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A B S T R A C T

This paper examines the economic and ecological dynamics that arise in a natural park from the interaction
between the tourists that visit the park and the species living there. We consider two species whose interaction
is determined by Lotka–Volterra prey–predator equations. The tourists’ decision to visit the park is affected
by the entrance fee as well as by the possibility of observing the two species, mediated by their preferences
towards the prey and predator populations. A third nonlinear equation governs such dynamics. Tourism has
conflicting effects: a higher number of visitors can be detrimental to the habitat and its species, but promoting
ecotourism while preserving environmental sustainability and equilibrium is also in the mission of protected
areas. We analyse the impact on the stability of the equilibrium of different levels of the entrance fee and
tourists’ preferences for the two species. It is shown that, under specific conditions, an instability may arise
leading to species loss and/or no tourists choosing to visit the park. Local and global sensitivity analyses of
the equilibrium coordinates with respect to the model inputs highlight the major effects of the entrance fee.
Interestingly, the preference for the preys (not the predators) is the crucial parameter when optimizing a fitness
utility function for the park in a static setting. Finally, it is shown how to implement an optimal fee-policy
control to steer the system towards its stable equilibrium following a path that also maximizes the discounted
cumulated utility.
1. Introduction

According to the definition of IUCN, International Union for Conser-
vation of Nature [1], ‘‘A protected area is a clearly defined geographical
space, recognized, dedicated and managed, through legal or other
effective means, to achieve the long term conservation of nature with
associated ecosystem services and cultural values’’. Protected Areas
(PAs) have to be managed to fulfil two main objectives: preserving
natural environments and landscapes as well as promoting recreational
and cultural activities [2]. However, the management and maintenance
of these areas require significant financial resources.

An entrance fee can offer a solution to these financial needs, helping
to cover the costs of management, monitoring and protection of the
areas, as well as promoting responsible tourism. If well-structured,
an entrance fee can also serve as an educational tool, raising visi-
tors’ awareness of the importance of conservation and encouraging
environmentally respectful behaviour. However, it is crucial that the
fee amount and application methods are carefully balanced to ensure
that PAs remain accessible to different population groups without
compromising their conservation value.

∗ Corresponding author.
E-mail address: ddelpini@uniss.it (D. Delpini).

Eagles et al. [3] in their book provide a comprehensive guide on
planning and managing sustainable tourism in PAs, including a discus-
sion on the importance of entrance fees to support the management and
conservation of natural resources. Buckley [4] explores the political and
managerial implications of introducing entrance fees in public parks in
Australia, analysing the effects on visitors and conservation. Drumm [5]
explores how entrance fees and tourism concessions can create a finan-
cial threshold of sustainability for PAs. The paper emphasizes balancing
ecological protection with tourism development to ensure long-term
conservation funding. Yoon and Zou [6] make use of the zero-price
effect and transactional utility theory. They investigate the impact of
entrance fees on the experiences and decisions of park visitors by target-
ing different populations with experiments based on written vignettes.
Lupi et al. [7] analyse the profit generated via uniform entrance fees
across various locations in comparison to the extra state income tax
that produces equal revenues. Total trip and site needs exhibit cost
elasticity over a wide spectrum of entrance rates. In Gao et al. [8]
the Random Regret Minimization (RRM) model is introduced. They
consider polynomial logit and hybrid latent class models and examine
their capability to analyse discrete choice models based on both utility
and regret.
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Many authors studying the impact of tourists/visitors have incorpo-
rated entrance fees into their mathematical models. Sarkar et al. [9]
ropose an ecological-economic predatory-prey fishery model with the

objective of demonstrating the roles of fishing tax and tourist en-
rance fees in stabilizing fishery dynamics and maximizing revenue
eneration. The dynamic evolution is studied through the investigation
f the different equilibrium points and bifurcation analysis. Notaro

