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NONLOCAL-INTERACTION VORTICES

MARGHERITA SOLCI∗

Abstract. We consider sequences of quadratic non-local functionals, depending on a small
parameter ε, that approximate the Dirichlet integral by a well-known result by Bourgain, Brezis and
Mironescu. Similarly to what is done for core-radius approximations to vortex energies in the case
of the Dirichlet integral, we further scale such energies by | log ε|−1 and restrict them to S1-valued
functions. We introduce a notion of convergence of functions to integral currents with respect to
which such energies are equi-coercive, and show the convergence to a vortex energy, similarly to the
limit behaviour of Ginzburg-Landau energies at the vortex scaling.

Key words. nonlocal energies, topological singularities, discrete approximations, Γ-convergence

MSC codes. 49J45, 35Q56, 74A70, 46E39

1. Introduction. In their seminal paper [9], Bourgain, Brezis and Mironescu
have shown, among many other results, that sequences of nonlocal energies depending
on a vanishing parameter ε approximate Sobolev seminorms. In particular if Ω is an
open subset of Rd and ρ is an integrable positive kernel with compact support, their
result implies that the Γ-limit of energies of the form

(1.1) FBBMε (u) =
1

εd+2

∫
Ω×Ω

ρ
( |x− y|

ε

)
|u(x)− u(y)|2 dxdy,

defined on functions u ∈ L1
loc(Ω), is an explicit constant depending only on ρ and

the dimension d times the Dirichlet integral. For a general variational approach to
convolution-type energies modeled on functionals (1.1) we refer to [4]. Note that we
may rewrite such type of functionals in the form

(1.2) FBBMε (u) =
1

εd

∫
Ω×Ω

ρ
( |x− y|

ε

) |u(x)− u(y)|2

|x− y|2
dxdy,

up to considering the kernel ρ(|ξ|)|ξ|2 instead of ρ in (1.1), which is a notation closer
to that of [9].

Functionals such as those considered above, and more in general functionals of
nonlocal type, have recently been used to study a number of variational problems,
where the role of gradient terms is played by either finite differences, or fractional
seminorms, or nonlocal gradients. This has been used to give non-local approxima-
tion of elastic energies or sharp-interface theories often using a singular-perturbation
approach (see e.g. [3, 7, 10, 11, 16, 18]). Our objective is to extend the use of nonlocal
energies in order to treat models with topological singularities such as those arising in
the asymptotic analysis of Ginzburg-Landau energies [8, 19]. To that end, we consider
an open domain Ω ⊂ Rd with d ≥ 2 and sequences of nonlocal-interaction energies
defined for vector functions u ∈ L1

loc(Ω;R2) with |u(x)| = 1 almost everywhere as

(1.3) Fε(u) =
1

εd+2| log ε|

∫
Ω×Ω

ρ
( |x− y|

ε

)
|u(x)− u(y)|2 dxdy.

In light of the Bourgain, Brezis and Mironescu result, heuristically this can be regarded
as a singular perturbation of Dirichlet energies with the constraint |u| = 1. This
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2 M. SOLCI

approach can be compared with the so-called core-radius approach to topological
singularities (see [8, 6]), in which case one considers scaled Dirichlet integrals on a
domain where we have removed from Ω a number of small balls close to possible
singularities. In our case it is not necessary to remove such small balls since no
regularity on u is needed. We will show that energies Fε are approximated as ε→ 0
by a vortex energy defined on (π times) integral (d − 2)-currents, as in the case of
Ginzburg-Landau functionals [2, 8, 14, 15, 19]. A similar approximation of vortex
energies has been shown in [5] using lattice energies, proving a connection with the
so-called XY model. In a sense energies (1.3) are a formal continuous version of those
lattice energies, with a major difference; that is, that in (1.3) we do not assume any
regularity on the functions u, while lattice energies are essentially defined on piecewise-
affine functions, with restrictions due to the lattice structure. As a consequence, we
have more flexibility in the use of functionals (1.3) in dimension d ≥ 3 (see [5, Section
4.3.2] for a discussion on technical issues in the lattice case).

A loose explanation of our asymptotic result can be given as follows. For ease of
notation we consider the case d = 2, in which case integral (d− 2)-currents in Ω are
measures of the form

(1.4) µ = π

N∑
i=1

diδxi , di ∈ Z and xi ∈ Ω,

and we take Ω = R2 in order to simplify changes of variables. Using the change of
variables ξ = x−y

ε we rewrite the energies as

(1.5)

∫
R2

ρ(|ξ|)
( 1

ε2| log ε|

∫
R2

|u(x+ εξ)− u(x)|2 dx
)
dξ.

The inner integral can be analyzed by discretization. In the case ξ = |ξ|e1 we can
estimate

1

ε2| log ε|

∫
R2

|u(x+ εξ)− u(x)|2 dx

=
1

ε2| log ε|
∑
k∈Z2

∫
ε|ξ|(k+[0,1]2)

|u(x+ εξ)− u(x)|2 dx

≥ |ξ|2

| log ε|
∑
k∈Z2

∣∣∣ 1

ε2|ξ|2

∫
ε|ξ|(k+[0,1]2)

(u(x+ εξ)− u(x)) dx
∣∣∣2

=
|ξ|2

| log ε|
∑
k∈Z2

|uε,ξk+e1
− uε,ξk |

2,

where

uε,ξk =
1

ε2|ξ|2

∫
ε|ξ|(k+[0,1]2)

u(x) dx.

Repeating the same argument for ξ = |ξ|e2 and taking into account double counting,
we can use the discrete energies Xε(u

ε,ξ) in the lower bound, with

(1.6) Xε(v) =
1

| log ε|
∑
〈i,j〉

|vi − vj |2,

where v : εZ2 → R2, vi = v(εi), and 〈i, j〉 denotes summation of nearest neighbours
in Z2. An analog estimate holds for arbitrary ξ upon using suitable discretization
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on rotated lattices. In [5] the analysis of energies of form (1.6) when vi ∈ S1 has
been carried out, showing their equi-coerciveness with respect to the flat convergence
of the Jacobians of interpolations, implying that the limit energies are defined on
vortex measures. In the heuristic argument just illustrated the results of [5] cannot

directly be applied, since the averages uε,ξk in general do not lie in S1. Furthermore,
in principle the limit measure µ might depend on ξ. In order to overcome these
structural complexities, a Compactness Lemma will ensure that indeed the discrete
functions uε,ξ do converge, up to subsequences, in the same sense as that obtained in
[5] to a vortex measure independent of ξ. This result will allow to give a definition of
convergence of uε to µ even though the functions uε themselves may be not weakly
differentiable. Note that the compactness result will be proved using the fact that
the piecewise-affine interpolation of uε,ξ can be seen as an average of piecewise-affine
interpolation of S1-valued maps to almost all of which we may apply a compactness
argument.

Once a compactness result is achieved, we compute the Γ-limit with respect to the
convergence above. Proceeding in the heuristic argument, we can use Fatou’s Lemma
to give a lower bound as

lim inf
ε→0

Fε(uε) ≥
1

4

∫
R2

ρ(|ξ|)|ξ|2 lim inf
ε→0

Xε(u
ε,ξ)dξ,

where the factor 4 comes from the fact that ξ, −ξ, ξ⊥, and −ξ⊥ are all taken into
account in the definition of Xε. The asymptotic analysis in [5] ensures that Xε Γ-
converge to 4π

∑
i |di| (di being the coefficients of the limit vortex measure µ related

to uε), when the discrete functions are S1-valued. If this were true also for uε,ξ then
we would conclude that

lim inf
ε→0

Fε(uε) ≥ π
∫
R2

ρ(|ξ|)|ξ|2dξ
∑
i

|di|.

