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Climate change is expected to increase the number of heat wave events, leading to prolonged exposures
to severe heat stress (HS) and the corresponding adverse effects on dairy cattle productivity. Modelling
dairy cattle productivity under HS conditions is complicated because it requires comprehending the com-
plexity, non-linearity, dynamicity, and delays in animal response. In this paper, we applied the System
Dynamics methodology to understand the dynamics of animal response and system delays of observed
milk yield (MY) in dairy cows under HS. Data on MY and temperature-humidity index were collected
from a dairy cattle farm. Model development involved: (i) articulation of the problem, identification of
the feedback mechanisms, and development of the dynamic hypothesis through a causal loop diagram;
(ii) formulation of the quantitative model through a stock-and-flow structure; (iii) calibration of the
model parameters; and (iv) analysis of results for individual cows. The model was successively evaluated
with 20 cows in the case study farm, and the relevant parameters of their HS response were quantified
with calibration. According to the evaluation of the results, the proposed model structure was able to cap-
ture the effect of HS for 11 cows with high accuracy with mean absolute percent error <5%, concordance
correlation coefficient >0.6, and R2 > 0.6, except for two cows (ID #13 and #20) with R2 less than 0.6,
implying that the rest of the nine animals do not exhibit heat-sensitive behaviour for the defined param-
eter space. The presented HS model considered non-linear feedback mechanisms as an attempt to help
farmers and decision makers quantify the animal response to HS, predict MY under HS conditions, and
distinguish the heat-sensitive cows from heat-tolerant cows at the farm level.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

The presented model consists of a fundamental dynamic struc-
ture to predict cow response to heat stress. It has a simple heat
stress model that considers non-linear feedback mechanisms as
an attempt to help farmers and decision makers to quantify the
animal response to heat stress, predict milk yield under heat stress
conditions, and distinguish the heat-sensitive cows from heat-
tolerant cows at the farm level. The model can be further devel-
oped to include a complete energy balance and thermodynamics.
It represents a minimal structure approach to present an explicit
model, not based on black box assumptions, to dynamically
describe the cow’s heat stress requirements.
Introduction

A global climate change is likely to increase the average temper-
ature and the likelihood of extreme events (IPCC, 2021), such as
heat waves (HWs), that could impact the livestock sector in terms
of production, product quality, and food safety (Rojas-Downing
et al., 2017). An animal is considered under heat stress (HS) when
it cannot dissipate enough heat produced by metabolism and fer-
mentations to maintain homeothermy, and the effective air tem-
perature exceeds the range defining the thermoneutral zone
(Bernabucci et al., 2014) within which the animal produces the
most with the least energy cost (Johnson, 1987). As homeotherms,
cattle exposed to HS tend to maintain constant body temperature
by adopting compensatory mechanisms to achieve heat balance
(Kibler and Brody, 1953). Animals produce heat from maintenance,
digestion, and production (Coppock, 1985). The maintenance
requirements of cows increase under HS conditions; hence, they
reduce feed intake to reduce energy intake and dissipation, and
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thus, milk production decreases (Sejian et al., 2018). Increasing the
respiratory rate, sweating, and peripheral vasodilation are the
leading behavioural and physiological mechanisms to increase
heat dissipation (Sejian et al., 2018). However, the maximum
decrease in DM intake (DMI) and losses in milk yield (MY) have
a delay, occurring a few days after exposure to heat and not on
the same day (Spiers et al., 2004), probably due to heat accumula-
tion. The occurrence of HW usually results in or exacerbates HS
(Fig. 1) in livestock animals, particularly in high-producing cows.
As reported earlier, HWs are expected to occur more frequently;
therefore, their effects on the livestock sector have become the
subject of investigation in several thermal stress studies (Vitali
et al., 2015; Poppe et al., 2021; Maggiolino et al., 2022). There
are multiple definitions of HW in the literature regarding their
duration, intensity, frequency, and depending on climatic parame-
ters (Founda et al., 2022). However, they are commonly reported as
a prolonged period of excessive heat (Perkins and Alexander,
2013), even if no specific models are trying to characterise animals
concerning their response to heat stress.

Feeding systems have been predominantly developed through
mechanistic and empirical models (Tedeschi et al., 2005;
Tedeschi, 2019 and 2022), with some limited information to model
HS. In their review, Ji et al. (2020) reported that several mathemat-
ical models have been developed to predict the effects of HS in ani-
mals. The first and most widely used meteorological quantity to
estimate HS is the temperature-humidity index (THI), which has
been associated to threshold levels of intensity of HS (Kibler,
1964). Gaughan et al. (2008) developed the heat load index incor-
porating black globe temperatures, relative humidity, and wind
speed, using two multiple regression models developed based on
the painting score. The panting score was also used to adjust main-
tenance requirements in the Cornell Net Carbohydrate and Protein
System. The effects of weather variables and two different THI
indices on cow milk production and composition were analysed
with a series of separate linear mixed models (Hill and Wall,
2015). Lees et al. (2018) used a non-linear regression model to
develop the dairy heat load index that combines environmental
effects and the animal physiological response, i.e., the painting
score. Benni et al. (2020) used a generalised additive model to anal-
yse the relationship between environment, milk production, and
cow behaviour. Despite these empirical models published in the
literature for estimating HS, there seems to be insufficient data
for accurate data-driven modelling of maintenance requirements
under HS conditions for beef (National Academies of Sciences,
Engineering, and Medicine – NASEM, 2016) and dairy (NASEM,
2021), as well as for small ruminants (National Research Council
Fig. 1. Example response of highly productive cow to a heat wave. Ab
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– NRC, 2007). In addition, empirical models are inadequate to
describe the phenomenon and account for the complex elements
that dynamically contribute to heat stress.