and Grilli [10] conduct a discrete choice experiment to assess tourist
references for the conservation of large carnivores in the Italian
lps. Russu [11] presents a mathematical model that takes into ac-
ount the number of visitors, the quality of the environment, and the
xisting infrastructure, focusing on the use of tourism fees to fund
nvironmental protection and improve facilities. Through stability and
ifurcation analysis, it is demonstrated that delays in the implementa-
ion of protection measures can lead to instability in the system, with
egative consequences for the sustainable management of PAs. The au-
hor concludes that adequate and timely investments in environmental
rotection are essential to mitigate the negative impact of tourism and
nsure the long-term sustainability of these areas.

Visitor preferences regarding animals in PAs are a fundamental as-
ect of managing nature-based tourism and biodiversity conservation.

Charismatic animals, such as large mammals (e.g., elephants, lions,
nd bears), often capture the attention of visitors and can significantly
nfluence their travel decisions. This phenomenon, known as “wildlife

charisma’’, not only shapes tourists’ experiences but can also determine
onservation priorities within PAs.

Understanding visitor preferences for specific species or animal
roups is essential for developing effective management strategies that

balance tourist interest with the need to protect biodiversity. Prefer-
ences can vary widely based on cultural, demographic and personal
factors, and analysing these preferences can provide valuable insights
into how to enhance visitor experiences, promote environmental edu-
cation, and ensure that conservation efforts are not limited to the most
popular species.

However, excessive focus on certain species could lead to unbal-
anced management, where resources and conservation efforts are con-
centrated only on a few species at the expense of others that are less
isible but equally important for the ecosystem. Therefore, a thor-
ugh analysis of visitor preferences can help guide more inclusive and
ustainable management decisions in PAs.

Numerous studies have explored tourist preferences for wildlife,
providing estimates of the preferred species by completing a question-
naires. Kerley et al. [12] suggest that tourists’ preference for charis-
matic mega-fauna may lead to a reduced appreciation for biodiver-
sity. Lindsey et al. [13] investigate, by completing questionnaires,
tourist preferences in four PAs in South Africa, finding that that mega-
herbivores and large carnivores were favoured by visitors, especially
first-time and international ones. Conversely, local African visitors and
seasoned wildlife enthusiasts showed more interest in bird and plant
iversity, scenic views, and rare, less easily spotted mammals. Di Minin
t al. [14] study heterogeneous preferences of tourists for big game

species in South Africa, identifying two segments defined largely by
ocio-economic characteristics. Maciejewski and Kerley [15] examine
ourist preferences for mammal species in a private PA in South Africa
evealing a strong preference for larger and more charismatic species
uch as elephants, lions, leopards, and cheetahs.

Guo and Fennel [16] rely on consumer learning theory and lively
apital to further explain the dynamic relationship existing between
reference for animals and visitation experiences. Obrodovic et al. [17]
xplore how encounters with keystone species or flagship species can
ignificantly impact tourist satisfaction and influence visitation patterns
n nature-based tourism settings. Wallace [18] analyses how visitor

preferences for charismatic or rare species can influence conserva-
tion strategies in national parks, as well as the role of these species
in attracting tourists, thereby benefiting both conservation funding
nd local economies. Mzek et al. [19] study the population of tigers,
 e

2 
availability of tiger prey, presence of rangers, frequency of awareness
rogrammes, buffer zones, and conservation fees. The findings indicate
hat education and gender substantially influenced visitors’ choices.
ndividuals with advanced education are inclined to invest in the
nhancement of tiger prey populations. Eyster et al. [20] try to single

out ecotourist preferences and to assess which species and landscapes
enefit the most from ecotourism, both aspects being relevant to drive
fforts to preserve African biodiversity.