Again, as in the compactness argument, this can be proven using the fact that the
piecewise-affine interpolation of uε,ξ can be seen as an average of piecewise-affine
interpolation of S1-valued maps. The optimality of the lower bound can be then
shown by a direct computation. It is worth mentioning that, while recovery sequences
in the case of Ginzburg-Landau energies use a smoothening argument, and the discrete
approach uses suitable interpolations of the function x

|x| , whose singularity gives a

simple vortex in 0, in our case this function can be directly used as a recovery sequence.
In the paper all results are proven for energies (1.3) in the general d-dimensional

case, in which the limit is defined on currents of the form µ = πM , where M is a
(d− 2)-integral current. The form of the Γ-limit is then

F (µ) =
2π

d
‖M‖

∫
Rd
ρ(|ξ|)|ξ|2dξ,

with ‖M‖ the mass of the current in Ω. Note that ‖M‖ =
∑
i |di| in the 2-dimensional

case.

The plan of the paper is as follows. In Section 2 we introduce the necessary
notions about currents, in order to define the space of integral currents in which we
frame our asymptotic analysis. In the same section, after recalling the results obtained
in [5] for the XY model, we give the main definition of convergence of functions to
integral currents via the flat convergence of the Jacobians of the interpolation of the
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averages, and we finally state our main compactness and Γ-convergence result. In
Section 3 we prove the key compactness lemma, which states the equi-coerciveness of
energies Fε with respect to the convergence of the averages introduced in the previous
section. The proof of the Γ-convergence part of the main theorem is given in Section
4, subdivided into the proof of the lower and upper bounds.

2. Preliminaries and statement of the main result. In the paper we will
consider problems in Rd with d ≥ 2, even if some of the notions and results presented
in this preliminary sections are interesting also in dimension 1.

The scalar product in Rd is denoted by 〈·, ·〉, the elements of the standard basis
are denoted by en for n ∈ {1, . . . , d}. The Lebesgue measure in Rd is denoted by Ld;
Hk denotes the k-dimensional Hausdorff measure. The letter C will denote a generic
positive constant independent of fixed parameters, whose value may vary from line to
line.

2.1. Currents. We will use some terminology, notions and results from the
theory of currents. Here we only recall some basic definitions, referring e.g. to the
monographs [12, 13, 20] for the general theory, and to the ample treatment in the
works [1, 2, 14, 15] for a very detailed description of their applications to variational
problems of Ginzburg-Landau type. In general, in our presentation we borrow the
notation from [20, Chapter 6]. Since we will not directly use fine properties of currents,
we only introduce the concepts that will be needed to state the relevant compactness
results, and refer to the cited works for complete results and references.

Let Ω ⊂ Rd be an open bounded set with Ld(∂Ω) = 0. For h ∈ {1, . . . , d}, an
h-form ω of class C∞ with compact support in Ω is ω =

∑
α φαdxi1 ∧· · ·∧dxih , where

the sum is taken over α = (i1, . . . , ih) multi-index such that 1 ≤ i1 ≤ · · · ≤ ih ≤ d
and each φα belongs to C∞c (Ω); that is, the space of smooth functions with compact
support in Ω. The symbol ∧ denotes the external product. A 0-form of class C∞

with compact support in Ω is simply a function ω ∈ C∞c (Ω). For any h ∈ {0, . . . , d},
the space of h-dimensional currents is identified with the dual space of the space of
the h-forms of class C∞ with compact support in Ω. The restriction of a current T
to an open set U ⊂ Ω is the current T U acting as T on h-forms in C∞c (U); that
is, (T U)[ω] = T [ω] for any ω h-form in C∞c (U).

Following Stokes’ Theorem, the boundary of an h-current T is an (h− 1)-current
denoted by ∂T and defined by setting ∂T [ω] = T [dω] for every (h − 1)-form of class
C∞ with compact support in Ω, dω being the differential of ω. We say that an h-
dimensional current T is a boundary if there exists a (h+ 1)-dimensional current M
such that T = ∂M . Moreover, we say that a current T is a boundary locally in Ω if
the restriction T U is a boundary for any U ⊂⊂ Ω.

A current T is said to have (locally) finite mass if it can be represented as a
(locally) bounded Borel measure. In this case, the mass ‖T‖ of the current T is
defined as |T |(Ω), where |T | is the variation of the measure. If U is an open subset of
Ω, the mass of T in U is defined as ‖T‖(U) = |T |(U).

In the sequel, we will use the class of integral currents. To briefly introduce this
class, we need to recall some preliminary notions. A set M ⊂ Ω is h-rectifiable if it
can be covered by a countable union of h-dimensional surfaces of class C1, up to a
Hh-negligible set. To define an orientation of such a set, we recall that an h-vector
v is v =

∑
α aαei1 ∧ · · · ∧ eih with α = (i1, . . . , ih) multi-index as above and aα ∈ R.

An h-covector is given in the corresponding way, by considering the canonical basis
of the dual space of Rd instead of {e1, . . . , ed}. Note that an h-form ω is then a map
from Ω to the set the h-covectors. An h-vector v is simple if it can be expressed as the
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external product of h vectors in Rd; that is, v = v1∧· · ·∧vn, vn ∈ Rd. An orientation
of an h-rectifiable set M is a Hh-measurable map τM defined in M and valued in the
space of h-vectors such that for Hh-almost every x τM (x) = τ1

M (x) ∧ · · · ∧ τhM (x) is

a simple h-vector such that {τ jM (x)} is an orthonormal basis for the tangent space
to M at x. The notation 〈〈·, ·〉〉 denotes the duality product between h-covectors and
h-vectors in Rd. A h-current T is rectifiable if it can be represented as

(2.1) T [ω] =

∫
M

σ(x)〈〈ω(x), τM (x)〉〉 dHh(x)

for any smooth h-form ω with compact support, with M an h-rectifiable set, τM an
orientation of M and σ is locally summable with respect to the measure Hh M
and it is integer-valued. The function σ is called a multiplicity. Note that (2.1)
corresponds to say that T can be represented as the measure στMHh M associated
to the density function στM ∈ L1

loc(Hh M). In this case, ‖T‖ =
∫
M
|σ(x)|dHh(x);

that is, the mass of T is the measure of M counted with respect to the multiplicity. A
current T is an integral current if both T and ∂T are rectifiable. Note that a rectifiable
current T which is a boundary is an integral current, since ∂T = 0. Such a current
will be called an integral boundary.

An integral polyhedral h-current in Rd is a finite sum of h-currents in Rd asso-
ciated, as in (2.1), to h-dimensional simplices in Rd with constant orientations and
corresponding integer-valued multiplicities. Polyhedral integral currents in Ω are de-
fined by restriction.

In the following we will be mainly interested in currents which are boundaries,
and we will use properties of the flat norm FΩ(T ) of a h-current T in Ω. The flat
norm is defined by setting

FΩ(T ) = inf{‖S‖ : S (h+ 1)-current in Ω such that ∂S = T},

where the infimum is +∞ if the current T is not a boundary. The convergence with
respect to this norm will be used in our results. In particular, in the proof of the
lim sup inequality we will use a density result for integral polyhedral boundaries with
respect to the convergence induced by the flat norm. We will state this density result
where needed (see Proposition 4.1).

Another notion which will be used to define the convergence of sequences of
functions is the identification of the Jacobian of a function u = (u1, u1) ∈W 1,2(Ω;R2),
defined in an open domain of Rd, d ≥ 2, with a (d−2)-current. Indeed, the Jacobian Ju

is the 2-form given by Ju = du1∧du2, where dui =
∑d
j=1Djuidxj is the differential of

the i-th component of u. Following [2] (see also [15]), we identify vectors and covectors
in Rd by using the operator ?, which maps an h-covector ω in the (d − h)-vector ?ω
determined by the identity 〈〈ω′, ?ω〉〉 = 〈〈ω′∧ω, e1∧· · ·∧ed〉〉 for every (d−h)-covector
ω′ in Rd. Hence, Ju can be identified with the (d− 2)-current ?Ju given by

?Ju[ω] =

∫
Ω

〈〈ω ∧ Ju, e1 ∧ · · · ∧ ed〉〉 dx

for every (d−2)-form ω of class C∞c (Ω), where e1∧· · ·∧ed is the standard orientation
of Ω. Note that since the 2-form Ju is a differential, then ?Ju is a boundary.

