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We report on the influence of ~22 million variants on 731 immune cell traits in a cohort of

3,757 Sardinians. We detected 122 significant (P< 1.28 x 10~11) independent association signals
for 459 cell traits at 70 loci (53 of them novel) identifying several molecules and mechanisms
involved in cell regulation. Furthermore, 53 signals at 36 loci overlapped with previously reported
disease-associated signals, predominantly for autoimmune disorders, highlighting intermediate
phenotypes in pathogenesis. Collectively, our findings illustrate complex genetic regulation of
immune cells with highly selective effects on autoimmune disease risk at the cell-subtype level.
These results identify drug-targetable pathways informing the design of more specific treatments
for autoimmune diseases.

Assessing the impact of natural genetic variation on quantitative and discrete immune-
related traits provides a powerful route to better understand immune system function and
dysfunction.

We thus previously performed a genome-wide association study (GWAS) on 272

blood immune-cell-related traits profiled by flow cytometry in 1,629 general population
individuals from the founder population of Sardinial. We found significant association
signals at 13 loci, 3 of them coinciding with autoimmune disease risk (‘coincident
associations’), revealing possible contributions from these loci to disease pathophysiology.
The approach differed from comparisons of immune cell traits in case—control cohorts,
which can be influenced by disease process and therapy.

Using a similar approach, four subsequent GWASs analyzed up to 1,000 individuals and
detected 28 additional loci associated with immune cell traits?=>. All of these studies
provided mechanistic clues about the genetic regulation of immune cells but had some
limitations, including relatively small sample sizes and number of cell traits tested by
GWAS, and only partial coverage of genetic variation. Furthermore, our previous analysis!
and another study? did not consider median fluorescence intensities (MFIs) reflecting the
levels of cell surface antigens, and a third study considered proportions of cells but not
absolute cell counts?.

Interpretation of the coincident associations detected thus far has been hampered by the
observation that a variant associated with a clinical outcome often influences multiple
immune phenotypes (‘pleiotropy’), and it is not always clear which specific immune
phenotype is truly implicated in the disease process. Moreover, the true disease-related
immune phenotype may not even have been measured in previous studies, supporting the
need to analyze by GWAS even larger numbers of immune traits. This could lead to the
identification of multiple independent genetic associations with effects on the same pairs of
immune trait and disease risk (‘multiple coincident associations’), giving further support to
a possible causal relationship between levels of that immune cell type and that particular
disease.

To overcome previous limitations, we have performed a new GWAS with almost three

times the number of immune cell traits and more than double the number of individuals
previously studied. We have also improved considerably the information content of the
genetic map, interrogating ~22 million genetic variants derived from our population-specific
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whole-genome sequencing effort®. The enhanced power of the study increased considerably
the number of reported associations with immune cell traits and coincident associations
with disease risk, revealing numerous potential druggable protein targets for autoimmune
diseases.

Heritability and genetic associations of immune cell traits.

We profiled by flow cytometry 539 immune traits, including 118 absolute cell counts, 389
MFIs of surface antigens and 32 morphological parameters. In addition, we considered 192
relative counts (ratios between cell levels) for a total of 731 cell traits assessed in a general
population cohort of 3,757 Sardinians (Fig. 1, Extended Data Figs. 1-6, Supplementary
Table 1 and Supplementary Information).

Using our unique family-based cohort of individuals with varying degrees of genetic
relatedness (Methods), we first provided robust estimates of the proportion of phenotypic
variation in immune traits attributable to inherited variation (“heritability”). Narrow-sense
heritability of the assessed traits—which captures the proportion of phenotypic variation due
to additive genetic effects—had a median value of 37.0% (Supplementary Information and
Supplementary Table 2).

Focusing on cell counts, lymphoid cells were more heritable than myeloid cells (median
values, 37.7% versus 32.3%, respectively), which roughly overlap with higher heritability
of adaptive immunity compared to innate immunity (37.7% versus 32.6%, respectively).
Among lymphoid cell counts, CD4 T cells were the most heritable followed by B-cell and
CD8 T-cell traits (42.6%; 38.9%; 33.8%, respectively). The maturation stages of T- and
B-cell counts had a clearer heritability pattern: naive cells were more heritable than memory
cells (naive T: 47.0% versus memory T: 37.1%; naive B: 44.7% versus memory B: 38.9%).
This pattern is most likely due to the fact that memory cells are more strongly influenced
by previous encounters with environmental exposures. In fact, the terminally differentiated
(TD) T cells, which are the last maturation state of memory T cells, were among the least
heritable T-cell subsets (29.3% for TD CD4 and 30.6% for TD CD8 T cells).

From these findings, we inferred that the cell types with the highest heritability, which
roughly correspond to adaptive immunity, are those with more sophisticated functions—
and are also the last to appear during ontogenesis and after hematopoietic stem cell
transplantation’:8.

Overall, our results are in line with those obtained in previous studies on immune traits®, in
which, although the importance of environmental exposure in immune system modulation
was emphasized, a mean heritability comparable to ours was obtained.

To identify the genetic variation accounting for the inherited component of the 731
immunophenotypes, we next performed a GWAS, testing 20,143,392 SNPs and 1,688,858
indels, either genotyped with high-density arrays or imputed through our Sardinian
sequence-based reference panel of 3,514 individuals®.

Nat Genet. Author manuscript; available in PMC 2021 October 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Orru et al.

Page 4

At the genome-wide significant threshold of £< 1.28 x 10711—based on our empirical
genome-wide Pvalue (P= 6.9 x 10~9)6 corrected for 539 independent traits tested
(Methods)—we found 122 independent associations (111 outside the HLA region). These
signals were localized at 70 loci, 53 of them novel, and resulted in a total of 763 trait—variant
associations (Fig. 2). Of the 122 association signals, 49 (40%) were purely cis (locally
acting) associations, 57 (47%) were trans (acting at distant sites), and 16 (13%) were both
cis and trans.

At a more relaxed standard GWAS threshold of £< 5 x 1078, we identified an additional 198
independent associations at 154 loci (152 of them novel; Supplementary Table 3A-C).

Identification of candidate causal variants and genes.

To identify candidate causal variants driving the observed association profiles, we
determined for each association signal the so-called ‘credible set’, or the minimum set
of variants with a 95% summed posterior probability of including the causal variant
(Supplementary Table 3D,E)1°,

Among the 24 signals with only 1 likely causal variant in their credible set, 6 were driven by
protein-altering variants (25%), 8 by variants within regulatory regions, and the remaining
10 were variants without an obvious functional impact (synonymous, intronic or intergenic),
although 8 of these were annotated as molecular quantitative trait loci (QTLS) in the LinDA
QTL Catalog (http://linda.irgh.cnr.it/, Methods and Supplementary Table 4A).

Using a combination of criteria (Methods), we also detected candidate causal genes for the
122 independent signals. Importantly, 83 of 122 signals overlapped (linkage disequilibrium
(LD) with /2 > 0.7 between lead variants) with expression QTLs (eQTLs), which overall
were significantly enriched among our signals (odds ratio (OR) = 16.54, P=1.88 x 10742,
Fisher’s exact test). Likewise, 64 of the 198 association signals with 1.28 x 10711 < p

<5 x 1078 (suggestive set) showed significant enrichment for eQTLs (OR = 4.87, P=

1.39 x 10719), consistent with a number of these signals representing genuine associations
(Supplementary Table 4B,C).

Coincident associations with disease risk.