Modelling the animal response under HS conditions is a chal-
lenge because it includes several properties of complex systems:
it is a typical complex dynamic problem that can be observed on
a day-to-day basis, and the interaction of variables results in their
change over time; it includes feedback loops due to the endoge-
nous animal ability to regulate heat flows; it is non-linear since
the accumulation of HS significantly changes the animal response
and the cause-effect relations between variables are not propor-
tional; there are important biological and physiological time
delays, which lead to the time lag of reduced animal performance
compared with heat exposure. Thus, the impact of HS on animal
response can be identified as a complex problem. The HS problem
requires complex system approaches, such as System Dynamics
methodology (Sterman, 2000; Tedeschi, 2023), for a complete
understanding of the intricacies of heat fluxes in an animal under
HS and for quantification of the parameters that regulate animal
response. It allows the development of explicit models, avoiding
black box models in physiological-related phenomena and pro-
cesses. However, considering the availability of farm outputs under
HS conditions instead, the animal response should be considered
as starting point, and consequently, an inverse modelling problem
approach could be carried out in the problem definition (Vargas-
Villamil et al., 2020; Tedeschi, 2019).

This work aimed to apply System Dynamics methodology to (i)
develop an explicit model able to capture the dynamic phenomena
and system delays that fit observed MY in dairy cows under HS,
and (ii) present an initial attempt to estimate the system delays
characterising the cow response to HS needed to parameterise
the model and discriminate among cow tolerant and not-tolerant
to HS.
Material and methods

Description of the case study

Farm description
The data used in the study were collected from a dairy cattle

farm located in Arborea, Sardinia, Italy (39�460260040N,
08�340530004E), in a lowland area near the sea devoted to dairy pro-
duction in intensively managed farms. The farm was equipped
with three automatic milking systems (DeLaval International AB,
Model VMS Classic, Tumba, Sweden) and a cooling system
consisting of seven fans and sprinklers on the feeding line and five
breviations: THI = temperature-humidity index, MY = milk yield.
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horizontal fans on the resting area. Data were collected in August
2021. During the study period, the mean and SD of cows in lacta-
tion and days in milk (DIM) were 157.8 ± 1.7 and 202.3 ± 3.2,
respectively. On the farm, the total mixed ration used during the
study period, expressed as kg of feed as fed per cow, included
the following ingredients: 18 kg of ryegrass silage, 4 kg of alfalfa
silage, 2 kg of alfalfa hay, 0.8 kg of straw, 3 kg of soybean meal,
8 kg of corn meal, 0.1 kg of calcium carbonate, 0.07 kg of fat. The
total mixed ration was prepared and fed along the feeding line
once a day at 07:00 a.m. In addition, a daily average of 4.5 kg of
concentrate feed was fed directly into the automatic milking sys-
tem feeding bunk during milking. The Large Ruminant Nutrition
System software (version 1.2.2; https://www.nutritionmod-
els.com) was used to estimate the metabolisable energy (ME)
and net energy (NEl) of the diet used, and thus to calculate the feed
efficiency and energy conversion ratios (Fox et al., 2004; Tedeschi
and Fox, 2020).
Data collection
The DelProTM software (DeLaval International AB, v4.5, Tumba,

Sweden) was used to create a daily report for each cow, containing
information on MY, lactation number, DIM, number of milking and
reproductive status (open, inseminated, and pregnant).

A weather station (PCE Italia s.r.l., PCE-FWS 20 N, Lucca, Italy)
has been installed inside the barn, two meters above ground level,
for hourly measurements of air temperature (�C) and relative
humidity (%). The data on air temperature and relative humidity
were loaded into management software (Ecostalla, Drop s.r.l.,
Arborea, Italy) for the automatic calculation of THI in �F (Kibler,
1964).

Fig. 2 shows the distribution of average THI and MY at the farm
level for 28 days (3 Aug 2021–31 Aug 2021). The THI began to
increase on 7 Aug 2021, reaching the maximum peak on 11 Aug
2021 and then returning to the pre-increase values on 16 Aug
2021. The dates of 9 Aug 2021 and 16 Aug 2021 were used to iden-
tify three different periods. The first period, from 3 to 8 Aug 2021,
includes the days until the start of the HW, which was supposed
Fig. 2. Average of reported temperature-humidity index (THI) values and milk
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that the cows could still dissipate the heat. The second period, from
9 to 16 Aug 2021, includes the days with the highest temperatures
and the milk losses. Although the maximum peak of THI was
recorded on 11 Aug 2021, the decline in milk is visible (Fig. 2) from
9 Aug 2021, the date chosen for the start of HW. During the same
period, the maximum loss of MY was recorded on August 14, 2021.
The third period, from 17 to 31 Aug 2021, includes the days with
the temperatures close to the ones before the increase. The
descriptive statistics of THI and MY per cow in the three periods
are listed in Table 1. The minimum, maximum, mean, and SD of
THI were 65.0, 82.9, 75.4 ± 4.0 �F for the first period, 67.5, 87.7,
78.6 ± 4.2 �F for the second period, and 62.9, 80.8, 73.0 ± 3.8 �F
for the third period. While the minimum, maximum, mean, and
SD of MY were 35.3, 36.3, 35.9 ± 0.4 kg/day per cow for the first
period, 32.7, 35.6, 33.6 ± 1.1 kg/day per cow for the second period,
and 33.2, 36.7, 35.4 ± 0.9 kg/day per cow for the third period.
Model development

Model building paradigm
Among the many different paradigms available for building

mathematical models (Tedeschi, 2019 and 2023), System Dynam-
ics is one of the well-established methodologies for understanding
the structure that causes the behaviour of complex systems
(Barlas, 2007). The System Dynamics approach is based on the
developed theory of non-linear dynamics and feedback control
(Sterman, 2000).

Among the modelling processes usually adopted with the Sys-
tem Dynamics methodology (Sterman, 2000), we present the first
three steps in this paper: (I) problem articulation, which is the
dynamic characterisation of the problem through a reference mode
consisting of the most relevant data that can describe the beha-
viour of the problem over time (Sterman, 2000); (II) dynamic
hypothesis formulation, that explains the dynamics of the problem
with an endogenous theory based on feedback loops, i.e.,
sequences of variables and causal links that create a closed ring
of causal influences (Sterman, 2000; Ford, 2019); (III) simulation
yield (MY) data from the studied Holstein dairy cattle farm, August 2021.

https://www.nutritionmodels.com
https://www.nutritionmodels.com


Table 1
Minimum, maximum, mean and SD of temperature-humidity index (THI) and milk yield (MY), at dairy cattle farm level, in the three periods considered in the study.

