
13 March 2025

IRIS - Archivio Istituzionale dell'Università degli Studi di Sassari

A logical and graphical framework for reaction systems / Brodo, L.; Bruni, R.; Falaschi, M.. - In:
THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - (2021). [10.1016/j.tcs.2021.03.024]

Original

A logical and graphical framework for reaction systems

Publisher:

Published
DOI:10.1016/j.tcs.2021.03.024

Terms of use:

Publisher copyright

(Article begins on next page)

Chiunque può accedere liberamente al full text dei lavori resi disponibili come “Open Access”.

Availability:
This version is available at: 11388/246337 since: 2021-04-14T09:48:02Z

Questa è la versione Post print del seguente articolo:

note finali coverpage

This is the Author’s accepted manuscript version of the following

contribution:

A logical and graphical framework for reaction systems / Brodo, L.;

Bruni, R.; Falaschi, M.. - In: THEORETICAL COMPUTER SCIENCE. - ISSN

0304-3975. - (2021). [10.1016/j.tcs.2021.03.024]

The publisher's version is available at:

https://dx.doi.org/10.1016/j.tcs.2021.03.024

When citing, please refer to the published version.

A Logical and Graphical Framework for Reaction Systems ?

Linda Brodob, Roberto Brunia, Moreno Falaschic

aDipartimento di Informatica, Università di Pisa, Italy
bDipartimento di Scienze Economiche e Aziendali, Università di Sassari, Italy

cDipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Univ. di Siena, Italy

Abstract

Reaction Systems (RSs) are a successful computational framework inspired by biological systems.
A RS pairs a set of entities with a set of reactions over them. Entities can be used to enable or
inhibit each reaction, and are produced by reactions. Entities can also be provided by an external
context sequence to simulate in silico biological experiments. In this paper we define an extension
of RSs considering nondeterministic and recursive context operators, and give an original labelled
transition system (LTS) for extended RSs in the structural operational semantics (SOS) style.
Thanks to extended contexts, a single LTS can now account for several biological experiments.
The rich information recorded in transition labels is useful to guarantee the compositionality of
SOS inference rules as well as to define an assertion language to tailor behavioural and logical
equivalences on some specific properties or entities. The SOS rules have been also exploited to
design a flexible prototype implementation in logic programming that allows to inspect the LTS
and to extract useful information when performing experiments on a RS. Our implementation
provides a rapid prototyping tool for (extensions of) RSs, with a user friendly online interface to
our interpreter. A parser allows to introduce the logical formulas and the contexts using the usual
comfortable concrete syntax. The user can visualise and inspect the LTS for a RS and make some
analysis of its underlying computation patterns, can check if the main RS satisfies a given property
and if it is equivalent to a second adversarial RS. Finally, the SOS approach is suited to drive
additional enhancements of RSs.

Keywords: SOS rules, Reaction Systems, logic programming, assertions, bisimulation,
Hennessy-Milner Logic

1. Introduction

Labelled Transition Systems (LTSs) are a powerful structure to model the behaviour of interact-
ing processes. An LTS can be conveniently defined following the Structural Operational Semantics
(SOS) approach [1, 2]. Given a signature, an SOS system assigns some inference rules to each op-
erator of the language: the conclusion of each rule is the transition of a composite term, which is5

determined by those of its constituents (appearing as premises of the rule). The SOS approach has
been particularly successful in the area of process algebras [3, 4, 5].

Reaction Systems (RSs) [6] are a computational framework inspired by systems of living cells.
Its constituents are a finite set of entities and a finite set of reactions acting on entities. A reaction
is a triple (R, I, P) where R is the set of reactants (entities whose presences is needed to enable10

the reaction), I is the set of inhibitors (entities whose absence is needed to enable the reaction)

?Research partially supported by Università degli Studi di Sassari Fondi di Ateneo per la ricerca 2020, by MIUR
PRIN Project 201784YSZ5 ASPRA: Analysis of program analyses, and by Università di Pisa Project PRA 2018 66
DECLWARE: Metodologie dichiarative per la progettazione e il deployment di applicazioni.

Email addresses: brodo@uniss.it (Linda Brodo), bruni@di.unipi.it (Roberto Bruni),
moreno.falaschi@unisi.it (Moreno Falaschi)

October 21, 2024

and P is the set of products (entities that are produced if the reaction takes place and that will
be made available at the next step). The behaviour of a RS is then defined as a discrete time
interactive process: a finite context sequence describes the entities provided by the environment at
each step, the current state is determined by the union of the entities coming from the environment15

with those produced from the previous step and the state sequence is determined by applying
all and only the enabled reactions to the set of entities available in the current state. Since their
introduction, RSs have shown to be a quite general computational model whose application ranges
from the modelling of biological phenomena [7, 8, 9, 10], and molecular chemistry [11] to theoretical
foundations of computing [12, 13].20

Given the context sequence, the semantics of RSs is uniquely determined and can be represented
as a finite, deterministic and unlabelled transition system. When a biological system is modeled as
a RS, in silico experiments can then be conducted by synthesizing a specific context sequence to
represent the external stimuli and then observing the resulting state sequence. One limitation of
such approach is the difficulty in representing a collection of experiments within a single semantic25

object, so that the consequences of some variation in the context sequence can then be more easily
compared and analyzed.

Here we define, for the first time, an LTS semantics for RSs in the SOS style that is able
to faithfully represent the ordinary semantics of RS as well as allowing to conduct more general
experiments and thus overcome the above mentioned limitation. First we fix a process signature30

whose operators pinpoint the basic structure of a RS. We have operators for entities and reactions.
For contexts we exploit some classic process algebraic operators (action prefix, sum and recursion).
This way we can recursively define contexts that possibly exhibit nondeterministic behaviour, as
sometimes have already appeared in the literature [14, 15]. Even though we enrich the expressiveness
of contexts, the overall LTS still remains finite.35

The SOS approach has several advantages: 1) compositionality, the behaviour of each composite
system is defined in term of the behaviours of its constituents; 2) each transition label conveys all
the activities connected to that rewrite step; 3) the definition of contexts is better integrated in
the framework; 4) different kinds of contexts (recursive, nondeterministic) can be considered, so to
combine different experiments in a single structure and to account for (regular) possibly infinite40

computations; 5) it is now easier to change or extend the concept of RSs by adding new operators;
6) SOS rules facilitate implementation in a declarative language and the application of standard
techniques for defining equivalences between processes.

The transition labels of our LTS are so rich of information that standard notion of behavioural
equivalence (like traces or bisimulation) are too fine grain and would distinguish too much. For45

studying RSs, one is often interested in focusing on some entities and disregard others, like exploiting
a microscope to enhance certain details and ignore others that fall out of the picture. To this aim,
following the ideas in our previous paper [16], we propose an assertion language built over the
transition labels, and we make the definition of behavioural and logical equivalences parametric
w.r.t. such assertions. This way, it is possible to consider different RSs as equivalent for some50

purposes or to distinguish them for other purposes. Then, the results in [16] can be immediately
transferred to our setting to prove the correspondence between a coinductive definition in terms of
bisimilarity and its logical counterpart à la Hennessy-Milner.

To experiment with the theory developed in this paper, we have implemented in logic program-
ming a first prototype interpreter of our semantic framework, which we have then extended with ad-55

ditional features to increase its performance, modularity and extensibility. The interpreter is written
in SWI-Prolog and is freely available for download at http://pages.di.unipi.it/bruni/LTSRS/.
It consists of a main file BioReSolve.pl (of around 2000 code lines, fully commented) that can
load custom Reaction System specifications. A template for writing custom RS specifications is also
available on the web site, together with a short document with usage instructions. Alternatively,60

2

http://pages.di.unipi.it/bruni/LTSRS/

the web site includes an online version of the tool based on Tau Prolog1: no installation is required
as it can be experimented via the browser, but the code is not optimized and the underlying engine
is much less efficient. Our interpreter allows the user to derive the LTS of a Reaction System as well
as checking behavioural equivalences of different Reaction Systems and the validity of formulas ex-
pressed in our assertion-based variant of the Hennessy-Milner logic. The experimentation conducted65

with the tool is widely discussed in Section 5.
A preliminary version of this paper was presented in [17]. With respect to the workshop ver-

sion, we have added full proofs of main results, added original examples and many explanations. In
particular we have considered a real world example of large size, which we discuss and analyse, also
introducing a new graph analysis methodology. We have improved in several ways our implemen-70

tation, making it much more user friendly and providing several new functionalities, including the
above mentioned online interface. We have defined a parser which allows us to introduce the logical
formulas and the contexts using the usual comfortable concrete syntax. We added the generation of
the graph of the LTS for a RS in a portable graph description language, called DOT format,2 and
we added a tool for checking if the main RS and a second adversarial reaction system are bisimilar.75

Related work. The work by Kleijn et al. [14] presents an LTS for RS over 2S states, where S is the
set of entities. Two labelled transition system versions have been proposed: state-oblivious context
controller, and state-aware context controller. In the first version, the transition labels only record
the entities provided by the context, and in the second one the transition labels also provide the
entities composing the actual state. The last choice allows one to decide which entities the context80

should provide. Differently, we give a process algebra-style definition of the RS, where the SOS
rules produce informative transition labels, including context specification, allowing different kinds
of analysis.

The SOS approach to RS has already been proposed in the definition of the Reaction Algebra
by Pardini et al. [18], however the emphasis was there on another operator inspired by process85

algebras, namely (entities) hiding and the resulting LTS was essentially deterministic, so that the
usual notion of bisimulation coincided with trace equivalence. In this paper, we introduce the
definition of recursive and non deterministic environments that allows to set up more complex and
interesting in silico experiments.

There are some previous works based on bisimulation applied to models for biological systems.90

Barbuti et al. [19] define a classical setting for bisimulation for two formalisms: the Calculus of Loop-
ing Sequences, which is a rewriting system, and the Brane Calculi, which is based on process calculi.
Bisimulation is used to verify properties of the regulation of lactose degradation in Escherichia coli
and the EGF signalling pathway. These calculi allow the authors to model membranes’ behaviour.
Cardelli et al. [20] present two quantitative behavioral equivalences over species of a chemical re-95

action network with semantics based on ordinary differential equations. Bisimulation identifies a
partition where each equivalence class represents the exact sum of the concentrations of the species
belonging to that class. Bisimulation also relates species that have identical solutions at all time
points when starting from the same initial conditions. Both the mentioned formalisms [19, 20] adopt
a classical approach to bisimulation.100

In Brodo et al. [15, 16] we derived a similar LTS to the one presented here by encoding RSs
into cCNA, a more general multi-party process algebra (a variant of the link-calculus [21, 22]).
In comparison with the encoding of RS in cCNA, here we give an SOS semantics tailored for RSs,
without relying on an ad hoc translation. Consequently, any term of our process algebra corresponds
to a Reaction System, which is not the case for cCNA: for example, a cCNA process representing105

1http://tau-prolog.org/
2See the documentation pages of the graph visualization software Graphviz (https://graphviz.org) for in-

formation about the syntax of DOT format. Other visualization tools include Gephi https://gephi.org, Vis.js
https://visjs.github.io/vis-network/examples/network/data/dotLanguage/dotEdgeStyles.html and Graphviz
Visual Editor http://magjac.com/graphviz-visual-editor/.

3

http://tau-prolog.org/
https://graphviz.org
https://gephi.org
https://visjs.github.io/vis-network/examples/network/data/dotLanguage/dotEdgeStyles.html
http://magjac.com/graphviz-visual-editor/

a Reaction System can exhibit a totally unexpected behaviour when it is composed with other
generic cCNA processes, moreover, even if the fragment of cCNA processes that are images of some
Reaction System is closed under transitions, when inspecting the states of the LTS it is much more
difficult to recover the corresponding states of the original Reaction System. Another difference
is that the synchronization algebra of transition labels in cCNA relies on particular sequences of110

symbols, called link chains, that required the introduction of several different symbols for each
entity and reaction. Each symbol represents a way in which the entity was used (as a reactant, as
an inhibitor, as a product, as a context provision, etc.) or which reaction was considered, while the
labels of the LTS in this paper are much more abstract (tuples with four sets of entities). For these
reasons, it would be notably more difficult to develop an implementation or a graphical tool to115

directly analyze RS computations according to the encoding in [15, 16]. Overall, the advantage is
that we get here a much simpler computational model, closely related to the syntax of RSs, easier
to analyze, to implement and to possibly extend with new operators, enhancing the expressivity of
RSs. Still, the contribution in [16] has been fundamental for the design of the assertion language and
the parametric notions of behavioral and logical equivalences presented here, namely the definition120

of bio-similarity and BioHML, and the fact that we have been able to transfer them to the setting
of this paper is a witness of their generality.

Structure of the paper. In Section 2 we recall the basics of RSs. The original contribution starts
from Section 3, where: 1) we introduce the syntax and operational semantics of a novel process
algebra for RSs, 2) we show how to encode RSs as processes, 3) we state a tight correspondence be-125

tween the classical semantics of RSs and the operational semantics of their corresponding processes.
Section 4 shows the correspondence between a coinductive definition in terms of bisimilarity and its
logical counterpart à la Hennessy-Milner. A prototype implementation in logic programming of our
semantic framework is described in Section 5, together with a discussion on related implementation
tools. Further extensions of RSs that build on our theory are sketched in Section 6. Some concluding130

remarks are in Section 7.

2. Reaction Systems

The theory of Reaction Systems (RSs) [6] was born in the field of Natural Computing to model
the behaviour of biochemical reactions in living cells.

We use the term entities to denote generic molecular substances (e.g., atoms, ions, molecules)135

that may be present in the states of a biochemical system. The main mechanisms that regulate
the functioning of a living cell are facilitation and inhibition. These mechanisms are based on the
presence and absence of entities and are reflected in the basic definitions of RSs.