GWASs performed thus far have identified thousands of signals associated with immune-
related diseases, but the underlying mechanisms and the specific immune cell subtypes
involved remain largely unknown or speculative. To overcome this gap in knowledge, a
useful approach is to identify overlaps (‘coincident associations’) between disease risk
and blood immune-cell-level association signals, pointing to intermediate quantitative
phenotypes that bridge the mechanistic lacunae between genetic variation and disease
endpoints-11,

We found that 53 independent association signals with immune cell traits at 36 loci (of
which 27 are newly identified) overlapped with reported GWAS associations with disease
risk (lead variants with /2> 0.7; Fig. 3, Supplementary Fig. 1 and Supplementary Table
5A). The association profiles were also assessed for colocalization (posterior probability

Nat Genet. Author manuscript; available in PMC 2021 October 15.
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> 0.8) with disease GWAS with available genome-wide summary statistics (Methods and
Supplementary Table 5B).

Furthermore, some of the associations with immune traits we report here were driven by
genetic variants far more common in Sardinia than elsewhere and may thus have been
missed by disease GWASs in other populations. For instance, among the 122 independent
significant signals, 16 (not showing overlap with disease in published GWASS) have a low
frequency in Europeans from the 1000 Genome Project (<2%) but at least twofold higher
frequency in Sardinians (Supplementary Table 3A,F and Supplementary Information).

Among the 53 coincident association signals, 32 (60.4%) act in trans, 16 (30.2%) in cis, and
5 (9.4%) both in cis and trans (Supplementary Table 5A). Overlaps include signals involved
in the risk of one or, more frequently, multiple diseases, and the direction of the effects

on risk can be opposite for different diseases. Furthermore, in some instances, multiple
independent coincident association signals coherently pointed to the same cell trait and
disease, further supporting the causal involvement of that cell trait in that disease (Table 1
and Supplementary Table 6A).

A more comprehensive treatment of the observed coincident associations is provided in
Supplementary Information. Below are details for some examples with especially strong
biological and clinical implications. Unless otherwise specified, we refer to the effects due to
the derived (mutated) allele.

Genetic regulation of plasmacytoid cells.—A signal led by rs876039[C] in the
SPATA48-1KZF1 intergenic region decreased the level of plasmacytoid dendritic cells
(pDCs; effect —0.20 s.d., = 9.51 x 10713) and colocalized with decreased risk for systemic
lupus erythematosus (SLE)12. Promoter capture Hi-C data suggest enhancer—promoter
contacts between DNA sequence variation marked by this signal and the /KZF1 genel3,
which encodes for the eponymous transcription factor. Furthermore, this signal coincided
with several eQTLs acting in transl4 (Supplementary Table 4A), suggesting an even more
complex regulation that could likely be mediated by IKZF1 action. Interestingly, another
independent signal, localized in LCT-AS1, decreased the levels of pDCs (ancestral allele
rs2164210[T], effect —0.20 s.d., A= 2.12 x 10713). This signal overlapped with associations
decreasing risk for SLE12.15, The potential causal role of the downregulation of pDCs

in inherited protection from SLE is further supported by Mendelian randomization (MR)
analyses (Methods, Supplementary Information and Supplementary Table 6) and may have
implications for SLE therapy.

Genetic regulation of CD40 and CD27 in B-cell involvement in autoimmunity.—
A signal led by rs1883832[T] in the 5" untranslated region of CD40increases in trans the
expression of CD27 on memory-B-cell subsets (effect +0.64 s.d., = 6.21 x 107147) and
decreases the level of a specific B-cell subset that does not express CD27 (IgD~CD27~;
effect —0.39 s.d., P=7.20 x 107°0). The signal overlaps with reported increased risk

of multiple sclerosis (MS), inflammatory bowel disease (IBD), Crohn’s disease, SLE and
chronic hepatitis infection, but with reduced risk of rheumatoid arthritis (RA) and Kawasaki
diseasel6-20 (Fig. 3).

Nat Genet. Author manuscript; available in PMC 2021 October 15.
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As CD40 was not included in our original panel to assess B cells, we then measured

both CD40 and CD27 on B-cell subsets in an additional group of 999 individuals and
found that rs1883832[T] was indeed associated with decreased CD40 expression as well as
increased CD27 expression on B-cell subsets (Supplementary Table 7A). Notably, CD40 is
consistently downregulated by rs1883832[T] in all B-cell subsets (both naive and memory),
with the strongest effect in IgD"CD27~ B cells (effect —0.73 s.d.; A= 4.55 x 10766),

This variant lies in the Kozak consensus sequence of the CD40 gene and might thereby
directly affect ribosome binding and translation of CD40 messenger RNA. Furthermore, it
lies in a region recognized by numerous transcription factors, suggesting that variants in that
region could also influence CD40 gene transcription. Consistent with that possibility, the
signal led by rs1883832[T] overlaps with a cis eQTL decreasing CD40 mRNA (Fig. 4 and
Supplementary Table 4A).

MR analyses (Methods) supported a unidirectional negative effect of CD40 on CD27 at

the protein level (P=1.75 x 107°; Supplementary Table 7B,C), contributing to the inverse
correlation observed between the two proteins on memory B cells (Spearman correlation p =
-0.198, P=2.53 x 10719). We then assessed whether the association in trans of rs1883832
with CD27 levels on memory B cells was completely mediated by the CD40 protein or
whether it was also due to horizontal (independent) pleiotropy. Our results show that the
effect of this variant on CD27 is only 2% mediated by CD40 (Methods and Supplementary
Table 7D). We thus hypothesize that the signal in the CD40 region has two cis-acting
effects: one leading to direct downregulation of the corresponding protein, which in turn
directly contributes to a relatively modest extent to the observed increase of CD27, while
the second, mediated by a nearby but still undetermined gene, accounts for most of the
increase of CD27 due to variation in the CD40 gene region. This latter mechanism is
consistent with interactions between rs1883832 (and/or other variants in LD with it) with
regulatory elements affecting expression in nearby genes (see https://genome.ucsc.edu/ and
https://www.chicp.org).

Further MR analyses (Methods and Supplementary Tables 6 and 7E) suggested that
decreased CD40 leads to increased risk for MS, whereas decreased CD27 leads to increased
risk for Crohn’s disease. A causal role of increased CD27 expression on memory B cells

in increased risk for Crohn’s disease is further supported by another independent and
coherent coincident association led by the ancestral allele rs1801274[A], encoding His, in
the FCGR2A gene (effect +0.29 s.d., P= 2.48 x 10~28; Supplementary Table 6A)17,

Complex coincident associations.

In some cases, the observed associations show particularly complex effects such as the
presence of multiple independent signals in one or more gene regions that influence the
expression of a given surface marker in different cell subtypes with distinct consequences on
disease risk. Such complex regulation is exemplified below by variation at the /L2RA locus,
affecting the expression of CD25, and by variation at the CD28-CTLA4 and BACHZ loci,
affecting the expression of CD28 and CD80.

Nat Genet. Author manuscript; available in PMC 2021 October 15.
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IL2RA, a complex autoimmunity locus.—/L2RA (CDZ25), encoding the alpha chain
of the IL-2 receptor, contains seven independent signals, four of them also associated with
diseases. As previously reported?, one signal driven by rs61839660[T], indicated as the
candidate causal variant by fine-mapping analyses, increased the expression of CD25 on
CD25" memory helper T cells (effect +0.61 s.d., £=6.70 x 10728) as well as the levels of
these cells (effect +0.62 s.d., P=2.78 x 10728) and was also associated with increased risk
for allergic disease, Crohn’s disease and SLE, but decreased risk for type 1 diabetes (T1D),
juvenile RA and primary sclerosing cholangitis1>21-24,

The second signal, led by rs10905719[A], increased CD25 expression on naive helper T
cells (effect +0.23 s.d., P=2.56 x 10714) and predisposed to primary sclerosing cholangitis,
alopecia areata, psoriasis and MS25-28,

The third signal, driven by rs706779[C], was associated with lower CD25 on IgD"CD38™ B
cells (effect —0.29 s.d., P=6.64 x 10731) and decreased risk for vitiligo and autoimmune
thyroiditis2%30, The fourth signal, led by rs41294937[C], was associated with increased
expression of CD25 on B cells, especially IgD~CD384IM (effect +0.57 s.d., = 9.24 x
10748), and overlapped with increased risk for asthma and hay fever?!.

