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ABSTRACT 

 
        Purpose - This study was performed to investigate whether sera from IPF 

patients could affect Human Pulmonary Microvascular Endothelial Cells 

(HPMECs) phenotype and functions, and the molecular mechanism 

underpinning these effects. For this purpose, we investigate whether IPF sera 

could induce oxidative stress in HPMECs and whether such a phenomenon 

could modulate HPMECs proliferation, endothelial-to-mesenchymal transition 

EndMT. Finally, we focused on identifying the potential relationship between 

oxidative stress and EndMT on HPMECs in IPF.  

        Results - Sera of IPF patients markedly increased intracellular ROS 

level in HPMECs, and diphenyleneiodonium (DPI), a broad-spectrum 

NOX inhibitor, reduced intracellular ROS levels induced by sera of IPF 

patients. Besides, sera of patients with IPF increased HPMECs 

proliferation, and IPF-induced increase of HPMECs proliferation was 

significantly blunted by the DPI. Interestingly, sera of IPF patients induces 

Endothelial-to-Mesenchymal Transition in HPMECs, and ROS (NADPH) 

mediates IPF-induced Endothelial-to-Mesenchymal Transition. 

Preliminary results show that IPF sera induced the conversion of ECs into 

myofibroblasts through decreasing the endothelial marker (CDH5, CD3, 

vWF) and increasing mesenchymal markers (Col 1, α-SMA). 

        Conclusion - Exposure of HPMECs to oxidant factors present in IPF 

sera increased disease-associated pathophysiology phenomena such as 

intracellular ROS levels, cells proliferation, and EndMT. Preliminary data 

demonstrate the presence of an IPF sera-induced EndMT, indicating this 

phenotypic shift as an important etiological mechanism of IPF-associated 

vascular damage and a potential therapeutic target to inhibit obliterative 

vascular disorder and tissue fibrosis in the future. Reduction of the above-
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mentioned phenomena (intracellular ROS level, cells proliferation, 

EndMT) by DPI suggests ROS (NADPH) mediates IPF-induced EndMT. 

And the last, the study suggests that the use of antioxidants could be a 

potential therapeutic tool to prevent the progression of IPF-related 

complications including fibrosis.
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1. INTRODUCTION 

1.1. Idiopathic pulmonary fibrosis  

       Idiopathic pulmonary fibrosis (IPF) is the most common form of 

idiopathic interstitial pneumonia (IIP) [1]. This disease is the result of 

direct injury to the lung parenchyma, through an inflammatory response, 

that causes scarred and thickened (fibrous) pulmonary tissue [2]. IPF is 

chronic and irreversibly progressive with high mortality rates, where the 

average life expectancy is only 3–5 years following diagnosis. IPF 

primarily occurs in males and individuals 60 years and older. IPF patients 

typically succumb to respiratory failure secondary to loss of respiratory 

function from extensive fibrotic scarring of the lung parenchyma 

worsening lung function. Subpleural fibrosis, sub-fibroblastic foci, and 

microscopic honeycombing are characteristic features of the 

histopathological hallmarks of IPF. Lung cancer, pulmonary hypertension, 

acute respiratory distress syndrome (ARDS), and respiratory failure are 

common complications of IPF [3-6]. 

        Clinical progression is often associated with IPF exacerbations that 

are complex as indicated by acute episodes of respiratory dysfunction. 

Most patients have been hospitalized for a long time in the last year of life 

which the results were unfavorable [7, 8]. Currently, there is no effective 

therapy to prevent and also control IPF exacerbations [9].  Over the past 

two decades, drug therapy for IPF has grown significantly. Among them 

were studied using various immunosuppressant and anti-inflammatory 

agents, resulting from a randomized clinical trial of a combination of 

Prednisone, Azathioprine, and N-acetylcysteine (PANTHER-IPF) has 

shown an increase in harm, which indicates an ineffective approach [10]. 

In 2014, the FDA approved two IPF treatment drugs: Pirfenidone is an anti-

fibrous and anti-inflammatory, Nintedanib is a kinase inhibitor, both of 
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which can only slow disease progression without therapeutic effect is as 

expected [11]. A more specific understanding of the underlying 

pathogenesis of IPF is necessary to enable the development of new 

therapies for the disease. 

       Current studies suggest pulmonary blood vessels are negatively 

affected by the disease, resulting in unstable vascular regeneration. 

Therefore, regeneration of unstable blood vessels is of great interest in the 

pathogenesis of IPF, but the role of vascular regeneration in pulmonary 

fibrosis is not understood clearly [12].  

 
Figure 1.1:  A. The structure of normal lungs and normal airways in the human. 

The image is shown as a detailed cross-sectional view of the airways and air sacs of 

the lungs. B. Specific fibrosis (scarring) in fibrosis lungs in the human. The image 

inside is an expository look at fibrosis that damages the airways and air sacs [13]. 
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1.1.1. Epidemiology 

       In interstitial lung disease (ILD), IPF is the most frequent and severe 

type, which is estimated to be 20% -50% of all cases of ILD [14]. IPF is 

rare and of low incidence, with only ~40,000 new cases diagnosed each 

year in Europe [15]. A challenge has been to accurately assess the 

epidemiology of IPF, in part, because there was no agreed definition of this 

disease. In 2000 the American Thoracic Society (ATS) and European 

Respiratory Society (ERS) announced criteria for the diagnosis of IPF 

based on the radiological and histopathological detection of usual 

interstitial pneumonia (UIP) and no definite cause [13, 16]. Although the 

frequency is not high, IPF is a disease with a high direct treatment cost of 

about 25,000 USD/person/year, higher than breast cancer and many other 

life-threatening diseases [8]. 

       A study of a USA Medicare population from 2001 to 2011 found a 

higher rate of IPF at age ≥65 years (from 202.2 cases per 100,000 in 2001 

to 494.5 cases per 100,000 in 2011) compared with previous findings (the 

morbidity rate was 93.7 cases per 100,000 / year). Another Japanese study 

in Hokkaido, from 2003 to 2007, recorded a prevalence rate of 10 per 

100,000 persons per year and an incidence of 2.23 per 100,000 persons per 

year. All studies noted that prevalence and incidence occurred more 

frequently in men and increased with age, particularly over 75 years old 

[17, 18]. 

       The death rate from IPF appears to be steadily increasing across the 

globe. In 2014, there were an estimated 28,000 to 65,000 deaths in Europe 

and between 13,000 and 17,000 deaths in the United States [19]. In an 

American study of the cause of death with IPF, it was found that the most 

common cause was respiratory failure (60%), the second cause was 

cardiovascular disease (8.5%), and the next cause was lung cancer (2.9%) 

[20]. More interestingly, the aforementioned Japanese study found a very 
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high proportion of the cause of death from IPF exacerbations (40%) which 

was not noted in other studies [18]. 

1.1.2. Natural history of IPF 

       The natural history of IPF is difficult to predict due to variability. 

Some IPF patients exhibit rapid deterioration of lung function compared to 

others with slower progression, while some have relatively stable periods 

with acute impaired pulmonary function which is often fatal [21]. One of 

the most frightening complications of IPF is an exacerbation. Exacerbation 

is defined as acute impairment of lung function, worsening of respiratory 

symptoms, and all evidence of infection and other causes excluded. Every 

year, about 5% to 10% of patients suffer from exacerbations, with high 

mortality (85%) [22]. 

       Several factors can predict the risk of death in IPF, including levels of 

difficulty breathing, the diffusing capacity of the lungs for carbon 

monoxide (DLCO), Forced vital capacity (FVC), desaturation during 6-

minute walk test (6MWT), fibrosis on High-resolution computed 

tomography (HRCT) and pulmonary hypertension at baseline [13]. 

Currently, the GAP index is an indicator that has been proposed to predict 

the course of the disease based on the clinical model, including sex, age, 

and physiological index (Figure 1.2). Although the GAP index is the most 

commonly used, the predictive value of the GAP index is still hindered by 

limited clinical parameters [23]. Therefore, more accurate prognostic tools 

need to be developed. Diagnosis staging early of this disease improves 

prognostic outcomes by limiting potentially harmful therapies 

(glucocorticoids for IPF) and rapidly using effective therapies (anti-

fibrotic) in the early stages of the disease [24]. 
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Figure 1.2: The GAP index and Staging System [23]. 

1.1.3. Diagnosis 

        Following the 2011 guidelines ATS/ERS/JRS/ALAT on the diagnosis 

and treatment of IPF, diagnosis requires exclusion of other potential agents 

of pulmonary fibrosis and identification of the form of usual interstitial 

pneumonia (UIP) by high-resolution computed tomography (HRCT). 

Diagnosis by surgical lung biopsy (SLB) should be made to determine if 

the UIP pattern is not clearly defined (“possible” or “unsuitable for UIP”) 

by HRCT [21]. 

        The updated 2018 ATS/ERS/JRS/ALAT Guidelines note that SLB 

may have an adverse benefit/risk ratio when performed for patients with 

significant physiological impairment or other medical conditions 

comorbidities [25]. Transbronchial cryobiopsy (cTBB) may be preferable 
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to SLB for some patients in these circumstances. A field study of 109 

patients, with ILD after cTBB, was performed within 90 days with no noted 

deaths or exacerbations. A total of 73.4% positive histopathological 

samples were confirmed [26]. In addition, a multicenter study of 65 

patients with ILD in Australia who underwent both cTBB and SLB showed 

consistent histopathology in 70.8% of cases [27]. Both studies highlight 

those multidisciplinary discussions are needed to reach a diagnosis and that 

histopathology is only part of the evidence for the diagnosis of IPF.  

        Other tests can be supported in the diagnosis of IPF besides imaging 

and histological tests. To diagnose suspected IPF, analysis of 

bronchoalveolar lavage fluid can be a suggestion. In addition, serological 

tests for rheumatoid factor, antinuclear antibodies, and myositis panel can 

be useful in the diagnosed differentiation of ILDs related to disorders of 

connective tissue [25, 28]. 

1.1.4. Management and Treatment 

         Management of IPF focuses on improving symptoms, increasing 

overall health status, maintain lung function, facilitating a continuous 

oxygen supply through oxygen therapy (when needed), mitigating 

unfavorable events of therapy, and decreasing the rate of occurrence of 

exacerbations to improve survival [29]. The progression of IPF patients 

was controlled through exploratory tests of respiratory function, especially 

Forced vital capacity (FVC) and desaturation during the 6-minute walk test 

(6MWT). So, the GAP index (sex, age, and physiological index) can be 

used to evaluate prognosis by assigning a score based on points assigned 

to the male sex, advanced age, the diffusing capacity of the lungs for 

carbon monoxide (DLCO), and forced vital capacity (FVC).  A high GAP 

score equates to high mortality. In addition, most specialized centers for 

Interstitial Lung Disease use the 6-minute walk test to objectively assess 
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the patient's respiratory function status and screen for respiratory failure 

due to lack of oxygen [30] [31]. 