The first technical tool is the following lemma concerning the behaviour of Jaco-
bians interpreted as (d − 2)-currents. Note that in the case of functions defined on
subsets of R2 the convergence of the Jacobians could be directly stated in terms of
weak derivatives.
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Lemma 2.1 (a criterion for equivalent flat-converging sequences [5, Lemma 1]).
Let U be a bounded open set in Rd with d ≥ 2 and let {uε} and {vε} be two sequences
belonging to W 1,2(U,R2). If there exists a constant C > 0 such that

(i)

∫
U

|uε − vε|2dx ≤ Cε2| log ε|;

(ii)

∫
U

|∇uε −∇vε|2dx ≤ C| log ε|;

then lim
ε→0

FU (?J(uε)− ?J(vε)) = 0.

2.2. Discrete energies. We will use a compactness and a convergence result
for discrete energies defined on Zd.

Let Ω be a bounded open Lipschitz set in Rd. For u : Ω ∩ εZd → S1 and U open
subset of Ω we define

(2.2) Xε(u;U) =
1

| log ε|
∑
〈i,j〉

εd−2|ui − uj |2,

where ui = u(εi), and 〈i, j〉 denote summation over nearest neighbours in U ; i.e., on
indices i, j ∈ Zd such that εi, εj ∈ U and |i− j| = 1. If U = Ω then we simply write
Xε(u). For such functions u we define a piecewise-affine interpolation Aε(u) related
to the scaling of a 1-periodic subdivision of Rd into simplices whose restriction to
the unit cube are d! simplices, each of which has d edges coinciding with the edges
of the cube. The existence of such a decomposition, known as Kuhn decomposition,
is ensured by the Sperner Lemma (see [17]). Note that these interpolations are well
defined on each U ⊂⊂ Ω for ε small.

We have the following compactness result with respect to the convergence induced
by the flat norm on the Jacobians of interpolations [5, Theorem 3].

Lemma 2.2 (coerciveness of discrete energies). Let {uε} be a family of discrete
functions such that supεXε(u

ε) < +∞; then, there exist a subsequence εj and an
integral (d− 2)-current M which is an integral boundary such that

(2.3) lim
j→+∞

FU (?JAεj (u
εj )− µ) = 0

for all U ⊂⊂ Ω open sets, where µ = πM . In particular, if d = 2 there exist N ∈ N,
x` ∈ Ω, and d` ∈ Z for ` ∈ {1, . . . , N} such that µ is an atomic measure given by

µ = π

N∑
`=1

d`δx` .

The previous lemma justifies a notion of convergence of discrete functions uε to
an integral d−2-current M , which will be sometimes used in the sequel, as the validity
of

(2.4) lim
ε→0

FU (?JAε(u
ε)− µ) = 0

for all U ⊂⊂ Ω open sets, where µ = πM .
With respect to this convergence we have the following result, which is a particular

case of [5, Theorem 3]. In the case d = 2 this is also a particular case of [5, Theorem
5], obtained, in the notation therein, taking cξ = 2 if |ξ| = 1 and cξ = 0 otherwise.
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Theorem 2.3. The sequence {Xε} Γ-converges with respect to convergence (2.4)
to the functional Φ defined on integral (d− 2)-currents which are integral boundaries
as

Φ(M) = 4π‖M‖,

where ‖M‖ is the mass of the current M . In particular, if d = 2, then M =
∑N
`=1 d`δx`

and

Φ(M) = 4π

N∑
`=1

|d`|.

2.3. A notion of convergence for averages. Let Ω ⊂ Rd be a bounded open
Lipschitz domain. For each u ∈ L1

loc(Ω;R2) and ε > 0 we define a discretization
Iε(u) : εZd → R2 as follows

(2.5) Iε(u)(εi) =
1

εd

∫
Qiε∩Ω

u(x) dx,

where Qiε = εi+ ε[0, 1]d.
We consider a 1-periodic triangulation of Rd with vertices in Zd such that its re-

striction to the unit cube is given by d! simplices, each of which has d edges coinciding
with the edges of the cube (the Kuhn decomposition of the cube, see e.g. [17, Lemma
1]). This triangulation corresponds to a family of piecewise-affine functions {λk}k∈Zd
with λk : Rd → [0, 1] and such that λk(k) = 1, the support of λk is the union of the
elements of the triangulation containing k and

∑
k∈Zd λk(x) = 1 for all x. Given a

discrete function v : εZd → Rd, we define a piecewise-affine interpolation by setting

(2.6) Aε(v)(x) =
∑
k∈Zd

λk

(x
ε

)
v(εk).

Note that if the dimension d is equal to 2, then the Kuhn decomposition is simply
the subdivision of each square in two triangles, which will make the proofs easier to
follow in that case.

We now introduce a notion of convergence of functions to integral currents. It
involves the use the notion of Jacobian (of interpolations) for functions which in
general are not weakly differentiable. Its use will be justified by a compactness result
(see Theorem 2.6 (i) in the next section).

Definition 2.4 (Convergence). Let {uε} be a sequence in L2
loc(Ω;R2) and let

µ = πM , where M is an integral (d − 2)-current. The sequence {uε} converges to µ
if for every U ⊂⊂ Ω we have

lim
ε→0

FU (?J(Aε(Iε(uε)))− µ) = 0,

where FU is the flat norm in U and ?J is the Jacobian current.

Remark 2.5. If vε : εZd → S1 is such that the sum Xε(v
ε) defined in (1.6) is

equibounded, then Lemma 2.2 implies that, up to subsequences, there exists µ as
above such that

lim
ε→0

FU (?J(Aε(v
ε)))− µ) = 0

for every U ⊂⊂ Ω. In our case, we cannot directly use that result since the discrete
functions Iε(uε) are not S1-valued.
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2.4. The main result. We are now in the position to state our main result of
compactness and Γ-convergence, which will be proved in the following sections.

Theorem 2.6 (Compactness and Γ-convergence). Let ρ : [0,+∞)→ [0,+∞) be
a fixed kernel with compact support such that

(a)

∫
Rd
ρ(|ξ|)|ξ|2 dx < +∞;

(b) ρ(t) ≥ ρ0 > 0 in a neighbourhood of 0.

Let Ω ⊂ Rd be an open Lipschitz bounded domain, and let Fε : L1(Ω;S1) → [0,+∞]
for all ε > 0 be defined by

Fε(u) =
1

εd+2| log ε|

∫
Ω×Ω

ρ
( |x− y|

ε

)
|u(x)− u(y)|2 dxdy.

Then, we have the following results.

(i) (equi-coerciveness of Fε) If {uε} is a sequence such that Fε(uε) is equibounded,
then, up to subsequences, there exists an integral (d−2)-current M which is an integral
boundary such that {uε} converges to µ = πM in the sense of Definition 2.4.

(ii) (lower bound) If {uε} converges to µ = πM in the sense of Definition 2.4, then

(2.7) lim inf
ε→0

Fε(uε) ≥ Cρ‖M‖, where Cρ =
2π

d

∫
Rd
ρ(|ξ|)|ξ|2 dξ.

(iii) (upper bound) For every integral (d−2)-current M which is an integral boundary,
there exists a sequence {uε} converging to µ = πM in the sense of Definition 2.4 such
that

lim
ε→0

Fε(uε) = Cρ‖M‖.

Items (ii) and (iii) in Theorem 2.6 state that the sequence {Fε} Γ-converges with
respect to the convergence in Definition 2.4 to the functional

F (µ) = Cρ‖M‖, where Cρ =
2π

d

∫
Rd
ρ(|ξ|)|ξ|2 dξ.

with domain D(F ) = {µ = πM : M integral (d− 2)-current,M boundary}.

3. The compactness result. In this section we prove item (i) of Theorem 2.6;
that is, the key compactness result with respect to the convergence of the Jacobian
currents of interpolations of discrete averages of functions with bounded energies
defined in Definition 2.4. This is the analog of Lemma 2.2 in which instead the
Jacobian currents of interpolations of discrete functions are taken into account. That
lemma cannot directly be applied to discrete averages since the latter do not take
values in S1. We will use the fact that it can nevertheless be applied to discretizations
defined on translated lattices for almost all translations.