Definition 1 (Reaction). Let S be a (finite) set of entities. A reaction in S is a triple a =
(R, I, P), where R, I, P ⊆ S are finite, non empty sets and R ∩ I = ∅.140

The sets R, I, P are the sets of reactants, inhibitors, and products, respectively. All reactants are
needed for the reaction to take place. Any inhibitor blocks the reaction. Products are the outcome
of the reaction. Since R and I are not empty, all products are produced from at least one reactant
and every reaction can be inhibited. We let rac(S) be the set of all reactions in S.

Definition 2 (Reaction System). A Reaction System (RS) is a pair A = (S,A) s.t. S is a finite145

set, and A ⊆ rac(S) is a finite set of reactions in S.

The theory of RSs is based on three assumptions: no permanency, any entity vanishes unless
it is sustained by a reaction. In fact, a living cell would die for lack of energy, without chemical
reactions; no counting, the basic model of RSs is very abstract and qualitative, i.e. the quantity
of entities that are present in a cell is not taken into account; threshold nature of resources,150

we assume that either an entity is available for all reactions, or it is not available at all.

4

Definition 3 (Reaction Result). Given a (finite) set of entities S, and a subset W ⊆ S, we
define the following:

1. Let a = (R, I, P) ∈ rac(S) be a reaction in S. The result of a on W , denoted by resa(W), is
defined by:

resa(W) ,

{
P if ena(W)
∅ otherwise

where the enabling predicate is defined by ena(W) , R ⊆W ∧ I ∩W = ∅.
2. Let A ⊆ rac(S) be a finite set of reactions. The result of A on W , denoted by resA(W), is155

defined by: resA(W) ,
⋃
a∈A resa(W).

Living cells are seen as open systems that react with the external environment. The behaviour
of a RS is formalized in terms of interactive processes.

Definition 4 (Interactive Process). Let A = (S,A) be a RS and let n ≥ 0. An n-steps interac-
tive process in A is a pair π = (γ, δ) s.t. γ = {Ci}i∈[0,n] is the context sequence and δ = {Di}i∈[0,n]160

is the result sequence, where Ci, Di ⊆ S for any i ∈ [0, n], D0 = ∅, and Di+1 = resA(Di ∪ Ci) for
any i ∈ [0, n− 1]. We call τ = W0, . . . ,Wn with Wi , Ci ∪Di, for any i ∈ [0, n] the state sequence.

The context sequence γ represents the environment. The result sequence δ is entirely determined
by γ and A. Each state Wi in τ is the union of two sets: the context Ci at step i and the result set
Di = resA(Wi−1) from the previous step.165

Given a context sequence γ, we denote by γk the shift of γ starting at the k-th step. The shift
notation will come in handy to draw a tight correspondence between the classic semantics of RS
and the newly proposed SOS specification.

Definition 5 (Sequence shift). Let γ = {Ci}i∈[0,n] a context sequence. Given a positive integer

k ≤ n we let γk = {Ci+k}i∈[0,n−k].170

We conclude this section with a simple example of RS.

Example 6. Here we consider a toy RS defined as A = (S,A) where the set S = {a, b, c}
only contains three entities, and the set of reactions A = {a1} only contains the reaction a1 =
({a, b}, {c}, {b}), to be written more concisely as (ab, c, b). Then, we consider a 4−steps interac-
tive process π = (γ, δ), where γ = {C0, C1, C2, C3}, with C0 = {a, b}, C1 = {a}, C2 = {c}, and
C3 = {c}; and δ = {D0, D1, D2, D3}, with D0 = ∅, D1 = {b}, D2 = {b}, and D3 = ∅. Then, the
resulting state sequence is

τ = W0,W1,W2,W3 = {a, b}, {a, b}, {b, c}, {c}.

In fact, it is easy to check that, e.g., W0 = C0, D1 = resA(W0) = resA({a, b}) = {b} because
ena(W0), and W1 = C1 ∪D1 = {a} ∪ {b} = {a, b}.

3. SOS Rules for Reaction Systems

Inspired by classic process algebras, such as CCS [3], we introduce a syntax for RSs that re-175

sembles their original presentation and then equip each operator with some SOS inference rules
that define its behaviour. This way: (1) we establish a strong correspondence between terms of the
signature and RSs; (2) we derive an LTS semantics for each RS, where the states are terms, each
transition corresponds to a step of the RS and transition labels retain some information needed for
compositionality; (3) we pave the way to the RS enhancements in Section 6.180

5

Definition 7 (RS processes). Let S be a set of entities. An RS process P is any term defined by
the following grammar:

P ::= [M]
M ::= (R, I, P) | D | K | M|M
K ::= 0 | X | C.K | K + K | rec X. K

where R, I, P ⊆ S are non empty sets of entities, C,D ⊆ S are possibly empty set of entitities, and
X is a process variable.

An RS process P embeds a mixture process M obtained as the parallel composition of some
reactions (R, I, P), some set of currently present entities D (possibly the empty set ∅), and some
context process K. We write

∏
i∈I Mi for the parallel composition of all Mi with i ∈ I. For example,185 ∏

i∈{1,2}Mi = M1 | M2.
A process context K is a possibly nondeterministic and recursive system: the nil context 0 stops

the computation; the prefixed context C.K says that the entities in C are immediately available to be
consumed by the reactions, and then K is the context offered at the next step; the non deterministic
choice K1+K2 allows the context to behave either as K1 or K2; X is a process variable, and rec X. K190

is the usual recursive operator of process algebras. We write
∑
i∈I Ki for the nondeterministic choice

between all Ki with i ∈ I.
We say that P and P′ are structurally equivalent, written P ≡ P′, when they denote the same

term up to the laws of commutative monoids (unit, associativity and commutativity) for parallel
composition ·|·, with ∅ as the unit, and the laws of idempotent and commutative monoids for choice195

·+ ·, with 0 as the unit. We also assume D1|D2 ≡ D1 ∪D2 for any D1, D2 ⊆ S.

Remark 8. Note that the processes ∅ and 0 are not interchangeable: as it will become clear from
the operational semantics, the process ∅ can perform just a trivial transition to itself, while the
process 0 cannot perform any transition.

Definition 9 (RSs as RS processes). Let A = (S,A) be a RS, and π = (γ, δ) an n-step interac-
tive process in A, with γ = {Ci}i∈[0,n] and δ = {Di}i∈[0,n]. For any step i ∈ [0, n], the corresponding
RS process JA, πKi is defined as follows:

JA, πKi ,

[∏
a∈A

a | Di | Kγi

]

where the context process Kγi , Ci.Ci+1. · · · .Cn.0 is the sequentialization of the entities offered200

by γi. We write JA, πK as a shorthand for JA, πK0.

Example 10. Here, we give the encoding of the reaction system, A = (S,A), defined in Example 6.
The resulting RS process is as follows:

P = JA, πK = J({a, b, c}, {(ab, c, b)}), πK = [(ab, c, b) | ∅ | Kγ] ≡ [(ab, c, b) | Kγ]

where Kγ = {a, b}.{a}.{c}.{c}.0, written more concisely as ab.a.c.c.0. Note that ∅ is inessential and
can be discarded thanks to structural congruence.

In Definition 9 we have not exploited the entire potentialities of the syntax. In particular, the
context Kγ is just a finite sequence of action prefixes induced by the set of entities provided by γ205

at the various steps. Our syntax allows for more general kinds of contexts as shown in the example
below. Nondeterminstic contexts can be used to collect several experiments, while recursion can be
exploited to extract some regularity in the longterm behaviour of a Reaction System. Together they
offer any combination of in-breadth/in-depth analysis.

6

D
〈DB∅,∅,∅〉−−−−−−−→ ∅

(Ent)

C.K
〈CB∅,∅,∅〉−−−−−−−→ K

(Cxt)
K[rec X. K/X]

〈WBR,I,P 〉−−−−−−−−→ K′

rec X. K
〈WBR,I,P 〉−−−−−−−−→ K′

(Rec)

K1
〈WBR,I,P 〉−−−−−−−−→ K′

1

K1 + K2
〈WBR,I,P 〉−−−−−−−−→ K′

1

(Suml)
K2

〈WBR,I,P 〉−−−−−−−−→ K′
2

K1 + K2
〈WBR,I,P 〉−−−−−−−−→ K′

2

(Sumr)

(R, I, P)
〈∅BR,I,P 〉−−−−−−−→ (R, I, P) | P

(Pro)
J ⊆ I Q ⊆ R J ∪Q 6= ∅

(R, I, P)
〈∅BJ,Q,∅〉−−−−−−−→ (R, I, P)

(Inh)

M1
〈W1BR1,I1,P1〉−−−−−−−−−−−→ M′

1 M2
〈W2BR2,I2,P2〉−−−−−−−−−−−→ M′

2 (W1 ∪W2 ∪R1 ∪R2) ∩ (I1 ∪ I2) = ∅

M1 | M2
〈W1∪W2BR1∪R2,I1∪I2,P1∪P2〉−−−−−−−−−−−−−−−−−−−−−−−→ M′

1 | M′
2

(Par)

M
〈WBR,I,P 〉−−−−−−−−→ M′ R ⊆W

[M]
〈WBR,I,P 〉−−−−−−−−→ [M′]

(Sys)

Figure 1: SOS semantics of the reaction system processes.

Example 11. Let us consider our running example. Suppose we want to enhance the behaviour of210

the context by defining a process K′ = K1+K2 that non-deterministically can behave as K1 or as K2,
where K1 = ab.a.c.c.0 (as in Example 10), and K2 = rec X. ab.a.X (which is a recursive behaviour
that allows the reaction to be always enabled). Then we simply define P′ ≡ [(ab, c, b) | K′].

Definition 12 (Label). A label is a tuple 〈W B R, I, P 〉 with W,R, I, P ⊆ S.

In a transition label 〈W B R, I, P 〉, we record the set W of entities currently in the system215

(produced in the previous step or provided by the context), the set R of entities whose presence
is assumed (either because they are needed as reactants on an applied reaction or because their
presence prevents the application of some reaction); the set I of entities whose absence is assumed
(either because they appear as inhibitors for an applied reaction or because their absence prevents
the application of some reaction); the set P of products of all the applied reactions.220

Definition 13 (Operational semantics). The operational semantics of processes is defined by
the set of SOS inference rules in Figure 1.

The process 0 has no transition. The rule (Ent) makes available the entities in the (possibly

empty) set D, then reduces to ∅. As a special instance of (Ent), ∅ 〈∅B∅,∅,∅〉−−−−−−→ ∅. The rule (Cxt) says
that a prefixed context process C.K makes available the entities in the set C and then reduces to K.225

The rule (Rec) is the classical rule for recursion. Here, K[rec X. K/X] denotes the process obtained
by replacing in K every free occurrence of the variable X with its recursive definition rec X. K.

For example rec X. a.b.X
〈aB∅,∅,∅〉−−−−−−→ b.rec X. a.b.X The rules (Suml) and (Sumr) select a move of

either the left or the right component, resp., discarding the other process. The rule (Pro), executes
the reaction (R, I, P) (its reactants, inhibitors, and products are recorded the label), which remains230

available at the next step together with P . The rule (Inh) applies when the reaction (R, I, P) should
not be executed; it records in the label the possible causes for which the reaction is disabled: possibly
some inhibiting entities (J ⊆ I) are present or some reactants (Q ⊆ R) are missing, with J ∪Q 6= ∅,
as at least one cause is needed for explaining why the reaction is not enabled.3 The rule (Par) puts

3Conceptually, one could extend labels to record J and Q in separate positions from R and I, respectively, like in
〈W B R, J, I,Q, P 〉. However, one would then need to rewrite the side conditions of all the rules by replacing R with
R ∪ J and I with I ∪Q, because the distinction is never exploited in the SOS rules.

7

two processes in parallel by pooling their labels and joining all the set components of the labels;235

a sanity check is required to guarantee that there is no conflict between reactants and inhibitors
of the applied reactions. Finally, the rule (Sys) requires that all the processes of the systems have
been considered, and also checks that all the needed reactants are actually available in the system
(R ⊆W). In fact this constraint can only be met on top of all processes. The check that inhibitors
are absent (I ∩W = ∅) is not necessary, as it is embedded in rule (Par).240

Example 14. Let us consider the RS process P0 , [(ab, c, b) | ab.a.c.c.0] from Example 10. The
process P0 has a unique outgoing transition, whose formal derivation is given below:

(ab, c, b)
〈∅Bab,c,b〉−−−−−−→ (ab, c, b) | b

(Pro)
ab.a.c.c.0

〈abB∅,∅,∅〉−−−−−−−→ a.c.c.0
(Cxt)

(ab, c, b) | ab.a.c.c.0 〈abBab,c,b〉−−−−−−−→ (ab, c, b) | b | a.c.c.0
(Par)

[(ab, c, b) | ab.a.c.c.0]
〈abBab,c,b〉−−−−−−−→ [(ab, c, b) | b | a.c.c.0]

(Sys)

The target process P1 , [(ab, c, b) | b | a.c.c.0] has also a unique outgoing transition, namely:

P1 = [(ab, c, b) | b | a.c.c.0]
〈abBab,c,b〉−−−−−−−→ [(ab, c, b) | b | c.c.0] = P2

Instead the process P2 has three outgoing transitions, each providing a different justification to the
fact that the reaction (ab, c, b) is not enabled:

1. [(ab, c, b) | b | c.c.0]
〈bcBc,a,∅〉−−−−−−→ [(ab, c, b) | c.0], where the label shows that the presence of c

and the absence of a inhibit the reaction;

2. [(ab, c, b) | b | c.c.0]
〈bcBc,∅,∅〉−−−−−−→ [(ab, c, b) | c.0], where it is only observed that the presence of245

c has played some role in inhibiting the reaction;

3. [(ab, c, b) | b | c.c.0]
〈bcB∅,a,∅〉−−−−−−→ [(ab, c, b) | c.0], where it is only observed that the absence of

a has played some role in inhibiting the reaction.

Notably, the three transitions have the same target process P3 , [(ab, c, b) | c.0].
Finally, the process P3 has seven transitions all leading to P4 , [(ab, c, b) | 0]. Their labels are of250

the form 〈c B J,Q, ∅〉 with J ⊆ c, Q ⊆ ab and J∪Q 6= ∅. Each label provides a different explanation
why the reaction is not enabled.