While the role of entrance fees has been widely investigated, the
iterature does not provide dynamic models that incorporate tourists’

preferences for different animal species in the PAs. So, our objective
is to analyse a stylized model of the interactions between tourists
and two species — prey and predator — within a natural PA setting,
overned by a system of nonlinear differential equations. We conduct

such analysis in terms of equilibrium points and bifurcations, as well
s of sensitivity to model inputs. Furthermore, we intend to study the

dynamics subject to optimal control, where the entrance fee represents
the control variable.

This work contributes to the growing body of literature on sus-
ainable tourism management by proposing an optimal fee policy that
alances ecological preservation and economic gain. By offering in-

sights into how different variables interact to shape the dynamics of
species populations and visitors, we provide a framework for managing
entrance costs consistently with tourists’ preferences, in a way that
maximizes long-term benefits for both conservation of the species and
tourism fostering. However, it is not the aim of this work to build a
ompletely realistic model capturing all aspects, which would come
t the cost of loosing any analytical tractability. Nor we investigate
ere the problem of building a differential model informed by data.
hat is clearly a crucial issue and is tackled by many empirical articles
hat adopt a data driven approach, such as recent studies using neural
etworks to model time series. For instance, Altan et al. [21] develop
 hybrid forecasting model based on long short-term memory neural
etwork and empirical wavelet transform decomposition along with
uckoo search algorithm for digital currency time series, showing that
he combined model can capture nonlinear properties of digital cur-
ency time series. Pekkaya et al. [22] employ artificial neural networks

to identify the main factors affecting sales volume in an iron and
steel company, providing a more accurate prediction than classical
regression models.

The work is organized as follows: Section 2 describes the model in a
prey-predator setting; Section 3 analyses the existence and stability of
equilibria; in Section 4 a sensitivity analysis is performed at the interior
quilibrium point with respect to the entrance fee and the tourists’
references for the two species; in Section 5 an optimization on the

entrance fee is performed; Section 6 concludes the paper.

2. The model

The classical Lotka–Volterra model [23,24] defines a fundamental
mathematical framework for studying predator–prey interactions. In
ecology, innumerable studies on interacting populations have been
based on varying formulations of the model (see among the others [25–
29]). Following, e.g. [30], we consider the following dynamical system

̇ = 𝐹 (𝑥, 𝑦;𝑥) = 𝑎𝑥 − 𝑏𝑥2 − 𝑐 𝑥𝑦
𝑦̇ = 𝐺(𝑥, 𝑦;𝑦) = −𝑑 𝑦 + 𝑒𝑦𝑥 − 𝑖𝑦2 (1)

where 𝑥 ≡ {𝑎, 𝑏, 𝑐} and 𝑦 ≡ {𝑑 , 𝑒, 𝑖} are sets of parameters.1 In (1) the
terms 𝑎𝑥−𝑏𝑥2 define a logistic growth with a limiting carrying capacity

1 The literature contains several theoretical analyses [31–33] of how 𝑥 and
𝑦 determine the dynamic trajectory of the state variables. It has to be men-

ioned that it is difficult to obtain adequate data and historical series and we
emark that our model is not based on a data-driven approach. Nevertheless,
e have supported the model with references to relevant empirical studies and

xperiments on the subject.
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𝑎∕𝑏 (see e.g., [34]), and 𝑐 𝑥 𝑦 represents loss in prey biomass due to
redation (also known as the functional response [35]). The predator
ynamics is determined by a natural death rate term 𝑑 𝑦, population
ecrease due to intraspecific competition 𝑖 𝑦2, and 𝑒𝑥 𝑦, which defines
he biomass gain through predation. Model (1) provides a commonly
ccepted, albeit simplified, framework for the description of competing
pecies that remains analytically tractable.