In order to prove the equi-coerciveness of the family {Fε} defined in (1.3), by
scaling and comparison it is sufficient to treat the case

(3.1) Fε(u) =
1

εd+2| log ε|

∫
Ω×Ω

χ[−1,1]d

(x− y
ε

)
|u(x)− u(y)|2 dxdy

with u ∈ L1(Ω;S1). For future reference, we restate the compactness result as follows.
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Lemma 3.1 (Compactness). Let Ω ⊂ Rd be a bounded open Lipschitz domain
and let {uε} be a sequence such that Fε(uε) is equibounded, where Fε is defined by
(3.1). Then, up to subsequences, there exists an integral (d− 2)-current M such that
{uε} converges to µ = πM in the sense of Definition 2.4.

Proof. We first consider the two-dimensional case, in which a simplified notation
makes proofs clearer.

Let u ∈ L1(Ω;S1) and let U ⊂⊂ Ω be an open set. For ε small enough, using a
triangular argument we obtain

1

ε2| log ε|

∫
U

∣∣∣u(x+
ε

2
e1)− u(x)

∣∣∣2 dx
≤ 1

ε2| log ε|

∫
[0,1]2

∫
U

∣∣∣u(x+
ε

2
e1

)
− u
(
x+

ε

2
e1 +

ε

2
ξ
)

+u
(
x+

ε

2
e1 +

ε

2
ξ
)
− u(x)

∣∣∣2 dx dξ
≤ 2

ε2| log ε|

∫
[0,1]2

∫
U

(∣∣∣u(x+
ε

2
e1

)
− u
(
x+

ε

2
e1 +

ε

2
ξ
)∣∣∣2

+
∣∣∣u(x+

ε

2
e1 +

ε

2
ξ
)
− u(x)

∣∣∣2) dx dξ
≤ 32

ε2| log ε|

∫
[0,1]2

∫
U+ε[0,1]2

|u(x+ εη)− u(x)|2 dx dη

≤ 32

ε4| log ε|

∫
Ω×Ω

χ[−1,1]2

(x− y
ε

)
|u(x)− u(y)|2 dx dy

= 32Fε(u),

and hence for all u ∈ L1(Ω;S1) and U ⊂⊂ Ω we get

1

ε2| log ε|

∫
U

|u(x+ εe1)− u(x)|2 dx(3.2)

≤ 2

ε2| log ε|

∫
U

∣∣∣u(x+ εe1)− u
(
x+

ε

2
e1

)∣∣∣2 dx
+

2

ε2| log ε|

∫
U

∣∣∣u(x+
ε

2
e1

)
− u(x)

∣∣∣2 dx
≤ C Fε(u)

for ε small enough.
Let {uε} be such that supε Fε(uε) < +∞. For U ⊂⊂ Ω and ε > 0, we set

Iε(U) = Iε = {k ∈ Z2 : εk + [−2ε, 2ε]2 ⊂⊂ Ω, εk + [−ε, ε]2 ∩ U 6= ∅}.

Upon using in (3.2) any set containing {x ∈ Ω : dist(x, U) ≤ 2
√

2ε}, which we may
suppose to be compactly contained in Ω, in the place of U , we get the estimate

C Fε(uε) ≥
1

ε2| log ε|
∑
k∈Iε

∫
ε(k+[0,1]2)

|uε(x+ εe1)− uε(x)|2 dx(3.3)

=
1

| log ε|
∑
k∈Iε

∫
[0,1]2

|uε(εk + εz + εe1)− uε(εk + εz)|2 dz

=

∫
[0,1]2

1

| log ε|
∑
k∈Iε

|uε(εk + εz + εe1)− uε(εk + εz)|2 dz
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for ε small enough. The same argument can be also used with e2 in the place of
e1. Now, we define a family of discrete functions uε,z : εZ2 → S1 given by uε,zk =
uε,z(εk) = uε(εk + εz), after extending uε to R2 by setting uε = 0 outside Ω for
convenience. It follows that

(3.4)

∫
[0,1]2

Xε(u
ε,z;U) dz ≤ C Fε(uε),

where for v : εIε → S1 we have set

Xε(v;U) =
1

| log ε|
∑
〈i,j〉
i,j∈Iε

|v(εi)− v(εj)|2.

We first outline the arguments of the rest of the proof. In order to prove the
claim we will use Lemma 2.2 to obtain that, up to subsequences, the sequence of
piecewise-affine functions {Aε(uε,z)} converges to a measure µz of the form

µz = π

Nz∑
`=1

dz`δxz`

in the sense that

(3.5) lim
ε→0

FU (?J(Aε(u
ε,z))− µz) = 0,

and at the same time (in order to have a common subsequence) we apply Lemma 2.1
to deduce that, up to subsequences, the sequence {uε} converges to one of such µz.
Note that as a consequence we prove that such µz are in fact almost all independent
of z.

As a first step, in order to compare uε,z and Aε(Iε(uε)) we introduce the following
auxiliary functions. For any z ∈ [0, 1]2 we consider the piecewise-affine function which
interpolates on the values of uε on the lattice εz+ εZ2; that is, the values of uε,z. We
set

uzε(x) = Aε(u
ε,z)(x− εz) =

∑
k∈Z2

λk

(x− εz
ε

)
uε(ε(k + z)) =

∑
k∈Z2

λk

(x− εz
ε

)
uε,zk .

Note that if (3.5) holds then {uzε} still converges to the same µz, in the sense that

(3.6) lim
ε→0

FU (?J(uzε)− µz) = 0.

In order to apply Lemma 2.1, we have to estimate the L2-norm of Aε(Iε(uε))−uzε
and of its gradient. To this end, we note that
(3.7)

|∇uzε(x)|2 =


∣∣∣uε,zk+e1

− uε,zk
ε

∣∣∣2 +
∣∣∣uε,zk+e2

− uε,zk
ε

∣∣∣2 for x ∈ εz + εk + εQ−∣∣∣uε,zk+e1+e2
− uε,zk+e1

ε

∣∣∣2 +
∣∣∣uε,zk+e1+e2

− uε,zk+e2

ε

∣∣∣2 for x ∈ εz + εk + εQ+,
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where k ∈ Iε we have set Q− = {(x1, x2) ∈ [0, 1]2 : x1+x2 ≤ 1} and Q+ = [0, 1]2\Q−.
By (3.3) and (3.7) we get∫

[0,1]2

1

| log ε|

∫
U

|∇uzε(x)|2 dx dz

≤
∫

[0,1]2

2

| log ε|
∑
k∈Iε

ε2
(∣∣∣uε(εk + εz + εe1)− uε(εk + εz)

ε

∣∣∣2
+
∣∣∣uε(εk + εz + εe2)− uε(εk + εz)

ε

∣∣∣2) dz
≤ CFε(uε).

Similarly, noting that by Jensen’s inequality we have∫
ε(k+[0,1]2)

|uε(x+ εe1)− uε(x)|2 dx ≥ ε2|(Iε(uε))(εk + εe1)− (Iε(uε))(εk)|2

for k ∈ Iε, we deduce that

(3.8)
1

| log ε|

∫
U

|∇Aε(Iε(uε))(x)|2 dx ≤ CFε(uε).

In particular it follows that

(3.9)
1

| log ε|

∫
[0,1]2

∫
U

|∇Aε(Iε(uε))−∇uzε|2 dx dz ≤ C Fε(uε).

As for the L2-norm of Aε(Iε(uε))− uzε, we start by estimating uzε − uε. We have∫
[0,1]2

∫
U

|uzε(x)− uε(x)|2 dx dz(3.10)

=

∫
[0,1]2

∫
U

∣∣∣ ∑
k∈Z2

λk

(x− εz
ε

)(
uε(ε(k + z))− uε(x)

)∣∣∣2 dx dz
≤
∫

[0,1]2

∫
U

∑
k∈Z2

λk

(x− εz
ε

)∣∣∣uε(ε(k + z))− uε(x)
∣∣∣2 dx dz

=

∫
U

∫
[0,1]2

∑
k∈Z2

λk

(x− εz
ε

)∣∣∣uε(ε(k + z))− uε(x)
∣∣∣2 dz dx

≤
∑
j∈Iε

∫
Qjε

∫
[0,1]2

∑
k∈Z2

λk

(x− εz
ε

)∣∣∣uε(ε(k + z))− uε(x)
∣∣∣2 dz dx

≤
∑
j∈Iε

∫
Qjε

C

ε2

∫
x+[−ε,ε]2

|uε(y)− uε(x)|2 dy dx

≤ C

ε2

∫
Ω×Ω

χ[−1,1]2

(x− y
ε

)
|uε(y)− uε(x)|2 dy dx

= Cε2| log ε|Fε(uε).