        The 2015 guideline of IPF treatment provided by the American 

Thoracic Society, the European Respiratory Society, the Japanese 

Respiratory Society, and the Latin American Thoracic Association 

(ATS/ERS/JRS/ALAT) are resources for the pharmacological 

management of IPF [32]. In 2018 the JRS published updated clinical 

guidelines for the treatment of IPF (Figure 1.3) [30]. 

 
Figure 1.3: Guideline Recommendations for the Treatment of Idiopathic 

Pulmonary Fibrosis 
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        Currently, only pirfenidone and nintedanib (a tyrosine kinase 

inhibitor) are the anti-fibrotic agents approved for use in the treatment of 

IPF. These two anti-fibrotic drugs have been identified to slow disease 

progression but have had no notable results in terms of reducing mortality. 

Therefore, it is advisable to initiate treatment with these two drugs early as 

further studies have also shown a reduction in IPF exacerbations when 

these drugs are used therapeutically. However, liver and kidney function 

tests are recommended to control the use of these two drugs. The most 

common adverse drug reactions reported for nintedanib were diarrhea, 

while pirfenidone was photosensitivity, rash, and gastrointestinal 

disturbances [33]. 

        Our knowledge of the pathophysiology of IPF and prospective 

therapies for IPF has improved remarkably. However, there is still no 

measure that truly stops disease progression and no complete cure for this 

disease. Future therapies should focus on stabilizing the disease, improving 

symptoms, and improving quality of life with the eventual object of 

lessening the disease burden. The long-term objective is to discover a new 

therapeutic cure. Besides, it is necessary to study new effective therapies 

to treat serious complications of IPF as well as exacerbations of the disease. 

Develop several clinical trials promising new therapies for the future. The 

main area of focus on the development of fibrosis pathways in IPF, 

especially fibroblasts involved in abnormal tissue remodeling, excessive 

extracellular matrix accumulation, and angiogenesis, all of which are 

thought to be at the center of this evolving disease. 

1.2. Endothelial cell and EndMT in IPF 

       The pathogenesis of IPF is multifactored, including epithelial damage, 

destruction of lung tissue, and development of mechanisms associated with 

aging.  The combination of these factors induces the release of mediators 

that lead to migration, proliferation, activation of fibroblasts and anti-



 

Phan Thi Hang Giang - Role of ROS in the Endothelial-to-Mesenchymal Transition induced by the 
sera from idiopathic pulmonary fibrosis patients - Ph.D. Thesis in Biochemistry, Physiology, and 

Molecular Biology of Ph.D. School in Life Sciences and Biotechnologies, University of Sassari, Italy. 

 

11 

apoptosis fibroblasts, and secretion of extracellular matrix. Released 

growth factors contribute to the progression of IPF disease [29]. The signs 

of aging such as genomic instability, mitochondrial dysfunction, and 

impaired intracellular signaling contribute to the pathogenesis of this 

disease. In addition, this disease is also the result of complex interactions 

between genetic and environmental factors, such as smoking, exposure to 

metal dust and wood, and associated diseases including reflux gastro 

esophagus, diabetes mellitus, and obstructive sleep apnea [34]. 

1.2.1. Endothelial cell involvement in IPF 

        IPF is a complex disease in which many different cell types are 

present including epithelial cells, fibroblasts, immune cells, and 

endothelial cells. While apoptosis alveolar epithelial cells (AEC) and 

fibroblast activation are considered to be the main contributors to the 

abnormal lung remodeling leading to fibrosis in IPF, the specific role of 

endothelial cells remains poorly understood and needs further clarification 

[35, 36]. Endothelial cells (ECs) are cells that line the inner walls of blood 

vessels. ECs play an important role in ensuring the stability of gas 

exchange between the alveolar-capillary barriers. They preserve vascular 

homeostasis by protecting vascular cells from physiological or 

pathological stimulations. ECs are chronically stimulated by many factors, 

such as pro-inflammatory cytokines and hypoxia, leading to imbalance 

homeostasis in ECs and endothelial cell dysfunction. This condition is 

closely related to vascular disease and fibrosis such as IPF [37]. 
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(A) 

  (B) 

 
Figure 1.4: Vascular endothelium. (A) a represnetaiton of the tissue and location 

and (B) the actual histological view of the cell [38]. 

 
      Two mechanisms of pulmonary fibrosis are involved with endothelial 

cells. One is the ability of the endothelium to transform into fibroblasts in 

the Endothelial to Mesenchymal Transition (EndMT) fibroblast creation 

process. During lung damage, there is an increased amount of fibroblasts 

to aid in the repair and regeneration of the tissue which produces large 

amounts of collagen and other extracellular matrix components. The other 

is a pathway in endothelial cells that results in the production of free 
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radicals, regulated by three isomers of nitric oxide synthase (NOS), nerve 

cell NOS, inducible NOS, and endothelial NOS (eNOS). Although nitric 

oxide normally modulates many biological processes and maintains airway 

homeostasis [39], at high levels, it can induce harmful inflammation and 

apoptosis. Several studies suggest that nitric oxide is important for the 

development of pulmonary fibrosis. The study by Yoshimura et al. showed 

that overexpression of eNOS reduced bleomycin-induced histological 

changes, lung collagen accumulation, and mortality in eNOS transgenic 

mice. They also showed endothelial involvement via a nitric oxide-

dependent mechanism in the development of pulmonary fibrosis since 

overexpression of eNOS mainly occurs in endothelial cells [40]. 

1.2.2. EndMT in IPF 

       Regeneration of blood vessels in IPF fibrosis is a controversial 

research area. In the lungs of IPF patients, there is both the presence of 

angiogenesis and fibrosis regions. It clearly to indicates that microvascular 

remodeling is unstable [41]. Vascular redistribution has been demonstrated 

in several studies to show that areas of normal IPF pulmonary parenchyma 

have an increase in vascular circulation, while a minimal reduction in blood 

vessel count is observed in areas affected by fibrosis. The fibrosis center 

of gravity is almost completely vascular-free [42]. Indeed, endothelial cells 

from patients with IPF [43] and mouse lung endothelial cells were fibrotic 

due to bleomycin, which lost integrity of the alveolar-capillary barrier 

because of increased markers of damage endothelial and endothelial cell 

death [44, 45]. Notably, endothelial progenitor cells are reduced in IPF 

patients, impairing the efficiency of endothelial regeneration and vascular 

repair during injury [46]. 

        During the EndMT process, ECs receive the mesenchymal pattern and 

exhibit typical markers of fibroblast differentiation, including α-smooth 

muscle actin (α-SMA), vimentin, N-cadherin, and fibroblast specific 
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protein-1 (FSP-1/S100A4 ), type I and III collagen (COL I and COL II), 

while also reducing endothelial cadherin expression blood vessels (VE-

cadherin), CD31/platelet-endothelial cell adhesion molecule (PECAM-1), 

and von Willebrand factor (vWF), (Figure 1.5) [47]. 
 

 
 
Figure 1.5: The endothelial to mesenchymal transition (EndMT). After activation, 

the cells exhibited increased production of mesenchymal-specific including smooth 

muscle active substance α (α-SMA), COL1, COL3, fibronectin (FN), vimentin, N-

cadherin. Accompanied by loss of endothelial cell-specific such as CD31/platelet 

endothelial cell adhesion molecule-1 (CD31/PECAM-1), vascular endothelial cadherin 

(VE)-cadherin), and von Willebrand factor [48]. 

 

       The role of EndMT in fibrosis assay has been determined both in vitro 

and in vivo. EndMT may play an important role in IPF mechanisms with 

the central role of transforming growth factor-β (TGF-β) in promoting 

EndMT through a vast network of molecular interactions. EndMT involves 

molecular and signaling pathways that are stimulated and regulated by 
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multiple mechanisms basing on the specific cellular and the 

pathophysiology or/and physiological condition of the cells. First 

observations of EndMT progression were present during chicken and 

mouse embryonic development through alterations in morphology and 

cellular components involved in heart valve development. Results have 

suggested that valvular cardiac cells arise from a separate population of 

endocardial endothelial cells that transition into mesenchymal cells [49, 

50].  The morphological transition from endothelial cells to mesenchymal 

cells was also observed during aortic maturing in chick embryos  [51, 52]. 

Then, the other studies determined that EndMT is not limited to embryonic 

development but can also occur in endothelial cells is involved in the 

vasculature of adults. The results show that endothelial cells isolated from 

the adult bovine aorta obtain mesenchymal cell expression such as α-SMA 

through an initiating and promoted transformation process by TGF-β1. 

These researchers also confirmed that the hybrid cells expressed both 

molecular markers that most likely represent an in-between phenotype 

between endothelial cells and mesenchymal cells/fibroblasts, an indication 

that altered phenotype is not permanent. The partially reversible 

conversion was demonstrated after culturing these cells in the absence of 

TGF-β1 [53]. 

       Many studies describing EndMT are based on evidence of co-expression 

of ECs markers and mesenchymal markers in lung tissue in animal or human 

patient models, however, there are a number of major limitations. In response, 

methods for partial and complete elucidation of the EndMT protocol were 

improved using endothelial-specific fluorescence transgenic mice [54].  Future 

studies are needed using samples from IPF patients to clearly understand the 

molecular mechanisms of IPF.  
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1.2.3. The role of TGF-β1 in EndMT of IPF 

        The transforming growth factor β (TGF-β) family of proteins includes 

some of growth factors that play important roles in many physiological 

processes such as embryogenesis, cell development, and differentiation, 

immune system development, immune function, and immune response, 

inflammation, fibrosis, and wound repair [55, 56]. 

        TGF-β plays a central role in fibrosis in general and IPF in particular 

as it promotes fibrosis through different signaling pathways. Furthermore, 

studies have reported TGF-β plays an intimate role in the initiation and 

progression of EndMT processes [57]. The canonical TGF-β pathway is 

activated when TGF-β homodimers bind to the transmembrane 

heterologous TGF-β I/II receptor complex on the cell surface. The 

phosphorylation-mediated activation of the TGF-β receptor I/II complex 

results from the binding of TGF-β to the heterodimeric receptor complex. 