Three other signals regulated the levels or expression of CD25 in subsets of B and T cells,
but have thus far not been correlated with any disease risk association (Supplementary Table
3A).

Overall, our correlations show the influence of the expression of CD25 in specific
cell subtypes, including non-T cells, in predisposition to or protection from different
autoimmune diseases.

Genetic regulation of CD28 and CD80 and autoimmunity risk.—CD28 is a key co-
stimulatory molecule expressed on T cells, binding CD80 and CD86 on antigen-presenting
cells and promoting T-cell activation. In the CTLA4-CDZ28 gene region, two partially
correlated (/2 = 0.36) cis-acting signals, led by rs1973872[T] and rs3116493[G] (ancestral
alleles), reduced CD28 levels on a number of T-cell subsets, especially CD4* T cells

and CD39™ activated regulatory T cells (Tregs; effect —0.39 s.d., = 2.24 x 10742 and
effect —0.30 s.d., P=8.44 x 10730, respectively) and overlapped with predisposition to
celiac disease, ulcerative colitis and IBD, but with protection against MS16:19.22.25,31-33

A further independent signal led by rs4675369[G] in the same gene region reduced CD28
expression in resting Tregs (effect —0.21 s.d., = 2.23 x 10710) and coincided with reported
predisposition to primary biliary cholangitis34.

The expression of CD28 on T cells was also affected by genetic variation in the BACH?Z?
gene region. Here a single fine-mapped variant, rs72928038[A], associated with increased
CD28 expression on CD45RA* cells—both CD8* (effect +0.59 s.d., 2=5.13 x 10767) and
CD4* (effect +0.53 s.d., P=1.61 x 1072°) subsets—and overlapped with increased risk for
MS, T1D, autoimmune thyroiditis and vitiligo16:22.23.30.3536 'After conditional analysis, a
second signal, led by the ancestral allele rs619192[T], was found positively associated with
the same cell traits (effect +0.20 s.d., £=2.97 x 10710) and overlapped with increased

Nat Genet. Author manuscript; available in PMC 2021 October 15.
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risk for T1D and SLE37-38, Notably, both the CD28-CTLA4 and BACHZ gene regions
were associated with expression of CD28 on CD4* T cells and overlapped with risk for
MS16, further supporting the predisposing role of increased CD28 levels in MS (related
MR analyses are in Supplementary Information and Supplementary Table 6). Adding an
additional layer of complexity, a third signal in BACHZ, led by rs12199079[G], increased
CD80 on myeloid DCs (effect +0.23 s.d., P=7.54 x 10716) and overlapped with decreased
risk for allergic disease, Crohn’s disease and IBD17:21, These findings link genetic variation
in BACHZto CD28 and CD80 regulation and add to the reported transcriptional activity of
BACH?2 a pivotal role in directing T-cell fate toward inflammatory or regulatory status3°.

Druggability and therapeutic implications of findings.

To further assess the potential therapeutic utility of our findings, we explored the
druggability of the implicated proteins (Table 2 and Supplementary Table 8A). We
considered as a druggable target any protein: whose expression (here measured as MFI)
was influenced in cis or in trans by the associated signals (pQTLs) underlying coincident
associations; whose pharmacological modulation might reproduce a therapeutic protective
effect on disease risk??41; and for which an approved or investigational drug was
available. Of the 29 proteins identified through pQTL associations, 24 were classified as
drug targets in the Pharmaprojects database from Citeline (https://pharma.id.informa.com;
Supplementary Table 8A,B).

Using a recently developed drug target prioritization score (Pi rating)*2, we then found that
overall the 29 proteins (Supplementary Table 8B) are highly scored to be pharmacologically
relevant (Fig. 5). Specifically, we retrieved the Pi ratings of 137 gene—disease pairs (IgD,
HLA, CD45RA and CD3 have been excluded because the Pi rating was not available)
resulting from our coincident association data, and found that their median is higher than the
95th percentile of all the disease—gene pair ratings in the Pi database (Fig. 5). We observed
a high Pi rating for gene—disease pairs regardless of whether they were supported or not by
genetic associations in the Pi-score database (Extended Data Fig. 7), demonstrating that our
results were not biased by the fact that both our protein selection pipeline and the Pi-score
computation leverage genetic information.

As a proof of concept of our approach to select drug targets, the two signals in the
SPATA48-IKZF1 intergenic region and in LCT-AS1—associated with decreasing levels
of pDCs and decreased risk for SLE12-15—point to the downregulation of pDCs as a
promising therapeutic route for SLE. Proteasomal degradation of the protein target IKZF1,
also known as IKARQS, enhanced by the antitumoral drug lenalidomide, decreases pDC
numbers in vivo*3 and has been shown to be efficacious in treating patients with refractory
cutaneous lupus erythematosus*4. Furthermore, another existing route to SLE therapy is
based on the downregulation of pDCs through the inhibition of the protein product of the
gene BDCAZ (blood DC antigen 2), whose expression is regulated in trans by the /KZF1
signal overlapping with SLE protection (Supplementary Table 4). The BDCAZ2 product,
also known as CLECA4C, is a pDC-specific receptor that following engagement inhibits the
production of type I interferons (IFN-1), implicated in the pathogenesis of SLE4345. An
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anti-BDCA2 monoclonal antibody, BI1B059, indeed suppresses the ability of human pDCs
to produce IFN-146-48 and is currently in a phase 2 trial for SLE therapy (NCT02847598).

On the basis of our data, some drugs already approved or under clinical investigation against
single target antigens could be repurposed to meet new needs. For instance, the anti-CD28
drug lulizumab pegol, developed for SLE and Sjogren’s syndrome therapy, could potentially
be repositioned for MS, given the above-mentioned coincident association signals affecting
increased expression of CD28 on both CD4 and CD8 T cells and MS risk.

However, on the basis of our findings, drugs directed against a single target antigen may
not be an optimal therapeutic choice, especially when the antigen is expressed in different
cell subtypes with opposing direction of effect on different disease risk. In such situations,
it seems advisable to target more than one antigen to ensure cell-subtype specificity. For
instance, CD25 needs to be modulated differently in diverse T- and B-cell subsets on the
basis of the associated disease. Thus, our data suggest a possible explanation for why some
trials have not been successful, and predict the efficacy of other drugs currently under
clinical trial. Of note, trials of daclizumab, an CD25 antagonist, for T1D were ceased, and
its efficacy was likely limited4® because, as our genetic data suggest, in this disease CD25
should be activated instead of inhibited—and in a specific T-cell subset (Supplementary
Table 8A and Table 2).

Discussion

By combining high-resolution immune and genetic profiling in a Sardinian cohort, we have
greatly increased the number of known genetic variants affecting the regulation of immune
cell types. Our findings have linked specific cells to immune-related disorders such as MS,
T1D, RA, IBD, asthma and Kawasaki disease. The analysis of quantitative immune traits
has also facilitated fine-mapping of many overlapping disease association signals to one or
a few variants. Furthermore, in several instances we have identified candidate causal genes
and established the direction of effect of the underlying disease associations via overlapping
eQTLs and pQTLs.

In particular, the assessment of pQTLs in numerous cell subtypes reported here overcomes
limitations such as the restricted availability of RNA-seq data from cell subtypes, and post-
transcriptional effects in gene expression that cannot be detected through eQTL analysis.
The unbiased genetic approach and the large number of coincident associations detected
help to reveal or validate therapeutic target proteins controlling disease-related intermediate
phenotypes. Candidate targets include co-stimulatory molecules and cell surface receptors
that control key immune participants in the pathogenesis of disease. Many of these targets,
including CD27 and CD80, were detected only through trans pQTL associations, which can
uncover molecules whose relation to disease would otherwise remain hidden.