In this inequality, we used the fact that only an equibounded number of λk is different
from 0 at fixed x and that λk ≤ 1.
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Recalling (2.5) and (2.6), we can write

Aε(Iε(uε))(x) =
∑
k∈Z2

λk
(x
ε

) 1

ε2

∫
Qkε

uε(z) dz

=

∫
[0,1]2

∑
k∈Z2

λk
(x
ε

)
uε(εz + εk) dz =

∫
[0,1]2

uzε(x+ εz) dz.

Hence, proceeding with estimates as in (3.10),∫
U

|Aε(Iε(uε))(x)− uε(x)|2 dx =

∫
U

∣∣∣ ∫
[0,1]2

(uzε(x+ εz)− uε(x)) dz
∣∣∣2 dx(3.11)

≤
∫
U

∫
[0,1]2

|uzε(x+ εz)− uε(x)|2 dz dx

≤ Cε2| log ε|Fε(uε).

In particular, this estimate and (3.10) imply that

(3.12)
1

ε2| log ε|

∫
[0,1]2

∫
U

|Aε(Iε(uε(x)))− uzε(x)|2 dx dz ≤ CFε(uε).

By estimates (3.4), (3.9) and (3.12), applying Fatou’s Lemma, we deduce that for
almost all z ∈ [0, 1]2

lim inf
ε→0

(
Xε(u

ε,z;U) +
1

ε2| log ε|

∫
U

|Aε(Iε(uε(x)))− uzε(x)|2 dx(3.13)

+
1

| log ε|

∫
U

|∇Aε(Iε(uε))−∇uzε(x)|2 dx
)
< +∞.

Recalling Lemma 2.2, for almost all z ∈ [0, 1]2 there exists a subsequence εj = εj(z)
and a measure µz such that uεj ,z → µz and

1

ε2
j | log εj |

∫
U

|Aε(Iε(uεj (x)))− uzεj (x)|2 dx

+
1

| log εj |

∫
U

|∇Aεj (Iεj (uεj ))−∇uzεj (x)|2 dx ≤ C.

By Lemma 2.1 we obtain that

(3.14) lim
j→+∞

FU (?J(Aεj (Iεj (uεj )))− µz) = 0;

that is, {uεj} converges to µz in the sense of Definition 2.4.

The proof in the general case Ω ⊂ Rd is exactly the same as in the 2-dimensional
case, with the difference that all triangular arguments must be repeated d times, a
factor εd−2 appears in the definition of the discrete functional Xε and we have to use
the properties of the Kuhn triangulation in the computation of the gradient of uzε,
generalizing (3.7). We omit the details since they only result in a heavier notation.

Remark 3.2 (Independence from the discretization). We now remark that Defi-
nition 2.4 is in fact independent from the choice of the discretization. We make this
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statement precise in the case d = 2, the general case following with minor modifica-
tions.

For a fixed ξ = (ξ1, ξ2) ∈ R2 \ {0} we consider the lattice Z2
ξ = Zξ ⊕ Zξ⊥, where

ξ⊥ = (ξ2,−ξ1) and the convergence of a sequence {uε} obtained by a discretization
on this lattice. Namely, for each u ∈ L1

loc(Ω;R2) and ε > 0 we define Iξε (u) : εZ2
ξ → R2

as follows

(3.15) Iξε (u)(εk) =
1

|ξ|2ε2

∫
Qk,ξε ∩Ω

u(x) dx,

where Qk,ξε = εk + εQξ, k ∈ Z2
ξ and Qξ = [0, 1]ξ + [0, 1]ξ⊥.

Then, we consider a fixed triangulation of R2 with vertices in Z2
ξ and the corre-

sponding family of piecewise-affine functions {λξk}k∈Z2
ξ

with λξk : R2 → [0, 1] and such

that λξk(k) = 1, the support of λξk is the union of the elements of the triangulation
containing k and

∑
k∈Z2

ξ
λk(x) = 1 for all x. Given a discrete function v : εZ2

ξ → R2,

following (2.6) we define a piecewise-affine interpolation by setting

(3.16) Aξε(v)(x) =
∑
k∈Z2

ξ

λξk

(x
ε

)
v(εk).

The key argument of Lemma 3.1 is the comparison of the functions uzε with uε as
in (3.10), and is obtained thanks to (3.2). We can repeat the arguments leading to
(3.2) with ξ in the place of e1, up to changing the constants, as follows. For fixed ξ
and z ∈ [0, 1]2, for i ∈ Z2 we set

(3.17) uε,z,ξi = uε,z,ξ(εi) = uε(εz1ξ + εz2ξ
⊥ + εi1ξ + εi2ξ

⊥),

and let uz,ξε denote the corresponding piecewise-affine interpolation from the lattice

εz1ξ + εz2ξ
⊥ + εZ2

ξ . Note that uε,z,ξi are defined for i ∈ Z2, so that they differ form

uz,ξε by the linear transformation carrying Z2 in Z2
ξ , up to a small translation. Then

we obtain the estimates analogous to (3.8) and (3.11) with Aξε(I
ξ
ε (uε)) in the place of

Aε(Iε(uε)), and we can conclude that∫
[0,1]2

Xε(u
ε,z,ξ;Uεz,ξ) dz +

1

ε2| log ε|

∫
[0,1]2

∫
U

|Aξε(Iξε (uε(x)))− uz,ξε (x)|2 dx dz(3.18)

+
1

| log ε|

∫
[0,1]2

∫
U

|∇Aξε(Iξε (uε))−∇uz,ξε (x)|2 dx dz ≤ C(|ξ|)Fε(uε),

where Uεz,ξ = {x ∈ R2 : εz1ξ + εz2ξ
⊥ + L(ξ)x ∈ U} and L(ξ) is the linear map such

that L(ξ)(e1) = ξ and L(ξ)(e2) = ξ⊥.
As a result, concluding as in the proof of the proposition, we obtain a subsequence

εj = εj(ξ) and a measure µ(ξ) such that

(3.19) lim
j→+∞

FU (?J(Aξεj (I
ξ
εj (uεj )))− µ(ξ)) = 0

for all U ⊂⊂ Ω. Note that if µ(ξ) = π
∑N
`=1 d

ξ
`δxξ`

, then the sequence {uεj ,z,ξ}
converges to π

∑N
`=1 d

ξ
`δL−1(xξ` )

.

Now, we can apply Lemma 2.2 to Aξεj (I
ξ
εj (uεj )) and Aεj (Iεj (uεj )) with the esti-

mate on the gradients given by (3.8), while the second assumption can be obtained
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from (3.11) by a triangular argument. Hence, the sequence {uε} converges up to
subsequences to the measure µ(ξ) in the sense of Definition 2.4, showing that the
convergence indeed depends only on uε and not on the discretization chosen. Indeed,
if the sequence uε converges to µ in the sense of Definition 2.4, then uεj converges to
µ, implying µ = µ(ξ). This allows to remark that, if in Definition 2.4 we require that
(3.19) holds for all U ⊂⊂ Ω, we obtain a definition of convergence which is equivalent
to Definition 2.4.

4. Proof of the Γ-convergence result. We can now prove the Γ-convergence
result. We recall that ρ : [0,+∞) → [0,+∞) is a fixed kernel with compact support
such that

∫
Rd ρ(|ξ|)|ξ|2 dx < +∞. Moreover, we suppose that ρ is larger than a strictly

positive constant in a neighbourhood of 0; then, upon scaling, it is not restrictive to
suppose that

(4.1) ρ ≥ ρ0χ[−1,1]d ,

so that we can directly apply the compactness result of Lemma 3.1. We also recall
that Ω ⊂ Rd is an open Lipschitz bounded domain, and Fε : L1(Ω;S1) → [0,+∞] is
defined by

Fε(u) =
1

εd+2| log ε|

∫
Ω×Ω

ρ
( |x− y|

ε

)
|u(x)− u(y)|2 dxdy.