Phosphorylation of the Smad2 and Smad3 proteins in the cytoplasm by the 

active TGF-β receptor I/II complex results in activated Smad2 and Smad3 

forming a complex with Smad4 translocating to the nucleus. Then, inside 

the nucleus, the Smad2/Smad3/Smad4 complex interacts with Smad-

binding factors (SBEs) of TGF-β responsive genes including 

macromolecules encoding profibrotic extracellular matrix (ECM) and 

transcription factors, such as Snail1 and 2 and Twist, stimulating their 

transcription. Smad7 inhibitor is another intracellular Smad protein that 

displaces TGF-β-induced signaling cascades with an inhibitory effect on 

activated TGF-β receptors through TGF-β-induced gene expression 

responses that is a potent negative regulator of TGF-β. In addition, there 

are signals through non-canonical TGF-β pathways that mediate Smad2/3-

independent TGF-β responses. The mitogen-activated protein kinase 

(MAPK) family of specific protein kinases, serine/threonine, and many 

other kinases as phosphatidylinositol 3-kinase (PI3K), RhoA, Rac, c-Abl, 
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and protein kinase C (PKC)-δ, TGF-β can activate all three known MAPK 

pathways.  MAPK pathways include extracellular signal-regulating kinase 

(ERK), p38 MAPK, and c-Jun NH2 terminal kinase (JNK) which are non-

primary TGF-β pathways. Studies demonstrate these pathways lead to 

decreased transcription of endothelial-specific genes or accrete 

transcription of mesenchymal-specific genes mediated by EndMT-related 

transcription factors including Snail1, 2, and Twist1 [58-60] (Figure 1.6). 

       The roles of both canonical TGF-β and noncanonical pathways in 

EndMT were confirmed by demonstrating a reduction in the number of 

mesenchymal cells derived from endothelial cells when TGF-β response 

was reduced in transgenic mice, as well as by knockout of EndMT using 

an activated TGF-β inhibitor TGF-β receptor kinase inhibitor or using a 

molecular inhibitor small amount of TGF-β-mediated intracellular 

phosphorylation [61-63]. 
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Figure 1.6:  Canonical transforming growth factor  TGF-β and noncanonical 

pathways in endothelial to mesenchymal transition (EndMT) [48]. 

 
      In addition to the aforementioned canonical and non-canonical 

molecular signaling pathways, additional pathways involved in the 

regulation of the EndMT include the endothelin (ET)-1, Notch, caveolin 

(CAV)-1, Wnt, high and weak glucose pathways hypoxia-inducible factor 

(HIF)-1α.     The NOTCH and Wnt morphological pathways are important 

modulators of EndMT. The role of Notch signaling in EndMT has been 

described for the first time in vitro in human microvascular endothelial 

cells and HUVECs [64]. Subsequent studies also showed an important 

contribution of Notch signaling during EndMT during valvular 
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development [65, 66]. In addition to NOTCH signaling, the involvement 

of Wnt signaling in EndMT has been recently examined in fibrosis of the 

heart, aortic valve, and renal tissues. The in vitro study indicated that 

during myocardial fibrosis, a significant proportion of α-SMA-positive 

fibroblasts present in post-myocardial infarction cardiac tissues were 

derived from cells. Results demonstrate endothelial cells undergo EndMT 

and express β-catenin-dependent Wnt signaling [67]. Many other 

investigations have continued to confirm the role of β-catenin in EndMT 

[68]. CAV-1 has an inhibitory effect due to the entry of TGF-β receptors 

and their subsequent degradation. The inhibitory effect of CAV-1 in the 

development of EndMT was confirmed by demonstrating that pulmonary 

microvascular endothelial cells from CAV1 knockout mice showed high 

levels of molecular changes leading to EndMT, which were even increased 

after TGF-β treatment [69]. ET-1 induces TGF-β-induced synergistic 

stimulation of EndMT associated with the canonical Smad2/3 pathway. 

Pulmonary microvascular endothelial cells were examined in vitro to 

demonstrate an interaction between ET-1 and TGF-β1 in the induction of 

EndMT. Histological analysis in mice treated with TGF-β1 or ET-1 alone 

expressed EndMT but treatment with TGF-β1 plus ET-1 significantly 

increased the number of cells undergoing EndMT [70]. Hypoxia induces 

EndMT through the effect of HIF-1α activation by Snail1. The roles of 

hypoxia in EndMT in different types of endothelial cells have been 

determined in vivo in different animal models.  Endothelial cell line 

monitoring in mice indicates a particular green fluorescent protein in 

endothelial cells confirmed a role for hypoxia in EndMT in the induction 

of pulmonary arterial hypertension [54]. High glucose levels have been 

shown to induce EndMT involved in the phosphorylation of extracellular 

signal-regulating kinase 1/2 (ERK) [71]. In particular, shear stress induces 

EndMT through many different molecular mechanisms. One mechanism is 
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started by mechanically induced TGF-β release and the release of TGF-β 

from the latency-associated peptide (LAP), then by activation of the TGF-

β standard pathway. The other mechanisms such as the generation of 

reactive oxygen species (ROS) and activation of NFκB, next is the 

activation of NOX1/4 oxidants leading to raised production and 

accumulation of ROS (Figure 1.7). 
 

 

Figure 1.7: Pathways involved in the regulation of endothelial to mesenchymal 

transition (EndMT) regulation. Molecular signaling pathways in addition to the 

variable growth factor (TGF-β) center pathways that induce or participate in the EndMT 

process include endothelin (ET) -1, Notch, caveolin (CAV) -1, Wnt, high glucose and 

hypoxia inducing factor (HIF) -1α  [48]. 
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1.3. Oxidative stress and IPF 

       In the body, all cells need to use and metabolize oxygen, which leads 

to the generation of reactive oxygen species (ROS). ROS are free radicals 

that are naturally formed as byproducts of oxygen metabolism, including 

superoxide anions (O 2 • -), hydrogen peroxide (H 2 O 2, and hydroxyl 

radical (OH •), as well as other secondary ROS. ROS are generated by 

aerobic metabolism in the electron transport chain of the mitochondria; in 

addition, they can also be generated by various enzyme systems, including 

xanthine oxidase, lipid peroxidase, cytochrome P450 enzyme, and 

NADPH oxidase (NOXes) [72]. Endothelial cells, neutrophils, eosinophils, 

alveolar macrophages, and alveolar epithelial cells of the lung are all 

primary cells that produce ROS. In the pulmonary vascular system, ROS 

can be generated from complexes in cell membranes, cellular organelles 

such as peroxisomes and mitochondria, and in the cytoplasm. Excessive or 

uncontrolled ROS production due to increased NOX activation or 

mitochondrial dysfunction, or ROS metabolism compromised by 

antioxidant systems is often thought to contribute to pathogenesis, that is, 

oxidative stress, and causes cell damage and cell transformation [73, 74]. 

1.3.1. Disturbed redox homeostasis in IPF 

        Similar to other organs in the body, the lungs normally contain 

multiple antioxidant systems to prevent excessive cellular ROS production, 

including enzyme-converting ROS (superoxide dismutases [SODs], 

catalases, peroxiredoxins [PRXs], and glutathione peroxidase), and small 

molecular weight antioxidants (vitamins and glutathione). In IPF, some of 

these antioxidant systems have been reported to be altered or impaired [73]. 

        Redox processes are disturbed by increased ROS production and 

impaired antioxidant mechanisms may contribute to the pathogenesis of 

IPF (Figure 1.8). Over the past decade, it has been discovered that the 

production of biological ROS serves a wide range of physiological 
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functions that can be reversed by redox-dependent signals such as 

proliferation, migration, differentiation, or survival of cells [75, 76]. The 

increased production of ROS in IPF contributes to the pathogenesis of IPF 

through the promotion of epithelial cell death and an unstable wound 

healing response after repeated chronic trauma to the pulmonary 

epithelium [77]. Fibroblast accumulation with an apoptosis-resistant 

phenotype, which is associated with impaired Nrf2 induction and increased 

H 2 O 2 production, is a consequence of an increased oxidative burden 

[78]. Specific study of Nox-mediated redox imbalance during fibrosis 

could be important for the development of better therapeutic strategies for 

fibrotic disorders such as IPF. 

 

Figure 1.8: Altered lung redox homeostasis in IPF. In a healthy lung, there is redox 

homeostasis, i.e., ROS generated by exogenous or endogenous sources are 

appropriately counteracted by oxidants. In the IPF lung, there is a redox imbalance as 

ROS-generating processes are triggered by increased NOX production, dysfunction of 

synthesis. This redox imbalance is thought to contribute to epithelial cell death, 

excessive collagen loss, and persistent inflammation, leading to pulmonary fibrosis 
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and tissue scarring. AEC: alveolar epithelial cells; AOX: antioxidant; NOXes, 

NADPH oxidase; ROS, reactive oxygen species. [79]. 

1.3.2. The role of NOX enzymes in IPF 

       Until now, there has been ample evidence of an association between 

NOX-derived ROS and IPF [80]. The NOX family are enzymes that 

include seven NOX members (NOX1– 5 and DUOX1-2) [81, 82]. All 

NOX/DUOX isoforms contain a homologous COOH-terminal 

flavoprotein region. The homologous region consists of  2 binding regions 

of NADPH and flavin adenine dinucleotide (FAD), in which the 

hydrophobic region at the N-terminus consists of six transmembrane alpha-

helices containing two Heme linkages [83] (Figure 1.9). Nox1-4 isoforms 

are activated by forming a heterodimer with the transmembrane protein 

p22phox [84]. But unlike NOX1-4, Nox5 and Duox are activated when 

their intracellular domains contain domains specific to phosphorylation 

and binding calcium.         

        Expression and regulation of NOX isoforms are different in different 

tissues and cells, specifically generating distinct ROS. For example, while 

NOX4 and DUOX1-2 mainly produce H 2 O 2, NOX1–3 and NOX5 

mainly produce O 2 • - [85]. This different modulation (ROS production) 

not only protects the host, but also the proliferation, differentiation, and 

movement of cells by signaling pathways dependent on redox in certain 

fibrotic pathological conditions [86]. Currently, several studies indicate 

that Nox1, Nox2, and Nox4 are involved in the pathogenesis of IPF by the 

expression or activation of some altered NOX enzymes in the lungs of IPF 

patients. Indeed, there is ample evidence demonstrating changes of NOX 

expression/activation in IPF and their functional contribution to pulmonary 

fibrosis especially in animal models [87]. Therefore, the structural and 

functional characteristics of Nox1, Nox2, and Nox4 will be discussed. 
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Figure 1.9. Structural overview of NOX family enzymes [79]. 

       NOX1 expression is observed in epithelial and endothelial cells in lung 

tissues such as human pulmonary artery endothelial cells, bronchial 

epithelial cells, and pulmonary vascular smooth muscle cells. The 

increased expression has been reported due to various conditions such as 

pulmonary hypertension and stimulation of nicotine [88, 89]. At present, 

the contribution of NOX1 to IPF pathology remains unequivocally 

unknown.  

        NOX2 (or Gp91) was the first Nox isoform discovered. Studies report 

Nox2 had the highest expression in neutrophils and macrophages. In 

addition, it was expressed in mesenchymal cells, smooth muscle cells, 

endothelial cells, epithelial cells of the lung but at lower levels. NOX2 has 

an important role in inflammation [90] and has been shown to promote cell 

proliferation of endothelial cells [91]. However, the specific role of NOX2 
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in fibrosis progression of IPF is not yet clear; further studies are needed on 

this topic. 