Variables Minimum Maximum Mean SD

3–8 Aug 2021
THI (�F) 65.0 82.9 75.4 4.0
MY per cow (kg/day) 35.3 36.3 35.9 0.4

9–16 Aug 2021
THI (�F) 67.5 87.7 78.6 4.2
MY per cow (kg/day) 32.7 35.6 33.6 1.1

17–31 Aug 2021
THI (�F) 62.9 80.8 73.0 3.8
MY per cow (kg/day) 33.2 36.7 35.4 0.9

Abbreviations: THI = temperature-humidity index; MY = milk yield.
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model formulation, to create a specified formal (quantitative)
model describing feedback mechanisms with differential equa-
tions, parameters, and initial conditions (Sterman, 2000).

Problem articulation and dynamic hypothesis
The identification of the problem began with the observation of

production performance trends during a heat wave. Specifically, it
was by observing data trends, to be used as reference mode in MY
and THI during August 2021. It was noted that following the expo-
sure to a prolonged period of excessive heat, MY was characterised
by two phases: (I) milk reduction and (II) milk recovery. The max-
imum loss in MY was observed to occur five days after the start of a
HW and three days after the maximum peak of THI, as occurs when
there are time delays between cause and effect in complex non-
linear problems. The delay in the animal response would indicate
the heat accumulation in the cow’s body with insufficient effec-
tiveness of dissipation mechanisms and prolonged exposure to
high temperature.

The dynamic hypothesis was developed to provide explanations
regarding the dynamic behaviour of the HS problem (Sterman,
2000). In line with the observations during the problem definition,
we developed our dynamic hypothesis about heat flows in a dairy
cow using the furnace analogy described in Wright and Meadows
Fig. 3. Causal loop diagrams (CLDs): (a) for a furnace system with first balancing loop (B1
a room (Source: Wright and Meadows, 2008); (b) of dairy cattle Heat Stress model.
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(2008). In order to describe the cause-and-effect linkages (Ford,
2019), the furnace example was graphically represented, as shown
in Fig. 3a, using causal loop diagrams (CLDs), which are system
maps connecting variables by arrows, making it easy to identify
the feedbacks governing the system (Ford, 2019).

In the example given by Wright and Meadows (2008), the heat-
ing of a room is regulated by two feedback loops. Feedback loops
are characterised by a positive (+) or negative (�) sign indicating
whether a loop is reinforcing (positive) or balancing (negative).
The algebraic product of the signs around the loops determines
their polarity (Ford, 2019). In the first balancing feedback loop
(B1), the room temperature increases with the furnace’s heat,
which is determined by the discrepancy between the desired and
actual room temperature. The latter variable is regulated by both
the room temperature and the thermostat setting. The thermostat
is set at a specific temperature, and whenever the room tempera-
ture falls below that temperature, a gap is created that the heating
system tends to cover to return to the ideal temperature. While
feedback loop B1 explains the heat input mechanism, the second
balancing feedback loop (B2) explains the cooling mechanism as
an analogy to heat dissipation. As shown in feedback loop B2, the
room temperature also depends on the heat to outside, which
is triggered by the discrepancy between inside and outside
) that regulates the inflow (B1) and second balancing loop (B2) the outflow of heat in
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temperatures. In this case, the discrepancy is the gap between the
room and outside temperatures. Analogically, Fig. 3b depicts our
CLD for the HS model we propose, which is governed by two bal-
ancing feedback loops similar to those by Wright and Meadows
(2008).

The first balancing feedback loop (B1) generates a goal-seeking
behaviour, and it is the one that governs heat production. Heat load
increases with heat production depending on the heat load dis-
crepancy. Similar to the furnace example, the discrepancy here is
the difference between the max heat load and the heat load. The
heat stored in the body stems from the heat for maintenance and
milk production, growth, and pregnancy, depending on the physi-
ological stage of the animal. As an example, a 48.5 and 27.3%
increase in heat produced, respectively, was reported in high and
medium milk-producing cows compared to dry cows (Purwanto
et al., 1990). Therefore, it is assumed that the animal produces heat
and has the capacity to store it up to a maximum limit (i.e., max
heat load), above which it has to find a way to reduce body heat
load. Under thermoneutral conditions, the actual heat load never
reaches the maximum limit, creating an ideal discrepancy that
the animal system tends to cover by continuing to produce internal
heat. It is, therefore, a classical feedback (asymptotic regrowth
basic pattern) loop in that the heat load determines the magnitude
of the discrepancy that influences the production of heat that accu-
mulates in the cow’s body as heat load. Similarly, in the furnace
example, if the room temperature exceeds the limit set by the ther-
mostat, the heating system would automatically shut down
(Wright and Meadows, 2008). Instead, in our case, the cows cannot
stop producing heat, and should they exceed their own maximum
limit, they would go into hyperthermia to the point of death in the
most severe cases.

The second feedback loop shown in the CLD in the HS model,
characterised by an exponential decay behaviour, has some differ-
ences compared to the one in the furnace model. In this case, the
heat load again depends on the heat dissipation rate, governed
by the accumulated heat load and the time to adjust heat dissipa-
tion. The time required to adjust heat dissipation is affected by
heat stress. Just as a low-insulated room tends to dissipate its heat
to the outside, the cow, as a homeothermic animal, also tends to
dissipate the heat it produces to keep the body temperature con-
stant. Under thermoneutral conditions, the heat load is nearly con-
stant, and the cow can dissipate the heat produced adequately.
However, heat dissipation is not immediate. The time required
for heat dissipation depends on several factors, such as the cow’s
body’s surface-to-volume ratio and the temperature gradient
between the animal and the environment. In addition, the heat loss
rate depends on the environment’s ability to accept the heat lost by
the animal through radiation, conduction, convection, and evapo-
ration (Finch, 1986). In fact, an environment with elevated temper-
ature and humidity hinders the absorption of the heat released by
the animal. In this model, the inflow represents the internal heat
production, whereas the outflow conceptually aggregates the net
dissipation effort and the cow interaction with the environment.

During a HW, prolonged exposure to HS reduces the efficiency
of dissipation mechanisms. Under this condition, the maintenance
energy requirements for thermoregulation and the time required
to dissipate heat increase considerably.

