and the 

lower quartiles. The whisker at the upper side of the box extends to the minimum between 

the interquartile range (IQR) x 1.5 and the overall maximum value of the data. The whisker 

at the bottom side of the box extends to the maximum between IQR x 1.5 and the overall 

minimum value of the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Schematic representation of the main leukocyte subsets assessed by GWAS.
The background colors indicate different cell groupings: T-cell populations are indicated in 

green, B cells in orange, DCs in yellow, monocytes in blue, other myeloid cells in violet, 

and hematopoietic stem cells in pink. The markers assessed for MFI are indicated within 

the light blue rectangles. TCRgd, gamma delta T cells; NK, natural killer cells; NKT, NK 

T cells; DN, CD4− CD8− T cells; DP, CD4+ CD8+ T cells; CM, central memory; EM, 

effector memory; HSCs, hematopoietic stem cells; Im MDSCs, immature myeloid-derived 

suppressor cells; Gr MDSCs, granulocytic MDSCs; Mo MDSCs, monocytic MDSCs; FSC, 

forward scatter; SSC, side scatter.
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Fig. 2 |. Genetic associations of the immune traits assessed.
The innermost track shows the lowest association P value among all traits for each locus. 

Significant variants (P < 1.28 × 10−11) are in red, suggestive variants (P value ranging 

from 5 × 10−8 to 1.28 × 10−11) in orange, and non-significant variants in blue. The middle 

track shows the chromosome number. The outermost track indicates the genes nearest to 

signals with P < 1.28 × 10−11. Genes showing coincident genetic association with diseases 

are shown in bold font. The coincident associated genes are indicated even if in some 

instances their P values range from 5 × 10−8 to 1.28 × 10−11. The summary statistics were 

obtained using a linear mixed association model. The significance threshold was calculated 

by applying a Bonferroni correction to the empirical significance threshold (P = 6.9 × 10−9)6 

considering 539 independent tests.
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Fig. 3 |. Coincident genetic association between immune traits and diseases.
The circular plot shows the top immune traits in colored rectangles and the genes nearest 

the associated signals in gray rectangles. The pathologies linked to the immune traits via 

coincident genetic associations (P < 5.0 × 10−8) are listed radially to the associated gene. 

The pathologies for which the protective allele correlates with a reduction of an immune trait 

level are in blue, whereas those for which the protective allele correlates with an increase are 

in red. The HLA region is not included. The pathology acronyms are detailed in the table. 

The summary statistics for the immune traits were obtained using a linear mixed association 

model.
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Fig. 4 |. Regional association plots in the CD40 region.
The significance of the association (−log10[P value]; left y axis) for each trait is plotted 

relative to the genomic positions on the hg19/GRCh37 genomic build (x axis). The symbols 

reflect genomic functional annotations. SNPs are colored to reflect their LD with rs1883832 

(indicated with a purple dot). a, Expression of CD27 on IgD−CD38dim cells. The P 
values were obtained using a linear mixed association model. b, CD40 expression on 

leukocytes calculated using RNA-seq data from Pala et al.54. c–e, Association profiles for 

the autoimmune diseases MS (c), RA (d) and IBD (e). The data plotted in c–e are from 

published results16,19,55. Genes, position of exons and direction of transcription are noted 

below e. The plots were drawn using the standalone version of LocusZoom56.
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Fig. 5 |. Drug target prioritization (priority index, Pi) score of our drug target candidates.
The red lines indicate the Pi rating of our drug target candidates for the respective diseases 

(listed in Supplementary Table 8A,B). The gray violin plots indicate the distribution of 

the Pi rating, for the respective diseases, of all the genes for which a Pi rating has been 

computed (number of genes indicated in parenthesis). The gray lines indicate the 90th 

and the 95th percentiles of the Pi rating values. IgD, HLA, CD45RA and CD3 have been 

excluded because the Pi rating was not available. Gene aliases: TNFRSF13C (BAFF-R), 

ITGAM (CD11b), ITGAX (CD11c), IL3RA (CD123), MS4A1 (CD20), IL2RA (CD25), 

PTPRC (CD45), SELL (CD62L), FCGR1A (CD64), CD8A (CD8), TNFRSF14 (HVEM), 

FCGR2A (CD32). The acronyms are as in Fig. 3; ATD, autoimmune thyroiditis; ALG, 

allergy; ASM, asthma. The boxplot inside the violin plot reports a circle indicating the 

median value, with the box limits indicating the upper and the lower quartiles. The whisker 

at the upper side of the box extends to the minimum between the interquartile range × 1.5 

and the overall maximum value of the data. The whisker at the bottom side of the box 

extends to the maximum between the interquartile range × 1.5 and the overall minimum 

value of the data.
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