       NOX4 is commonly expressed in many different cell types of the lung 

including macrophages, smooth muscle cells, endothelial cells, 

mesenchymal cells [92, 93]. Nox4 is the only Nox isoform capable of 

releasing mainly H 2 O 2 [94] which strongly induces TGFβ upregulation 

in the IPF lung epithelial cells and fibroblasts that, in turn, participate in 

pro-fibrosis [95]. In contrast to other Nox isoforms, Nox4 production is 

largely dependent on its level expression or after direct transcriptional 

modification [94] and independent of synaptic proteins of the cell. A 

common complication of IPF is pulmonary arterial hypertension which 

may be mediated by increased NOX4 activity. There is evidence that 

NOX4 expression is present in the thickened arteries of IPF patients [96]. 

Indeed, in vascular smooth muscle, Nox4-dependent ROS production, 

cytoskeletal reorganization, and cellular migration are regulated by 

Nox4/p22phox where they form a multimeric complex with polymerase 

delta-interacting protein  [97]. Vascular smooth muscle cells play an 

important role in pulmonary perfusion regulation, as they are activated by 

TGF-β1 to express NOX4 through a SMAD2/3-dependent pathway, 

resulting in cell proliferation [98]. Pulmonary endothelial cells also show 

more NOX4 expression at sites of fibrous regions and around fibrous 

regions [99]. TGF-β is involved in endothelial cell death and in NOX4-

dependent induction of ROS production. Despite overexpression, NOX4 

prevents endothelial cell apoptosis due to TGFβ induction, but the exact 

role of NOX4 in these cells remains unclear [100]. 

1.4. Oxidative stress and EndMT in IPF: is there a link?  

        There are many factors involved in oxidative stress in IPF. Smoking 

is one of the factors that stimulate ROS production in inflammatory and 

other cells through endoplasmic reticulum stress, mitochondrial 
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dysfunction, and NADPH oxidase (NOX) production, for example, 

NADPH oxidase-4 (NOX4)  [101]. The tight control barrier that prevents 

plasma secretion into the interstitial and alveolar spaces is an important 

role in the pulmonary endothelium. Two major Nox isoforms (NOX2 and 

NOX4) are expressed by pulmonary endothelial cells. The role of Nox4-

dependent ROS is reported to be to regulate endothelial cell motility and 

angiogenesis. Notably, genetic silencing of Nox4 reduced oxidative stress-

induced endothelial cell migration and capillary tube formation [102]. 

Nox4 expression through Nrf2-dependent activation of the Nox4 promoter 

has been induced by hyperoxia [103].  In addition, Nox2-mediated ROS in 

artery endothelial cells of the lung has been shown to contribute to 

impaired angiogenesis in pulmonary hypertension in lambs by the 

induction of autophagy of NOX2 [104]. In particular, a recent study 

documented an increase in ROS production and type I collagen deposition 

along with the proliferation of human pulmonary arterial smooth muscle 

cells (HPASMCs) induced by the serum of IPF patients. The cytological 

effects induced by the IPF sera were significantly reduced by 

diphenyleneiodonium (DPI) treatment, an NADPH oxidase inhibitor when 

compared with untreated sera [105] (Figure 1.10). 
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Figure 1.10: Diagram of the cellular and molecular events linked to the 

pathogenesis of IPF in the pulmonary environment. NOX (NADPH oxidase), ROS 

(reactive oxygen species), cAMP (cyclic adenosine monophosphate), DAG 

(diacylglycerol), IP3 (inositol trisphosphate), DPI (diphenyleneiodonium), CVT-

6883A 2B-adenosine receptor antagonist, ER endoplasmic reticulum. Red arrows 

show activation, black lines show inhibition [106]. 

 

        Endothelial dysfunction has long been reported to be associated with 

excessive ROS production which induces EMT through stimulation of 

TGF-β1 signaling.  It wasn’t until Montorfano et al. studied the role of 

oxidative stress in EndMT that this finding was reported for the first time 

in 2014 [107]. Several studies have since investigated a direct relation 

between oxidative stress and EndMT in PAH. The relationship between 

oxidative stress, TGF-β, and EndMT signaling has been reported in an in 

vitro study [107], in which the role of enzymes and co-factors in ROS 

production and sensitization signals were found to be mediated by 

oxidation [108]. Their association with EndMT in PAH has also been 

identified in animal models. Evidence for a pathogenic role of ROS in 

EndMT, specifically the activation and mediation of intrinsic adaptation to 
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PAH, has been demonstrated by several redox signaling pathways. For 

example, Redox-regulated PKGIα, and perhaps others, have yet to be 

studied. Besides the reports, there is an association between BMPR2 

dysfunction and oxidative stress in the PAH that highlights the close 

connection between signaling pathways involved in the dysfunction of 

endothelial function and pathogenesis [88, 109]. This also provides a 

theoretical for a more specific analysis of the relationship between ROS 

and EndMT in PAH in general (Figure 1.11). Therefore, more studies are 

useful to understand the role of oxidative stress in the EndMT process of 

IPF disease. Finally, the EndMT-targeted therapies can be generated to 

decrease the oxidative stress found in IPF disease, and control disease 

progression.

 
 

Figure 1.11: A role of ROS in the induction of PH-associated EndMT.  Increased 

production of ROS due to an imbalanced redox state in the pulmonary vasculature in 
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PH leads to an induction of EndMT through an upregulation of TGF-β1/TGF-

β2/ALK5/Smad3 signaling axis as well as a yet to be defined mechanism likely 

involving eNOS uncoupling. On the contrary, oxidation of PKGIα serves as a 

protective mechanism to limit PH-associated EndMT. ALK, activin receptor-like 

kinase; eNOS, endothelial nitric oxide synthase; PKGIα, protein kinase G Iα; ROS, 

reactive oxygen species [110]. 
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2. RESEARCH OBJECTIVES 
 

        Idiopathic pulmonary fibrosis (IPF), the most common form of 

idiopathic interstitial pneumonia, is a progressive, irreversible, and often 

fatal disease characterized by an abnormal fibrous response involving 

several areas of the lung [29]. An unstable tissue structure, including severe 

collagen secretion and deposition, gradually replaces healthy tissue 

structure, significantly damaging lung functions and eventually leading to 

death. The molecular and cellular determinants that activate and maintain 

abnormal fibrous processes are largely unknown. However, it appears that 

repeated microtrauma directed to the alveolar epithelium may play a major 

role. Indeed, the aforementioned process leads to the release of various 

growth factors and fibrous mediators such as fibroblast growth factor 

(FGF), transforming growth factor-beta 1 (TGF-β1), which activates 

fibroblast recruitment, proliferation, and extracellular matrix accumulation 

in alveolar regions [111]. 

        Despite great scientific efforts in studying the etiology and 

pathogenesis of IPF, the overall picture of its pathogenic mechanism 

remains controversial. Specifically, several studies indicate that an initial 

injury of known or unknown etiology induces unresolved inflammation or 

alveolar epithelial cell activation. Epithelial and inflammatory cells release 

cytokines, growth factors that induce fibroblast migration, proliferation, 

and changes in cell phenotype [111]. Oxidative stress-mediated vascular 

dysfunction is one of the important features of adverse vascular changes in 

IPF patients. The presence of large amounts of excess ROS has been 

supported by numerous studies, which document an aberrant redox state 

and demonstrate ROS involvement in extracellular matrix deposition, 

implying that the molecular mechanism remains unclear. Many clinical 

trials with antioxidants have been performed to inhibit the progression of 
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IPF [112, 113]. More recently, evidence has also shown that NADPH 

oxidase (NOX) enzymes induce ROS in IPF. When NOX4 was inactivated, 

either transcriptionally or pharmacologically, TGF-β1 was unable to 

promote fibroblast differentiation and collagen secretion [96]. 

        In addition, aberrant microvascular and macrovascular remodeling of the 

pulmonary vasculature appears to be closely related to the pathogenesis of IPF. 

Previous studies reported that the injured epithelium and the endothelium can 

release growth factors, cytokines, and matrix metalloproteinases that induce 

mesenchymal cell activation and proliferation, ECM deposition, and fibroblast 

accumulation. Changes in cellular plasticity are associated with the onset and 

progression of IPF, which can be essentially classified in EMT and EndMT 

[106]. Experimental evidence suggests that fibroblasts can originate from 

cellular sources other than fibroblasts. In particular, endothelial cells (ECs) are 

a potential source of action through EndMT [114]. During this process, ECs 

lose characteristic cellular features, typical endothelial markers, including VE-

cadherin, CD31, von Willebrand factor, and undergo the transition to a 

mesenchymal phenotype with expression of mesenchymal markers such as α-

SMA, vimentin, and collagen type 1. These processes contribute significantly 

to fibrosis in the affected tissue [115]. The importance of EndMT contributing 

to fibrosis in the affected tissue, in the process of fibrosis, has been 

demonstrated to occur in many fibrosis diseases such as chronic kidney disease 

[116]. However, the large vascular remodeling associated with IPF and the 

impact of EndMT in fibrosis and their role in the initiation and progression of 

IPF-associated fibrosis requires further study. 

        EndMT can trigger enhanced fibroblast proliferation and is implicated 

as a novel mechanism for the generation of activated fibroblasts. As 

reported above, ROS mediates TGF-β differentiation of fibroblasts. This 

in turn causes increased production of fibrous type I and type III collagen 

and another extracellular matrix (ECM) proteins and activates the 
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expression of smooth muscle α-actin (α-SMA), a process that is strongly 

correlated with EndMT [117] [114]. 

        The objective of this study was to investigate whether oxidative stress 

and EndMT could be part of the molecular machinery that causes vascular 

damage in IPF patients. Therefore, we conducted this study with the 

following purposes: 

1. To investigate whether IPF sera can induce oxidative stress in 

HPMECs. 

2. To investigate whether IPF sera can affect HPMECs survival. 

3. To investigate whether IPF sera can induce EndMT in HPMECs. 

4. To identify the potential relationship between Oxidative stress 

and EndMT on HPMECs in IPF.  
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3. MATERIALS AND METHODS 

 

3.1. Ethical approval 

       The Ethics Committee from the University of Sassari, Italy approved 

all study procedures. Informed consent was acquired from patients for all 

study samples. 

3.2. Patients 

        All IPF patients in the study were diagnosed according to evidence-

based guidelines for the diagnosis and management of IPF per the 

document “An official ATS/ERS/ JRS/ALAT statement: idiopathic 

pulmonary fibrosis: evidence-based guidelines for diagnosis and 

management,” American Journal of Respiratory and Critical Care 

Medicine [25]. 