The following technical lemmas express some relevant properties of the transition system and
can be proved by rule induction (see the Appendix).

Lemma 15. If M
〈WBR,I,P 〉−−−−−−−→ M′ then M′ ≡ M′′|P for some M′′.255

Lemma 16. If
∏
a∈A a

〈WBR,I,P 〉−−−−−−−→ M then W = ∅ and M ≡
∏
a∈A a | P .

Lemma 17. If M
〈WBR,I,P 〉−−−−−−−→ M′ then (W ∪R) ∩ I = ∅.

Lemma 18. If P
〈WBR,I,P 〉−−−−−−−→ P′ then R ⊆W and W ∩ I = ∅.

The main theorem shows that the rewrite steps of a RS exactly match the transitions of its
corresponding RS process. For the proof see the appendix.260

Theorem 19. Let A = (S,A) be a RS, and π = (γ, δ) an n-step interactive process in A with
γ = {Ci}i∈[0,n], δ = {Di}i∈[0,n], and let Wi , Ci ∪Di and Pi , JA, πKi for any i ∈ [0, n]. Then:

8

1. ∀i ∈ [0, n− 1], Pi
〈WBR,I,P 〉−−−−−−−→ P implies W = Wi, P = Di+1 and P ≡ Pi+1;

2. ∀i ∈ [0, n− 1], there exists R, I ⊆ S such that Pi
〈WiBR,I,Di+1〉−−−−−−−−−−→ Pi+1.

Remark 20. Note that the process Pn = JA, πKn = [
∏
a∈A a | Dn | Cn.0] has one more transition

available (the (n + 1)-th step from P0), even if the standard theory of RSs stops the computation
after n steps. We thus have additional steps

Pn
〈WnBRn,In,resA(Wn)〉−−−−−−−−−−−−−−−→

[∏
a∈A

a | resA(Wn) | 0

]

for suitable Rn, In ⊆ S. The target process contains 0 and therefore is deadlock.265

Example 14 shows that we can have redundant transitions because of rule (Inh). However,
they can be easily detected and eliminated by considering a notion of dominance. To this aim we
introduce an order relation v over pairs of set of entities defined as follows:

(R′, I ′) v (R, I) if R′ ⊆ R ∧ I ′ ⊆ I.

As usual, we write (R′, I ′) < (R, I) if (R′, I ′) v (R, I) but (R′, I ′) 6= (R, I).

Definition 21 (Dominance). A transition P
〈WBR′,I′,P 〉−−−−−−−−→ P′ is dominated if there exists another

transition P
〈WBR,I,P 〉−−−−−−−→ P′ such that (R′, I ′) < (R, I).

Note that in the definition of dominance we require the dominated transition to have the same
source and target processes as the dominant transition, and that their labels carry also the same270

sets W and P .
Finally, we can immediately derive an LTS, whose transitions are written using double arrows,

where only dominant transitions are considered. The LTS is defined by the additional SOS rule
(Dom) below:

P
〈WBR,I,P 〉−−−−−−−→ P′ (R, I) = maxv{(R′, I ′) | P

〈WBR′,I′,P 〉−−−−−−−−→ P′}

P
〈WBR,I,P 〉
=======⇒ P′

(Dom)

In other words, a transition P
〈WBR,I,P 〉
=======⇒ P′ guarantees that any instance of the rule (Inh) is

applied in a way that maximizes the sets J and Q (given the overall available entities W).

Example 22. Looking back at Example 14, both transitions P2
〈bcBc,∅,∅〉−−−−−−→ P3 and P2

〈bcB∅,a,∅〉−−−−−−→ P3

are dominated by P2
〈bcBc,a,∅〉−−−−−−→ P3. Therefore, the process P2 = [(ab, c, b) | b | c.c.0] has a unique275

(double-arrow) transition P2
〈bcBc,a,∅〉
======⇒ P3.

4. Bio-simulation

Bisimulation equivalences [23] play a central role in process algebras. They can be defined in
terms of coinductive games, of fixpoint theory and of logics. The bisimulation game is played by an
attacker and a defender: the former wants to disprove the equivalence between two processes p and280

q, the latter tries to show that p and q are equivalent. The game is turn based: at each turn the

attacker picks one process, e.g., p, and one transition p
λ−→ p′ and the defender must reply by picking

one transition q
λ−→ q′ of the other process with exactly the same label λ; then the game continues

challenging the equivalence between p′ and q′. The game ends when the attacker has no transition
available, and the defender wins, or when defender cannot match the move of the attacker, and285

9

the attacker wins. The defender also wins if the game doesn’t end. The processes p and q are not
equivalent iff the attacker has a winning strategy.

In the case of biological systems, the classical notion of bisimulation can be too concrete. In
fact, in a biological soup, a high number of interactions occur every time instant, and generally,
biologists are only interested to analyse a small subset of them and to focus on a subset of entities.290

In the case of RS processes, the labels that we used for the LTS consider too many details and
convey too much information: they record the entire information about all the reactions that have
been applied in one transition, the entities that acted as reactants, as inhibitors or as products, or
that were available in the state. All this information stored in the label is necessary to compose
a transition in a modular way. Depending on the application, only a suitable abstraction over the295

label can be of interest. For this reason, following the approach introduced in Brodo et al. [16], we
exploit an alternative notion of bisimulation, called bio-simulation, that compares two biological
systems by restricting the observation to only a limited set of events that are of particular interest.
With respect to the work in Brodo et al. [16], here the labels are easier to manage and simpler
to parse, because the underlying process algebra is tailored to Reaction Systems (whereas in [16]300

Reaction Systems were encoded in a fragment of a much more general process algebra).
In a way, at each step of the bisimulation game, we want to query our labels about some partial

information. To this goal, we define an assertion language to express detailed and partial queries
about what happened in a single transition.

Example 23. For instance we would like to express properties about each step of the bio-simulation305

of a system like the ones below:

1. Has the presence of the entity a been exploited by some reaction?

2. Have the entities a and b been produced by some reaction?

3. Have the entities a or c been provided by the state?

4. Has the reaction (ab, c, b) been applied or not?310

As detailed before, we remark the importance of dealing with non-deterministic contexts, as
bisimulation takes into account the branching structure of system dynamics.

The bio-simulation approach works as follows: first we introduce an assertion language to ab-
stract away some information from the labels; then we define a bisimilarity equivalence that is
parametric to a given assertion, called bio-similarity; finally we give a logical characterisation of315

bio-similarity, called bio-logical equivalence, by tailoring the classical HML to the given assertion.

4.1. Assertion language

An assertion is a formula that predicates on the labels of our LTS. The assertion language that
we propose is very basic, but can be extended if necessary.

Definition 24 (Assertion Language). Given a set of entities S, assertions F on S are built from
the following syntax, where E ⊆ S and Pos ∈ {W,R, I,P}:

F ::= E ⊆ Pos | ? ∈ Pos | F ∨ F | F ∧ F | ¬F

Roughly, Pos distinguishes different positions in the labels: W stands for entities provided by320

current state,R stands for reactants, I stands for inhibitors, and P stands for products. An assertion
F is either the membership of a subset of entities E in a given position Pos, E ⊆ Pos, the test of
Pos for non-emptyness, ? ∈ Pos, the disjunction of two assertions F1∨F2, their conjunction F1∧F2,
or the negation of an assertion ¬F. To improve readability, we assume that negation binds stronger
than conjunction and disjunction, so that ¬F1 ∧ F2 stands for (¬F1) ∧ F2. Of course, all the325

remaining usual logical operators can be derived as expected, e.g. we write exclusive or F1 ̂ F2 as a
shorthand for the assertion (F1 ∧ ¬F2)∨ (¬F1 ∧ F2) and the implication F1 → F2 as a shorthand
for the assertion ¬F1 ∨ F2.

10

Definition 25 (Satisfaction of Assertion). Let υ = 〈W B R, I, P 〉 be a transition label, and F
be an assertion. We write υ |= F (read as the transition label υ satisfies the assertion F) if and only
if the following hold:

υ |= E ⊆ Pos iff E ⊆ select(υ,Pos)
υ |=? ∈ Pos iff select(υ,Pos) 6= ∅
υ |= F1 ∧ F2 iff υ |= F1 ∧ υ |= F2

υ |= F1 ∨ F2 iff υ |= F1 ∨ υ |= F2

υ |= ¬F iff υ 6|= F

where select(〈W B R, I, P 〉,Pos) ,

W if Pos =W
R if Pos = R
I if Pos = I
P if Pos = P

Given two transition labels v, w we write v ≡F w if v |= F ⇔ w |= F, i.e. if both v, w satisfy F or
they both do not.330

Example 26. Some assertions matching the queries listed in Example 23 are:

1. F1 , a ⊆ R
2. F2 , ab ⊆ P
3. F3 , a ⊆ W ∨ c ⊆ W
4. F4 , ab ⊆ R∧c ⊆ I checks if the reaction has been applied, while F5 , a ⊆ I∨b ⊆ I∨c ⊆ R335

the opposite case. Alternatively, we can set F5 , ¬F4.

If we take the label υ = 〈ab B ab, c, b〉 it is immediate to check that

υ |= F1 υ 6|= F2 υ |= F3 υ |= F4 υ 6|= F5

With respect to the assertion language proposed in our previous paper [16], the new one has less
expressive power as it is not possible to immediately distinguish the reactants, the inhibitors and
the products referred to each reaction applied, or to know the reason why a reaction has not been
applied. However, these informations can be retrieved by the reaction definition. The main interest340

of this proposal is that it is directly applied to the LTS tailored for RSs.

4.2. Bio-similarity and bio-logical equivalence

The notion of bio-simulation builds on the above language of assertions to parameterize the
induced equivalence on the property of interest. Please recall that we have defined the behaviour
of the context in a non deterministic way, thus at each step, different possible sets of entities can345

be provided to the system and different sets of reaction can be enabled/disabled. Bio-simulation
can thus be used to compare the behaviour of different systems that share some of the reactions or
entities or also to compare the behaviour of the same set of reaction rules when different contexts
are provided.

Definition 27 (Bio-similarity ∼F [16]). Given an assertion F, a bio-simulation RF that respects350

F is a binary relation over RS processes s.t., if P RF Q then:

• ∀υ,P′ s.t. P
υ
=⇒ P′, ∃w,Q′ s.t. Q

w
=⇒ Q′ with υ ≡F w and P′ RF Q′.

• ∀w,Q′ s.t. Q
w
=⇒ Q′, ∃υ,P′ s.t. P

υ
=⇒ P′ with υ ≡F w and P′ RF Q′.

We let ∼F denote the largest bio-simulation and we say that P is bio-similar to Q, with respect
to F, if P ∼F Q.355

11

Remark 28. An alternative way to look at a bio-simulation that respects F is to define it as an
ordinary bisimulation over the transition system labelled over {F,¬F} obtained by transforming

each transition P
υ
=⇒ P′ such that υ |= F into P

F
=⇒ P′ and each transition P

υ
=⇒ P′ such that υ 6|= F

into P
¬F
=⇒ P′.

It can be easily shown that the identity relation is a bio-simulation and that bio-simulations are360

closed under (relational) inverse, composition and union and that, as a consequence, bio-similarity
is an equivalence relation.

Example 29. Let us consider some variants of our working example. The behavior of P0 ,
[(ab, c, b) | ab.a.ac.0] is deterministic, and its unique trace of labels is:

P0
〈abBab,c,b〉 +3 P1

〈abBab,c,b〉 +3 P2
〈abcBc,∅,∅〉 +3 [(ab, c, b)|0]

Instead, the behavior of P′0 , [(ab, c, b) | (ab.a.ac.0 + ab.a.a.0)] is non deterministic. Now there are
two possible traces of labels: the first trace is equal to the above one, and the other one follows:

P′0
〈abBab,c,b〉 +3

〈abBab,c,b〉 %-

P1

〈abBab,c,b〉 +3 P2

〈abcBc,∅,∅〉 +3 [(ab, c, b)|0]

P′1
〈abBab,c,b〉 +3 P′2

〈abBab,c,b〉 +3 [(ab, c, b)|b|0]

Now, it is easy to check that the two processes P0, P′0 are not bio-similar w.r.t. the assertion
F1 , c ∈ E , requiring that in the state configuration entity c is present, and are bio-similar w.r.t.
the assertion F2 , (a ∈ R) ̂ (c ∈ R), requiring that either c or a are used as reactants.365

Now, we introduce a slightly modified version of the Hennessy-Milner Logic [24], called bioHML;
due to the reasons we explained above, we do not want to look at the complete transition labels,
thus we rely on our simple assertion language to make it parametric to the assertion F of interest:

Definition 30 (BioHML [16]). Let F be an assertion, then the set of bioHML formulas G that
respects F are built by the following syntax, where χ ∈ {F,¬F}:

G,H ::= t | f | G ∧ G | G ∨ G | 〈χ〉G | [χ]G

Remark 31. An alternative way to look at bioHML formulas is as ordinary HML formulas over
the set of labels {F,¬F}.370

The semantics of a bioHML formula is the set of processes that satisfy it.

Definition 32 (Semantics of BioHML). Let P denote the set of all RS processes over S. For a
BioHML formula G, we define JGK ⊆ P inductively on G:

JtK , P JfK , ∅
JG ∧ HK , JGK ∩ JHK JG ∨ HK , JGK ∪ JHK

J〈χ〉GK , {P ∈ P : ∃υ,P′. P υ
=⇒ P′ with υ |= χ and P′ ∈ JGK}

J[χ]GK , {P ∈ P : ∀υ,P′. P υ
=⇒ P′ implies υ |= χ and P′ ∈ JGK}

We write P |= G (P satisfies G) if P ∈ JGK.

Negation is not included in the syntax, but the converse G of a bioHML formula G can be easily
defined inductively in the same way as for HML logic.