In contexts such as large national parks, the ample space and avail-
ble resources for predators may minimize the need for intraspecific

competition. With sufficient prey and spacious territories, predators
are less likely to compete significantly, making intraspecific competi-
tion less relevant. Moreover, many national parks monitor and some-
times control predator numbers to prevent excessive impact on overall
wildlife and prey species. This helps maintain predator populations at
stable levels, preventing them from reaching densities that would in-
crease intraspecific competition. Given these considerations, we assume
intraspecific competition to be negligible and the parameter 𝑖 to be
zero, making system (1) become

̇ = 𝑥 (𝑎 − 𝑏𝑥 − 𝑐 𝑦)
𝑦̇ = 𝑦 (−𝑑 + 𝑒𝑥) (2)

which we call the ‘‘natural system’’, where we assume that all the
parameters are non-negative and that the quantity 𝑞𝑁 ∶= 𝑎𝑒 − 𝑏𝑑 is
strictly positive. Under these assumptions, system (2) has a positive
tationary solution with coordinates (𝑥𝑁 , 𝑦𝑁 ) = (

𝑑∕𝑒, 𝑞𝑁∕𝑒𝑐
)

.
Now let us introduce the possibility for the tourists to visit the

park. Tourists are often drawn to protected areas for a variety of
reasons, primarily including: nature immersion; adventure and out-
door activities; wildlife observation; cultural and historical interest;
sustainable tourism. The main obstacles discouraging tourists from
visiting protected areas include: limited accessibility; high costs; lack
of infrastructure; perceived risk.

The introduction of tourists into the model leads to a modification
of the natural dynamics (2). In this work we are interested primarily
in modelling the dynamics of tourists as influenced by the factors
‘‘Wildlife Observation’’ and ‘‘High Costs’’ with reference to the entrance
ee. If 𝑇 is the density of tourist population, the rate of variation per

unit of 𝑇 will be a function of 𝑥, 𝑦 and 𝑇 , depending on a number of
other parameters, that is 𝑇̇ ∕𝑇 =  (𝑥, 𝑦, 𝑇 ; …). We will assume  to be
linear in 𝑥, 𝑦, 𝑇 .

Thus we propose the following three-dimensional model where we
added the third equation describing the dynamic evolution of tourists
isiting the park:

⎧

⎪

⎨

⎪

⎩

𝑥̇ = 𝑥 𝑓 (𝑥, 𝑦, 𝑇 ) = 𝑥 (𝑎 − 𝑏𝑥 − 𝑐 𝑦 − 𝛼1𝑇 𝛾 )
𝑦̇ = 𝑦 𝑔(𝑥, 𝑦, 𝑇 ) = 𝑦 (−𝑑 + 𝑒𝑥 − 𝛼2𝑇 𝛾 )

𝑇̇ = 𝑇 ℎ(𝑥, 𝑦, 𝑇 ) = 𝑇 (−𝛽 + 𝜎1𝑥 + 𝜎2𝑦)

(3)

System (3) is defined on the set 𝛤 = {(𝑥, 𝑦, 𝑇 ) ∈ R3
|𝑥 ≥ 0, 𝑦 ≥ 0, 𝑇 ≥ 0},

subject to the initial conditions

𝑥(0) > 0, 𝑦(0) > 0, 𝑇 (0) > 0 (4)

The term −𝛽 is a loss term that is responsible for slowing down the
growth of the tourist population. That could arise from an increase in
entrance fees or other costs associated with visiting the park. Indeed,
it is reasonable to expect that an increase in costs (for example, due to
higher entrance fees) leads to a decrease in tourist demand and nega-
tively affects the number of visitors per unit time, which is supported
by [36]. For the sake of brevity, in the following we will refer to the
parameter 𝛽 simply as the ‘‘entrance fee’’.

The parameters 𝜎1 and 𝜎2 are related to the preferences of tourists
for the prey and predator species respectively. Tourists may be attracted
by the presence of preys, which offers opportunities for wildlife obser-
vation and recreational activities such as birdwatching or photographic

safaris. An increase in the prey population can therefore stimulate an t

3 
increase in the number of tourists, which is quantified by the term
𝜎1 𝑥 and is proportional to the number of potential encounters per
tourist with the preys (𝑥). Similarly, the presence of predators may at-
tract tourists interested in unique and exciting observation experiences.
Therefore, an increase in the predator population may also contribute
to an increase in the number of tourists, as indicated by the term 𝜎2 𝑦,
again proportional to the number of potential encounters per tourist
with the predators (𝑦). Such kind of effects are also supported by
previous empirical studies, see e.g. [13,14].