       Inclusion Criteria: High-resolution computed tomography (HRCT) 

images and lung biopsies of patients diagnosed at the University Hospital 

of Sassari were used to confirm sample eligibility and examined by four 

experienced physicians (two radiologists and two pathologists). The 

definitive diagnosis for each registered patient was approved based on 

multidisciplinary discussions with experienced interstitial lung disease 

specialists in the Department of Respiratory and Radiological Pathology of 

the University of Sassari. In addition to a definitive diagnosis of IPF, all 

patients enrolled in the study met the appropriate pulmonary function 

criteria: a predicted forced vital capacity (FVC) of at least 50% and the 

percentage diffusing carbon monoxide diffusing capacity (DLCO) 

predicted at least 35%. 

       Exclusion criteria: Patients were excluded from the study with the 

following medical conditions: current exacerbation of IPF, comorbidities 

such as malignancy, bleeding tendency, and liver dysfunction - severe 
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kidney disease with alanine transaminase or aspartate transaminase levels 

more than twice the upper limit of normal, or serum creatinine levels above 

the upper limit of normal, use of immunosuppressants, antifibrotic drugs, 

interferon, d-penicillamine, and colchicine, or oral corticosteroids at a dose 

of ≥ 15 mg/day or equivalent for the previous three months, and currently 

pregnant or nursing. 

       Healthy donors: Healthy donors with suitable age and sex were 

selected through postings and enrolling after a passed screen 

questionnaire to exclude the presence of any autoimmune or potential 

blood vessel disease. 

        Serum samples from patients with IPF and Healthy donors were 

collected at the Hospital of Sassari University. Demographics and clinical 

characteristics of IPF patients and healthy donors (HD) are summarized in 

table 4.1, respectively. 

        Blood samples were taken from each patient and processed within 2 

hours of collection. Samples were stored at -800C until being 

experimented.  

Serum extraction. 

Serum was separated from whole blood samples from the IPF patients and 

healthy donors (HD) for the study. Within 2 hours from collection, the 

whole blood tube was subjected to centrifugation at a speed of 2,500 RPM 

for 10 minutes at a temperature of 40C. The supernatant was recovered and 

subsequently subjected to further centrifugation of 12,500 RPM for 10 

minutes at a temperature of 40C again. The supernatant representing the 

serum was stored at - 800C until the moment of use. 

3.3. Cell line 

       Human Pulmonary Microvascular Endothelial Cells (HPMECs) were 

provided by Innoprot (Spain). These cells were isolated in the ScienCell 

Research Laboratories (Carlsbad, CA, USA) from the human lungs of 
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healthy individuals. HPMECs were treated with sera from IPF patients and 

controls (Healthy donors) to compare. 

3.4. Cell culture and Treatment  

       Endothelial cell medium (ECM) of Innoprot, S.L, Spain was used to 

culture the HPMECs and supplemented with 5% Fetal Bovine Serum 

(FBS), 1% of Endothelial Cell Growth Supplement (ECGS), and 1% 

Penicillin/Streptomycin solution (P/S solution) in the growth medium. The 

cells were maintained culture at 37°C and 5% CO2 in a humid environment 

in an incubator.  

       Cells that reached the experimental concentration were seeded in a 96-well 

plate (BD Falcon). They were treated for experiments in a basic medium 

containing 5% serum of the study subjects. Depend on the protein content of 

different subjects was normalized. To investigate the role of NADPH oxidase 

in the effects of cells induce by IPF serum, in experiments, cells were pretreated 

for 1 hour with 5μM of the flavin-oxidase inhibitor diphenyleneiodonium 

(DPI), NOX inhibitor, or 2.5µM Chelerythrine (CHE), or 5mM N-acetyl 

cysteine (NAC) [118]. 

3.5. Measurement of Intracellular ROS 

       By using the 2 ′, 7'-dichlorodihydrofluorescein diacetate (H2DCF-

DA) molecular ROS probe for assessed the level of intracellular ROS, as 

in previous similar studies but with correction [119]. In the cell, esterases 

cleave the acetate groups on H2DCF-DA, and the reduced form of the 

probe (H2DCF) is retained. Intracellular ROS oxidize the reduced form of 

the probe (H2DCF), yielding the fluorescent product (DCF). Fluorescence 

was measured using a Tecan GENios Plus microplate reader, Tecan, 

Switzerland, in a dark light condition. The excitation and emission 

wavelengths used for fluorescence quantification were 485nm and 535nm, 

respectively. 

       For measurements of intracellular ROS, 105 HPMECs cells 
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concentration per well were seeded in black 96-well plates, Costar, 

Corning, Inc, NY, and incubated with their growth medium alone for 24 

hours at 37°C with an atmosphere of 5% CO2/95% air. After 24 hours, 

growth mediums were removed, HPMEC cells were pre-incubated for 30 

minutes with PBS 1X containing 1μM H2DCFDA, then they were washed 

with PBS and processed as described above. After 15 minutes, cells were 

treated with 5% sera of IPF and HD. Fluorescence was measured using a 

Tecan GENios Plus microplate reader, Tecan, Switzerland, under 

photoprotected conditions. The excitation and emission wavelengths used 

for fluorescence quantification were 485nm and 535nm. Fluorescence 

variation was kinetically measured in 5 hours. All fluorescence 

measurements were adjusted for background fluorescence and protein 

concentration. Using untreated cells as a control sample compare with 

treated cells. Intracellular ROS levels results were evaluated by comparing 

five measurements and expressed as mean ± SD of relative fluorescence 

unit value (RFU). 

3.6. Measurement of intracellular ROS with NADPH inhibitors  

       For these measurements similar to above, 105 HPMEC cells per well 

were seeded in black 96-well plates, Costar, Corning, Inc, NY, and 

incubated with their growth medium for 24 hours at 37°C with an 

atmosphere of 5% CO2/95% air. After 24 hours, cells were pretreated with 

the broad NOX inhibitor, diphenylene iodonium (DPI) 5μM for one hour. 

Then, the culture medium was removed, HPMEC cells were pre-incubated 

for 30 minutes with PBS 1X containing 1μM H2DCFDA, washed with 1X 

PBS, and then processed as described above. After 15 minutes, cells were 

treated with 5% sera of IPF and HD, and the fluorescence was measured 

using a Tecan GENios Plus microplate reader, Tecan, Switzerland, under 

photoprotected conditions. The excitation and emission wavelengths used 
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for fluorescence quantification were 485 nm and 535 nm, respectively.  

Treatment-induced fluorescence variation was kinetically measured over a 

5-hour period. All fluorescence measurements were corrected for 

background fluorescence and protein concentration. Using untreated cells 

as control, intracellular ROS levels results were evaluated by comparing 

five measurements and expressed as mean ± SD of relative fluorescence 

unit value (RFU). 

3.7. Cell Viability Assay 

       Cell viability was evaluated in 96-well plates (BD Falcon) by using 

the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium 

bromide (MTT reagent) assay (Promega, Madison, WI, USA). Yellow 

MTT reagent enters the cells and passes into the mitochondria where 

mitochondrial dehydrogenases of viable cells cleave the tetrazolium ring, 

yielding reduced purple MTT formazan crystals, which are insoluble in 

aqueous solutions. Cell viability was evaluated by the purple MTT 

formazan crystals formation, which occurs only when mitochondrial 

enzymes are active because their conversion can only directly occur to the 

number of cells that survive. Formazan crystals were dissolved in acidified 

isopropanol to crease a purple solution, and the obtained purple solution 

was determined spectrophotometrically at 570 nm. The last, increase in cell 

number resulted in a large amount of purple formazan MTT crystals being 

formed and increased absorbance at 570 nm  [120, 121]. 

        In our experimental conditions, after 24 hours of treatment, 20 µL of 

MTT solution (2 mg/mL) in M199 medium was added to the cells and 

incubated at 37 °C in a cell culture incubator for 4 hours. At the end of the 

incubation stage, the solution was removed and purple MTT formazan 

crystals product washed twice with 1X PBS.  The purple formazan product 

crystals were then solubilized by acidic isopropanol (0.04 N HCl in 

absolute isopropanol). Finally, plates were analyzed at 570 nm using a 
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GENios plus microplate reader (Tecan). Results were calculated as the 

means ± SD of five measurements and expressed as a percentage of 

untreated control cells. 

3.8. Protein extraction for ELISA (Lysis buffer method)  

       105 HPMECs cells concentration per well were seeded in white 12-

wells plates (Costar, NY) and incubated with a growth medium for 24 

hours at 37°C with an atmosphere of 5% CO2/95% air. Then, HPMEC cells 

were pre-treated for experiments in a basic medium containing 5% serum 

of the study subjects (IPF and HD). Serums of different study subjects (IPF 

and HD) were normalized depending on protein content. To evaluate the 

role of ROS (NADPH oxidase) in the serum-induced cellular effects of 

IPF, in select experiments, cells were pretreated for 1 hour with 5μM of 

the flavin-oxidase inhibitor diphenyleneiodonium (DPI), a NOX inhibitor. 

This is the experiment that we did for 3 days for extraction of the proteins 

used for the ELISA kits, following the steps as below: 

- Trypsinize cells. 

- Block trypsin by adding 5 ml of could clture media containing (5-10 

%FBS) 

- Centrifuge the cell at 1100 rpm for 5 min, then discards the 

supernatant. 

- Add 1 ml of cold PBS – centrifuge at Centrifuge the cell at 1100 rpm 

for 5 min - discard the supernatant. 

- Repeat step 4 for 2-3 times (make sure no culture media is present). 

- Lysis Buffer method 

- Lysis Buffer: Triton Lysis Buffer (TLB) cold + protease and 

phosphatase inhibitors. 
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Lysis Buffer Cocktail 

Triton lysis buffer 1 ml 

PMSF 17 µl 

1M NaF 50 µl 

100mM NaVO3 17 µl 

Protease inhibitor 20 µl 

 

• Add 100 µl of lysis buffer to the cell pellet coming from point 5 and 

perform 4 Freezing-Thawing cycles as describe below: 

- 8 minutes freezing at -80°C 

- 2 minutes at 37°C in the water bath 

- Vortex 30-60 seconds. 

• Centrifuge 10 min at max speed at 4°C (14000 rpm) 

• Collect the supernatant and discard the pellet (you may aliquot the 

supernatant is needed “e.g 2 aliquots 50 ml) 

• Store sample at - 80°C. 

      The concentration of proteins in the solution is determined by the 

Bradford Reagent (Sigma). 

3.9. Quantification of the proteins by Bradford. 

       The protein concentration in the solution was determined by the 

Bradford experiment, following the manufacturer‘s protocol, Sigma, St 

Louis, MO. 

The Bradford Reagent was used to evaluate the concentration of proteins 

in the solution, and the procedure depends on the formation of a complex 

between the dye (Brilliant Blue G) and proteins in the solution. The 

protein-dye complex causes a change in the absorption maximum of the 

dye, from 465 to 595 nm, the quantity of absorption is equivalent to the 

protein present. Bradford Reagent requires to do no dilution and is 

appropriate for micro, multi-well plate, and standard experiments. The 
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concentration range of protein is 0.1-1.4 mg/ml, using bovine serum 

albumin (BSA) as the standard protein. 