We let LF be the set of all bioHML formulas that respects F.375

12

Definition 33 (Bio-logical equivalence). We say that P,Q are bio-logically equivalent w.r.t. F,
written P ≡LF

Q, when P and Q satisfy the exactly the same bioHML formulas in LF, i.e. when for
any G ∈ LF we have P |= G ⇔ Q |= G.

Finally, we extend the classical result establishing the correspondence between the logical equiv-
alence induced by HML with bisimilarity for proving that bio-similarity coincides with bio-logical380

equivalence. The proof is essentially the same as the one in [16] and thus omitted.

Theorem 34 (Correspondence [16]). ∼F = ≡LF

Example 35. We continue by considering our running example in Example 29. There already is
the evidence that the two processes P0 , [(ab, c, b) | ab.a.ac.0] and P′0 , [(ab, c, b) | (ab.a.ac.0 +
ab.a.a.0)] are not bio-similar w.r.t. the assertion F1 , c ∈ W. Here, we give a bioHML formula that
distinguishes P0 and P′0:

G , 〈¬F1〉[¬F1]〈¬F1〉t.

In fact, G is not satisfied by P0, written P0 6|= G, because, along the unique possible path, the labels
of the first two transitions satisfy ¬F1 but P2 cannot perform any transition whose label satisfies
¬F1.385

Differently, P′0 |= G. In fact, P′0 can move to P′1 with a transition whose label satisfies ¬F1,
then P′1 has a unique transition to P′2 whose label satisfies ¬F1 and finally the target state P′2 can
perform a transition whose label satisfies ¬F1.

5. Implementation and Experimentation

In Falaschi and Palma [25] we have presented some preliminary work on how to implement RS390

formalism in a logic programming language (Prolog). Our implementation did not aim to be highly
performing. We aimed to obtain a rapid prototyping tool for implementing extensions of RSs.
Our initial prototype allowed to perform finite computations on RSs, in the form of interactive
processes. Here we have extended the implementation by including the more general notion of
contexts, and have exploited transition labels to derive the corresponding LTSs. Then we have395

added the predicates for formulating expressions of our assertion language that acts on the transition
labels. On the basis of this assertion language we have implemented a slightly modified version of
the Hennessy-Milner Logic to make it parametric on the specific assertion specified by the user. As
explained in the Introduction, our interpreter is available for download,4 together with a template
for writing RS specifications and usage instructions.400

5.1. Tool description

The interpreter has been developed and tested under SWI-Prolog5 and makes use of a few library
predicates for handling efficiently association lists and ordered sets. DCG Grammar rules are used
to ease the writing of custom RS specifications.

In the current version of our implementation an RS is represented by a term sys(Delta,E,Ks,Rs),405

where Delta is the environment, which represents a set of constant definitions for defining the re-
cursive contexts. It is implemented as an association list (constant - context process). E is the
current (ordered) set of entities, Ks is the list of context processes and Rs is (ordered) set of re-
actions. All background entities and constants are represented by different atoms (actually, they
can only include letters, digits and underscore and must begin with a small cap letter). Exploiting410

DCG clauses, the concrete syntax for expressing contexts, environments, assertions and BioHML
formulas is completely similar to the one presented in this paper: dedicated predicates perform the
parsing analysis and translate it to the abstract syntax for execution in the interpreter.

4http://pages.di.unipi.it/bruni/LTSRS/
5https://www.swi-prolog.org/

13

http://pages.di.unipi.it/bruni/LTSRS/
https://www.swi-prolog.org/

The following predicates can be used to define a custom RS of interest:
myentities/1, myreactions/1, mycontext/1, myenvironment/1.415

Normally, the predicate myentities/1 defines the empty list of reactants, as the context se-
quence will provide other reactants, including the initial ones. However, the predicate can be up-
dated to define a (non empty) list of reactants, like in myentities([a1,...,an]), from which the
computation of the RS will start. The list is transformed to an ordered set before being used by
any other predicate.420

The predicate myreactions/1 defines the list of reactions. A reaction in the list must be a term of
the form react(R,I,P), like in myreactions([react(R1,I1,P1),...,react(Rn,In,Pn)]). Each
term react(Ri,Ii,Pi) contains a list of reactants Ri, a list of inhibitors Ii and a list of products
Pi. Each list is transformed to an ordered set before being used by any other predicate.

The predicate mycontext/1 defines the list of context processes in a suitable DCG grammar.425

Instead of using the rec X. K construct, recursion is made possible by relying on a finite set of
context process constants to be defined in the environment.

The predicate myenvironment/1 defines the list of context processes constants that can be
exploited in the context. Thanks to DCG clauses, each constant declaration is written as X = K,
where X is the atom representing the constant and K is the corresponding context process.430

The predicate mybhml/1 is used to define a BioHML formula G and to check if it is satisfied by
the main Reaction System RS.

Finally, the predicate myassert/1, is used to define a default assertion F and the predicates
adventities/1, advreactions/1, advcontext/1 to define an adversary Reaction System ARS and
to check if RS and ARS are F -biosimilar.435

For performance reasons and in conformance with the double-arrow transition system, our im-
plementation uses the (InH) rule in a deterministic way by maximising the sets of present inhibitors
and lacking reactants in the current computation. This improves the efficiency of the tool.

Even if we prefer to leave out most details about the full list of currently available functionalities,
we mention that the labels of the LTS generated from a RS specification carry even more information440

than those reported in Section 3. In particular, a transition label of the form 〈W B R, I, P 〉 is
represented as a term obs(E,C,W,R,RI,I,IR,P), where E is the set of entities available in the
system before the transition, C is the set of entities provided by the context for that transition, W is
just the union of E and C (it is included to avoid the need of computing it every time) and coincides
with the set W of the shorter label, R is the set of reactants exploited by enabled reactions, RI is445

the set of reactants whose presence inhibited some reaction, so that R is the union of R and RI,
similarly I is the set of entities whose absence enabled some reactions and IR is the set of entities
whose absence inhibited some reactions, so that I is the union of I and IR, finally P coincides with
P and is the set of entities produced by some reactions. Note that E and C are not necessarily
disjoint, as well as R and RI and also I and IR.450

Most functionalities are made easily available for experimentation by dedicated options of the
main/2 predicate, which can be invoked using the syntax:

?- main(option,Time).
455

Any option is just a constant. Among the available options, we cite just a few:6 stat computes
some general information about the RS; target computes the terminal result set of the RS; run
computes the result sequence of the RS; rundigraph draws the result sequence as an LTS; digraph
computes the whole LTS of the RS; biohml checks if the RS satisfies a BioHML formula; biosim
checks biosimilarity of a RS and its adversary.460

The Prolog interpreter will respond the query with

Time = <execution time>

6Options target, run and rundigraph all require a terminating context.

14

and will save the result in a newly created file of the workspace.
As explained in the online instructions, the tool can be easily customised by instantiating the

above mentioned few predicates providing, respectively, the RS specification and a BioHML for-465

mula to be verified. The graphical interface for using our interpreter online allows to select several
facilities. We have: 1) the visualisation of the graph of the LTS in DOT format, using Vis.js; 2) a
tool which checks whether a BioHML formula is true w.r.t. the given main RS process; 3) a tool
for checking if the main RS and a second adversarial RS are bisimilar; and 4) the visualisation as
a graph of the LTS corresponding to the adversarial RS.470

We have run and checked all the examples in this paper, by using our interpreter, together
with other examples from the literature, such as the ‘heat-shock-response’ presented in [7]. Due to
space limitation, we report here a toy example about RS specification of Non-deterministic Finite
Automata (NFA) and a much larger and challenging case study about the RS translation of the
model of ErbB receptor signal transduction in human mammary epithelial cells in [26], with 6720475

reactions over 246 entities and a 1000-steps interactive process.

5.2. RSs and NFA

We recall that a NFA [27, 28] is a tuple N = (Q,Σ, δ, q0, F) where Q is the finite set of states,
Σ is a finite alphabet of symbols, δ : Q × Σ → ℘(Q) is the transition function that, given the
current state of the automaton and the observed alphabet symbol, returns the (possibly empty) set480

of target states, q0 is the initial state and F ⊆ Q is the set of final states. Without loss of generality,
we assume that the set of states S is disjoint from the set Σ of alphabet symbols.

The transition function δ can be extended to δ̂ : Q × Σ∗ → ℘(Q) that, given the current
state of the automaton and a finite string of alphabet symbols, returns the (possibly empty) set of
target states. This way the formal language accepted by the automaton N is defined as L(N) =485

{w | δ̂(q0, w) ∩ F 6= ∅}, i.e. is the set of strings w such that δ̂(q0, w) contains some final state of
the automaton. It is a standard result of Computer Science that NFAs recognise regular languages
and that, using the subset construction algorithm (also called Rabin-Scott powerset construction),
each NFA can be translated to a Deterministic Finite Automaton (DFA) that recognises the same
formal language.490

We show that, by a straight transformation of the NFA to a RS we can define a process system
with a standardised context process such that the corresponding LTS shown by our interpreter
coincides with the version of the powerset construction that creates only the states that are actually
reachable (instead of the whole powerset ℘(S)).

The idea is transform the NFA N = (Q,Σ, δ, q0, F) to the RS AN = (SN , AN) where:7495

• SN = Q ∪ Σ ∪ {void};

• AN = {({q, a}, {void}, δ(q, a)) | q ∈ Q, a ∈ Σ, δ(q, a) 6= ∅}.

Then, we define a simple, recursive (perpetual) context process definition

x = a1.x+ · · ·+ an.x

that nondeterministically can provide, at any step, a singleton context for any alphabet symbol in
Σ = {a1, ..., an}. Finally, we set the initial set of entities to {q0} and the list of context processes
to [x].500

Exploiting the facilities of our tool, we can easily customise the appearance of the LTS, by
deciding which labels display for the nodes and for the transitions. In the case of the powerset con-
struction, we decide to display just the set of current entities for each node (not the context, which
will always be x) and the set of entities provided by the context for the transitions. Additionally,

7We insert a distinct entity void as a dummy inhibitor in reactions, which will never be provided by the context.

15

q4 q0

a,b

q1a q2a,b q3a,b a,b

Figure 2: A simple NFA

% contents of the file spec-NFA.pl

myentities([q0]).

myreactions([react([q0,a],[void],[q0]),

react([q0,b],[void],[q0]),

react([q0,a],[void],[q1]),

react([q1,a],[void],[q2]),

react([q1,b],[void],[q2]),

react([q2,a],[void],[q3]),

react([q2,b],[void],[q3]),

react([q3,a],[void],[q4]),

react([q3,b],[void],[q4]),

react([q4,a],[void],[q4]),

react([q4,b],[void],[q4])]).

mycontext("[x]").

myenvironment("[x=({a}.x + {b}.x)]").

% plus some default trivial definitions of other predicates

% ...

Figure 3: RS specification of the NFA in Fig. 2

we exploit the predicate nodeStyle/3 to set a different color for the states that contain an entity505

in the set F of final states of the original NFA.
As a concrete example, we take the well-known NFA over the binary alphabet Σ = {a, b} that

has n+ 1 states and for which there is no equivalent DFA with less than sn states (see Fig. 2, for
the automaton with n = 3).

The corresponding RS specification is shown in Fig. 3.510

Then, the query below produces the LTS in Fig. 4,8 that corresponds to the (reachable fragment
of) the DFA obtained as powerset construction. Note that final states are represented using a
different color.

?- main(digraph,Time).515

5.3. ErbB receptor signal transduction in human mammary epithelial cells

As we wanted to challenge our experimentation on a large benchmark, we looked for RS speci-
fications over the web and came across a very interesting model9 available on the GitHub page of
HERESY (Highly Efficient REaction SYstem simulator) [26]. HERESY is a powerful Python tool520

with a friendly user interface and it is able to leverage the GPU to offload reactions’ calculations
(cf. Section 5.4 for more details).

8The layout of all graphs shown in the paper has been generated exploiting the graph editor yEd (https://www.
yworks.com/products/yed), after translating the files in DOT format, as generated by our tool, in Graphml format
thanks to the Python script dottoxml.py available at https://github.com/dirkbaechle/dottoxml.

9The file erbb.rsy at https://github.com/aresio/HERESY/tree/master/models.

16

https://www.yworks.com/products/yed
https://www.yworks.com/products/yed
https://github.com/dirkbaechle/dottoxml
https://github.com/aresio/HERESY/tree/master/models

Figure 4: DFA powerset construction as LTS of a RS

PLA2, , AA

ECM Gas Gbg_i Integrins, , AC

IQGAP1 Myosin, Arp_23 alpha_catenin, Actin

IQGAP1 Myosin alpha_catenin, Arp_23, Actin

Arp_23 Myosin alpha_catenin, IQGAP1, Actin

Arp_23 IQGAP1 Myosin, alpha_catenin, Actin

Arp_23 IQGAP1 Myosin alpha_catenin, , Actin

...

Cdc42 Crk Fak Grb2 Nck PIP2_45 Src, PTPPEST, WASP

Ras AA Erk PIP2_34 PIP3_345 Fak Src RKIP PAK Mekk1 PP2A PA EGFR_Contr IL1_TNF alpha_sL Stress alpha_qL alpha_1213L ECM ExtPump alpha:iL EGF

Ras AA Erk PIP2_34 PIP3_345 Fak Src RKIP PAK Mekk1 PP2A PA EGFR_Contr IL1_TNF alpha_sL Stress alpha_qL alpha_1213L ECM ExtPump alpha:iL EGF

Ras AA Erk PIP2_34 PIP3_345 Fak Src RKIP PAK Mekk1 PP2A PA EGFR_Contr IL1_TNF alpha_sL Stress alpha_qL alpha_1213L ECM ExtPump alpha:iL EGF

...