The presence of the tourists entails a disturbance to the species.
hile much research has focused on the effects of human disturbance

n wildlife behaviour, a growing body of evidence suggests that fear
f the human ‘‘super predator’’ may often be the ultimate driver of
ildlife responses to such disturbance. Recent meta-analyses of world-
ide data highlight alterations in movement [37] and increases in

nocturnality [38] of terrestrial mammals of all sizes and types in
response to human disturbance. Some experiments have indicated that
the fear instilled in large and medium carnivores by the human ‘‘super
predator’’ can affect how frequently large carnivores kill preys [39] and
induce trophic cascades2 [40,41].

In terms of the rates of variation per individual, 𝑥̇∕𝑥 and 𝑦̇∕𝑦, we
model such effects by the nonlinear terms −𝛼1𝑇 𝛾 and −𝛼2𝑇 𝛾 , with
𝛾 > 1. The parameters 𝛼1 and 𝛼2 modulate the disturbance from the
tourists on the prey and predator population respectively. There exist
ecological and behavioural reasons supporting the idea that the amount
of disturbance, per individual of the species, should be nonlinear
in the number of disturbers [42–44]. For instance, threshold effects
an be observed: disturbance may remain minimal up to a certain
evel of tourist presence and then increase rapidly beyond a critical
hreshold. The dependence on tourist density is another factor: the
mpact of the disturbance grows with the local density of tourists,

affecting the species unevenly. Also, predators and preys may develop
ifferent tolerances and adaptations to human presence, generating
ifferentiated nonlinear responses. Finally, cumulative stress may play

an important role: the effects of disturbance tend to accumulate over
time, progressively reducing the survival and reproductive capacities of
he species disturbed. For the sake of simplicity, here we assume 𝛾 = 2
or the exponent of the nonlinear disturbance.

In ecological modelling, positivity and boundedness ensure that the
populations of species remain realistic over time, no species can have a
negative population, and no population can grow without limit. In what
follows, we demonstrate that the solutions of our model are positive
and bounded if the parameters satisfy certain inequalities.

Lemma 1. The solutions (𝑥(𝑡), 𝑦(𝑡), 𝑇 (𝑡)) of system (3) under the initial
conditions (4) are (a) positive for all 𝑡 ≥ 0 and (b) uniformly bounded if
𝑐 > 𝑒.

Proof.

(a) Eqs. (3) together with the conditions (4) give

𝑥(𝑡) = 𝑥(0) exp
(

∫

𝑡

0
𝑓 (𝑥(𝑠), 𝑦(𝑠), 𝑇 (𝑠))𝑑 𝑠

)

> 0

𝑦(𝑡) = 𝑦(0) exp
(

∫

𝑡

0
𝑔(𝑥(𝑠), 𝑦(𝑠), 𝑇 (𝑠))𝑑 𝑠

)

> 0,

𝑇 (𝑡) = 𝑇 (0) exp
(

∫

𝑡

0
ℎ(𝑥(𝑠), 𝑦(𝑠), 𝑇 (𝑠))𝑑 𝑠

)

> 0.

Hence all solutions starting from an interior point of the first
octant remain in it at all future times.

2 Trophic cascades are strong indirect interactions that can govern entire
ecosystems. They occur when predators limit the density and/or behaviour of
heir prey and thereby enhance survival of the next lower trophic level.