 
Figure 3.1: Standard Curve  

        96 Well Plate Assay Protocol (5 μl of a 0.1-1.4 mg/ml protein sample 

is used). This assay is performed in a 96 well plate. With this assay it is 

possible to quickly assay multiple protein samples, while using a small 

sample volume (5 μl). It is also possible to automate your protein 

determination with this multiwell plate assay. After gently mix the 

Bradford Reagent in the bottle and bring it to room temperature. Prepare 

protein standards in buffer ranging from 0.1-1.4 mg/ml using a BSA 

standard or an equivalent protein standard. Using 5 μl of the protein 

standards, and 5 μl of buffer for the blank wells. Prepare the unknown 

sample(s) with an approximate concentration between 0.1-1.4 mg/ml. To 

each well being used, add 250 μl of the Bradford Reagent and mix on a 

shaker for approximately 30 seconds. Let the samples be incubated at room 

temperature for 5 to 45 minutes. Then measure the absorbance at 595 nm. 

The protein-dye complex is stable for up to 60 minutes. The absorbance of 

the samples must be recorded before the 60-minute time limit and within 

10 minutes of each other. Determine the protein concentration of the 

unknown sample(s) by comparing the Net A595 values against the 

standard curve. 
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3.10. Identifications of endothelial markers and mesenchymal 

markers by ELISA 

        Protein levels of both endothelial markers (VE-cadherin, CD31, 

von Willebrand factor) and mesenchymal markers (α-SMA, Col1) were 

determined by ELISA kits (Elabscience cat.). This ELISA kit uses the 

Sandwich-ELISA principle. The micro-ELISA plate in this kit has been 

pre-coated with an antibody specific to Human-specific protein. 

Standards and study samples are added to wells of the ELISA micro-

plate to combine with the specific antibody. Then, a biotinylated 

detection antibody specific for Human-specific protein and Avidin-

Horseradish Peroxidase (HRP) conjugate are added to each micro-plate 

well and incubated. After the free components are removed away by 

washing, the substrate solution is put on each well. But only those wells 

that contain Human-specific protein (VE-cadherin, CD31, von 

Willebrand factor, α-SMA, Col1), the biotinylated detection antibody, 

and Avidin-HRP conjugate will appear fluorescent. The RLU (relative 

light unit) value is evaluated by the machine Chemiluminescence 

immunoassay analyzer. The RLU value is obviously associated with 

the concentration of Human-specific protein. The concentration of 

Human-specific protein (VE-cadherin, CD31, von Willebrand factor, 

α-SMA, Col1) in the study samples can be identified by comparing the 

RLU value of the study samples to the standard curve. 

        After treatment, HPMEC cells extract were washed and recovered in 

the protein extraction buffer. Then, normalizing samples for protein 

concentration, 100 µL of cell extract (protein) was incubated for 90 

minutes at 37 °C, standard proteins with a different concentration were also 

added in separate wells for the standard curve calculated. Following 

incubation, 100 µL of biotinylated detection Ab buffer was added and 

incubated for 1 hour at 37 °C and were then aspirated and washed 3 times 
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with 1X PBS buffer. Continue incubation with 100 µL of HRP conjugate 

for 30 min at 37 °C and wells also were aspirated and washed 5 times 

before adding 90 µL of substrate reagent. The substrate reagent was 

incubated for 15 min at 37 °C and then the reaction was blocked with 50 

µL of stop solution. At last, the absorbance at 450 nm was measured and 

protein concentration determined following the manufacturer’s instruction. 

[105]. 

 

Figure 3.2: ELISA Assay procedures 
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3.11. Statistical Analysis 

       Data are shown for individual subjects in absolute values and 

presented as mean ± SD. One-way ANOVA followed by a post hoc 

Newman-Keuls Multiple Comparison Test was used to detect differences 

between more than two groups. Differences were determined to be 

statistically significant as p < 0.05. Statistical analysis was performed using 

GraphPad Prism version 5.00 for Windows (GraphPad Software, San 

Diego, CA, USA). 
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4. RESULTS 
 

4.1. Patient demographics and clinical characteristics 

Table 4.1. Demographics and clinical characteristics of IPF patients.  

       All most IPF patients enrolled in this study were older than 70 years 

and male. Patients with IPF were slightly older than the healthy donors (74 

± 5 and 71 ±2,4, respectively; p = 0.09). 

Subjects’ 
characteristics 

IPF patients/T0, n 
= 10 

Healthy 
donors (HD), 

n = 9 
P value 

Age, mean (SD) 74 (5) 71 (2,4) 0,09 

Male, n (%) 8 (80 %) 8 (88,9 %) 0.54 

Former smokers, n (%) 7 (70 %) 8 (88,9 %) 0.34 

FVC, % predicted, 
mean (SD) 75 % (0,14)   

DLCO, % predicted, 
mean (SD) 54  (0,08)   

 
     The studied samples were collected at the time of admission to the 

hospital in untreated IPF patients (T0). Healthy donor (HD) samples were 

collected from healthy blood donors following the criteria of this study. At 

the time of admission (T0), IPF patients have confirmed the spirometry 

values, such as FVC was 75 ± 0.14% of the predicted value and DLCO was 

54 ± 0.08% of the predicted value. 
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4.2. Sera of IPF patients demonstrate increased intracellular ROS 

levels in HPMECs.      

       The first study determined whether serum from IPF patients could 

increase intracellular ROS levels. HPMECs were treated with IPF 

serum and HD serum for comparison. Before stimulation, HPMECs 

were loaded with the ROS molecular probe 2′,7′-

dichlorodihydrofluorescein diacetate, H2 -DCFDA, (in the cell, this 

probe can be oxidized in the presence of ROS, yielding a fluorescent 

compound, DCF) and then cultured in basal medium containing 5% 

(V/V) of sera from IPF patients or HD. The change in intracellular ROS 

levels was determined kinetically over the course of 5 hours (Figure 

4.1). The graph shows the maximum intracellular ROS levels plateaued 

at the 2 hours mark and was used for comparison. Fluorescence data 

were normalized for protein content and expressed in relative 

fluorescence units (RFU). As depicted in the graph, sera of IPF patients 

caused a significant increase in intracellular ROS levels in HPMEC 

compared with that from HD sera (Figure 4.2). Our study demonstrates 

that serum from IPF patients induces abnormal intracellular ROS 

production in HPMECs. 
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Figure 4.1.  Effect of IPF sera on HPMEC production of intracellular ROS 

levels. Before stimulation, subconfluent HPMECs were loaded with 1μM H2 -

DCFDA and then cultured in a basal medium containing 5% of sera from IPF 

patients and HD. Variations in intracellular ROS levels were kinetically 

determined in a 5-hour time-course experiment. Figure report the representative 

data of one randomly chosen sample. 

  

Figure 4.2.  Effect of IPF sera on HPMEC production of intracellular ROS 

levels after 2 hours. Before stimulation, subconfluent HPMECs were loaded 

with 1μM H2 -DCFDA and then cultured in a basal medium containing 5% of 
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sera from IPF patients and HD. Variations in intracellular ROS levels were 

kinetically determined in a 5-hour time-course experiment, and values at 2 hours 

were applied for comparison. Fluorescence data were identified by Relative 

Fluorescence Units (RFU). HD: cells stimulated for 2 hours with 5% sera from 

healthy subjects (n=10). IPF: cells stimulated with 5% sera from IPF patients 

(n=10).  *, significantly different from control group (HD). (p < 0.05) 

 

4.3. DPI reduced intracellular ROS levels induced by sera of IPF patients  

       NADPH oxidases (NOX) appear to be the most important ligand-

mediated source of intracellular ROS in IPF. Therefore, we examined the 

possible involvement of NOX in the IPF serum-induced increase of 

intracellular ROS. Diphenyleneiodonium (DPI), a broad-spectrum NOX 

inhibitor, was used to evaluate the potential relationship between the NOX 

family and serum-induced ROS. First, HPMECs were treated with DPI 

5μM for 1 hour, then with 5% serum from IPF patients and healthy donors 

(HD). The change in intracellular ROS levels was determined kinetically 

in a 5-hour time-progression experiment (figure 4.3). The data of 

fluorescence are shown for protein content and expressed as relative 

fluorescence units (RFUs). 
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Figure 4.3.  Effect of Diphenyleneiodonium on IPF-induced production of 

intracellular ROS levels in HPMECs. Before stimulation, subconfluent HPMECs 

were loaded with 1μM H2 -DCFDA, added with 5 µM Diphenyleneiodonium (DPI), 

and then cultured in a basal medium containing 5% of sera from IPF patients (IPF) 

and health donor (HD). Variations in intracellular ROS levels were kinetically 

determined in a 5-hour time-course experiment. Figure report the representative data 

of one randomly chosen sample 

       HPMECs were treated with DPI 5μM for 1 hour then cells were 

exposed to IPF and HD patient serum. The results of serum-treated 

HPMECs indicate that DPI-pretreated cells have decreased levels of 

intracellular ROS compared with DPI-non pretreated cells. In particular, 

the increase in intracellular ROS induced by IPF serum with DPI was 

significantly reduced compared with IPF serum without DPI treatment, 

with the value indicating that the significance is reported p < 0.01 (Figure 

4.4). This result suggests that the IPF-induced increase in intracellular ROS 

was significantly attenuated by DPI in the observation of our experiment. 

These results suggest an implication of NOX in ROS generation observed 

in these cells exposed to IPF serum. 
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Figure 4.4. Effect of Diphenyleneiodonium (DPI) on IPF-induced production of 

intracellular ROS levels in HPMECs after 2 hours. 

HD: cells stimulated with 5% sera from healthy subjects (n=9). IPF: cells stimulated 

with 5% sera from IPF patients (n=10). IPF + DPI: cell pretreated for 1 hour with 5 

µM DPI and then stimulated with 5% sera from IPF. Values are shown as mean ± SD, 

#, significantly different from HD; *, significantly different from IPF. (p < 0.05) 

 

4.4. Sera of IPF patients increased HPMEC cell proliferation 

       ROS can be an important modulator of both physiological and 

pathological cell proliferation depending on the concentration. To understand 

whether intracellular ROS can affect HPMEC proliferation, we assessed the 

rate of cell proliferation after cells were exposed to IPF and HD serum. The 

method employed is based on using the colorimetric 3-(4,5-dimethylthiazol-2-

yl)-2,5- diphenyltetrazolium bromide (MTT reagent) assay (Promega, 

Madison, WI, USA). The yellow MTT reagent enters into the cell and in the 

mitochondria where mitochondrial dehydrogenases cleave the tetrazolium 

ring, yielding purple MTT formazan crystals, which can only be directly related 

to the number of viable cells. Cell proliferation was assessed with MTT after 

48 hours of treatment. And in our study results, serum from IPF patients 
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significantly increased cell proliferation in HPMEC compared with HD serum 

(Figure 4.5). 