The proof of the lower bound uses a discretization approach, rewriting the energies
as integrals on Rd×[0, 1]d of lattice energies parameterized on the integration variable,
which can be analyzed separately, while a direct computation is used for the upper
bound.

Proof of Theorem 2.6 (ii) (lower bound). In order to point out and clarify the key
steps of the proof, we first deal with the case d = 2.

(a) The case d = 2. In this case, we can consider an integral 0-current of the form
M =

∑n
`=1 d`δx` . Let uε converge to µ = πM in the sense of Definition 2.4. Let

U ⊂⊂ Ω. In analogy with the definition of the family of indices Iε, we set

Iξε (U) = Iξε = {k ∈ Z2
ξ : εk + 4εQ̂ξ ⊂⊂ Ω, εk + 2εQ̂ξ ∩ U 6= ∅},

where Q̂ξ is the square centered at 0 with edges ξ and ξ⊥. We have

Fε(uε) =

∫
R2

ρ(|ξ|)
( 1

ε2| log ε|

∫
Ω

|uε(x+ εξ)− uε(x)|2 dx
)
dξ(4.2)

≥ 1

2| log ε|

∫
R2

ρ(|ξ|)|ξ|2
(∫

[0,1]2

∑
k∈Iξε

|uε(εs1ξ + εs2ξ
⊥ + εk + εξ)

−uε(εs1ξ + εs2ξ
⊥ + εk)|2 ds

)
dξ

+
1

2| log ε|

∫
R2

ρ(|ξ|)|ξ|2
(∫

[0,1]2

∑
k∈Iξε

|uε(εs1ξ + εs2ξ
⊥ + εk + εξ⊥)

−uε(εs1ξ + εs2ξ
⊥ + εk)| ds

)
dξ

≥ 1

2| log ε|

∫
R2

ρ(|ξ|)|ξ|2
(∫

[0,1]2

1

2

∑
〈i,j〉

|uε,s,ξi − uε,s,ξj |2 ds
)
dξ

≥ 1

4

∫
R2

ρ(|ξ|)|ξ|2
(∫

[0,1]2
Xε(u

ε,s,ξ;Uεs,ξ) ds
)
dξ
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where for i ∈ Z2 the value uε,s,ξi is defined as in (3.17) and

Uεs,ξ = {x ∈ R2 : εs1ξ + εs2ξ
⊥ + L(ξ)(x) ∈ U},

L(ξ) being the linear map such that L(ξ)(e1) = ξ and L(ξ)(e2) = ξ⊥.
We now introduce a parameter η > 0 and write

Fε(uε) = (1− η)Fε(uε) + ηFε(uε)

≥ 1

2

∫
R2\Bη

ρ(|ξ|)|ξ|2
∫

[0,1]2
(1− η)

(
Xε(u

ε,s,ξ;Uξ)

+Cη
1

ε2| log ε|

∫
U

|Aε(Iε(uε(x)))− us,ξε (x)|2 dx

+Cη
1

| log ε|

∫
U

|∇Aε(Iε(uε))−∇us,ξε (x)|2 dx
)
ds dξ,

where Uξ is any open set contained in the intersection of the sets Uεs,ξ for s ∈ [0, 1]2

and ε small enough, us,ξε denotes the corresponding piecewise-affine interpolation from
the lattice εs1ξ + εs2ξ

⊥ + εZ2
ξ as in Remark 3.2 and Cη is a positive constant.

By applying Fatou’s Lemma we note that for almost all ξ and s the limit

L(ξ, s) = lim inf
ε→0

(
Xε(u

ε,s,ξ;Uξ) + Cη
1

ε2| log ε|

∫
U

|Aε(Iε(uε(x)))− us,ξε (x)|2 dx

+Cη
1

| log ε|

∫
U

|∇Aε(Iε(uε))−∇us,ξε (x)|2 dx
)

is finite. Hence we can find a sequence εj (depending on ξ and s) such that

L(ξ, s) = lim
j→+∞

(
Xεj (u

εj ,s,ξ;Uξ) + Cη
1

ε2
j | log εj |

∫
U

|Aεj (Iεj (uεj (x)))− us,ξεj (x)|2 dx

+Cη
1

| log εj |

∫
U

|∇Aεj (Iεj (uεj ))−∇us,ξεj (x)|2 dx
)

and equals the liminf above. By Remark 3.2 we deduce that uεj ,s,ξ converges to

µ̂(ξ) = π
N∑
`=1

d`δL−1(ξ)(x`),

so that
L(ξ, s) ≥ lim inf

j→+∞
Xεj (u

εj ,s,ξ;Uξ) ≥ 4π
∑

{`:x`∈U}

|d`|

since we may assume that L−1(ξ)(x`) ∈ Uξ.
We can then proceed in the application of Fatou’s Lemma to deduce that

lim inf
ε→0

Fε(uε) ≥ (1− η)

∫
R2\Bη

ρ(|ξ|)|ξ|2dξ π
∑

{`:x`∈U}

|d`|,

and finally, using the arbitrariness of η and U , that

lim inf
ε→0

Fε(uε) ≥
∫
R2

ρ(|ξ|)|ξ|2dξ π
N∑
`=1

|d`|,
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which is the desired lower bound.

(b) The general case. In the d-dimensional case we cannot simply take into account
orthogonal bases of the form {ξ, ξ⊥}. In order to repeat the argument in the 2-
dimensional case using the lower estimate for the discrete functionals Xε, we will
consider the space of the orthonormal bases in Rd and use them to parameterize the
interpolations, generalizing the role of ξ and ξ⊥ in the 2-dimensional computations.
To this end, we define the space

V = {ν = (ν1, . . . , νd) : νj ∈ Sd−1 such that 〈νi, νj〉 = 0 for i 6= j},

whose Hausdorff dimension d(d−1)
2 is denoted by kd. Moreover, for any ν ∈ Sd−1 and

n ∈ {1, . . . , d} we set

V νn = {ν = (ν1, . . . , νd) ∈ V : νn = ν}.

The Hausdorff dimension of V νn is kd − (d− 1) and we have

(4.3) Hkd−(d−1)(V νn ) =
Hkd(V )

Hd−1(Sd−1)
.

Note that in fact the space V is the orthogonal group O(d) ⊂ GL(d); that is, the
group of the orthogonal d × d matrices, and each V νn corresponds to the orthogonal
group O(d− 1) acting on the orthogonal complement of ν.

Now, let M be an integral (d− 2)-current, and let the sequence {uε} converge to
µ = πM in the sense of Definition 2.4. Let U ⊂⊂ Ω. In analogy with the previous
case, for t > 0 and ν ∈ V we set

Itνε (U) = Itνε = {k ∈ Zdtν : εk + 4εQ̂tν ⊂⊂ Ω, εk + 2εQ̂tν ∩ U 6= ∅},

where Zdtν = Ztν1⊕· · ·⊕Ztν1 and Q̂tν is the square centered at 0 with edges {tν1}dn=1.
Again note that {tν1, . . . , tνd} plays the same role as {ξ, ξ⊥} in the 2-dimensional case.
As in (4.2), by using (4.3) we have

Fε(uε) =

∫
Rd
ρ(|ξ|)

( 1

ε2| log ε|

∫
Ω

|uε(x+ εξ)− uε(x)|2 dx
)
dξ(4.4)

=

∫ +∞

0

ρ(t)td−1

∫
Sd−1

1

ε2| log ε|

∫
Ω

|uε(x+ εtν)− uε(x)|2 dx dHd−1(ν) dt

=

∫ +∞

0

ρ(t)td−1

∫
Sd−1

1

d

d∑
n=1

Hd−1(Sd−1)

Hkd(V )

∫
V νn

1

ε2| log ε|∫
Ω

|uε(x+ εtν)− uε(x)|2 dx dHkd−(d−1)(νn) dHd−1(ν) dt

=
1

d

Hd−1(Sd−1)

Hkd(V )