Ras AA Erk PIP2_34 PIP3_345 Fak Src RKIP PAK Mekk1 PP2A PA EGFR_Contr

Figure 5: An excerpt from file erbb.rsy

The file erbb.rsy contains 6.720 reactions and the sequence of 1000 contexts used to replicate
one of the experiments in [29] (see Table 1, and more precisely the column addressing the conditions
for the experiment in Fig.2b). Of course the definition of such a large model for a real case study525

required a tremendous effort as well as domain-specific knowledge, so we have been very glad to
find it available for experimentation.

The first step was to translate the specification in the file erbb.rsy to make it compatible
with our Prolog predicates: in HERESY, reactions are entered as single lines containing the sets
of reactants, inhibitors, and products (the elements in the same set are separated by spaces, while530

the three sets are separated by commas) while the set of chemicals for each iteration of the context
sequence is entered as a single line separated by spaces. Reactions and contexts were separated by
---. To give an idea of the correspondence, we report some samples from the original specification
(see Fig. 5 and the online supplementary material of [30] for the input conditions of the experiment)
and its translation to our setting (see Fig. 6). For example, note that we added dummy entities diov535

and void, together with the (always enabled) reaction react([diov],[void],[diov]) to respect
the constraint about non-empty set of reactants and inhibitors in the reactions.

By comparing the context sequence and the corresponding experiment in [29, 30], we realised
that the sequence was constructed according to the (%ON) activity levels of each stimulus. For
example, as the activity level of the stimulus alpha_1213l was 72%, the corresponding entity was540

present in the first 720 lines of the sequence. This way the shape of the RS experiment becomes
quite regular, which can have important consequences for the behavioural analysis, as we are going
to show later. The complete description of the different sets of entities provided by the context

17

% contents of the file spec-ERBB.pl

myreactions([react([diov],[void],[diov]),

react([pla2],[void],[aa]),

react([ecm,gas,gbg_i,integrins],[void],[ac]),

react([iqgap1,myosin],[arp_23,alpha_catenin],[actin]),

react([iqgap1,myosin,alpha_catenin],[arp_23],[actin]),

react([arp_23,myosin,alpha_catenin],[iqgap1],[actin]),

react([arp_23,iqgap1,myosin],[alpha_catenin],[actin]),

react([arp_23,iqgap1,myosin,alpha_catenin],[void],[actin]),

...

react([cdc42,crk,fak,grb2,nck,pip2_45,src],[ptppest],[wasp])]).

mycontext("[{ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,il1_tnf,alpha_sl,stress,alpha_ql,alpha_1213l,ecm,extpump,alpha_il,egf}.

{ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,il1_tnf,alpha_sl,stress,alpha_ql,alpha_1213l,ecm,extpump,alpha_il,egf}.

{ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,il1_tnf,alpha_sl,stress,alpha_ql,alpha_1213l,ecm,extpump,alpha_il,egf}.

...

{ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr}.nil]").

...

Figure 6: An excerpt from file spec-ERBB.pl

[ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump,alpha_il,egf,il1_tnf,stress] % first 20 steps

[ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump,alpha_il,egf] % next 80 steps

[ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump,alpha_il] % next 10 steps

[ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump] % next 10 steps

[ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql] % next 250 steps

[ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl] % next 110 steps

[ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l] % next 240 steps

[ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm] % next 160 steps

[ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr] % last 120 steps

Figure 7: A concise description of the context sequence

sequence is reported in Fig. 7. In the following, we use the term stage to refer to the provision of
a specific context and the term duration to denote the number of steps during which each context545

is provided: so the experiment is divided in nine stages, the first stage has duration 20, the second
10, and so on.

Because we are storing a lot of information in the LTS transition labels, our first attempt
to simulate the execution of the sequence and build the corresponding LTS encountered some
difficulties with the default memory allocation of the stack and we needed to extend it. Then we550

decided to do a more in-depth inspection of the experiment in order to see if it was possible to
simplify it and discovered that, given the context sequence under consideration, there were many
reactions that would never be enabled (because some of their reactants were appearing neither as
products of other reactions nor in the context sequence). To automate the simplification on the RS
specification in such cases, we developed suitable predicates to discover dead reactions and eliminate555

them before running the experiment. A report about the RS with some useful information of this
kind can now be automatically generated by running the query below (see Fig. 8 for the ErbB
specific output). We remark that 28% of the reactions were not applicable and that by discarding
them before running the experiment it was no longer necessary to extend the stack size.

560

?- main(stat,Time).

The first experiment we made was to compute the target state. This is achieved by running the
query:

565

?- main(target,Time).

and the result (computed in 186203 ms10) is:
[aa,akt,alpha_1213r,alpha_ir,alpha_qr,alpha_sr,and_34,ap2,arf,arno,b_parvin,ca,calm,camk,camkk,camp,cas,cbp,clathrin,cortactin,crk,csk,dag,diov,dock180,dynamin,

eea1,egfr_t669,egfr_y1045,egfr_y1068,egfr_y1086,egfr_y1101,egfr_y1148,egfr_y1173,egfr_y891,egfr_y992,endophilin,epsin,fak,gbg_1213,gbg_s,graf,grb2,hip1r,hsc70,570
ilk,ip3,ip3r1,iqgap1,mek,mekk1,mkps,myosin,p115rhogef,p190rhogap,p90rsk,pa,pdk1,pi5k,pip2_45,pip3_345,pip_4,pix_cool,pkc_primed,pla2,rab7,rabaptin_5,rabenosyn_5,

rabex_5,raf,ral,ralbp1,rap1,rgs,rin,sos,tiam,vinc]

More interestingly, we can generate the LTS of the underlying computation by running the
(optimised for deterministic, terminating computations) query.

10All the experiments were conducted on a MacBook Pro with a 2,6 GHz Intel Core i7 6 core processor and 16 GB
2400 MHz DDR4 memory, running MacOS Catalina (v.10.15.7) and SWI-Prolog (threaded, 64 bits, version 8.0.0).

18

Some statistics about your custom RS:

===

the initial state has 1 entities:

[diov]

the reactants are 211:

[aa,ac,actin,ag,akt,alix,alpha_1213l,alpha_1213r,alpha_catenin,alpha_il,alpha_ir,alpha_ql,alpha_qr,alpha_sl,alpha_sr,amsh,and_34,ap2,arf,arno, ... ,wasp]

the inhibitors are 199:

[aa,ac,actin,akt,alix,alpha_1213l,alpha_1213r,alpha_catenin,alpha_il,alpha_ir,alpha_ql,alpha_qr,alpha_sl,alpha_sr,and_34,ap2,arf,arno,arp_23, ... ,vps4]

the products are 210:

[aa,ac,actin,akt,alix,alpha_1213r,alpha_catenin,alpha_ir,alpha_qr,alpha_sr,amsh,and_34,ap2,arf,arno,arp_23,ask1,b_arrestin,b_parvin,ca,calm,cam, ... ,wasp]

the reactions involve 248 entities:

[aa,ac,actin,ag,akt,alix,alpha_1213l,alpha_1213r,alpha_catenin,alpha_il,alpha_ir,alpha_ql,alpha_qr,alpha_sl,alpha_sr,amsh,and_34,ap2,arf,arno, ... ,wasp]

the environment involves 22 entities:

[aa,alpha_1213l,alpha_il,alpha_ql,alpha_sl,ecm,egf,egfr_contr,erk,extpump,fak,il1_tnf,mekk1,pa,pak,pip2_34,pip3_345,pp2a,ras,rkip,src,stress]

the context involves 22 entities:

[aa,alpha_1213l,alpha_il,alpha_ql,alpha_sl,ecm,egf,egfr_contr,erk,extpump,fak,il1_tnf,mekk1,pa,pak,pip2_34,pip3_345,pp2a,ras,rkip,src,stress]

the whole RS involves 248 entities:

[aa,ac,actin,ag,akt,alix,alpha_1213l,alpha_1213r,alpha_catenin,alpha_il,alpha_ir,alpha_ql,alpha_qr,alpha_sl,alpha_sr,amsh,and_34,ap2,arf,arno, ... ,wasp]

there are 24 reactants that will never be available:

[ag,b_catenin,cdc42,dgk,erbb2_contr,erbb2deg_contr,erbb3_contr,erbb4_contr,exte_cadherin,gab1,mekk2,mkk3,nck,nrg,p120_catenin,pertuzumab,pi3k,plc_g,ptp1b,

rac,shc,spry2,tgfa,trastuzumab]

the context can provide 0 entities that will never be used:

[]

the overall number of reactions is 6721:

- the applicable reactions are 4847

- the are 1874 reactions that will never be enabled

===

Figure 8: Automatically generated statistics about the ERBB specification

575

?- main(rundigraph,Time).

The corresponding graph is in Fig. 9: it consists of 129 nodes and (of course) 1000 edges and
was computed in 125851 ms. We decided to use trivial labels for nodes (hiding the current entities
and the process context) and to enumerate the transitions progressively to show the progress of580

the computation (instead of showing, e.g., the entities provided by the context at each step as was
done for the NFA example). The nodeStyle/3 predicate was used to set different colors for each
node, depending on the available context (the target state is colored in white because it has the
nil context).

We think the picture conveys a lot of interesting information, as it makes evident that:585

• the graph contains 129 nodes, which suggests the fact the the same target can be reached
with a shorter experiment;

• if the same context is provided long enough, the system tends to stabilise in a sort of loop
(also called attractor);

• this is not the case for the first, third and fourth stages, whose durations are too short: a few590

more steps would be necessary to reach their corresponding attractors;

• all attractors have the same period (12 nodes) and in fact most of them differ just for the
available context;

• it is maybe more meaningful to focus the attention to the target attractor instead of the target
state, because if the last stage had a different duration (e.g., one more step or one step less)595

a different target state would have been returned.

Regarding the last aspect, we have defined a predicate to automatically extract the activity
levels of the entities appearing in the state of the target attractor, as reported in Fig. 10.

The LTS of the experiment also opens some important questions:

• Are we guaranteed that the same target attractor will be reached if we change the stage600

durations as far as the activity levels are preserved (e.g. by performing experiments over a
scale of an 700-steps interactive process or a 10000-steps one)?

19

Figure 9: The LTS of the original run

100% - [aa,alpha_1213r,alpha_ir,alpha_qr,alpha_sr,and_34,ap2,arno,b_parvin,calm,camp,cas,cbp,clathrin,cortactin,crk,csk,dag,diov,dock180,dynamin,egfr_t669,egfr_y1101,

egfr_y891,egfr_y992,endophilin,epsin,fak,graf,grb2,hip1r,hsc70,ilk,mekk1,mkps,myosin,p190rhogap,pdk1,pi5k,pip2_45,pip3_345,pix_cool,pla2,raf,ral,ralbp1,rin,tiam]

75% - [ca,cam,camkk,egfr_free,gbg_1213,gbg_i,gbg_q,ip3r1,pa,pi4k,pkc_primed,pld,rgs]

66% - [eea1,rab5,rab7,rabaptin_5,rabenosyn_5,rabex_5]

50% - [actin,akt,arf,camk,cbl_rtk,cin85,egfr_t654,erk,ga_1213,gai,gaq,gbg_s,ip3,iqgap1,mek,p115rhogef,p90rsk,pip_4,pka,pkc,plc_b,ptpa,rap1,ras,rkip,sos,talin,vinc]

25% - [egfr_egfr,egfr_y1045,egfr_y1068,egfr_y1086,egfr_y1148,egfr_y1173]

Figure 10: Activity levels for the entities appearing in the states of the target attractor of the experiment

• What does it happen if we extend the experiment so that the durations of the first, third and
fourth stages are long enough to stabilise the system in some attractor loop?

• What does it happen if at some intermediate stage we leave an attractor loop from a different605

state (by performing, e.g. one additional step with the same context)?

To address these questions, we decided to perform an extended version of the experiment:
exploiting nondeterminism and recursion we can define a context process that can decide, at each
step, whether to provide the same context or move to a different context. This way it is possible
to collect inside a single LTS the behaviour that explores all possibile combinations for different610

activity levels of the stimuli and different lengths of the context sequence. The environment and the
context process that we defined to run the extended experiment are in Fig. 11. Notably, the context
process allows for infinite computations, but the set of reachable states is finite.

The LTS for the extended experiment is obtained by running the query.
615

?- main(rundigraph,Time).

The corresponding graph is in Fig. 12: it has 1783 nodes, 3229 edges and was computed in 672974
ms. To neatly separate states at different stages of the experiment we have surrounded them by large
light-blue boxes. Since the graph is very large we find it useful to zoom on a stage of the experiment:620

Fig. 13 focuses of the states visited when the second context is provided, independently from the
number of steps along which the first context has been provided before. They are arranged in a
different shape to give a more intuitive idea of the possible computational paths.

Even a superficial inspection of the LTS is enough to conclude that: 1) independently from the
(non-zero) activity levels of the stimuli, the same attractor is always reached at the fourth stage,11625

11To be precise, the experiment is constrained by the requirement that the order of the activity levels among

20

myenvironment("[

x1a = {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump,alpha_il,egf,il1_tnf,stress}.x1b,

x1b = ({ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump,alpha_il,egf,il1_tnf,stress}.x1b

+ {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump,alpha_il,egf}.x2),

x2 = ({ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump,alpha_il,egf}.x2

+ {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump,alpha_il}.x3),

x3 = ({ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump,alpha_il}.x3

+ {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump}.x4),

x4 = ({ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql,extpump}.x4

+ {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql}.x5),

x5 = ({ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl,alpha_ql}.x5

+ {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl}.x6),

x6 = ({ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l,alpha_sl}.x6

+ {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l}.x7),

x7 = ({ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm,alpha_1213l}.x7

+ {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm}.x8),

x8 = ({ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr,ecm}.x8

+ {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr}.x9),

x9 = {ras,aa,erk,pip2_34,pip3_345,fak,src,rkip,pak,mekk1,pp2a,pa,egfr_contr}.x9

]").

mycontext("[x1a]").