 

 
 

Figure 4.5. Sera of IPF patients increased HPMECs proliferation. Proliferation 

was assessed with MTT after 48 hours of treatment. Sera from IPF patients 

significantly increased intracellular ROS levels in HPMECs compared with HD, HD: 

cells stimulated for 48 hours with 5% sera from healthy subjects (n=9). IPF: cells 

stimulated with 5% sera from IPF patients (n=10). *, significantly different from 

Healty Donor (HD). (p < 0.05) 

 
        By MTT assay, our study demonstrated that IPF-induced increase of 

HPMEC proliferation was significantly blunted by DPI in our results 

(Figure 4.6). The results confirm that NOX is implicated in IPF-induced 

HPMEC proliferation. 
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Figure 4.6. DPI reduced HPMECs proliferation induced by sera from IPF 

patients. HD: cells stimulated for 48 hours with 5% sera from healthy subjects (n=9). 

IPF + DPI: cell pretreated for 1 hour with 5µM DPI and then stimulated for 48 hours 

with 5% sera from IPF. IPF: cells stimulated for 48 hours with 5% sera from IPF 

patients (n=10). Values are shown as mean ± SD, *, significantly different from 

Healthy Donor HD; #, significantly different from IPF. (p < 0.05) 

 

4.5. IPF sera induces Endothelial-to-Mesenchymal Transition 

(EndMT) in HPMECs. 

         In pathophysiologies, vascular injury is often associated with 

endothelial depletion and is characterized by endothelial cells (ECs) with 

less proliferative potential and, of course, lower angiogenic capacity [3]. 

Remarkably, as reported in Figure 4.6 above, the serum of IPF patients can 

increase HPMECs. In this case, the ability of ECs to convert their cellular 

phenotype to a more fibrous and proliferative phenotype leads to fibrosis 

[64]. During this transition, known as the Endothelial-Mesenchymal 

Transition (EndMT), the EC leaves its physiological quiescent state, 

becomes more proliferative and acquires high mobility and secretes the 

extracellular matrix [64]. To test whether serum IPF could induce the 
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conversion of ECs to fibroblasts, HPMECs were exposed to IPF and HD 

patient serum for 72 h; endothelial and mesenchymal characteristics were 

then measured using specific markers of both phenotypes. 

     HPMECs were exposed to 5% of IPF sera and 5% healthy donors sera 

(Healthy Donor) for 3 days. Protein levels of endothelial markers (vWF, 

CD31, CDH5) and mesenchymal markers (α-SMA, COL1) were assessed 

by ELISA. Surprisingly, ELISA results for the HPMECs exposed to IPF 

serum show protein levels of the endothelial-specific markers (vWF, 

CD31/PECAM-1, CDH5/VE-Cadherin) were all decreased, whereas 

protein levels of the mesenchymal-specific markers (α-SMA, Collagen I) 

were increased (Figure 4.7). 

   

  
Figure 4.7: IPF induces endothelial-to-mesenchymal-transition (EndMT) in 

Human Pulmonary Microendothelial Cells (HPMECs). HPMEC cells were 

exposed to 5% of IPF sera for 3 days. The protein levels of endothelial markers (vWF, 

CD31, CDH5) and mesenchymal markers (α-Actin, COL1) were assessed by ELISA.  

*

0

20

40

60

80

100

120

HD IPF

vW
F 

(%
)

von Willerbrand factor 
(vWF) 

*

0
10
20
30
40
50
60
70
80
90
100

HD IPF

PE
C

A
M

-1
 (C

D
 3

1)
 (%

)

PECAM-1 (CD31)

*

0
10
20
30
40
50
60
70
80
90
100

HD IPF

V
E

-C
ad

he
ri

n 
(%

)

VE-Cadherin (CDH5)

*

0

20

40

60

80

100

120

140

160

HD IPF

A
lp

ha
-a

ct
in

 (%
)

Alpha-actin

*

0
10
20
30
40
50
60
70
80
90

HD IPF

Pr
o-

co
lla

ge
ne

 (%
)

Pro-collagene



 

Phan Thi Hang Giang - Role of ROS in the Endothelial-to-Mesenchymal Transition induced by the 
sera from idiopathic pulmonary fibrosis patients - Ph.D. Thesis in Biochemistry, Physiology, and 

Molecular Biology of Ph.D. School in Life Sciences and Biotechnologies, University of Sassari, Italy. 

 

53 

Percentage with respect to the healthy donor (HD) results counted 100%. Values are 

shown as mean ± SD, n = 5; *, significantly different from Healthy Donor (HD). 

 

4.6. NOX mediates IPF sera-induce EndMT in HPMECs.  

     Currently, our data confirmed the involvement of oxidative stress in 

IPF-induced EndMT. To confirm NOX as a major source of EndMT-

induced by IPF in HPMECs, we tested whether or not DPI attenuated both 

IPF-induced ROS intracellular production and EndMT conversion. For this 

purpose, HPMEC cells were pretreated with 5 µM DPI for 1 hour before 

being exposed to 5% IPF serum and 5% HD serum for 3 days. Protein 

levels of endothelial markers (vWF, CD31, CDH5) and mesenchymal 

markers (α-Actin, COL1) were assessed by ELISA. As shown in figure 

4.8, DPI significantly attenuated intracellular ROS levels. In addition, post-

treatment with DPI was also found to downregulate IPF-induced EndMT, 

specifically inhibiting the reduction of endothelial markers (CD31, CDH5, 

vWF), and simultaneously inhibiting the increased expression of 

mesenchymal markers (α-SMA, Col1). 
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Figure 4.8: NADPH mediates IPF sera-induced EndMT. HPMEC cells were pre-

treated with 5 µM DPI for 1 hour, before exposure to 5% of IPF sera and 5% of HD 

sera for 3 days. The protein levels of endothelial markers (vWF, CD31, CDH5) and 

mesenchymal markers (α-Actin, COL1) were assessed by ELISA, as detailed in 

Materials and Methods. Percentage with respect to the healthy donor (HD) results 

counted 100%. Values are shown as mean ± SD. *, significantly different from HD; #, 

significantly different from IPF. (p < 0.05) 

 

4.7. Involvement of PKC (Protein Kinase C) on IPF sera-induced ROS 

production and cell viability. 

       PKC is a pleiotropic enzyme involved in several cellular functions. In 

this regard, PKC has been reported to be involved in glucose-induced 

EndMT by modulation ROS production [114] Therefore, we sought to 

investigate whether PKC could be part of the molecular mechanisms 

underlying the effect of IPF sera on HPMEC. We reasoned that if IPF sera 
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activate PKC upstream NADPH, PKC inhibition should block the NOX-

mediated ROS generation elicited by IPF sera. To this end, we evaluated 

the effects of the PKC inhibitor Chelerythrine (CHE) on IPF serum-

induced ROS production by treating cells with this inhibitor in the presence 

of IPF sera and in comparison, using HD sera. 

        In the same experiment, we used also as a comparison, N-acetyl 

cysteine (NAC), a well-known broad antioxidant compound [122], and the 

DPI (Diphenyleneiodonium chloride), an inhibitor of NADPH oxidase and 

a potent, irreversible, and time-, temperature-dependent iNOS/eNOS 

inhibitor, as yet reported [105]. 

        Although to a different extent, our results indicate that the effect of 

Chelerythrine (CHE) on ROS production was similar to the effects of DPI 

and NAC. (Figure 4.9) 

 
Figure 4.9: Effect of CHE on IPF-induced ROS production. The inhibitory effect 

of Chelerythrine (CHE) on the decreasing of IPF-induced ROS production. HPMEC 

cells were pretreated with 2.5µM CHE, 5mM NAC and 5µM DPI for 1 h before being 

exposed to 5% IPF serum for 3 days. ROS levels were assessed as reported in the 

Materials and Methods section. The figures represent data obtained at 3 days. Values 

are expressed as the mean ± SD (n = 5) of the relative fluorescence unit (RFU). *, 

significantly different from HD; #, significantly different from IPF. 
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        Indeed, CHE was found to effectively abolish IPF sera-induced ROS 

production. Similarly, CHE was also found to be involved in the related 

phenomena, such as IPF sera-induced cell proliferation, suggesting that 

that PKC may be at least in part involved in the IPF-induced cellular events 

(figure 4.10). 
 

 
Figure 4.10: Effect of CHE, DPI and NAC on IPF-induced cell viability. HPMEC 

cells were pretreated with 2.5µM CHE, 5mM NAC, and 5µM DPI for 1 h before 

being exposed to 5% IPF serum for 24 hours. Cell viability was assessed, as reported 

in the Materials and Methods section. Results were calculated as mean ± SD (n = 5) 

and expressed as a percentage of untreated control cells; *, significantly different 

from HD; #, significantly different from IPF. 
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5. DISCUSSION 
 

        In our study, the enrolled IPF patients participated with no 

pharmacological treatment, i.e., baseline (T0), and were mainly male 

(80%) with a mean age of 74 ± 5.1 years. The control group was similar to 

the study group with the majority of healthy donors consisting of men 

(88.9%) with an average age of 71± 2.4 (Table 1). At T0, only IPF patients 

with spirometry values matching the selection criteria were able to 

participate in this study: FVC was 81.04 ± 26.95% The predicted value and 

DLCO were 54.17 ± 18.11% of the predicted value. 

         Recent studies have specifically addressed the importance of 

oxidative stress in the pathophysiological mechanisms involved in IPF 

[113, 123]. An extensive systematic review notes oxidative stress markers 

were identified in various biological samples of IPF patients including 

sputum, epithelial lining fluid, bronchial lavage fluid, bronchioles, and 

lung tissue samples. In particular, Paliogiannis et al. performed a meta-

analysis of 15 studies in IPF patients, showing either an increase in levels 

of oxidative stress markers or a decrease in antioxidant markers, 

independent of the biological sample type [124, 125]. The 

pathophysiological mechanisms of oxidative stress that facilitate the 

development of IPF are still not fully understood. However, oxidative 

stress has been documented to target both the cellular phenotype and 

promote premature aging, specifically fibroblasts that acquire anti-

apoptotic features [126, 127]. The result should lead to changes in the 

tissue microenvironment that favor regenerative fibrosis in IPF. In line 

with our hypothesis, we demonstrated for the first time, that serum from 

IPF patients induced elevated ROS production in HPMECs compared with 

healthy donor sera (Figure 4.2).  
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         ROS can be generated from different sources in the cells, such as the 

mitochondrial electron transport chain, xanthine oxidase, cyclooxygenase, 

and lipoxygenase. Among these sources, NADPH oxidase (NOX) is the 

most important mediator of ligand-mediated ROS production. NOX are 

multiunit enzymes that form superoxide by transferring electrons from 

NADPH to molecular oxygen [128]. To investigate whether the serum IPF-

induced ROS in our study derives from the NOX family, we conducted a 

trial using the generic NOX inhibitor, diphenyleneiodonium (DPI). 