Mathematical model formulation
In the third model-building step, a formal, quantitative System

Dynamics simulation model was developed based on the mental
models (i.e., CLD) elaborated in the dynamic hypothesis formula-
tion step. In mathematical terms, ‘‘the basic structure of a formal
System Dynamics computer simulation model is a system of cou-
pled, non-linear, first-order differential (or integral) equations”
(Richardson, 2020). In System Dynamics modelling, graphical
5

annotation is widely used, especially to visualise the critical feed-
back loops about the problem in focus. In this graphical annotation,
each icon, such as stocks, flows, auxiliaries, clouds, and causal
links, represents a specific system element (Richmond, 2001).
Stocks, whose icon is a rectangle, represent accumulation at a
given time and characterise the system’s state (Sterman, 2000;
Richmond, 2001). Flows, on the other hand, represent the actions
and rates that change the stock (Richmond, 2001). Graphically,
they are represented by pipes and arrows that point into the stock
in the case of inflow and point out the stock in the case of outflow.
Auxiliary variables are generally represented by circles and are
intermediate variables to facilitate the expression of functional
dependency of flows to stocks (Ford, 2019). Clouds represent the
source from which a flow originates and the sink into which the
flow drains, and which originate and leave the model outside its
boundary (Sterman, 2000). Causal links between the variables
describe the relationships between them with the direction of
causality (from cause variable to impacted variable) (Ford, 2019).

As discussed in the dynamic hypothesis formulation, a system
structure of two interacting balancing feedback loops drives this
pattern. Following the annotation principles of System Dynamics,
a stock-and-flow diagram with one stock and two flows was devel-
oped with two loops (Fig. 4) an exponential decay and an explicit
goal-seeking feedback loop, mimicking a furnace structure
(Wright and Meadows, 2008). The system studied here resembles
a common system archetype known as Eroding Goals (Senge,
1990). A ’system archetype’ is a common structure that produces
characteristic system behaviour (Wright and Meadows, 2008).
Among those, the Eroding Goals archetype consists of two balanc-
ing feedback loops and is used to explain the phenomenon of grad-
ually lowering goals to close the gap between desired and actual
performance. The HS CLD (Fig. 4) has also two balancing feedback
loops as in Eroding Goals, but the structure of the goal is different
in the HS case. In the original archetype, both the Desired Goal and
the Gap are regulated endogenously, whereas HS CLD has an
exogenous goal (max heat load) and an external effect (heat stress)
to regulate the endogenous heat discrepancy (i.e., gap) and heat
load.

The structure and working principles of the model can be sum-
marised as follows (Fig. 4): (1) depending on the THI value and the
corresponding heat stress occurrences, the heat dissipation rate of
the animal is adjusted; (2) as the heat dissipation rate of the animal
slows down (or speeds up), the accumulation in Heat Load
increases (or decreases); and (3) with the increasing (or decreas-
ing) Heat Load level, the heat production rate requirement of the
animal decreases (or increases), which directly impacts DMI and
consequently the milk yield performance of the animal.

The structure and working principles summarised above were
built with Stella Architect (ISEE Systems, v3.1.3, Lebanon, NH, Uni-
ted States). The time unit of the model is set to days with a delta
time step (dt) of 1/4 days, allowing a sufficient, limited time step
to apply the Euler method for integral calculation and catching
the oscillatory patterns of the system. The complete stock-and-
flow diagram of the model is provided in the Supplementary Mate-
rial Fig. S1. The model consists of 24 variables: 1 stock variable, 2
flow variables, and 21 auxiliary variables (8 are equations, 2 are
graphical functions, and 11 are parameters). The list of all vari-
ables, types and units of the model is presented in Table S1 of
the Supplementary Material. A simplified version of the model is
depicted in Fig. 4, and the key equations in the model are as
follows:

Heat Load (Mcal), the critical stock variable, increases through
the inflow of heat production rate (Mcal/day) and decreases
through the outflow of heat dissipation rate (Mcal/day) (Eq. (1)).
The starting value of Heat Load stock is determined by initial heat
load (Mcal) parameter for each cow (Eq. (2)).



Fig. 4. A simplified stock-and-flow diagram of the heat load model for a Holstein dairy cow. Abbreviations: DMI = DM intake.
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Heat Load ðtÞ ¼ Heat Load ðt� dtÞ
þ ðheat production rate

� heat dissipation rateÞ � dt ð1Þ

Heat Load ðt0Þ ¼ initial heat load ð2Þ
The inflow variable heat production rate (Mcal/day) (Eq. (3))

depends on the response time of the animal’s metabolism for
adjusting its heat production, time to adjust heat production (d)
parameter, and heat load discrepancy (Mcal), which represents
the gap between the max heat load (Mcal) that the animal’s
metabolism tends to attain and the current Heat Load level
(Eq. (4)). It is assumed that both max heat load and time to adjust
heat production parameters may vary depending on the genetic
characteristics of the animal, hence may be different from one
animal to another.

heat production rate ¼ heat load discrepancy =
time to adjust heat production ð3Þ

heat load discrepancy ¼ max heat load � Heat Load ð4Þ
The outflow variable, heat dissipation rate (Mcal/day), is deter-

mined by the accumulated Heat Load and the response time of the
animal’s metabolism for adjusting its heat dissipation, time to
adjust heat dissipation (d) variable (Eq. (5)). The increasing
(decreasing) HS level is expected to increase (decrease) the time
required to adjust the heat dissipation, and to decrease (increase)
heat dissipation rate. Consequently, this variable is defined based
on the animal’s expected normal time to adjust heat dissipation
without stress (days) plus the additional time to adjust heat
dissipation (days) at the corresponding heat stress level (Eq. (6)).
Heat stress is quantified as an increasing function of THI (Eq. (7)).

heat dissipation rate
¼ Heat Load = time to adjust heat dissipation ð5Þ
6

time to adjust heat dissipation

¼ time to adjust heat dissipation without stress

þ heat stress

� additional time to adjust heat dissipation with heat stress

ð6Þ

heat stress ¼ fþðTHIÞ ð7Þ
Because the primary source of heat production is the feed

intake, DMI (kg/day) is defined as a function of heat production
rate (Eq. (8)) following inverse modelling principles and using heat
produced per DMI (Mcal/kg) derived from ration analysis. In case
of increasing HS conditions, feed requirements for maintenance
(kg/day) are expected to increase (Eq. (9)) and hence feed available
for milk production (kg/day) decreases, eventually decreasing the
milk yield (kg/day) (Eq. (10)).