∫ +∞

0

ρ(t)td−1

∫
V

1

ε2| log ε|∫
Ω

d∑
n=1

|uε(x+ εtνn)− uε(x)|2 dx dHkd(ν) dt,

where νn = (ν1, . . . , νn−1, νn+1, . . . , νd) ∈ (Sd−1)d−1 parameterizes an element of V νn
by not considering the n-th component ν. Now, proceeding as in the 2-dimensional



NONLOCAL-INTERACTION VORTICES 17

case, we subdivide Ω in cubes corresponding to indices in Itνε , obtaining

1

ε2| log ε|

∫
Ω

d∑
n=1

|uε(x+ εtνn)− uε(x)|2 dx

≥ td
∫

[0,1]d

1

| log ε|
∑
k∈Itνε

εd−2
∣∣∣uε(ε d∑

`=1

ts`ν` + εtνn + εk
)
− uε

(
ε

d∑
`=1

ts`ν` + εk
)∣∣∣2 ds

= td
∫

[0,1]d

1

| log ε|
1

2

∑
〈i,j〉

|uε,s,tνi − uε,s,tνj |2 ds

≥ td

2

∫
[0,1]d

Xε(u
ε,s,tν ;Uεs,tν) ds,

where, for fixed t > 0, ν ∈ V s ∈ [0, 1]d and i ∈ Zd, the value uε,s,tνi is defined by

(4.5) uε,s,tνi = uε,s,tν(εi) = uε

(
ε

d∑
`=1

ts`ν` + ε

d∑
`=1

ti`ν`

)
and the set Uεs,tν is given by

Uεs,tν =
{
x ∈ Rd : ε

d∑
`=1

ts`ν` + tL(u)(x) ∈ U
}
,

with L(ν) the linear map such that L(ν)(e`) = ν` for any ` ∈ {1, . . . , d}. Hence, from
(4.4) we get the estimate

(4.6) Fε(uε) ≥
Hd−1(Sd−1)

2dHkd(V )

∫
V

∫ +∞

0

ρ(t)t2d−1

∫
[0,1]d

Xε(u
ε,s,tν ;Uεs,tν) ds dt dHkd(ν).

Note moreover that, as in Remark 3.2, the functions uε,s,tν converge to the pull-back
of the limit measure µ with respect to tL(ν), so that

lim inf
ε→0

Xε(u
ε,s,tν ;Uεs,tν) ≥ 4πt2−d‖M‖.

Now we can conclude the proof of the lower inequality, obtaining

lim inf
ε→0

Fε(uε) ≥
2π

d

1

Hkd(V )

∫
V

∫ +∞

0

Hd−1(tSd−1)ρ(t)t2 dt dHkd(ν) ‖M‖(U)

≥ 2π

d

∫
Rd
ρ(|ξ|)|ξ|2dξ ‖M‖(U),

by exactly following the steps in the 2-dimensional case.

Proof of Theorem 2.6 (iii) (upper bound). We subdivide the proof in two cases,
by treating first the case of a single vortex of multiplicity 1.

(a) Upper bound for a single vortex of degree 1. We first deal with the case d = 2,
whose computations are then used in the general case.

It is not restrictive to fix µ = πδ0 and Ω = BR. In this case, we set v(x) = x
|x| for

x 6= 0, and we simply take uε(x) = v(x) as a recovery sequence.



18 M. SOLCI

Let rε > 0 be such that 2ε < rε << 1. Note that, since |uε(x)− uε(y)| ≤ 2, then

1

ε2| log ε|

∫
B1

ρ(|ξ|)
∫
Brε

|uε(x+ εξ)− uε(x)|2 dx dξ ≤ Cr2
ε

ε2| log ε|
,

so that we get

1

ε2| log ε|

∫
B1

ρ(|ξ|)
∫
BR

|uε(x+ εξ)− uε(x)|2 dx dξ(4.7)

≤ 1

ε2| log ε|

∫
B1

ρ(|ξ|)
∫
BR\Brε

|v(x+ εξ)− v(x)|2 dx dξ +
Cr2

ε

ε2| log ε|
.

Let ξ ∈ B1 be fixed. Note that for x ∈ BR \Brε the value uε(x+ εξ) = x+εξ
|x+εξ| is

well defined. Hence, we have∫
BR\Brε

|v(x+ εξ)− v(x)|2 dx =

∫
BR\Brε

∣∣∣ x+ εξ

|x+ εξ|
− x

|x|

∣∣∣2 dx
= 2

∫
BR\Brε

|x|
|x+ εξ|

(√
1 + 2ε

〈x, ξ〉
|x|2

+ ε2
|ξ|2
|x|2
− 1− ε 〈x, ξ〉

|x|2
)
dx

≤
∫
BR\Brε

|x|
|x+ εξ|

(
ε2 |ξ|2

|x|2
− ε2 |〈x, ξ〉|2

|x|4
+ C

ε3

|x|3
)
dx

≤
(

1 +
ε

rε

)∫
BR\Brε

(
ε2 |ξ|2

|x|2
− ε2 |〈x, ξ〉|2

|x|4
+ C

ε3

|x|3
)
dx

=
(

1 +
ε

rε

)∫
BR\Brε

ε2
( |ξ|2
|x|2
− 1

2

|〈e1, ξ〉|2 + |〈e2, ξ〉|2

|x|2
+ C

ε

|x|3
)
dx

=
(

1 +
ε

rε

)∫
BR\Brε

ε2
( |ξ|2

2|x|2
+ C

ε

|x|3
)
dx

=
(

1 +
ε

rε

)
2π
(
ε2|ξ|2

∫ R

rε

1

2r
dr + Cε3

∫ R

rε

1

r2
dr
)

=
(

1 +
ε

rε

)
2π
(
ε2|ξ|2 1

2
| log rε − logR|+ Cε3(

1

rε
− 1

R
)
)

≤
(

1 +
ε

rε

)(
|ξ|2πε2| log rε|+ 2πC

ε3

rε

)
+ Cε2| logR|,

where as usual C denotes a positive constant independent of ε, x and ξ and R. It
follows that

1

ε2| log ε|

∫
B1

ρ(|ξ|)
∫
BR\Brε

∣∣∣ x+ εξ

|x+ εξ|
− x

|x|

∣∣∣2 dx dξ
≤ | log rε|
| log ε|

π

∫
B1

ρ(|ξ|)|ξ|2 dξ + C
ε

rε

| log rε|
| log ε|

+ C
( ε

| log ε|rε
+

ε2

| log ε|r2
ε

+ C
| logR|
| log ε|

)
.

If we choose rε such that

lim
ε→0

r2
ε

ε2| log ε|
= lim
ε→0

ε

rε
= 0 and lim

ε→0

log rε
log ε

= 1,
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for example rε = ε log | log ε|, then, recalling (4.7),

lim sup
ε→0

1

ε2| log ε|

∫
B1

ρ(|ξ|)
∫
BR

|uε(x+ εξ)− uε(x)|2 dx dξ

≤ lim sup
ε→0

1

ε2| log ε|

∫
B1

ρ(|ξ|)
∫
BR\Brε

∣∣∣ x+ εξ

|x+ εξ|
− x

|x|

∣∣∣2 dx dξ
≤ π

∫
B1

ρ(|ξ|)|ξ|2 dξ,

concluding the proof of the upper bound.

The two-dimensional computations can be used to treat the d-dimensional case
when we have M = δ0 × Hd−2 on a product Ω = BR × ω with ω ⊂ Rd−2. In this
case we take uε(x) = uε(x1, x2) as defined in the case d = 2. As in that case, the
asymptotic behaviour of Fε(uε) can be reduced to a computation involving v(x1, x2),
where v(x) = x/|x|. For each ξ ∈ Rd the computation above gives∫

BR\Brε
|v(x+ εξ)− v(x)|2 dx ≤

(
1 +

ε

rε

)
(|〈ξ, e1〉|2 + |〈ξ, e2〉|2)πε2| log rε|

+Cε2
(

1 +
ε

rε

)( ε
rε

+ | logR|
)
,

so that, still following the computations above, we get

lim sup
ε→0

Fε(uε) ≤ Ld−2(ω)π

∫
B1

ρ(|ξ|)(|〈ξ, e1〉|2 + |〈ξ, e2〉|2) dξ.