Furthermore, in some cases, MR analyses and multiple independent signals that associated
the same cell trait and disease risk provided additional support for the causal involvement of
some targets in a given disease (Table 1 and Supplementary Table 6A).
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However, the complex genetic regulation of immune cell levels impacting immune-related
diseases also suggests that their therapeutic modulation may be just as complex. Indeed, we
report many examples, including effects on CD28, CD27, CD25 and CDA40 that strongly
support the dependence of the efficacy of new therapies on the direction and extent

of modulation of the targets in specific cell subtypes. For instance, multiple coincident
associations in both the CD28-CT1L A4 and BACHZ gene regions increased the expression
of CD28 on CD4* T cells and overlapped with higher risk for MS18, consistent with
inhibition of CD28 on this cell subtype as a potential therapeutic route in MS. Likewise,
two signals in the CD40and FCGRZA gene regions were associated with higher CD27
expression on memory-B-cell subsets and overlapped with signals increasing risk for IBD,
especially Crohn’s diseasel’, thus supporting therapeutic inhibition of CD27 on B cells

in these diseases. In another instance, two signals in the TNFSF13B and CD40 genes
(Table 1 and Supplementary Table 7B) support a causal role of unswitched memory B cells
(IgD*CD27*) in MS and SLE pathogenesis, pointing to a targeted inhibition/depletion of
this B-cell subtype as a therapy of these diseases. Instead, current anti-CD20 monoclonal
antibodies approved or in clinical trials for MS and SLE®? are based on a broad depletion of
B cells.

Thus, in contrast to classical autoimmune disease treatments directed against individual
protein targets, future therapies of greater efficacy and safety may more usefully co-target
two or more proteins to discriminate a particular cell subtype®? or could be based on the
targeted delivery of a drug to a specific cell type—for example, by poly-specific monoclonal
antibodies or other carriers for small molecules.

Online content

Methods

Any methods, additional references, Nature Research reporting summaries, source data,
extended data, supplementary information, acknowledgements, peer review information;
details of author contributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41588-020-0684-4.

The SardiNIA dataset.

The SardiNIA project is a longitudinal study®’ comprising 6,602 general population
individuals (57% females, 43% males), ranging from 18 to 102 years, native of the

central east coast of Sardinia, Italy. As detailed below, all volunteers are deeply genetically
characterized and 3,757 of them are immune profiled. All participants signed informed
consent to study protocols approved by the Sardinian Regional Ethics Committee (protocol
no. 2171/CE).

Flow cytometric measurements.

Donors’ peripheral blood was collected in heparin tubes, and then antibody-stained and
processed for flow cytometry. Data were acquired with two standardized BD FACSCanto
Il flow cytometers and analyzed by BD FACSDiva software (BD Biosciences). The cell
populations were manually gated by the same specialist to increase consistent processing
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of the data. To minimize time-dependent artifacts, cell phenotyping was performed in the
same recruitment center within 2 h after blood collection and using erythrocyte-lysed fresh
samples. BD Lyotube technology and a lyse—wash protocol were used for all panels except
for TBNK; for that panel, a lyse—no-wash protocol was applied to obtain more precise cell
concentrations. Samples were stained with the following antibody panels.

TBNK panel.—Leukocytes (CD45%) were divided into granulocytes, monocytes and
lymphocytes on the basis of morphological parameters (forward scatter (FSC)-A and side
scatter (SSC)-A, which are proportional to the size and intracellular complexity of cells,
respectively). Lymphocytes were divided into CD3*, corresponding to T cells, and CD3™,
including B cells (CD19%) and natural killer cells (CD16* or CD56%). T lymphocytes were
split into six subsets based on the expression of the CD4 and CD8 markers: CD4-CD8~
(DN), CD4-CDgdim (cDgdim), cD4-CDgPright (CD8br), CD4+*CD8P" (DP), CD4*CD8YIM,
CD4*CD8~ (CD4"). The HLA DR positivity of CD4* and CD8P" T cells and NK cells
was considered as an activation marker. The gamma-delta antigen was also measured on
T cells. To get absolute cell counts, BD TruCount absolute counting tubes were used. The
concentrations of T cells, B cells and monocytes from this panel were used to calculate the
absolute counts in the other antibody panels assessed (except for the circulating DC panel in
which liquid counting beads were included).

Treg panel.—Tregs were identified on the basis of high expression of CD25

and low expression of CD127 surface antigens (CD25"CD127'°) and further

subdivided into activated (CD25***CD45RA"), resting (CD25"*CD45RA") and secreting
(CD25**CD45RA"). Tregs were subtracted from CD4*CD25M T cells, resulting in the
CD25MCDA4* not Treg population (CD25MCD127"), which was further subdivided on the
basis of CD45RA expression. In this panel, the CD8 T cells were divided according to their
expression of CD28 and CD45RA antigens. The high positivity for CD25 and the negativity
for CD127 on CD28~ CD8 cells were also measured. Finally, Treg subsets, CD4* and CD8*
T cells were also subdivided on the basis of the expression of CD39.

Maturation stages of T-cell panel.—The maturation status of CD4*, CD8" and
CD4~CD8™ T lymphocytes was assessed on the basis of the expression of CD45RA and
CCR7. Naive (CD45RA*CCR7*), central memory (CCR7*CD45RA"), effector memory
(CD45RA™CCR77) and TD (CCR7-CD45RA™*) maturation stages were identified.

DC panel.—DCs were identified on the basis of their positivity for HLA DR and

their negativity for the lineage cocktail (Lin) targeting CD3, CD14, CD16, CD19, CD20

and CD56 markers. The DCs were subdivided into myeloid (CD11c*) and plasmacytoid
(CD123%) cells. Their maturation and activation status were ascertained by the adhesion
molecule CD62L and the co-stimulatory molecules CD80 and CD86. In addition, monocytes
were morphologically ascertained and analyzed for HLA DR, CD62L and CD11c
expression. The absolute number of cells was estimated by adding BD Liquid Counting
Beads to the samples.

B-cell panel.—Total B cells were identified as CD19-positive and were further
subdivided using several classification approaches. CD24 versus CD38 classification
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identified transitional (CD24*CD38"), memory (CD24*CD387/4iM) and naive mature
(CD24-CD387/dim) subsets. CD27 versus IgD classification discriminated switched memory
(CD27*1gD"), unswitched memory (CD27*1gD™), naive (CD27"1gD*) and CD27 " 1gD~

B cells. 1gD versus CD38 classification, also known as Bm1-Bmb5 classification,
distinguished six B cell subsets: Bm1 (IlgD*CD387) mainly virgin naive cells; Bm2
(IgD*CD389M) activated naive cells; Bm2’ (IgD*CD38") pre-germinal center cells;
Bm3-Bm4 (IgD~CD38P") centroblasts and centrocytes present in germinal center cells

but very low/absent in blood; early Bm5 (IgD~CD384M): and late Bm5 (IgD~CD387)
memory cells. CD24 versus CD27 classification identified CD24*CD27* memory cells. IgD
versus CD24 classification subdivided B cells into four subsets: IgD*CD24%; IgD~CD24";
IgD~CD24; and IgD*CD24~. CD20 versus CD38 discriminated plasma blasts/plasma cells
(as CD20~CD38") and CD20~CD38" cells.

Monocyte panel.—Monocytes were identified on the basis of morphological parameters
and HLA DR positivity. Monocytes were then subdivided into classical (CD14*CD167),
non-classical (CD14~CD16") and intermediate (CD14*CD16™). Each subset was assessed
for CD40, CD64, CCR2, CX3CR1 and PD-L1 expression level.