Figure 11: Specification for the extended experiment: at least one context provision before moving to the next context
in the original sequence

and 2) when moving from the fourth stage to the fifth one (i.e., when the context no longer provides
the entity extpump), six different attractors can be reached; 3) after stage five, for any of the six
possible cases, independently from the (non-zero) activity levels of the stimuli, the same attractor
is always reached at the ninth stage; 4) at each stage, it is now possible to count the least duration
that allows to visit all nodes of the corresponding attractor; 5) in principle, all the attractors present630

at stage nine can be computed by performing much shorter experiments.
Further analyses can be done by verifying BioHML formulas. In this particular setting, as a

simple example, we can check that, starting from the initial state, in every possible path the entity
mek appears exactly after four steps. If we set the assertion F , {mek} ⊆ P, such property is
expressed by the following BioHML formula:

[F]f ∧ [¬F][F]f ∧ [¬F][¬F][F]f ∧ [¬F][¬F][¬F]〈F〉t

The corresponding specification, in the syntax expected by our tool, is in Fig. 14. Then, the query
loads the formula and confirms its validity by providing a successful answer in 4.212 ms.

?- main(biohml,Time).635

Since the graph in Fig. 12 is too large to be inspected more closely, we can exploit the above
considerations to refine the extended experiment in order to guarantee that an attractor is always
reached before moving to the next stage. The corresponding LTS is shown in Fig. 15, where the
initial states of each stage are coloured in cyan to ease readability. We think Fig. 12 is well suited640

to expose the main patterns found in the system.
Finally we can combine the fact that (1) the attractor at stage three can always be reached

independently from the duration of stages one and two, and (2) all the attractors at stage nine
can be reached from the attractor at stage three independently from the duration of stages four,
five, six, seven and eight, to synthesize an even smaller experiment that reveals all the attractors645

at stage. It is enough to guarantee that the duration of stage three is at least 25 and the duration
of stage nine is at least 20, while all the other stages have length one (see Fig. 16). This way each
target attractor can be reached in about 50 steps.

Notably, most attractors involve the same entities (except gas that is present in only one at-
tractor). Table 1 summarises the different activity levels of entities in each attractor. Entities not650

reported in the table have the same activity levels in each attractor (see Fig. 10 for their activity
levels).

The conclusion that we draw from the discussion in this section is that our tool can really help
to optimize a biological experiment. In particular for complex experiments, without crossing the

different stimuli in the original experiment is always preserved.

21

Figure 12: The LTS of the extended experiment

22

Figure 13: Zoom on the provision of the second context

mybhml("([{mek} inP]false /\\ [-{mek} inP][{mek} inP]false /\\ [-{mek} inP][-{mek} inP][{mek} inP]false /\\ [-{mek} inP][-{mek} inP][-{mek} inP]<{mek} inP>true)").

Figure 14: Specification for the BioHML formula to be verified

Figure 15: Extended experiment where an attractor is always reached before moving to the next stage.

Figure 16: Extended experiment with least durations.

23

Tabella 1

1 2 3 4 5 6

actin 50% 66%

ca 75% 66%

cam 75% 66%

camk 50% 33%

camkk 75% 66%

cbl_rtk 50% 33%

cin85 50% 33%

egfr_egfr 25% 33%

egfr_free 75% 66%

egfr_t654 50% 66%

egfr_y1045 25% 33%

egfr_y1068 25% 33%

egfr_y1086 25% 33%

egfr_y1148 25% 33%

egfr_y1173 25% 33%

gai 50% 33%

gaq 50% 33%

gas 0% 50% 0%

gbg_i 75% 66%

gbg_q 75% 66%

gbg_s 50% 75% 50%

ip3 75% 50%

ip3r1 75% 66%

iqgap1 50% 66%

pa 75% 83%

pi4k 75% 83%

pkc 50% 66%

pkc_primed 75% 66%

plc_b 75% 50%

pld 75% 83%

ptpa 50% 66%

rap1 75% 50% 66%

ras 50% 66%

rgs 75% 66%

rkip 50% 66%

sos 50% 66%

1

Table 1: A rough comparison of activity levels in the six possible target attractors.

data of many interactive processes, it is difficult to check whether all reactants are necessary and655

used, how many steps should be considered to design an interactive process for a given biological
experiment, or if it would be possible to achieve the same results by saving some of the steps and
reactants. The strategies illustrated on the ErbB case study can thus have a significant impact in
terms of time and cost of expensive entities. The concept of attractor was introduced to facilitate
the overall analysis of an experiment, by emphasizing the looping behaviour of subparts of the660

experiment, and detecting some regularities. As future work, we think that our graphical analysis
tool can be further enhanced, by combining it with the extensions described in Section 6.

5.4. Related tools

In the literature there are several simulation tools available for the ordinary semantics of RSs
based on interactive processes.665

The first simulator to be made publicly available was brsim12 (Basic Reaction System Simulator,
written in Haskell and distributed under the terms of GNU GPLv3 license) [31]. Given the reactions
of the RS and a context sequence, brsim can compute the result sequence as well as produce further
annotations for each computation step (like the result, the enabled reactions or the conserved sets).
Alternatively, brsim can be run in a user-interactive mode, in the sense that the user can input670

the next context to use at every step. Interestingly, the online version of the tool, called WEBRSIM13,
makes all functionalities of brsim available through a friendly web interface [32].

HERESY14 (Highly Efficient REaction SYstem simulator) is a GPU-based simulator of RSs, writ-
ten using CUDA, equipped with an intuitive Graphic User Interface and able to deal with very
large-scale systems, thanks to the possibility to exploit the large number of computational units in-675

side GPUs [33]. When GPUs are not available, a CPU-based version of HERESY written in Python 2
can be used, but in that case it is in general less performant than brsim.

12Available at https://github.com/scolobb/brsim/
13https://combio.org/portfolio/webrsim-reaction-system-simulator/
14Available at https://github.com/aresio/HERESY/

24

https://github.com/scolobb/brsim/
https://combio.org/portfolio/webrsim-reaction-system-simulator/
https://github.com/aresio/HERESY/

Finally, Ferretti et al. [34] presented the tool cl-rs15, which is an optimized Common Lisp
simulator for RSs. The performances of all these tools have been compared in [34], where it was
shown that cl-rs is able to offer performances comparable with the GPU-based simulator HERESY680

on the already discussed ErbB model. cl-rs can employ the direct (basic) simulation method, or can
also use other more performant simulations. Thus, an optimised simulation can consider the graph
of dependencies between reactions, avoiding the simulation of parts of the reactions that cannot
produce effects on its dynamics. Another alternative simulation methodology is obtained by first
rewriting the dynamical evolution of a reaction system in terms of matrix-vector multiplications,685

vector additions, and clipping operations. This way Ferretti et al. [34] defined a proof-of-concept
implementation in Python 3 exploiting the efficient linear algebra libraries of Python.

Shang et al. in [35] presented the first attempt to implement RSs in hardware. They describe
algorithms for translating RSs into synchronous digital circuits keeping the same behaviour. They
also developed a compiler translating a RS description into an hardware circuit description using690

field-programming gate arrays. Obviously the performance is the best possible one, as execution is
at the hardware level. On the other hand for the same reason flexibility of this realization is at the
least level.

While it would be ungenerous to compare simply the performances of our proof-of-concept
Prolog implementation with the above listed highly-performant simulators, we remind that our695

implementation introduces several novel features not covered in the literature and it has been
designed as a tool for verification, as well as for rapid prototyping extensions of RSs, not just for
their simulations. Of course, an advantage of declarative (logic) programming is that the actual code
is very close to the mathematical description of the framework, which facilitate its development,
documentation, maintenance and updates. In particular, the correctness of most predicates trivially700

follows from their definitions. It is also an environment on which we will base future extensions and
analyses of RSs, e.g. quantitative extensions of RSs in the style described in the following section.

As explained at the beginning of this section, our implementation is loosely rooted on the first
prototype developed in [25]. This first prototype was designed around ordinary interactive processes
(i.e. context sequences) and exploited a simple technique for memoizing the state sequence and705

checking for repetitions of states during a computation. We have first extended the work in [25] by
including nondeterministic contexts and BioHML formula verification (see [17]) and then we have
added the capabilities to deal with recursive contexts, bio-similarity check and LTS visualization,
to be fully compliant to the theory presented in this paper. The current implementation has added
also several other useful features such as a friendly user interface, a parser, and a graphical tool.710

6. Two extensions

Here we present two extensions: a numeric extension that takes into account the number of
times an entity is used as a reactant in a single transition, and an extension that introduces an
operator for letting two RSs be connected.

Reactant occurrences.
The first idea is to introduce some naive measure for the number of entities that are needed by
the reactions. Now, we assume that the number associated to entities in the sets R (reactants)
and P (products) are the stoichiometric numbers, as specified in the corresponding biochemical
equation. This amounts to use multisets instead of sets (for R and P) within the labels. The set I
(of inhibitors) remains a simple set. At the level of notation, we write a multiset as a formal sum⊕

a∈S naa, where na ∈ N is the number of occurrences of a. For simplicity, we write just a instead
of 1a and we omit any term of the form 0a. For example, the multiset 2a⊕ b has two instances of

15Available at https://github.com/mnzluca/cl-rs

25

https://github.com/mnzluca/cl-rs

a and one of b. Overloading the notation we use ∪ as multiset union, i.e.

(
⊕
a∈S

naa) ∪ (
⊕
a∈S

maa) =
⊕
a∈S

(na +ma)a

If R =
⊕

a∈S naa we let R(a) = na.715

Similarly, we want to use multisets also for the contexts, but in this case we want the possibility
to parameterize the context w.r.t. the number of entities it provides. To this purpose, fixed a finite
set X = {x1, ..., xn} of variables, we introduce some linear expressions of the form e =

∑n
i=1 kixi+h

with coefficients ki, h ∈ N, such that a context C associates to each entity a a linear expression ea
and not just a number. Thus we write a context C as a formal sum C =

⊕
a∈S eaa. A multiset is

just a particular case of the above expression where all variable coefficients are 0. For example, we
can let C = (x+ y)a⊕ (x+ 1)b. The union of contexts is then defined as follows⊕

a∈S
e1aa ∪

⊕
a∈S

e2aa =
⊕
a∈S

(e1a + e2a)a

We assume that variables in X can only range over positive values, so that if ea 6= 0 then a is
present in

⊕
a∈S eaa.

In the SOS rules we need to use the requirements (W ∪R)∩I = ∅ and R ⊆W . They are intended
to be satisfied at the qualitative level, not necessarily at the quantitative one. Correspondingly, the
disjointness condition (W ∪R) ∩ I = ∅ is satisfied when ∀a ∈ I. (W ∪R)(a) = 0, and the inclusion720

condition R ⊆ W is satisfied when ∀a ∈ S. R(a) 6= 0⇒ W (a) 6= 0. Our new transition labels differ
from the ones in Figure 1 just because R, P , and W are now multisets. We keep the same SOS
rules as before.

The advantage is that to each transition P
〈WBR,I,P 〉−−−−−−−→ P′ we can now assign a system of linear

inequalities: ∀a ∈ S. R(a) ≤ W (a), where R(a) ∈ N and W (a) is an expression. The aim is to725

estimate, with no computational effort, the relative quantities of biological material which should
be provided to the system to reach a desired configuration. This could be helpful during the setting
phase of an in vitro experiment to avoid over-use of biological material, given its high cost. Please
note that the qualitative nature of RS is unchanged, we only add some extra information that we
elaborate by manipulating transition labels, only. Here we give an intuition with a short example.730

Example 36. Let us consider the chemical reactions in Azimi et al. [7], Table 3, in particular reac-
tions (i) and (vii); we will use their formalization in the syntax of RS, by keeping the stoichiometric
numbers:

a1 , ({(hsf, 3)}, {dI}, {hsf3}) a2 , ({hsp, hsf3}, {dI}, {hsp:hsf, (hsf, 2)})

Reaction a1 requires three copies of the entity hsf, while a2 produces two copies of hsf. We assume
that the context initially provides the set C , xhsf ⊕ hsp⊕ hsf3 and then it provides the empty set,
i.e. it is defined as K , C.∅.0. The resulting system can only execute two transitions: in the first
transition both reactions a1 and a2 are applied, in the second transition only reaction a1 is applied:

[K|a1|a2]
〈CBR,I,P 〉−−−−−−−→ [P |∅.0|a1|a2]

〈PBR′,I′,P ′〉−−−−−−−−→ [P ′|0|a1|a2]

where

R = 3hsf ⊕ hsp⊕ hsf3 I = {dI} P = hsf3 ⊕ hsp:hsf ⊕ 2hsf
R′ = 3hsf I ′ = {hsp, dI} P ′ = hsf3

Now, from the first transition we extract the requirement R(hsf) = 3 ≤ C(hsf) = x, while from the
second transition we get R′(hsf) = 3 ≤ P (hsf) = 2. If we would wanted a quantitative estimate
of need of entity hsf, this comparison would reveal that the production of hsf is not sufficient to
trigger the second reaction.

26

P1
〈W1BR1,I1,P1〉−−−−−−−−−−→ P P2

〈W2BR2,I2,P2〉−−−−−−−−−−→ [M]

P1
LZ⇒ P2

〈W1∪W2BR1∪R2,I1∪I2,P1∪P2〉−−−−−−−−−−−−−−−−−−−−→ P
LZ⇒ [M|(L ∩ P1)]

(Lnk)

Figure 17: SOS semantics rule for the connector operator

The connector operator.735

In Bodei et al [15] and Brodo et al. [16] we have presented the encoding of RS into the link-
calculus and we have already discussed how to connect two encoded RS such that some of the
entities produced by one RS are provided to the second one, similarly to what has been done in
Bottoni et al. [36]. To this aim we introduce an operator, that we call “connector”, written as

P1
LZ⇒ P2, meaning that when the RS process P1 produces entities in the set L, these entities are740

available, at the next step, as reactants to the continuations of both RS processes. As a special
case, when L = ∅, there cannot be any exchange of entities and P1 and P2 run in parallel, but in
isolation. We denote this composition by P1 ‖ P2.