DMI ¼ heat production rate =heat produced per DMI ð8Þ

feed for maintenance ¼ fþ ðheat stressÞ ð9Þ

milk yield ¼ fþðfeed available for milk productionÞ
¼ fþðDMI � feed for maintenanceÞ ð10Þ
Model parameters and calibration
The key exogenous variables of the model are max heat load,

THI, time to adjust heat production, time to adjust heat dissipation
without heat stress, and the key endogenous variables are heat dis-
sipation and heat production rates, and milk yield. Among the
exogenous model parameters provided in the model, three param-
eters are assumed to be constant and similar for each cow and cal-
culated based on the available literature. The parameter
thermoneutral feed for maintenance was obtained from the follow-
ing equation for calculating DMI in lactating cows reported by NRC
(2001): DMI (kg/day) = (0.372 � FCM + 0.0968 � BW0.75). Where
FCM = 4% fat-corrected milk (kg/day), and BW (kg). The DMI value
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of 12.46 kg/day for maintenance was derived assuming an FCM
equal to zero and an average BW of 650 kg. For the calculation of
the parameter, Milk production per DMI (available for milk), the
following equation, based on the one reported before (NRC,
2001), was used: Milk production per DMI (available for milk) =
1/(0.372 x FCM). The constant value used in the model was
obtained by assuming 1 kg/day of FCM. The third parameter corre-
sponds to the NEl for maintenance, obtained from analysis of the
ration used on the farm during the study period, which in our
model is reported as heat produced per DMI, equal to 1.67 Mcal/
kg DM. The same analysis estimated that the ME for maintenance
was 2.59 Mcal/kg DM. From the ratio of NEl to ME, the conversion
coefficient of ME to NEl is 0.64, confirming that reported by the
NRC (2001).

Formulation of the calibration problem
For the application and calibration, 20 cows were selected

based on the following criteria. The selection criteria were DIM
and reproductive status. Specifically, only cows with a DIM
between 70 and 220 days and were pregnant during the study per-
iod were selected. Therefore, fresh cows or cows close to the dry
period were not considered for calibration to avoid production per-
formance being mainly influenced by the stage of lactation. The MY
characteristics of the 20 selected cows are provided in Table 2.

The other eight parameters, which are listed below with upper
and lower bounds, are assumed to vary for each individual cow
depending on their genetics and other individual characteristics.
Hence, for the rest of the parameters, a parameter calibration prob-
lem was solved for each cow. The objective function of the param-
eter calibration problem is set as ‘‘minimising the sum of squared
errors” between the model generated and the observed (yet
smoothed) value of milk yield over the time horizon of the model,
T, where t below represents the timestamp of both the historical
data point and the model-generated value.

Sum of squared errors

¼
Xt ¼ T

t ¼ 0

milk yieldmodel�generated;t � milk yielddata;smoothed;t

� �
2

subject to:

0.1 < time to adjust heat dissipation without heat stress
(Days) < 2.
0.1 < additional time to adjust heat dissipation with heat stress
(Days) < 2.
0.1 < time to adjust heat production (Days) < 2.
0 < additional feed for maintenance (kg/day) < 3.
13.5 < max heat load (Mcal) < 63.3.
13.5 < initial heat load (Mcal) < 22.5.
1 < THI smoothing coefficient (Days) < 8.
1 < milk yield smoothing coefficient (Days) < 8.
all equations of the model.
Table 2
Minimum, maximum, mean and SD of milk yield (MY) and days in milk (DIM) of the 20 s

Variables Minimum

3–8 Aug 2021
MY per cow (kg/day) 25.9
DIM (Days) 66.5

9–16 Aug 2021
MY per cow (kg/day) 26.7
DIM (Days) 73.5

17–31 Aug 2021
MY per cow (kg/day) 23.4
DIM (Days) 85.0

Abbreviations: MY = milk yield; DIM = days in milk.
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The parameter limits were intentionally kept wider than those
found in the literature to allow the model to move with a large
degree of freedom. A range of 0.1 to 2 days was chosen (Table 3)
for the parameters ‘‘time to adjust heat dissipation without heat
stress”, ‘‘time to adjust heat dissipation with heat stress” and ‘‘time
to adjust heat production” based on the results obtained by
Kennedy and Kuhla (2022). In their study, Kennedy and Kuhla
(2022) observed that at different stages of lactation during the
24 h fasting period with ad libitum feeding, the trend of heat pro-
duction followed the same pattern of progressive decrease. Instead,
the bounds for the parameter ‘‘additional feed for maintenance”
were calculated from the equations for estimating the DMI (Fox
et al., 2004) and the farm data. The DMI was calculated for a no-
HW situation (July 2021) and for the HW condition (August
2021) considered in this paper. The difference in DMI between
the two periods was 2.04 kg/day. This value was taken as a refer-
ence for the upper limit, which was set at 3 kg/day (Table 3) for
the abovementioned reasons. The reference values for the param-
eters ‘‘max heat load” and ‘‘initial heat load” were taken from the
study by Zimbelman et al. (2010). The work reported stored heat
values of 18 073 and 18 223 Mcal for a thermoneutral and a heat
stress condition, respectively. Specifically, the reference value of
18.073 Mcal was used to calculate the lower limit of both param-
eters and the upper limit of the ‘‘initial heat load” parameter by
subtracting and adding 25%, respectively (Table 3). At the same
time, the reference value of 18,223 Mcal was used to derive the
upper limit of the ‘‘max heat load” parameter by adding 250% in
order to allow the model to consider a broad range of variation
in heat load that could originate from genetic, physiological, or
environmental factors (Table 3). The limits of the ‘‘THI smoothing
coefficient” and ‘‘milk yield smoothing coefficient” were chosen
based on the different time delays reported in the literature. Sev-
eral studies have reported a time lag of 2, 4, and 5 days between
exposure to HS and its negative effects on dairy cattle production
performance (West et al., 2003; Spiers et al., 2004; Atzori and
Cannas, 2011). Thus, parameters were set wider than the values
found in the literature again to allow the model to move between
them.