Myeloid cell panel.—The fluorescent intercalator 7-aminoactinomycin D was used to
recognize and exclude dead cells. In parallel, a cocktail including CD19, CD20 and CD3
antibodies was used to remove lymphoid cells. The resulting myeloid-enriched cells were
subdivided on the basis of CD14 high positivity (corresponding to classical monocytes) and
into five subsets based on CD33 and HLA DR expression. CD11b and CD66b antibodies
were used for additional sub-characterization. The CD334IM HLA DR~ were subdivided
into: granulocytic myeloid-derived suppressor cells (MDSCs), based on the high positivity
for CD66b cells; immature MDSCs, which are negative for CD11b; and basophils, which are
positive for CD11b. Monocytic MDSCs were identified on the basis of their high positivity
for CD14 and CD33 and weak positivity for HLA DR. Finally, hematopoietic stem cells
were identified as CD34*CD45dIm,

Four of these seven panels (that is, TBNK, Treg, maturation stages of T cell and ¢cDC)
have been described previously in a smaller set of individuals®, but without assessing
MFIs or morphological parameters (FSC and SSC). As the name suggests, MFI represents
the median expression level of a fluorescent-conjugated antibody bound to a cell and is
proportional to the median amount of antigen expressed in that cell. To control for batch
effects in MFIs due to variability in antibody lots and any seasonal shifts, the distribution
was normalized for overall and daily changes as in Steri et al.11. Briefly, values for each
trait were normalized by calculating the cohort means of all the samples and the daily
means of the samples analyzed in the same day. Each MFI value was then multiplied by
the ratio between cohort mean and daily means to compensate for daily fluctuations. The
normalization was calculated independently for each MFI trait. Morphological parameters
were assessed by light scattering measured by two optical detectors. One detector measured
scatter along the path of the laser, namely FSC, primarily due to light diffraction around
the cell, and is proportional to the diameter and the size of the cell. The other detector
measured scatter in a perpendicular direction relative to the laser, namely SSC, caused by
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the refraction or reflection of the interface between the laser and intracellular structures, and
provided information about the internal complexity (that is, granularity) of a cell.

Measures to ensure reproducibility of measurements have already been described?. Briefly,
the internal parameters of the two FACS Cantoll analyzers used to measure immune traits
were adjusted daily by standardized fluorescent beads to check and correct for laser wear
and fluidic instability. Actual cell counts were validated weekly by processing stabilized
blood samples with characterized cell concentrations. To directly assess reproducibility,

we repeated the FACS measurements in 35 participants for the TBNK, Treg, maturation
stages of T cell and DC panels as previously described?, in 87 individuals for the monocyte
panel and in 91 volunteers for the B cell panel. Reproducibility was assessed between
paired samples using a two-sided Pearson’s product moment correlation coefficient on the
inverse-normalized traits, finding overall high reproducibility.

Statistical and bioinformatic analyses.

Heritability estimation.—Broad heritability (the ratio of the total genetic variance

to the phenotypic variance of a trait) and narrow heritability (the proportion of broad
heritability due to additive effects of genes on phenotype) were estimated according to
models previously described. Among the 3,757 immunoprofiled individuals, 3,371 were
grouped into 847 multigenerational families (ranging from 1 to 5 generations, average
2.66), comprising 2,405 sib pairs (including 4 monozygotic twins), 79 half-sib pairs,

2,258 cousins pairs, 1,587 parent—child pairs, 88 grandparent—grandchild pairs and 2,997
avuncular pairs. Heritability estimates were obtained with the poly-0.5.1 software®’; all
models were adjusted for age and sex, and traits were first normalized using inverse-normal
transformation on the same traits or, when necessary, on the covariate-adjusted residuals.
Statistical significance of the difference in the average heritability among the defined trait
categories was evaluated by non-parametric tests (a two-sided Wilcoxon signed-rank test for
pairwise comparisons and a Kruskal-Wallis test for multiple comparisons), with £< 0.05
considered as significant.

Bivariate analysis.—Phenotypic and genetic correlations were estimated for MFIs and
cell counts/ratios separately. Phenotypic correlations were calculated for trait pairs using
the Spearman coefficient in R (version 3.5.3). Genetic correlations between trait pairs,
proportional to the cross trait—cross individual additive genetic covariance, were obtained
using poly-0.5.1 software, as previously described!. A hierarchical clustering based on
estimated correlation coefficients was also performed using the heatmap.2() function in R
with default settings (Euclidean distance and the complete clustering method).

Genotyping and imputation.—All the genetic analyses were performed using a genetic
map based on 6,602 samples genotyped with 4 Illumina arrays (OmniExpress, ImmunoChip,
Cardio-MetaboChip and ExomeChip) as previously described®. Imputation was performed
on a genome-wide scale using a Sardinian sequence-based reference panel of 3,514
individuals and the software Minimac®® on pre-phased genotypes®. After imputation, only
markers with imputation quality (RSQR) > 0.3 for estimated minor allele frequency (MAF)
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> 1% or > 0.6 for MAF < 1% were retained for association analyses®®, yielding ~22 million
variants (20,143,392 SNPs and 1,688,858 indels) useful for analyses.

Association analyses.—Genome-wide association analysis for each quantitative
immune trait was carried out using the g.emmax (quantitative EMMAX-Efficient

Mixed Model Association eXpedited) function included in EPACTS -3.2.6 (https://
genome.sph.umich.edu/wiki/EPACTS). The method implemented in this software accounts
for a wide range of sample structures, such as cryptic relatedness and population
stratification, by applying a linear mixed model adjusted for a genomic-based kinship matrix
obtained from quality-checked genotyped autosomal SNPs with MAF > 1%°5. All assessed
traits were normalized with inverse-normal transformation and adjusted for sex, age and
age? as covariates. To evaluate any significant deviation of summary association statistics
from the null distribution, the genomic inflation factor was calculated: lambda values ranged
from 0.95 to 1.035 (median = 0.994, mean = 0.995, s.d. = 0.017). Genomic correction was
then not applied.

To adjust for multiple testing, Bonferroni correction was applied to the empirical
significance threshold (P= 6.9 x 1079)8, taking into account the total number of absolute
cell counts, MFIs and morphological parameters assessed here (A = 539) to establish a
final threshold of P< 1.28 x 10711, Conditional analyses were performed for each trait that
reached standard genome-wide significance (P< 5 x 1078) by adding the top associated
variant as a covariate to the model adjusted for sex, age and age?.

Specific analyses in the FGCR2A locus.—Specific association analyses in the
FGCRZA locus on 117 volunteers were carried out comparing the two homozygous
genotypes using a non-parametric model (two-sided Wilcoxon signed-rank test) on the raw
phenotypes.

Definition of signals using LD.—To establish ‘independent variants’ for each signal
that reached the standard threshold for genome-wide significance, the clumping function in
PLINK®0 and LD patterns in the SardiNIA genetic map were used. In particular, the options
--clump-p21 0.00000005 --clump-p2 0.00000005 --clump-r2 0.1 --clump-kb 500 were used to
clump into single-group variants with 7< 5 x 1078 and /2 > 0.1 in a 1-megabase window.
The same clumping procedure was applied to define ‘sentinel” variants using /2 > 0.7 at each
gene region (‘locus’).

Allele frequency differentiation and positive selection.—Analysis of allelic
differentiation was carried out on associated variants and on data from the 1000 Genomes
Project Phase 3 (http://www.internationalgenome.org/category/phase-3/).

We identified highly differentiated variants by calculating the difference in allelic frequency
between Sardinians and Europeans (SardiNIA MAF — 1000G-EUR AF = AAF) with respect
to the minor allele in the Sardinian data.