For a simple example, we give the definition of a system composed by two RSs P1 and P2: P1

is composed of two reactions a1 = (a, , c) and a2 = (a, , a) and we assume that the initial state
only contains the entity a, hence S1 = {a}. P2 is composed of two reactions a′1 = (e, , d) and
a′2 = (dc, , e) and we assume that the initial state only contains the entity e, hence S2 = {e}. For
simplicity, we omit the contexts and the inhibitors. Now, we want to describe a system where the
entity c produced by P1 is also made available for P2. Then, the whole system is: P1

cZ⇒ P2. Let as-

sume that P1
〈{a}B{a},∅,{a,c}〉−−−−−−−−−−−−→ P′1 and P2

〈{e}B{e},∅,{d}〉−−−−−−−−−−→ [a′1|a′2|{d}], then we derive the transition
of the whole system as follows:

P1
〈{a}B{a},∅,{a,c}〉−−−−−−−−−−−−→ P′1 P2

〈{e}B{e},∅,{d}〉−−−−−−−−−−→ [a′1|a′2|{d}]

P1
cZ⇒ P2

〈{a,e}B{a,e},∅,{a,c,d}〉−−−−−−−−−−−−−−−→ P′1
cZ⇒ [a′1|a′2|{d, c}]

(Lnk)

7. Conclusion and future work

We have presented an SOS semantics for an extension of RSs, considering non deterministic and745

recursive contexts, that generates a labelled transition system. We have revised RSs as processes,
formulating a set of ad-hoc inference rules. We have defined a flexible framework that allows one
to add new operators in a natural way. It is important to note that the transition labels play an
interesting role, not only because they reflect the important aspect of the computations, but also
because they can add expressivity at the computation allowing for additional analysis, as we did in750

Section 4. In Section 5 we have described a prototype implementation in logic programming. We
have implemented several tools, which are all available online, by means of a user friendly interface.
The interpreter is written in SWI-Prolog and can be run either on a web site based on Tau Prolog,
or much more efficiently by using the desktop version of SWI-Prolog. A parser allows the user to
make the input of formulas using concrete syntax. Our interpreter allows the user to derive the755

LTS of a Reaction System. A tool can verify the validity of BioHML formulas on computations of
RS processes with extended contexts in our assertion-based variant of the Hennessy-Milner logic. A
tool can also verify the biosimilarity of two adversarial RS processes. Moreover, the structure of a
RS process can be shown graphically, thus helping the user to analyse the behaviour and evolution
of the modeled system.760

As future work we plan to apply our tool to show that it helps to analyse the behaviour of non
trivial biological systems, helping the biologist to understand the interaction of the context with
the modelled system. This can lead to understand how to choose a dosage of the reactants in a wet
lab experiment in order to drive it and take paths which can lead to the target result by reducing
the necessary quantities of reactants.765

27

The SOS semantics paves the way for a systematic integration of other operators for combining
Reaction Systems, like the ones described in Section 6 and many others available from the process
algebra literature [37] (e.g. hiding, interleaving, external choice). Analogously, we plan to investi-
gate de-synchronised versions of Reaction Systems, where some of the enabled reactions, but not
necessarily all of them, can take place at each computation step, as well as Reaction Systems where770

reactions can occur at different speeds, which is often the case in many biological systems.
We also plan to apply our technique to define SOS semantics for other synchronous rewrite-

rule systems (where all the rules are applied synchronously) to define a uniform computational
framework. In order to make our implementation more efficient we can use constraint logic programs
over sets [38] and with finite domains [39]. We also want to study the relation to analysis techniques775

[40, 41, 42] and slicing techniques [43]. As future investigation we think that the notion of periodicity
and attractors that we have discussed in Section 5 can be related to the notions of extended RS
and events introduced in [44].

References

[1] G. D. Plotkin, A structural approach to operational semantics, Tech. Rep. DAIMI FN-19,780

Computer Science Department, Aarhus University (1981).

[2] G. D. Plotkin, A structural approach to operational semantics, J. Log. Algebraic Methods
Program. 60-61 (2004) 17–139. doi:10.1016/j.jlap.2004.05.001.

[3] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science 92,
Springer, 1980. doi:10.1007/3-540-10235-3.785

[4] G. D. Plotkin, An operational semantics for CSP, in: D. Bjørner (Ed.), Proceedings of the IFIP
Working Conf. on Formal Description of Programming Concepts- II, Garmisch-Partenkirchen,
North-Holland, 1982, pp. 199–226.

[5] J. Hillston, A compositional approach to performance modelling, Ph.D. thesis, University of
Edinburgh, UK (1994).790

[6] R. Brijder, A. Ehrenfeucht, M. Main, G. Rozenberg, A tour of reaction systems, Int.
J. Found. Comput. Sci. 22 (07) (2011) 1499–1517. doi:https://doi.org/10.1142/

S0129054111008842.

[7] S. Azimi, B. Iancu, I. Petre, Reaction system models for the heat shock response, Fundam.
Informaticae 131 (3-4) (2014) 299–312. doi:10.3233/FI-2014-1016.795

[8] L. Corolli, C. Maj, F. Marinia, D. Besozzi, G. Mauri, An excursion in reaction systems: From
computer science to biology, Theor. Comput. Sci. 454 (2012) 95–108. doi:https://doi.org/
10.1016/j.tcs.2012.04.003.

[9] S. Azimi, Steady states of constrained reaction systems, Theor. Comput. Sci. 701 (C) (2017)
20–26. doi:10.1016/j.tcs.2017.03.047.800

[10] R. Barbuti, R. Gori, F. Levi, P. Milazzo, Investigating dynamic causalities in reaction systems,
Theor. Comput. Sci. 623 (2016) 114–145. doi:https://doi.org/10.1016/j.tcs.2015.11.

041.

[11] F. Okubo, T. Yokomori, The computational capability of chemical reaction automata, Natural
Computing 15 (2) (2016) 215–224. doi:10.1007/s11047-015-9504-7.805

[12] A. Ehrenfeucht, M. G. Main, G. Rozenberg, Combinatorics of life and death for reaction sys-
tems, Int. J. Found. Comput. Sci. 21 (3) (2010) 345–356. doi:10.1142/S0129054110007295.

28

https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1007/3-540-10235-3
https://doi.org/https://doi.org/10.1142/S0129054111008842
https://doi.org/https://doi.org/10.1142/S0129054111008842
https://doi.org/https://doi.org/10.1142/S0129054111008842
https://doi.org/10.3233/FI-2014-1016
https://doi.org/https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/10.1016/j.tcs.2017.03.047
https://doi.org/https://doi.org/10.1016/j.tcs.2015.11.041
https://doi.org/https://doi.org/10.1016/j.tcs.2015.11.041
https://doi.org/https://doi.org/10.1016/j.tcs.2015.11.041
https://doi.org/10.1007/s11047-015-9504-7
https://doi.org/10.1142/S0129054110007295

[13] A. Ehrenfeucht, M. G. Main, G. Rozenberg, Functions defined by reaction systems, Int. J.
Found. Comput. Sci. 22 (1) (2011) 167–178. doi:10.1142/S0129054111007927.

[14] J. Kleijn, M. Koutny, L. Mikulski, G. Rozenberg, Reaction systems, transition systems, and810

equivalences, in: H. Böckenhauer, D. Komm, W. Unger (Eds.), Adventures Between Lower
Bounds and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His
60th Birthday, Vol. 11011 of LNCS, Springer, 2018, pp. 63–84. doi:https://doi.org/10.

1007/978-3-319-98355-4_5.

[15] L. Brodo, R. Bruni, M. Falaschi, Enhancing reaction systems: A process algebraic approach,815

in: M. Alvim, K. Chatzikokolakis, C. Olarte, F. Valencia (Eds.), The Art of Modelling Com-
putational Systems, Vol. 11760 of LNCS, Springer Berlin, 2019, pp. 68–85. doi:https:

//doi.org/10.1007/978-3-030-31175-9_5.

[16] L. Brodo, R. Bruni, M. Falaschi, A process algebraic approach to reaction systems, Theor.
Comput. Sci. In Press (2020). doi:10.1016/j.tcs.2020.09.001.820

[17] L. Brodo, R. Bruni, M. Falaschi, SOS rules for equivalences of reaction systems, in: M. Hanus,
C. S. Coen (Eds.), Proc. of Functional and Constraint Logic Programming, WFLP 2020,
Springer, 2020, to appear in LNCS. arXiv:2008.13016.

[18] G. Pardini, R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, S. Tini, Compositional semantics
and behavioural equivalences for reaction systems with restriction, Theor. Comput. Sci. 551825

(2014) 1–21. doi:10.1016/j.tcs.2014.04.010.

[19] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, A. Troina, Bisimulations in calculi modelling
membranes, Form. Asp. Comput. 20 (4) (2008) 351–377. doi:https://doi.org/10.1007/

s00165-008-0071-x.

[20] L. Cardelli, M. Tribastone, M. Tschaikowski, A. Vandin, Forward and backward bisimulations830

for chemical reaction networks, in: Proc. of CONCUR 2015, Vol. 42, Schloss Dagstuhl Publ.,
2015, pp. 226–239. doi:10.4230/LIPIcs.CONCUR.2015.226.

[21] C. Bodei, L. Brodo, R. Bruni, A formal approach to open multiparty interactions, Theor.
Comput. Sci. 763 (2019) 38–65. doi:10.1016/j.tcs.2019.01.033.

[22] C. Bodei, L. Brodo, R. Bruni, The link-calculus for open multiparty interactions, Inf. Comput.835

275 (2020). doi:10.1016/j.ic.2020.104587.

[23] D. Sangiorgi, Introduction to Bisimulation and Coinduction, Cambridge University Press, USA,
2011. doi:10.1017/CBO9780511777110.

[24] M. Hennessy, R. Milner, On observing nondeterminism and concurrency, in: ICALP’80, Vol. 85
of LNCS, Springer, 1980, pp. 299–309. doi:10.1007/3-540-10003-2_79.840

[25] M. Falaschi, G. Palma, A Logic Programming Approach to Reaction Systems, in: DIP’20,
Vol. 86 of OASIcs, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 6:1–6:15. doi:
10.4230/OASIcs.Gabbrielli.6.

[26] M. S. Nobile, A. E. Porreca, S. Spolaor, L. Manzoni, P. Cazzaniga, G. Mauri, D. Besozzi,
Efficient simulation of reaction systems on graphics processing units, Fundam. Informaticae845

154 (1-4) (2017) 307–321. doi:10.3233/FI-2017-1568.

[27] M. O. Rabin, D. S. Scott, Finite automata and their decision problems, IBM J. Res. Dev. 3 (2)
(1959) 114–125. doi:10.1147/rd.32.0114.

[28] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to automata theory, languages, and
computation, 3rd Edition, Pearson international edition, Addison-Wesley, 2007.850

29

https://doi.org/10.1142/S0129054111007927
https://doi.org/https://doi.org/10.1007/978-3-319-98355-4_5
https://doi.org/https://doi.org/10.1007/978-3-319-98355-4_5
https://doi.org/https://doi.org/10.1007/978-3-319-98355-4_5
https://doi.org/https://doi.org/10.1007/978-3-030-31175-9_5
https://doi.org/https://doi.org/10.1007/978-3-030-31175-9_5
https://doi.org/https://doi.org/10.1007/978-3-030-31175-9_5
https://doi.org/10.1016/j.tcs.2020.09.001
http://arxiv.org/abs/2008.13016
https://doi.org/10.1016/j.tcs.2014.04.010
https://doi.org/https://doi.org/10.1007/s00165-008-0071-x
https://doi.org/https://doi.org/10.1007/s00165-008-0071-x
https://doi.org/https://doi.org/10.1007/s00165-008-0071-x
https://doi.org/10.4230/LIPIcs.CONCUR.2015.226
https://doi.org/10.1016/j.tcs.2019.01.033
https://doi.org/10.1016/j.ic.2020.104587
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.4230/OASIcs.Gabbrielli.6
https://doi.org/10.4230/OASIcs.Gabbrielli.6
https://doi.org/10.4230/OASIcs.Gabbrielli.6
https://doi.org/10.3233/FI-2017-1568
https://doi.org/10.1147/rd.32.0114

[29] T. Helikar, N. Kochi, B. Kowal, M. Dimri, M. Naramura, S. M. Raja, V. Band, H. Band, J. A.
Rogers, A comprehensive, multi-scale dynamical model of erbb receptor signal transduction in
human mammary epithelial cells, PLOS ONE 8 (4) (2013) 1–9. doi:10.1371/journal.pone.
0061757.

[30] T. Helikar, J. Konvalina, H. Jack, J. A. Rogers, Emergent decision-making in biological signal855

transduction networks, Proc. Natl Acad. of Sci. USA 105 (6) (2008) 1913–1918. doi:10.1073/
pnas.0705088105.

[31] S. Azimi, C. Gratie, S. Ivanov, I. Petre, Dependency graphs and mass conservation in reaction
systems, Theor. Comput. Sci. 598 (2015) 23–39. doi:10.1016/j.tcs.2015.02.014.

[32] S. Ivanov, V. Rogojin, S. Azimi, I. Petre, WEBRSIM: A web-based reaction systems simulator,860

in: C. G. Dı́az, A. Riscos-Núñez, G. Paun, G. Rozenberg, A. Salomaa (Eds.), Enjoying Natural
Computing - Essays Dedicated to Mario de Jesús Pérez-Jiménez on the Occasion of His 70th
Birthday, Vol. 11270 of Lecture Notes in Computer Science, Springer, 2018, pp. 170–181. doi:
10.1007/978-3-030-00265-7_14.

[33] M. S. Nobile, A. E. Porreca, S. Spolaor, L. Manzoni, P. Cazzaniga, G. Mauri, D. Besozzi,865

Efficient simulation of reaction systems on graphics processing units, Fundam. Informaticae
154 (1-4) (2017) 307–321. doi:10.3233/FI-2017-1568.

[34] C. Ferretti, A. Leporati, L. Manzoni, A. E. Porreca, The many roads to the simulation of reac-
tion systems, Fundam. Informaticae 171 (1-4) (2020) 175–188. doi:10.3233/FI-2020-1878.