The observed data points for MY depict high variability and
show sharp ups and downs between consecutive data points;
hence, individual data points cannot reflect the MY performance
of the individual cow. In order to capture the overall MY perfor-
mance behaviour over time, third-order exponential smoothing
(Sterman, 2000) was applied on the MY data observed using an
exponential averaging time (i.e., milk yield smoothing coefficient),
and the smoothened values are used for parameter calibration. The
smoothened MY behaviour of all cows in this study is provided in
the results (Figs. 5 and 6) and Supplementary Material (Figs. S2 and
S3). As another smoothing coefficient, THI smoothing coefficient is
defined as the third-order delay duration, which represents the
biological delay for the cow’s body to anticipate HS due to chang-
ing THI values.
elected Holstein dairy cows, in the three periods considered in the study.

Maximum Mean SD

48.5 40.4 5.7
208.5 159.2 37.1

46.7 37.7 5.8
215.5 166.2 37.1

49.4 38.9 6.3
227.0 177.7 37.1



Table 3
Description of dairy cattle Heat Stress model’s parameters.

Parameters Description Lower
bound

Upper
bound

Unit Reference

Time to adjust heat dissipation without heat
stress

Days needed to dissipate heat produced in
thermoneutrality

0.1 2 Days Kennedy and Kuhla,
2022

Additional time to adjust heat dissipation with
heat stress

Days needed to dissipate excess heat during HS 0.1 2 Days None

Time to adjust heat production Days needed to produce heat in thermoneutrality 0.1 2 Days Kennedy and Kuhla,
2022

Additional feed for maintenance kg of DM required to meet increased maintenance
requirements

0 3 kg/day Fox et al., 2004;
farm data

Max heat load Maximum heat storage capacity 13.5 63.3 Mcal Zimbelman et al.,
2010

Initial heat load Heat stored in thermoneutral condition 13.5 22.5 Mcal Zimbelman et al.,
2010

THI smoothing coefficient Biological delay in cow response to HS due to
variation in THI

1 8 Days West et al., 2003
Spiers et al., 2004
Atzori and Cannas,
2011

Milk yield smoothing coefficient Overall MY performance behaviour over time 1 8 Days West et al., 2003
Spiers et al., 2004
Atzori and Cannas,
2011

Abbreviations: HS = heat stress; THI = temperature-humidity index; MY = milk yield.

Fig. 5. Examples of results that conform with the observed behaviour: model-generated milk yield results and smoothened milk yield data (with cow ID’s in brackets).
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Results

Model application

As an initial attempt to quantify the impact of HS on MY at an
individual cow level, the model was evaluated with 20 cows in
the selected farm. The time horizon of the model is set to between
4 Aug 2021 and 31 Aug 2021, during which period, HW was
observed.
8

Parameter calibration and model results

The optimal parameter calibration problem defined in the
methods section is solved for each cow to determine the best
parameter estimations, and the feasibility and consistency of the
parameters are investigated in each step of the calibration process.
During the parameter calibration, MY behaviour of particular cows
was observed to withstand the HS conditions and follow different
patterns than expected. In line with this observation, a visual



Fig. 6. Examples of results that do not conform with the observed behaviour: model-generated milk yield results and smoothened milk yield data (with cow ID’s in brackets).
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inspection was conducted for each cow’s model-generated MY
behaviour. As a result of visual inspection, 11 of 20 cows were fol-
lowing the model-generated behaviour, while the behaviour of the
other nine could not be explained with the current model structure
and the parameter space. Fig. 5 shows examples of MY results that
are well-captured by the model, whereas Fig. 6 has examples that
do not conform with the model-generated results. The comprehen-
sive presentation of MY results is delineated in the Supplementary
Material, with Fig. S2 illustrating results that were effectively cap-
tured by the model and Fig. S3 depicting instances where compli-
ance was not achieved. Note that the numbers in brackets in Figs. 5
and 6 represent different animal ID’s.

In addition to visual inspection, R2, mean absolute per cent error
(MAPE) and concordance correlation coefficient (CCC) (Tedeschi,
2006) measures are calculated for each data set pair. The resulting
statistical performance of the model is listed in Table 4 for each
cow. The cows that were visually inspected to follow the model-
generated behaviour are shown in Figs. 5 and 6. Almost all these
conforming cows had R2 and CCC values greater than 0.6, except
two cows (ID #13 and #20), having weaker performance in R2

and a cow (ID #20) with also a low MAPE of 1.25%. On the other
hand, the majority of non-conforming cows exhibit R2 and CCC val-
ues smaller than 0.4 and 0.6, respectively, whereas two of the non-
conforming cows (ID #8 and #18) show limited performance in
MAPE despite high R2 and CCC results. Overall, MAPE values are
generally below 5% for all cows, and the largest MAPE belongs to
cow #1, with 7.50% (Table 4).

The resulting parameter values as the outputs of parameter cal-
ibration problems for all 20 cows are given in Fig. 7. Due to the
dynamic nature of the problem and dependency of the MY data
points in time, the performance of the pattern reproduction of
the model is used as the primary basis for model evaluation,
whereas the statistical measures are used as supporting criteria.
These results indicate that the available model structure and the
parameter space can explain the effect of HS on MY for 11 cows
9

among the selected 20 and not for the other 9. The summary of
parameter values for conforming 11 cows is summarised in Table 5.
In line with these results, the evaluation of the parameter values
needs to be conducted only for the conforming cows because the
original modelling purpose was to understand the impact of HS.
Discussion

In this work, we developed a model following the System
Dynamics rules to predict cows’ milk production trend under HS
during a HW. The results illustrate that a simple but dynamic
model considering a feedback relationship can be used to identify
a dairy cow’s heat production and dissipation and to quantify its
animal response to environmental changes in weather conditions
in terms of milk production. Throughout the literature, most
approaches used to predict HS have been presented with empirical
or statistical quantifications. Hill and Wall (2015) quantified with a
mixed model the effects of HS with the classification of the man-
agerial factors that influence the effect of weather. Many studies
focus on the threshold of HS observation but few on the pattern
of the animal response related to temperature variation in consid-
eration of the animal’s energy balance. Differently, we proposed a
dynamic mechanistic approach to develop an explicit model.