For a subset of variants, we also investigated evidence of positive selection by using standard
statistical tests based on allelic frequency (population-branch statistic) and haplotype
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diversity (integrated haplotype score, cross-population extended haplotype homozygosity
and the number of segregating sites by length), as previously described!. For each variant,
we calculated a ‘genomic percentile’, ranking each statistic value with that obtained for

a set of variants sampled across the genome and matched for MAF in Sardinians, local
recombination rates and levels of background selection!?.

Replication and validation of findings.—For each association at P< 5 x 1078, we
considered a signal replicated if the top variant or its proxy with /2 > 0.8 was already
reported as significantly associated with a related trait in GWASs from Ferreira et al.5,
Roederer et al.2, Aguirre-Gamboa et al.3, Patin et al.# or Lagou et al.%. Furthermore, for each
genome-wide significant association (P< 1.28 x 10711), we considered a signal validated if
the top variant was genotyped or in LD with a genotyped proxy (/2 > 0.80) with a P< 1.28 x
10711,

Fine-mapping and credible sets.—Credible set analyses were performed for 584
trait-locus associations having at least one SNP with £< 1.28 x 10711, Credible sets

were obtained using FINEMAP v1.310 and setting at most ten causal variants for each
association profile (—n-causal-snps 10). These variants were annotated with VEP (https://
www.ensembl.org/Tools/VVEP) to evaluate which signals contain any variant(s) with strong
predicted functional impact in their credible sets.

Definition of causal genes at associated loci.—To infer candidate causal genes
underlying association signals, we used a combination of criteria that included: lead

variant, or one variant in the credible set, with a clear functional impact (for example, a
biochemically relevant coding variant) located in a specific gene; overlap with molecular
QTLs in LD with /2> 0.7 (based on the Sardinian genetic map) assessed using the LinDA
Catalog (\Version 20190109), which included eQTLs as well as QTLs for other molecular
traits such as alternative splicing, polyA usage, histone modifications and DNA methylation;
overlap with a cis pQTL for levels of the measured surface protein.

Enrichment of molecular QTLs in immune trait association signals.—To test

for the enrichment of molecular QTLs in immune trait association signals, we used a set

of background variants determined as follows. We considered each lead variant of the
LD-independent immune trait loci, and we randomly selected 50 variants matched for MAF
(£0.05), imputation quality (x0.05), distance from the nearest transcriptional start site (£1
megabase) and LD-independent (between each other and with respect to the immune trait
loci lead variants). The LD-independent loci have been chosen in the LD-clumped Sardinian
genetic map (PLINK version 1.90 b3.38, with parameters --clump-r2 0.1 --clump-kb 1,500)
and excluding sex chromosomes and the HLA region (chr6: 27000000-33000000). The
positions of the resulting background variants were checked for any molecular QTLs with
22 0.7 (in the Sardinian genetic map) in the LinDA molecular QTL Catalog. The Fisher
exact test was used to test for enrichment of molecular QTLs in the LD-independent immune
trait loci. Only molecular QTLs having more than 10 LD overlapping hits among the
LD-independent immune loci were considered for enrichment.
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Coincident associations of immune traits and disease.—To identify associations
overlapping with previously described complex disease associations (“coincident
associations’), both the GWAS Catalog (https://www.ebi.ac.uk/gwas/home, version

v1.0, Ensembl release version €93, date 2018-08-28) and the ImmunoBase (https://
genetics.opentargets.org/immunobase, version 12-May-2016) websites were screened for
variants in LD (/2 = 0.7) with the top associations for any of the assessed traits. For

a primary group of diseases (RA19, SLES2, MS16, T1D®3, Crohn’s disease®®, ulcerative
colitis®®, IBD3, allergy?), we performed colocalization analyses using the coloc v2.3—

1 package®4 with default settings. Trait and disease were considered colocalized if the
probability of colocalization (coloc_A) = 0.8. Colocalizations with coloc_P< 0.2 were
considered as not colocalized. Intermediate values (0.2 < coloc_P< 0.8) were called
‘uncertain’. To establish the direction of a genetic signal effect on traits and diseases, we
considered as the ‘effect allele’ the ‘derived’ allele for variants associated with immune
parameters, and the allele corresponding by LD (72 = 0.7) to the derived immune trait
allele for variants associated with diseases. For each associated variant, we inferred the
ancestral/derived allele by comparing Sardinian sequences with the ancestral sequences
for Homo sapiens (GRCh37) extracted from the alignment set ensembl_compara_59@ens-
livemirror:3306 (using 6 primates EPO (474)).

The confidence in the ancestral call was determined according to the 1000 Genomes Project
pipeline (described in ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phasel/analysis_results/
supporting/ancestral_alignments/human_ancestor GRCh37_e59.README).

MR.—To assess the causal role of the immune traits (‘exposures’) on the identified
coincident diseases (‘outcomes’), we applied a two-sample multivariable MR approach on
seven clinical outcomes detailed in Supplementary Table 6A showing multiple coincident
associations.

For each multiple coincident association, we prioritized the seven most representative
phenotypes by selecting, for each coincident disease, the trait showing the most significant P
value at one of the associated coincident loci (Supplementary Table 6B).

We then identified the instrumental variable (IV) models by extracting from our GWAS:
variants with 2< 1 x 107°; independent variants (that is, variants showing a LD /2 < 0.1
in a 500-kilobase window, with 72 calculated in our SardiNIA genetic map using PLINK
v1.9089): when a variant was not included in the outcome GWAS, we replaced it with its
best proxy in 1000G-EUR data (/2 > 0.8); when a proxy was not available, the variant was
excluded from the analyses. For each selected IV, we extracted its summary statistics, in
particular effects and standard errors, to be used in MR analyses.

To guarantee the robustness of the association of the IVs with exposure and ensure the
statistical significance of the IV models, we evaluated the F-statistic according to the
following formula:
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CREx(i—1-k)

r (1—R2)xk

where nis the number of individuals analyzed in the exposure GWAS, ks the number
of variants included in the IV model and /< is the variance explained by the genetic
instrument(s). For each variant, /2 was calculated as

2 2xMAF x (1 — MAF) x f*

R
var(exposure)

with B being the estimated effect of the variant on the exposure and var(exposure) being
the variance of the tested exposure. For multivariable IV models, #% was calculated on
single-regression-model fitting all of the IVs. An F-statistic > 10 was required to define an
IV model as significantly informative in MR analyses®.

To perform MR analyses, we applied different methods: the random-effects inverse-
variance-weighted (IVW) method, weighted median (WM), MR-Egger and MR-PRESSQ%6.
All of the analyses were carried out with the Two-SampleMR version 0.4.22 and the MR-
PRESSO version 1.0 packages implemented in R (https://cran.r-project.org/).

We estimated the heterogeneity for the IVW and MR-Egger methods using the
mr_heterogeneity() function, and when the Cochran’s Q statistic indicated a significant
value, IVW was replaced by WM. Similarly, we tested for MR-Egger intercept pleiotropy
with the mr_pleiotropy_test() function. When MR-Egger showed significant heterogeneity
and/or pleiotropy and the number of 1Vs was >3, we applied MR-PRESSO to identify and
discard significant pleiotropic IVs (P < 0.05), defined as “outliers’; the global Pvalue of

the model, referring to the hypothesis of no directional pleiotropy, raw and outlier-corrected
causal estimations were reported; again, if the number of filtered 1Vs was >3, IWV, WM and
MR-Egger were carried out on outlier-corrected models.

A significance threshold of £< 7.1 x 1073 was established on the basis of the seven
exposures analyzed. MR results were considered robust if confirmed by at least two different
methods. When reported in the text, the P values refer to the WM test, with outliers removed
if necessary.

Analyses in the CD40 locus.—To establish the relative causal impact of CD40 and
CD27 protein levels in the CD40 locus association, a series of analyses were performed
to: understand whether the expression of CD27 is regulated by rs1883832 or is mediated
by CD40 protein levels; quantify the amount of rs1883832 effect on CD27 protein levels
mediated by CD40 protein levels; understand whether the association with autoimmune
disease at this locus is mediated by CD40 or CD27 expression.