Noting that∫
B1

ρ(|ξ|)|〈ξ, e1〉|2 dξ =

∫
B1

ρ(|ξ|)|〈ξ, e1〉|2 dξ =
1

d

∫
B1

ρ(|ξ|)|ξ|2 dξ,

we deduce that

(4.8) Γ- lim sup
ε→0

Fε(µ) ≤ Ld−2(ω)
2π

d

∫
B1

ρ(|ξ|)|ξ|2 dξ = C%‖M‖,

where Cρ is defined as in (2.7).

(b) The general case. We consider a (d − 2)-dimensional current M such that the
support of M is compactly contained in Ω and is a polyhedral boundary; that is,
there exists a (d− 1)-dimensional polyhedral current L such that ∂L = M . Then, we
can repeat the arguments for a single vortex up to considering in the place of v(x) = x

|x|
a function which plays the same role around each vortex. Indeed, by [2, Theorem 9.6]
(see also [5, Proof of Theorem 3]) there exist a map ũ : Ω→ S1 and a finite union S
of (d− 3)-dimensional simplices which contains all the (d− 3)-dimensional faces of L,
and δ, γ > 0 such that

(i) ũ ∈W 1,1
loc (Ω;S1) and ?Jũ = M ;

(ii) ũ is locally Lipschitz in Ω \ (S ∪M) and there exists p < 3
2 such that

(4.9) |Dũ(x)| = O
( 1

dist(x,M)

)
+O

( 1

dist(x, S)p

)
;
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(iii) for every (d− 2)-dimensional face F of M , setting

U(F, δ, γ) =
{
x ∈ Ω : dist(x, F ) ≤ min

{
δ,

γ√
1 + γ2

}
dist(x, ∂F )

}
,

then

(4.10) ũ(x) =
x′

|x′|
for x ∈ U(F, δ, γ),

where we have identified the (d− 2)-dimensional affine space containing F with Rd−2

and written x ∈ Rd as a pair (x′, x′′) ∈ R2 × Rd−2, omitting the dependence on F
(see [2, Section 4.1]).

In order to treat each singularity separately, we localize our energies as follows.
For all V ⊂ Ω, we set

Fε(u;V ) =
1

εd+2| log ε|

∫
V×V

ρ
( |x− y|

ε

)
|u(x)− u(y)|2 dxdy.

Now, we take uε(x) = ũ(x) for any ε > 0. We can subdivide the computation
of Fε(uε) into a computation “close” to M ; that is, in each set U(F, δ, γ), which will
give the main contribution, and in the rest, which will be small. Indeed, for each F ,
by (4.10) we can reduce to the computations above for a single vortex, obtaining

(4.11) lim sup
ε→0

Fε(uε;U(F, δ, γ)) ≤ Cρ‖M‖(F ).

Now we have to prove that the contribution in the rest of the domain is negligible.
To that end, we introduce the notation

Dη = {x ∈ Ω : dist(x,D) < η}

for each η > 0 and D ⊂ Ω. With fixed η > 0, let U = U(η) be an open set of Rd such
that

M ∪ S ⊂ U ⊂⊂ Sη ∪
⋃
F

U(F, δ, γ),

where the union is taken over all (d− 2)-dimensional faces of M . We first note that,
since ũ is Lipschitz in Ω \ U , we have

(4.12) lim sup
ε→0

Fε(uε; Ω \ U) = 0.

Then, we consider the neighbourhood of the (d−3)-dimensional part of the boundary,
showing that

(4.13) lim sup
ε→0

Fε(uε;S
η) = O(η)

as η → 0. This estimate can be achieved by estimating separately interactions close
to S (in a neighbourhood of order ε) and in the remaining of the set. To that end,
let T ≥ 2 be such that spt(ρ) ⊂ BT ; since |uε(x)− uε(y)| ≤ 2, we have

(4.14) Fε(uε;S
η ∩ (S ∪M)2Tε) ≤ C

| log ε|
.
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As for Sη \ (S ∪M)(T+1)ε, we have the estimate

Fε(uε;S
η \ (S ∪M)(T+1)ε)

=
1

| log ε|

∫
BT

ρ(|ξ|)
∫
Sη\(S∪M)(T+1)ε

1

ε2
|ũ(x+ εξ)− ũ(x)|2 dx dξ

≤ 1

| log ε|

∫
BT

ρ(|ξ|)
∫
Sη\(S∪M)(T+1)ε

∫ 1

0

|Dũ(x+ tεξ)|2|ξ|2 dt dx dξ

≤ 1

| log ε|

∫
BT

ρ(|ξ|)|ξ|2
∫ 1

0

∫
Sη\(S∪M)ε

|Dũ(w)|2 dw dt dξ

=
1

| log ε|

∫
BT

ρ(|ξ|)|ξ|2 dξ
∫
Sη\(S∪M)ε

|Dũ(x)|2 dx.

Now, by using estimate (4.9) we get

Fε(uε;S
η \ (S ∪M)(T+1)ε)(4.15)

≤ C

| log ε|

∫
Sη\(S∪M)ε

( 1

dist(x, S)2p
+

1

dist(x,M)2

)
dx

≤ C‖M‖(Sη)

(see [5, Lemma 3]). By (4.14) and (4.15) we obtain (4.13).
By gathering estimates (4.11), (4.12) and (4.13), we can conclude that

lim sup
ε→0

Fε(uε) ≤ lim sup
ε→0

(∑
F

Fε(uε;U(F, δ, γ)) + Fε(uε; Ω \ U) + Fε(uε;S
2η)
)

≤ Cρ‖M‖+O(η).

By the arbitrariness of η > 0, the claim is achieved.
Finally, we can remove the hypothesis on M by using the following density result

(see e.g. [5, Proposition 2] and [1, 2]).

Proposition 4.1 (density of polyhedral boundaries with multiplicity 1). Let
Ω be a bounded domain in Rd, and let T be an integral boundary locally in Ω with
dimension h < d and ‖T‖ < +∞. Then, there exists a sequence {Tn} of polyhedral
boundaries in Rd with multiplicity 1 and spt(Tn) ⊂⊂ Ω such that lim

n→+∞
FU (Tn−T ) =

0 for any U ⊂⊂ Ω and lim
n→+∞

‖Tn‖ = ‖T‖.

Using this proposition, we can construct a recovery sequence by a diagonal argument,
concluding the proof.

Acknowledgments. The author gratefully acknowledges the University of Sas-
sari for funding her research in the framework of the Fondo di Ateneo per la ricerca
2020. She is a member of the INdAM group GNAMPA.

REFERENCES

[1] G. Alberti, Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau
in dimensione qualunque, Boll. Un. Mat. Ital., 4 (2001), pp. 289–310.

[2] G. Alberti, S. Baldo, and G. Orlandi, Variational convergence for functionals of Ginzburg-
Landau type, Indiana Univ. Math. J., 54 (2005), pp. 1411–1472.

[3] G. Alberti, G. Bellettini, M. Cassandro, and E. Presutti, Surface tension in Ising sys-
tems with Kac potentials, J. Statist. Phys., 82 (1996), pp. 743–796, https://doi.org/10.
1007/BF02179792.

https://doi.org/10.1007/BF02179792
https://doi.org/10.1007/BF02179792


22 M. SOLCI

[4] R. Alicandro, N. Ansini, A. Braides, A. Piatnitski, and A. Tribuzio, A Variational The-
ory of Convolution-type Functionals, SpringerBriefs on PDEs and Data Science, Springer,
Berlin, 2023.

[5] R. Alicandro and M. Cicalese, Variational analysis of the asymptotics of the XY model,
Arch. Rational Mech. Anal., 192 (2009), pp. 501–536.

[6] R. Alicandro and M. Ponsiglione, Ginzburg-Landau functionals and renormalized energy:
A revised Γ-convergence approach, J. Funct. Anal., 266 (2014), pp. 4890–4907.

[7] J. C. Bellido, C. Mora-Corral, and P. Pedregal, Hyperelasticity as a Γ-limit of peridy-
namics when the horizon goes to zero, Calc. Var. Partial Differential Equations, 54 (2015),
pp. 643–1670.
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