The current model replicates, by using an explicit modelling
approach, the classical shape of the response to HS as reported
by Benni et al. (2020) and in Fig. 4 of André et al. (2011). Benni
et al. (2020) reported a max milk drop after four days after the heat
peak. André et al. (2011) proposed an adaptive dynamics model
based on Bayesian Statistics to estimate the effects of HS on the
cows in a group of farms in the Netherlands, but it can also be
applied at the individual level. They observed a max milk loss with
a delay of 7 days (range 3–9) after the onset of the heat period, very
similar to the average delay of 7.3 days observed in our study for
conforming cows. Souza et al. (2022) showed that milk losses could



Table 4
Statistical evaluation metrics for milk yield (MY) and the results of the dairy cattle Heat Stress model evaluation.

Cow ID R2 MAPE CCC Result

1 0.247 7.50% 0.385 Non-conforming
2 0.909 3.10% 0.952 Conforming
3 0.679 3.32% 0.812 Conforming
4 0.265 5.76% 0.413 Non-conforming
5 0.221 2.33% 0.337 Non-conforming
6 0.784 0.93% 0.871 Conforming
7 0.844 0.63% 0.911 Conforming
8 0.726 3.93% 0.840 Non-conforming
9 0.819 2.03% 0.899 Conforming
10 0.742 0.97% 0.857 Conforming
11 0.365 4.96% 0.468 Non-conforming
12 0.240 3.76% 0.330 Non-conforming
13 0.578 3.11% 0.734 Conforming
14 0.843 1.72% 0.914 Conforming
15 0.752 1.06% 0.859 Conforming
16 0.815 2.97% 0.899 Conforming
17 0.248 2.80% 0.405 Non-conforming
18 0.827 4.56% 0.905 Non-conforming
19 0.136 2.49% 0.280 Non-conforming
20 0.490 1.25% 0.628 Conforming

Abbreviations: MAPE = mean absolute per cent error; CCC = concordance correlation coefficient.

Fig. 7. Parameter calibration results of the 20 selected Holstein dairy cows for initial and maximum heat load, milk yield (MY) and temperature-humidity index (THI)
smoothing coefficient, time to adjust heat production, time to adjust heat dissipation without heat stress, additional time to adjust heat dissipation with heat stress, and
additional (add.) feed for maintenance. Abbreviations: HL = heat load; HP = heat production; HD = heat dissipation; HS = heat stress.
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be affected even after 20 days from the HS event. They presented a
mathematical description of the pattern of animal response for
DMI and MY that showed a slightly different shape with delayed
milk loss, a recovery attempt, and a further decline without consid-
ering climate variables such as temperature or THI.

The model can be helpful to model animal energy requirements
further and not only to quantify, on average, the milk production
losses as a consequence of HW. In fact, our model is built explicitly
on energy-based flows that might be integrated and decomposed
to fit the main thermoregulation flows related to the maintenance
requirements of the animal, including the dissipation rates
10
(Baldwin, 1995) and the total heat produced also pointed out by
Benni et al. (2020).

Our study could also contribute to specific applications in ani-
mal nutrition modelling and, in particular, to implement sub-
models in mechanistic and dynamic nutrition systems. Tedeschi
and Fox (2020) estimate for the Ruminant Nutrition Systemmodel,
additional nutritional requirements of maintenance due to heat
stress based on the only weather variables combined in the CETI
index, whereas basal and feed supply energy flows are already
computed by the model but without the whole estimation of the
energy balance for thermoregulation purpose.



Table 5
Summary of parameter values for conforming cows.

Parameter Minimum Maximum Mean Median SD

additional feed for maintenance (kg/day) 0 3 0.6 0 1.06
additional time to adjust heat dissipation with heat stress (Days) 0 2 0.8 0.6 0.59
time to adjust heat dissipation without heat stress (Days) 1 1.4 1.2 1.1 0.12
time to adjust heat production (Days) 1.8 2 1.9 2 0.08
initial heat load (Mcal) 20.2 22.6 21.7 22.1 0.96
max heat load (Mcal) 49.4 63.6 57.4 57.6 3.88
milk yield smoothing coefficient (kg/days) 3.3 8 5.4 5.4 1.66
THI smoothing coefficient (Days) 4.3 8 7.3 8 1.38

Abbreviations: THI = temperature-humidity index.
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Furthermodel expansion should be considered, including animal
characteristics such as production level and genetic merits. With
respect to milk production, in this model, only data from multi-
parous cows were used, as they were considered less heat resistant
and showed a more pronounced reduction in milk production than
primiparous cows, which brings the need to include parity effects.
Indeed, the 11 conforming cows had mean and SD of parity equal
to 2.72 ± 0.78, while the nine non-conforming cows had 2.66 ± 1.
Although the two groups were parity-homogeneous, it is possible
to speculate that the higher number of conforming cows can be
attributed to parity order. In fact, heat tolerance is also a function
parity order (Benni et al., 2020). Furthermore, primiparous cows
are more heat tolerant than multiparous cows. This assumption
was recently confirmedbyBenni et al. (2020),who report an average
parity equal to 2.27, 1.59, and 1.67 for cowswith significant,moder-
ate, and poor heat susceptibility, respectively. Otherwise, genetic
components also have effects on heat tolerance. For example, from
a study by Maggiolino et al (2020), the Brow Swiss breed showed
no clear THI threshold in milk production when using a 2-phase
regression approach. Unlike Holsteins, there was no change in MY
trend as THI values increased (Maggiolino et al., 2020). Additionally,
individual variability in heat tolerance can also explain part of the
differences amonganimals (Nguyenet al., 2016). Parity andgenomic
values also have their interaction. The genomic estimated breeding
value, developed using a BLUP model, had an accuracy for heat tol-
erance concerning changes in milk production equal to 0.48 when
only genotyped sires and first parity data were used. It held down
when second and third parity data were included because of their
low numbers (Nguyen et al., 2016).

The model can also be applied to raw individual data, especially
with the purpose of discriminating among cows that respond to
HWwith typical milk production losses and recovery or differently
for phenotyping cows in genetic studies. In fact, meta-modelling
approaches could be attempted using the animal parameters esti-
mated by the model (e.g., maximum heat load, time to adjust heat
dissipation) as phenotypic traits to be associated with the genomic
information andmarkers of the individual animals (Tedeschi, 2015).