First, bidirectional one-sample multivariable MR analyses were applied to check whether
rs1883832 showed a horizontal pleiotropic effect on both CD40 and CD27 protein levels,
or CD40 protein levels mediate CD27 protein levels. We extracted instrumental variables
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associated with CD40 and with CD27 expression on IgD~CD384iM B cells as already
described. We then applied two different MR methods: the Wald ratio test (implemented

in the TwoSampleMR version 0.4.22 package in R) on rs1883832 as a single-variant
instrument; the two-stage least squares regression method using the tsls() function of the
sem version 3.1-9 package in R87. In particular, we tested three different models with
two-stage least squares: a model including only rs1883832, to compare results with the
Wald ratio test; a model including all of the selected I1Vs; a model including all 1Vs, except
pleiotropic variants according to the MR-PRESSO test (only rs1883832 was excluded). A
Bonferroni correction was applied considering the four tests performed (two traits analyzed
in two different variant settings), and a significance threshold of < 1.25 x 1072 was
established.

Second, the proportion of the rs1883832 effect on CD27 mediated by the CD40 protein was
estimated using nested linear regression models as follows: first, we evaluated a baseline
model regressing out rs1883832 on CD27 protein levels (model 1); then a second model
regressing out the rs1883832 effect adjusted for the CD40 protein level effect (model 2);
finally, a third model regressing out the rs1883832 effect adjusted for the effect on CD40
expression of all Vs used in MR (model 3). In all models, CD27 and CD40 protein levels
were inverse-normalized and adjusted for sex, age and age? before the analyses. A likelihood
ratio test was applied to compare nested models. We calculated the proportion of the SNP
effect on CD27 mediated by the CD40 protein as the difference of the A2-adjusted between
model 1 and model 2, and between model 1 and model 3, obtaining comparable results.

Finally, we also carried out two-sample MR analyses with CD40 and with CD27 expression
on IgD~CD384M B cells as exposures, and MS and RA as outcomes, using the same
procedure described above. A multiple-testing-adjusted significance threshold of A< 1.25 x
1072 has been considered (two traits in two diseases).

Selection of drug targets and their prioritization score.—To investigate the
potential for drug discovery of the observed coincident associations between immune-
related trait and disease risk, we applied a set of rules to define optimal candidates for
pharmaceutical development0:41,

Overall, we ranked our targets into three broad categories: biological targets for which MFIs
and expression data indicated a loss/reduction of function associated with disease protection
(or a gain of function associated with disease predisposition), thus supporting possible
therapeutic inhibition; biological targets for which MFIs and expression data indicated a
gain of function associated with disease protection, thus supporting possible therapeutic
activation of the gene product; more complex situations where the same biological target
was associated with more than one disease but with discordant directions of effects.

We used the priority index (PI) to score each gene as a potential drug target for a specific
disease®?.
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Reporting Summary.

Further information on research design is available in the Nature Research Reporting
Summary linked to this article.

Data availability

Full GWAS summary statistics have been deposited in the GWAS Catalog with accession
numbers from GCST0001391 (https://www.ebi.ac.uk/gwas/studies/GCST0001391) to
GCST0002121 (https://www.ebi.ac.uk/gwas/studies/GCST0002121). The accession number
for each trait is reported in Supplementary Table 1B.

Disease summary statistics used to identify coincident associations were obtained from the
GWAS Catalog (https://www.ebi.ac.uk/gwas/home, version v1.0, Ensembl release version
€93, date 2018-08-28) and from ImmunoBase (https://genetics.opentargets.org/immunobase,
version 12-May-2016). Summary statistics for colocalization analyses were downloaded
from the respective web pages: RA (http://plaza.umin.ac.jp/~yokada/datasource/
filess§GWASMetaResultss§RA_GWASmeta_European_v2.txt.gz); T1D (https://datadryad.org/
stash/dataset/doi:10.5061/dryad.ns8q3); MS (http://imsgc.net/publications/); SLE
(http://insidegen.com/insidegen-LUPUS-data.html); allergy (https://genepi.qgimr.edu.au/staff/
manuelf/gwas_results/SHARE-without23andMe.LDSCORE-GC.SE-META.v0.9z); IBD,
Crohn’s disease and ulcerative colitis (ftp://ftp.sanger.ac.uk/pub/project/humgen/
summary_statistics/human/2016-11-07/). Molecular QTLs are from the LinDA QTL Catalog
(http://linda.irgb.cnr.it/, version 20190109). Source data are provided with this paper.
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Extended Data

TBNK panel

Extended Data Fig. 1 |. Flow cytometry gating strategy of TBNK, regulatory T cell, maturation
stages of T cell, and dendritic cell antibody panel.

TBNK panel. a, Lymphocytes (violet) and granulocytes (blue). b, CD14+ monocytes (light
blue). ¢, HLA DR++CD14+ monocytes. d, CD3+ (T cells, purple) and CD3- (green)
lymphocytes. e, B and NK cells are CD19+ and CD16/CD56+, respectively. f, HLA DR+
NK cells. g, T cells are divided based on CD4 and CD8 expression. h, TCR-T&+ T cells.

i, NKT are CD3+ and CD16/CD56+. j, HLA DR+ T cells. HLA DR+CD4 and HLA
DR+CD8 subsets are obtained by intersecting HLA DR+ T cell with CD4+ and CD8br
lymphocytes. Regulatory T cell panel. a, CD4+ (blue) and CD8+ (violet) lymphocytes.

b, CD4+ Tregs (green) are CD25high CD127low. ¢, Resting (CD45RA+CD25++, pink),
activated (CD45RA-CD25+++, orange) and secreting (CD45RA-CD25++, purple) CD4+
Tregs. D-E) CD25hiCD4+ lymphocytes are divided based on CD45RA expression. F) CD4-
CD8- T cells (DN, black) are divided in CD28+ and CD28-. G-H-1-J-K) CD39 expression
on Treg subsets, CD4 and CD8br T cells, respectively. L) CD8br cells division based

on CD45RA vs CD28 expression. M-N) CD25++CD28-CD8br and CD127-CD28-CD8br
identification. Maturation stages of T cell panel. a, CD4+ (blue), CD8br (violet) and CD4-
CD8- (black) T cells are analyzed for CD45RA vs CCR7 (plots B-C-D, respectively)
identifying naive (CCR7+CD45RA+), central memory (CM, CCR7+CD45RA-), effector
memory (EM, CCR7-CD45RA-), and terminally differentiated (TD, CCR7-CD45RA+)
subsets. Dendritic cell antibody panel. a, Monocytes (pink). b, ¢, DCs are Lineage (Lin)
negative and HLA DR+. d, Myeloid (green) and plasmacytoid (violet) DCs are CD11c+ and
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CD123+, respectively. e, f, CD86 and CD62L expression on cDC. G-H-1) CD11c, CD62L
and HLA DR expression on monocytes.

B cell panel

Extended Data Fig. 2 |. Flow cytometry gating strategy of B cell, monocyte, myeloid cell antibody
panel.

B cell panel. a-b, Lymphocyte (red). ¢, B lymphocytes (violet) are CD19+. d, IgD+

B cells. B cells classification based on €) CD24 vs CD38; f) CD27 vs IgD; g) IgD

vs CD38; h) IgD vs CD24; i) CD24+CD27+ memory B cells. j, Plasma blasts/plasma

cells (PB/PC) are CD20-CD38hi B cells. Monocyte panel. A-B-C) Monocyte (blue).