[35] Z. Shang, S. Verlan, I. Petre, G. Zhang, Reaction systems and synchronous digital circuits,870

Molecules 24 (10), 1961, 1-13 (2019). doi:10.3390/molecules24101961.

[36] P. Bottoni, A. Labella, G. Rozenberg, Networks of reaction systems, Int. J. Found. Comput.
Sci. 31 (2020) 53–71. doi:10.1142/S0129054120400043.

[37] A. Bernini, L. Brodo, P. Degano, M. Falaschi, D. Hermith, Process calculi for biological pro-
cesses, Natural Computing 17 (2) (2018) 345–373.875

[38] A. Dovier, C. Piazza, E. Pontelli, G. Rossi, Sets and constraint logic programming, ACM
Transactions on Programming Languages and Systems 22 (5) (2000) 861–931. doi:10.1145/

365151.365169.

[39] J. Jaffar, M. J. Maher, Constraint logic programming: A survey, J. Log. Program. 19/20 (1994)
503–581. doi:10.1016/0743-1066(94)90033-7.880

[40] M. Falaschi, C. Olarte, C. Palamidessi, A framework for abstract interpretation of timed con-
current constraint programs, in: PPDP’09, ACM, 2009, pp. 207–218. doi:10.1145/1599410.
1599436.

[41] M. Falaschi, C. Olarte, C. Palamidessi, Abstract interpretation of temporal concurrent con-
straint programs, Theory and Practice of Logic Programming 15 (3) (2015) 312–357. doi:885

10.1017/S1471068413000641.

[42] D. Chiarugi, M. Falaschi, C. Olarte, C. Palamidessi, Compositional modelling of signalling
pathways in timed concurrent constraint programming, in: BCB’10, ACM, 2010, pp. 414–417.
doi:10.1145/1854776.1854843.

[43] M. Falaschi, M. Gabbrielli, C. Olarte, C. Palamidessi, Dynamic slicing for concurrent constraint890

languages, Fundam. Informaticae 177 (3-4) (2020) 331–357. doi:10.3233/FI-2020-1992.

[44] A. Ehrenfeucht, G. Rozenberg, Events and modules in reaction systems, Theor. Comput. Sci.
376 (1-2) (2007) 3–16. doi:10.1016/j.tcs.2007.01.008.

30

https://doi.org/10.1371/journal.pone.0061757
https://doi.org/10.1371/journal.pone.0061757
https://doi.org/10.1371/journal.pone.0061757
https://doi.org/10.1073/pnas.0705088105
https://doi.org/10.1073/pnas.0705088105
https://doi.org/10.1073/pnas.0705088105
https://doi.org/10.1016/j.tcs.2015.02.014
https://doi.org/10.1007/978-3-030-00265-7_14
https://doi.org/10.1007/978-3-030-00265-7_14
https://doi.org/10.1007/978-3-030-00265-7_14
https://doi.org/10.3233/FI-2017-1568
https://doi.org/10.3233/FI-2020-1878
https://doi.org/10.3390/molecules24101961
https://doi.org/10.1142/S0129054120400043
https://doi.org/10.1145/365151.365169
https://doi.org/10.1145/365151.365169
https://doi.org/10.1145/365151.365169
https://doi.org/10.1016/0743-1066(94)90033-7
https://doi.org/10.1145/1599410.1599436
https://doi.org/10.1145/1599410.1599436
https://doi.org/10.1145/1599410.1599436
https://doi.org/10.1017/S1471068413000641
https://doi.org/10.1017/S1471068413000641
https://doi.org/10.1017/S1471068413000641
https://doi.org/10.1145/1854776.1854843
https://doi.org/10.3233/FI-2020-1992
https://doi.org/10.1016/j.tcs.2007.01.008

Appendix A. Proofs

Here follow the proofs of the technical lemmas and the theorem stated in the main body of the895

paper.

Lemma 15. If M
〈WBR,I,P 〉−−−−−−−→ M′ then M′ ≡ M′′|P for some M′′.

Proof. The proof is by rule induction.

Ent) We need to prove that ∅ ≡ M′′|∅ for some M′′, which is immediate by taking M′′ = ∅.

Cxt) We need to prove that K ≡ M′′|∅ for some M′′, which is immediate by taking M′′ = K.900

Rec) We assume as inductive hypothesis that K′ ≡ M′′′|P for some M′′′ and we need to prove that
K′ ≡ M′′|P for some M′′, which is immediate by taking M′′ = M′′′.

Suml) We assume as inductive hypothesis that K′1 ≡ M1|P for some M1 and we need to prove that
K′1 ≡ M′′|P for some M′′, which is immediate by taking M′′ = M1.

Sumr) Analogous to the previous case.905

Pro) We need to prove that (R, I, P)|P ≡ M′′|P for some M′′, which is immediate by taking
M′′ = (R, I, P).

Inh) We need to prove that (R, I, P) ≡ M′′|∅ for some M′′, which is immediate by taking M′′ =
(R, I, P).

Par) We assume as inductive hypotheses that M′1 ≡ M′′1 |P1 for some M′′1 and that M′2 ≡ M′′2 |P2 for910

some M′′2 . We need to prove that M′1|M′2 ≡ M′′|(P1 ∪P2) for some M′′, which is immediate by
taking M′′1 |M′′2 (thanks to the laws of commutative monoids and by (P1 ∪ P2) ≡ P1|P2).

Sys) The conclusion of the rule deals with RS processes, not with mixture processes, so it can be
ignored.

Lemma 16. If
∏
a∈A a

〈WBR,I,P 〉−−−−−−−→ M then W = ∅ and M ≡
∏
a∈A a | P .915

Proof. The proof is by rule induction. Rules (Ent), (Cxt), (Rec), (Suml), (Sumr) and (Sys) can
be ignored because their conclusions cannot match

∏
a∈A a.

Pro) It is immediate to check that we have indeed W = ∅ and (R, I, P)|P ≡ (R, I, P)|P .

Inh) It is immediate to check that we have indeed W = ∅ and (R, I, P) ≡ (R, I, P)|∅.

Par) We assume as inductive hypotheses that M1 =
∏
a∈A1

a, M2 =
∏
a∈A2

a, W1 = W2 = ∅, M′1 ≡920

M1|P1, M′2 ≡ M2|P2. We need to prove that W1 ∪W2 = ∅ and M′1|M′2 ≡
∏
a∈(A1∪A2)

a | (P1 ∪
P2), which is immediate thanks to the laws of commutative monoids.

Lemma 17. If M
〈WBR,I,P 〉−−−−−−−→ M′ then (W ∪R) ∩ I = ∅.

Proof. The proof is by rule induction.

Ent) We have indeed (D ∪ ∅) ∩ ∅ = ∅.925

Cxt) We have indeed (C ∪ ∅) ∩ ∅ = ∅.

Rec) We assume as inductive hypothesis that (W ∪R) ∩ I = ∅ that coincides with our goal.

Suml) Analogous to the previous case.

31

Sumr) Analogous to the previous case.

Pro) We need to prove that (∅ ∪ R) ∩ I = ∅, which is a consequence of the constraint that in any930

reaction (R, I, P) the set of reactants is disjoint from the set of inhibitors.

Inh) We need to prove that (∅ ∪ J) ∩Q = ∅, which is a consequence of the constraint that in any
reaction (R, I, P) the set of reactants R is disjoint from the set of inhibitors I, as Q ⊆ R and
J ⊆ I.

Par) We need to prove that (W1 ∪W2 ∪ R1 ∪ R2) ∩ (I1 ∪ I2) = ∅, which is in fact one premise of935

the rule.

Sys) The conclusion of the rule deals with RS processes, not with mixture processes, so it can be
ignored.

Lemma 18. If P
〈WBR,I,P 〉−−−−−−−→ P′ then R ⊆W and W ∩ I = ∅.

Proof. Let us assume that P
〈WBR,I,P 〉−−−−−−−→ P′. Since the only SOS rule applicable to RS processes940

is (Sys), it must be the case that P = [M], with [M]
〈WBR,I,P 〉−−−−−−−→ [M′], R ⊆ W and P′ = [M′]. By

Lemma 17, we have (W ∪R) ∩ I = ∅, i.e., W ∩ I = ∅.

The main theorem shows that the rewrite steps of a RS exactly match the transitions of its
corresponding RS process.

Theorem 19. Let A = (S,A) be a RS, and π = (γ, δ) an n-step interactive process in A with945

γ = {Ci}i∈[0,n], δ = {Di}i∈[0,n], and let Wi , Ci ∪Di and Pi , JA, πKi for any i ∈ [0, n]. Then:

1. ∀i ∈ [0, n− 1], Pi
〈WBR,I,P 〉−−−−−−−→ P implies W = Wi, P = Di+1 and P ≡ Pi+1;

2. ∀i ∈ [0, n− 1], there exists R, I ⊆ S such that Pi
〈WiBR,I,Di+1〉−−−−−−−−−−→ Pi+1.

Proof. We prove the two items separately.

1. Take i ∈ [0, n− 1] and suppose Pi
〈WBR,I,P 〉−−−−−−−→ P, with

Pi =

[∏
a∈A

a | Di | Ci.Ci+1. · · · .Cn.0

]
By Lemma 18 we know that R ⊆W and W ∩ I = ∅. By rule (Sys) it must be the case that∏

a∈A
a | Di | Ci.Ci+1. · · · .Cn.0

〈WBR,I,P 〉−−−−−−−→ M

with P = [M]. By Lemma 17 we know that (W ∪ R) ∩ I = ∅. By rule (Par) it must be the
case that ∏

a∈A
a
〈W1BR1,I1,P1〉−−−−−−−−−−→ M1 and Di | Ci.Ci+1. · · · .Cn.0

〈W2BR2,I2,P2〉−−−−−−−−−−→ M2

with M = M1 | M2, W = W1 ∪W2, R = R1 ∪ R2, I = I1 ∪ I2, P = P1 ∪ P2. By Lemma 16
it must be W1 = ∅ and M1 =

∏
a∈A a | P1. Observing that the only possible transition for

Di and Ci.Ci+1. · · · .Cn.0 are, respectively, Di
〈DiB∅,∅,∅〉−−−−−−−→ ∅ and Ci.Ci+1. · · · .Cn.0

〈CiB∅,∅,∅〉−−−−−−−→
Ci+1. · · · .Cn.0, it must be the case that

Di | Ci.Ci+1. · · · .Cn.0
〈WiB∅,∅,∅〉−−−−−−−→ ∅ | Ci+1. · · · .Cn.0 ≡ Ci+1. · · · .Cn.0

Hence M2 ≡ Ci+1. · · · .Cn.0, W2 = Wi and R2 = I2 = P2 = ∅, from which W = Wi, R = R1,950

I = I1 and P = P1. Now observe that, for each rule a = (Ra, Ia, Pa) there are two possibilites:

32

• if Ra ⊆ R and Ia ⊆ I then ena(Wi) (because Ra ⊆ R ⊆W = Wi and Ia ∩W ⊆ I ∩W =
I ∩Wi = ∅) and the rule (Pro) must have been applied to the process a and therefore
Pa ⊆ P ;

• otherwise, the rules (Inh) must have been applied to a and therefore the transition label955

contributed with ∅ to P .

From the two observations above it follows that P = resA(Wi) = Di+1. Summing up, we have
W = Wi, P = Di+1 and

P ≡ [M] ≡ [M1 | M2] ≡

[∏
a∈A

a | Di+1 | Ci+1. · · · .Cn.0

]
≡ JA, πKi+1 ≡ Pi+1

2. Take i ∈ [0, n− 1]. Let en(Wi) , {a ∈ A | ena(Wi)}. Observe that

• By rule (Par) and (repeated applications of) rule (Pro) we have∏
a∈en(Wi)

a
〈∅BR1,I1,P1〉−−−−−−−−→

∏
a∈en(Wi)

a | P1

with R1 =
⋃
a∈en(Wi)

Ra, I1 =
⋃
a∈en(Wi)

Ia, and P1 =
⋃
a∈en(Wi)

Pa = resA(Wi) =
Di+1.

• For each rule a ∈ A \ en(Wi) there must exist some sets Ja ⊆ Ia ∩Wi (inhibitors that
are present) and Qa ⊆ Ra \Wi (missing reactants) with Ja ∪ Qa 6= ∅, so that by rule
(Par) and (repeated applications of) rule (Inh) we have∏

a∈A\en(Wi)

a
〈∅BR2,I2,∅〉−−−−−−−−→

∏
a∈A\en(Wi)

a

with R2 =
⋃
a∈A\en(Wi)

Ja and I2 =
⋃
a∈A\en(Wi)

Qa.960

Then, by rule (Par) we have∏
a∈A

a
〈∅BR1∪R2,I1∪I2,Di+1〉−−−−−−−−−−−−−−−→

∏
a∈A

a | Di+1

because, by construction, R1∪R2 ⊆Wi and Wi∩(I1∪I2) = ∅ and thus (R1∪R2)∩(I1∪I2) = ∅.
Moreover, by rules (Par), (Ent) and (Cxt), we have

Di | Ci.Ci+1. · · · .Cn.0
〈WiB∅,∅,∅〉−−−−−−−→ ∅ | Ci+1. · · · .Cn.0 ≡ Ci+1. · · · .Cn.0

Thus, by rules (Par) and (Sys), and letting R = R1 ∪R2 and I = I1 ∪ I2, we have

Pi
〈WiBR,I,Di+1〉−−−−−−−−−−→

[∏
a∈A

a | Di+1 | Ci+1. · · · .Cn.0

]
≡ Pi+1

33

	Introduction
	Reaction Systems
	SOS Rules for Reaction Systems
	Bio-simulation
	Assertion language
	Bio-similarity and bio-logical equivalence

	Implementation and Experimentation
	Tool description
	RSs and NFA
	ErbB receptor signal transduction in human mammary epithelial cells
	Related tools

	Two extensions
	Conclusion and future work
	Proofs