HPMECs were treated with DPI for one hour prior to treatment with serum 

from IPF patients. Results indicate DPI inhibits NOX, thus reducing ROS 

levels in HPMECs. The ROS level produced was lower in the DPI-treated 

IPF serogroup than in the DPI-untreated IPF serogroup (Figure 4.4). The 

results of our study demonstrate the involvement of NOX in the ROS 

generation of HPMECs induced by serum IPF. In support of our findings, 

one study reported an increase in ROS generation from IPF patients' serum 

in primary human pulmonary artery smooth muscle cells (HPASMCs). IPF 

serum-induced intracellular ROS levels were significantly reduced when 

treated with the broad-spectrum NADPH oxidase inhibitor 

diphenyleneiodonium (DPI) [105]. 

        Although NOX2 was the first isoform of the NOX family identified 

in endothelial cells, it may be the most important in vascular disease. 

NOX2 has been reported to be present at lower levels in mesenchymal 

cells, smooth muscle cells, endothelial cells, and epithelial cells of the lung. 

NOX2 has been confirmed to be important in inflammation [90]. However, 

in the lung, the role of NOX4 is more important. Because different factors 

contribute to oxidative stress, in which cigarette smoking stimulates ROS 

production through endoplasmic reticulum (ER) stress, disconnection of 

the mitochondrial enzyme system [101, 129] and production of NOX, 

especially NADPH oxidase-4 (NOX4), by both inflammatory and lung 
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cells. The specific mechanisms by which oxidative stress facilitates the 

development of IPF have not been fully investigated although they have 

the potential to target both the cellular phenotype and the life cycle 

promoting senescence and apoptosis. ROS stimulates apoptosis in airway 

epithelial cells, as well as the production of cytokines and growth factors 

TGF-β [130], which play important roles in fibroblast differentiation and 

collagen deposition, leading to fibrosis and reduced antioxidant capacity. 

Therefore, determining the possible role of NOX2/NOX4 of the ROS 

family in IPF will be the subject of our investigations in future studies.  

        The mechanism of fibrosis in pulmonary fibrosis of IPF is a 

controversial research issue, especially in the vascular remodeling process. 

Several studies have shown that both angiogenesis and fibrosis are present 

in the lungs of patients with IPF. This confirms that microvascular tissue 

remodeling in IPF is unstable [41]. Indeed, during the initiation and 

progression of IPF, various growth factors and fibroblast mediators are 

released, such as TGF-β1, which may exert their fibrogenic effects through 

NADPH oxidase-dependent increase in intracellular ROS levels. The 

expression of NADPH/NOX4 has been reported to be increased in the 

pulmonary arteries of IPF patients [96] and in pulmonary fibroblasts of IPF 

patients where TGF-β1 mediates the differentiation of fibroblasts into 

myofibroblasts [131]. At the physiological level, intracellular ROS controls 

cell growth and differentiation, regulates enzyme activity, mediates 

inflammation, stimulates cytokine production, and eliminates pathogens and 

molecules strange. On the other hand, if present in excess, ROS destroys 

cellular components, including lipids and cell membranes, proteins and 

nucleic acids, and ultimately, cell transformation. Surprisingly, instead of 

inducing cell death, the observed generation of IPF-ROS was able to 

highlight it. Consistent with our findings, cell viability assays (assessed by 

MTT) showed that the IPF-induced increase in HPMECs proliferation was 
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significantly reduced by the NADPH oxidase inhibitor 

diphenyleneiodonium (DPI), compared with HPMECs without DPI (Figure 

4.6). We confirm that NOX, the NADPH family of ROS-generating 

enzymes, is involved in IPF-induced increase in HPMECs. 

       IPF is a fibroproliferative disease characterized by abnormal 

proliferation and secretion of extracellular matrix leading to fibrosis. Of 

course, all in situ proliferation of fibroblasts and their differentiation have 

been shown to favor fibrosis progression. Different from fibroblasts, 

myofibroblasts upregulate the expression of α-SMA and increase the 

production of extracellular matrix proteins, such as collagen types I, III, V, 

and VI [132, 133]. Experiments have shown that fibroblasts can originate 

from cell sources other than fibroblasts. In particular, endothelial cells 

(ECs) are a potential source of action through EndMT. During this process, 

ECs express typical markers of fibroblast differentiation and acquire a 

mesenchymal phenotype (α-SMA, vimentin, and collagens) while also 

reducing the expression of the vascular endothelial phenotype (VE-

cadherin). It has been reported that 16% of fibroblasts express α-SMA and 

EC-derived type I collagen in the lungs of mice with bleomycin-induced 

IPF [47]. The importance of EndMT in fibrosis experiments has been 

demonstrated both in vitro and in vivo. These studies suggest that TGF-β 

has a central role in promoting EndMT through an extensive network of 

molecular interactions [134, 135]. Under endothelial to mesenchymal 

transformation, endothelial cells undergo morphological changes and lose 

cell surface markers. The first time, our results indicate the presence of 

EndMT in normal HPMECs exposed to the serum of IPF patients. EndMT 

indices, three well-established endothelial markers: CD31/PECAM, 

CDH5/Cadherin, vWF/von Willebrand factor were used, along with the 

well-known mesenchymal markers α-SMA, collagen I. To confirm the 

possibility that the EndMT process occurring in IPF promotes an 
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endothelial cell phenotype towards mesenchymal cell features. We 

examined the protein levels of selected endothelial and mesenchymal 

markers. Interestingly, the ELISA results showed the decreasing 

endothelial markers: cadherin, CD31, and vWF, while the increasing 

mesenchymal markers: alpha-SMA, Collagen I (Figure 4.7). The present 

data confirm the disruption in the presence of molecular markers and 

demonstrate that IPF promotes the phenotypic transformation of 

HPMECsThis implies fibroblasts in IPF may originate in HPMECs 

through the EndMT process. 

        Notably, recent studies suggest the ability of ROS to either convert 

epithelial to mesenchymal or mediate the conversion of endothelial cells to 

fibroblasts [136]. In this regard, we speculate that ROS may be related to 

IPF-induced EndMT in HPMECs and, at least in part, responsible for IPF-

associated fibrosis in vivo. To investigate this aspect, we examined the 

ability of DPI, a well-known antioxidant compound, to counteract the IPF-

induced endothelial changes observed in our study. HPMECs were 

pretreated with 5μM DPI for one hour and successively exposed to the IPF 

patient serum for three days. Protein level analysis of selected markers 

(Figure 4.8) revealed the ability of DPI to suppress IPF-induced cell 

morphological changes. Indeed, DPI significantly abrogated the expression 

of IPF-induced EndMT processes that inhibited the reduction of 

endothelial markers (CDH5, CD3, vWF) and also inhibited the increase of 

mesenchymal markers (Col 1, α-SMA). As such, IPF-induced EndMT 

appears to be mediated by NADPH-associated ROS generation. And, in 

our results, HPMECs pretreatment with the NOX inhibitor DPI was able 

to decrease EndMT effectively. Choi et al. found increased EndMT in 

blood vessels due to hypoxic injury in radiation-induced pulmonary 

fibrosis [137]. In this study, EMT was also observed in alveolar epithelial 

cells, but only after the appearance of EndMT. 
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       We further deepen our investigation on the cellular IPF-induced effect 

by assessing the potential involvement of protein kinase c (PKC). PKC is 

a pleiotropic enzyme involved in several cellular functions. In this regard, 

PKC has been reported to be involved in glucose-induced EndMT by 

modulation of ROS production [114]. On these bases, we sought to 

investigate whether PKC could be part of the molecular mechanisms 

underlying the effect of IPF sera on HPMEC. 

To this end, we evaluated the effects of the PKC inhibitor Chelerythrine 

(CHE) on IPF serum-induced ROS production and cell proliferation. We 

used CHE to demonstrate that the mechanism yet studied could be 

correlated to the involvement of PKC and our results demonstrate our 

hypothesis since both the IPF-induced ROS production and the effects on 

cell proliferation were significantly down moduolated by CHE. 

Interestingly, a comparative experiment performed with,  N-acetyl cysteine 

(NAC), a known antioxidant compound [122], and DPI, a widely employed 

NOX inhibitor [105] showed that the effect of CHE, by inhibiting PKC, 

reduced both ROS and cell proliferation in cells exposed to IPF patient 

serum, suggesting that NADPH effects occurs via PKC in these cells.  

        To further confirm the potential antifibrotic role of Chelerythrine 

(CHE) in IPF, further studies are needed to determine the effect of this 

PKC inhibitor on the IPF-induced EndMT process. 

        In summary, our work provides further insight into the etiology of 

IPF-associated fibrotic progression while also opening up new questions 

and challenges. Specifically, abrogating IPF-associated ROS increase by 

different means (CHE or DPI) was able to significantly prevent IPF-

induced oxidative and its associated effects suggesting an essential role of 

oxidative stress in triggering fibrosis-related IPF. Therefore, this will be 

the area of focus for future studies. 
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6. CONCLUSION 
 

     With the intent to investigate the role of ROS in the Endothelial -  to - 

Mesenchymal transition induced by the sera from IPF patients, we obtained 

several pilot results. 

- We demonstrated sera from IPF patients induce an abnormal ROS 

production in HPMECs. We confirm, NOX, the NADPH family 

ROS-generating enzymes, is implicated in IPF-induced oxidative 

stress. 

- IPF-induced increase of HPMECs proliferation was significantly 

blunted by the broad NADPH oxidase inhibitor 

diphenyleneiodonium (DPI). We confirm NOX is implicated in IPF-

induced HPMECs proliferation.  

- IPF promotes the phenotype switch of HPMECs, and myofibroblasts 

in the IPF may originate from ECs through the EndMT process, with 

the decreasing the endothelial marker(CDH5, CD3, vWF) and 

increasing mesenchymal markers (Col 1, α-SMA). 

- IPF-induced EndMT appears to be mediated by NADPH-associated 

ROS generation.  HPMECs pretreatment with a NOX inhibitor 

(DPI) was able to decrease EndMT effectively. 

- PKC appears to be the one of the signaling key enzyme that mediates 

IPF sera effects of within the cells - Inhibition of PKC partially block 

IPF-induced ROS production and cell proliferation. 

     In summary, our findings indicate an association between EndMT 

and oxidative stress as an important mechanism in the progression of 

IPF. This study suggests the use of antioxidants may be an effective 

therapeutic approach to prevent the progression of IPF-related 

complications including fibrosis. 
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Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, 
and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor 
knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and 
molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of 
established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, 
several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transi-
tion, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated 
tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, 
non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum 
stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting 
these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the 
lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and 
progression of IPF.

Keywords Idiopathic pulmonary fibrosis · Molecular pathways · EndMT · Senescence · Apoptosis · Chemokines · 
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