Benni et al. (2020) also reported total heat produced by the cow
as a potential limiting factor for heat tolerance. However, no differ-
ences in the distribution of heat produced among the three heat
susceptibility classes were reported. In our study, cows considered
to be compliant and potentially less tolerant to HS had initial and
maximum heat loads varying between 20.2 and 22.6 Mcal and
between 49.4 and 63.6 Mcal (Table 5), respectively. The wide vari-
ability in heat load, even among heat-susceptible cows, can be
related to the different quantitative and temporal efficiency of
dissipation mechanisms. The model evaluation results showed that
our simple model structure can explain the animal response to HS
more accurately in some animals than others. In System Dynamics
models, the evaluation of the model’s performance in behaviour
reproduction is based on ‘‘pattern prediction (periods, frequencies,
trends, phase lags, amplitudes, etc.), rather than point (event)
prediction” (Barlas, 1996). Hence, the essential part of the model
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evaluation was done through visual comparisons for ‘‘the most
typical behaviour pattern characteristics”, such as the amplitude
of a peak time between two peaks, minimum value, slope, and
the number of influential points (Barlas, 1996).

In this study, among the selected20 cows, theMY responses of 11
cows were successfully captured. When the MY responses of these
two cow groups are investigated (Figs. 5, 6, S2, and S3), most of the
conforming cows can be labelled as more ‘‘sensitive” to changing
THI levels andHS. On the other hand, the behaviour of the other nine
cows could not be fully captured with the available structure and
feasible parameter space. One explanation for this result is that
some of these cows can be resistant to HW, and their production is
not affected (e.g., milk yield [ID #12] and milk yield [ID #17] in
Fig. 6). For example, Amamou et al. (2019) clustered dairy cows into
heat-sensitive and heat-tolerant based on the slopes of individual
responses. The lower heat tolerance and higher loss of milk produc-
tion were attributed to inefficient heat dissipation through respira-
tion. In contrast, the tolerant group of cows showed positive slopes
for milk production and respiration rate, indicating a more timely
response to HS and better maintenance of homeostasis.

Recall that our simple model is built to capture the HS effect
and generates a constant Heat Load level if HS is equal to 0. Hence,
if a cow is resistant to this effect, its milk production performance
may not be explained by the model structure. In the subsequent
phase of the study, the model structure can be improved by incor-
porating additional impacts (e.g., body temperature, body mass,
days in milk), especially to capture the variations in milk yield
responses of non-conforming cows. In fact, the animal’s tempera-
ture is a variable closely related to the efficiency of thermoregula-
tory mechanisms (McArthur, 1987). Under an HS condition, cows
that spend most of the day standing tend to have a higher body
temperature than those that spend more time lying down, and this
is because, despite the greater surface area exposed for heat dissi-
pation, the increased maintenance requirements also result in heat
accumulation (Allen et al., 2015).

Based on the delay of as much as 20 days that a heat peak can
have on milk production (Souza et al., 2022), an alternative expla-
nation may be that some of these cows can still be sensitive to HS
but may be experiencing much longer biological delays until the
changes in THI values impact their metabolism (e.g., milk yield
[ID #1] in Fig. 6 and milk yield[ID #18] in Fig. S3). For alternative
values of THI smoothing coefficient and milk yield smoothing coef-
ficient parameters with longer delay times, the model might also
capture their MY behaviour. To draw generalisable conclusions
from these findings, it is necessary to apply the model to a larger
sample of cows in the near future and perhaps automatise the
cow screening with the model run.

Among the conforming cows whose behaviour was captured by
the model, the average time to adjust heat production was found
to be 1.9 days, closely approximating the reference value of 2 days
establishedbyKennedyandKuhla (2022). Additionally, in situations
devoid of HS, the average time to adjust heat production exceeded
the average time to adjust heat dissipation by 0.7 days, with the for-
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mer taking 1.9 days and the latter 1.2 days, as detailed in Table 5. It
was crucial to bear in mind that the HS variable in the model was
scaled between 0 and 1. Under conditions of HS, the model sug-
gested that the additional time to adjust heat dissipation with heat
stress could extend to nearly an additional day (0.8 days on average)
whenHS reached 1 (Table 5). One plausible explanation for this phe-
nomenon could be that the range of values considered for the
parameter additional time to adjust heat dissipationwithheat stress
was adequate in accommodating the rise in heat accumulation
resulting from the diminished efficiency of thermoregulationmech-
anisms. Interestingly, no animal variables concurrent with heat
accumulation, such as body temperature, were incorporated into
the model. For these cows, the average THI smoothing coefficient
stoodat 7.3days (Table5). This implied thebiological lag that chang-
ing THI conditions were anticipated as HS by the animal’s body and
took effect on milk performance. Notably, this value exceeded that
reported in the literature used to identify the parameter’s reference
range (i.e., 2, 4 and5days;West et al., 2003; Spiers et al., 2004;Atzori
and Cannas, 2011). This discrepancy underscored that the effects of
HS in dairy cows might have extended over relatively prolonged
periods, as reported by Souza et al. (2022), who found the adverse
effects of heat exposure on the production performance of dairy
cows even up to 20 days later. It has to be noticed that many factors
other than THI might affect the animal response delay.

Although the current phase of the study is based on a relatively
small sample of 20 cows, the findings suggest that this simple
model can help decision makers obtain MY predictions under HS
conditions and identify the animals that show HS sensitivity. In
the following phase of the study, the model will be calibrated for
more animals, and the animal response to HS will be analysed with
extensive multivariate analysis. One study limitation is the model
relationship between DMI and MY. It is anticipated that DMI may
not be the only mechanism that explains the decline in MY, and
the model structure will be expanded accordingly with relevant
variables (such as parity order, days in milk, body temperature).
Another limitation of the study is the potential multicollinearity
among the calibrated parameters due to the large number of
parameters calibrated simultaneously. In the following stages of
the study, this issue will be addressed by decreasing the number
of parameters calibrated simultaneously and tightening the feasi-
ble space used in the parameter calibration, which will improve
the identifiability of the results.

This study mainly contributes to the dynamics of the HS in dairy
cows for applications in nutritional modelling and estimation of
energy requirements with proper model expansion in the endoge-
nous energy production from feed and energy dissipation rates. Fur-
thermore, it can contribute to cow characterisation, in terms of the
pattern of the MY, for the individual response to HS and tolerance
to HW, for trait phenotyping and selection applications at the popu-
lation level, or for culling and managerial purposes within farms.
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