D) Monocytes division into CD14+CD16- (classical), CD14-CD16+ (non-classical) and
CD14+CD16+ (intermediate). Myeloid panel. A-B-C) Lympho-monocytes (red). d, Viable
and myeloid-enriched cells (green) are obtained excluding lymphoid cells, which are
lineagel (Linl) positive, and dead cells, which are 7-aminoactinomycin-D (7AAD) positive.
e, Hematopoietic stem cells (HSC). f, CD14 vs CD66b expression and g) CD33 vs HLA
DR expression on myeloid-enriched cells. The intersection of CD33dim/br HLA DRdim/-
cells in g) with CD14+ monocytes (orange) in f) results in monocytic myeloid-derived
dendritic cells (Mo MDSC). h, The deletion of CD14+ monocytes (orange) from cells in g)
discriminates five subsets using CD33 vs HLA DR markers. i, CD66b+ cells were excluded
from the CD33dim HLA DR- cells (blue) and j) the resulting CD33dimHLA DR-CD66-
population was further divided into basophils and immature MDSC (Im MDSC) based on
CD45 and CD11b expression. k, CD33br HLA DR+ cells (black) division into CD14 dim
and CD14~. |, CD11b expression on CD33dim HLA DR+ cells (purple). Intersection of
CD33dim HLA DR- in h) with CD66b++ cells in f) corresponds to granulocytic myeloid-
derived dendritic cells (Gr MDSC).
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Color Key

Heatmap based on phenotype correlation

Extended Data Fig. 3 |. Phenotypic correlation among expression level of surface markers.
Heatmap of phenotypic correlations for MFI pairs calculated using the Spearman coefficient.

Dendrograms represent the clustering: short branches indicate strong phenotypic correlation
between traits, whereas long branches weak correlation. Color gradations represent the
correlation strength, with red indicating direct correlation (from 0 to +1) and blue inverse
correlation (from 0 to —1).
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u Heatmap based on genotype correlation
F HLY R
1

Extended Data Fig. 4 |. Genetic correlation among expression level of surface markers.
Heatmap of genetic correlations for MFIs pairs calculated as previously described?. The

description of the figure is as for Extended Data Fig. 3.
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Color Key.

Heatmap based on phenotype correlation

Extended Data Fig. 5 |. Phenotypic correlation among cell levels.
Heatmap of phenotypic correlations for cell counts and T/B and CD4/CD8br ratios,

calculated using the Spearman coefficient. The description of the figure is as for Extended
Data Fig. 3.
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Heatmap based on genotype correlation

Extended Data Fig. 6 |. Genetic correlation among absolute cell counts.
Heatmap of genetic correlations for cell counts and T/B and CD4/CD8br ratios, calculated

as previously described?. The description of the figure is as for Extended Data Fig. 3.
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Extended Data Fig. 7 |. Drug target prioritization (Priority index, Pi) score of our drug targets
candidates segmented by gene categories.

It is shown the distributions of the Pi-rating (computed in Fang et al., ) of our candidate
genes (colored boxplots) segmented for different gene categories (“All” genes, “eGenes”,
“Seed” genes and cell surface genes) with the relative background distributions (grey
boxplots, that is that consider all the genes belonging to the respective category). eGenes
means that the gene has an eQTL colocalizing with the disease; seed gene means that
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the genes have a genetic link to the disease (by eQTL, gene proximity or chromatin
conformation) as defined in Fang et al., 42. The boxplot inside the violin plot reports a
white circle indicating the median value, with the box limits indicating the upper and the
lower quartiles. The whisker at the upper side of the box extends to the minimum between
the interquartile range (IQR) x 1.5 and the overall maximum value of the data. The whisker
at the bottom side of the box extends to the maximum between IQR x 1.5 and the overall
minimum value of the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Schematic representation of the main leukocyte subsets assessed by GWAS.
The background colors indicate different cell groupings: T-cell populations are indicated in

green, B cells in orange, DCs in yellow, monocytes in blue, other myeloid cells in violet,
and hematopoietic stem cells in pink. The markers assessed for MFI are indicated within
the light blue rectangles. TCRgd, gamma delta T cells; NK, natural killer cells; NKT, NK
T cells; DN, CD4~ CD8™ T cells; DP, CD4* CD8* T cells; CM, central memory; EM,
effector memory; HSCs, hematopoietic stem cells; Im MDSCs, immature myeloid-derived
suppressor cells; Gr MDSCs, granulocytic MDSCs; Mo MDSCs, monocytic MDSCs; FSC,
forward scatter; SSC, side scatter.
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Fig. 2 |. Genetic associations of the immune traits assessed.
The innermost track shows the lowest association P value among all traits for each locus.

Significant variants (P< 1.28 x 10711) are in red, suggestive variants (P value ranging

from 5 x 1078 to 1.28 x 10711) in orange, and non-significant variants in blue. The middle
track shows the chromosome number. The outermost track indicates the genes nearest to
signals with £< 1.28 x 10711, Genes showing coincident genetic association with diseases
are shown in bold font. The coincident associated genes are indicated even if in some
instances their 2 values range from 5 x 1078 to 1.28 x 10711, The summary statistics were
obtained using a linear mixed association model. The significance threshold was calculated
by applying a Bonferroni correction to the empirical significance threshold (P= 6.9 x 1079)8
considering 539 independent tests.
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Fig. 3 |. Coincident genetic association between immune traits and diseases.
The circular plot shows the top immune traits in colored rectangles and the genes nearest

the associated signals in gray rectangles. The pathologies linked to the immune traits via
coincident genetic associations (P< 5.0 x 1078) are listed radially to the associated gene.
The pathologies for which the protective allele correlates with a reduction of an immune trait
level are in blue, whereas those for which the protective allele correlates with an increase are
in red. The HLA region is not included. The pathology acronyms are detailed in the table.
The summary statistics for the immune traits were obtained using a linear mixed association

model.
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Fig. 4 |. Regional association plots in the CD40 region.
The significance of the association (=logqg[ P value]; left y axis) for each trait is plotted

relative to the genomic positions on the hg19/GRCh37 genomic build (xaxis). The symbols
reflect genomic functional annotations. SNPs are colored to reflect their LD with rs1883832
(indicated with a purple dot). a, Expression of CD27 on IgD~CD384M cells. The 2

values were obtained using a linear mixed association model. b, CD40 expression on
leukocytes calculated using RNA-seq data from Pala et al.>4. c—e, Association profiles for
the autoimmune diseases MS (c), RA (d) and IBD (e). The data plotted in c—e are from
published results16:1955 Genes, position of exons and direction of transcription are noted
below e. The plots were drawn using the standalone version of LocusZoom®6.
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Fig. 5 |. Drug target prioritization (priority index, Pi) score of our drug target candidates.
The red lines indicate the Pi rating of our drug target candidates for the respective diseases

(listed in Supplementary Table 8A,B). The gray violin plots indicate the distribution of
the Pi rating, for the respective diseases, of all the genes for which a Pi rating has been
computed (number of genes indicated in parenthesis). The gray lines indicate the 90th
and the 95th percentiles of the Pi rating values. IgD, HLA, CD45RA and CD3 have been
excluded because the Pi rating was not available. Gene aliases: TNFRSF13C (BAFF-R),
ITGAM (CD11b), ITGAX (CD11c), IL3RA (CD123), MS4A1 (CD20), IL2RA (CD25),
PTPRC (CD45), SELL (CD62L), FCGR1A (CD64), CD8A (CD8), TNFRSF14 (HVEM),
FCGRZA (CD32). The acronyms are as in Fig. 3; ATD, autoimmune thyroiditis; ALG,
allergy; ASM, asthma. The boxplot inside the violin plot reports a circle indicating the
median value, with the box limits indicating the upper and the lower quartiles. The whisker
at the upper side of the box extends to the minimum between the interquartile range x 1.5
and the overall maximum value of the data. The whisker at the bottom side of the box
extends to the maximum between the interquartile range x 1.5 and the overall minimum
value of the data.
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