D. Delpini et al.

𝛽

o

a
T

o

t

c

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 191 (2025) 115845 
(b) Let us consider 𝑊 (𝑡) = 𝑥(𝑡) +𝑦(𝑡) +𝑚𝑇 (𝑡)2, then the time derivative
along the solutions reads
𝑑 𝑊
𝑑 𝑡 = 𝑥(𝑡)(𝑎 − 𝑏𝑥(𝑡) − 𝑐 𝑦(𝑡) − 𝛼1𝑇 (𝑡)2) + 𝑦(𝑡)(−𝑑 + 𝑒𝑥(𝑡) − 𝛼2𝑇 (𝑡)2)

+ 2𝑚𝑇 (𝑡)2(−𝛽 + 𝜎1𝑥(𝑡) + 𝜎2𝑦(𝑡))
We can rewrite the above equation as
𝑑 𝑊
𝑑 𝑡 + 𝜂 𝑊 = 𝑏𝑥(𝑡)

(𝑎 + 𝜂
𝑏

− 𝑥(𝑡)
)

− 𝑥(𝑡)𝑦(𝑡)(𝑐 − 𝑒) − (𝑑 − 𝜂)𝑦(𝑡)

− (𝛼1 − 2𝑚𝜎1)𝑥(𝑡)𝑇 (𝑡)2+
− (𝛼2 − 2𝑚𝜎2)𝑦(𝑡)𝑇 (𝑡)2 − (2𝛽 − 𝜂)𝑚𝑇 (𝑡)2.

where 𝜂 is a positive constant. We consider 𝑚 = min
{

𝛼2
2𝜎2

,
𝛼1
2𝜎1

}

and 𝜂 = min{𝑑 , 2𝛽}, also we consider 𝑐 > 𝑒, then we have
𝑑 𝑊
𝑑 𝑡 + 𝜂 𝑊 ≤ −𝑏𝑥(𝑡) − 𝑎 + 𝜂

2𝑏
+

(𝑎 + 𝜂)2

4𝑏2

which gives
𝑑 𝑊
𝑑 𝑡 + 𝜂 𝑊 ≤ (𝑎 + 𝜂)2

4𝑏2

Applying the theory of differential inequality, we obtain

0 < 𝑊 (𝑡) ≤ (𝑎 + 𝜂)2

4𝑏2𝜂
(1 − 𝑒−𝜂 𝑡) +𝑊 (0)𝑒−𝜂 𝑡.

Hence

0 < lim
𝑡→+∞

𝑊 (𝑡) ≤ (𝑎 + 𝜂)2

4𝑏2𝜂
.

So all solutions of system (3) starting from R3 are confined in the
region

𝛺 = {(𝑥, 𝑦, 𝑇 ) ∈ R3 ∶ 𝑥(𝑡) + 𝑦(𝑡) + 𝑚𝑇 (𝑡)2 < (𝑎 + 𝜂)2

4𝑏2𝜂
+ 𝜙,

for any 𝜙 > 0} ■

Model (3) provides an admittedly simplified representation of the
real-world interactions between tourists and animal species. Many
important effects, such as seasonality or tourism pressure on the envi-
ronment, are not included here. The equation for 𝑇̇ ∕𝑇 is linear but also
coherent in the spirit with the classic Lotka–Volterra equations, being
the sum of a constant which would be responsible for an exponential
decrease of 𝑇 , with cross terms 𝑥 𝑇 and 𝑦 𝑇 representing prey-tourist
and predator-tourist interactions in terms of number of encounters.
The model provides a reasonable stylized description of basic facts
regarding those interactions. It does so retaining a considerable degree
of analytical tractability, which allows for a thorough analysis of the
dynamical system and its equilibria, as discussed in the following
sections.

It is also to be emphasized that we will not consider any aspects
relating to revenues and profits from managing the park, even though

is understood as an entrance fee. It is implied that the revenue 𝛽 𝑇
covers the costs of running the park and sustains actions of environ-
mental and wildlife preservation that are distinctive of PAs. Rather, we
will treat 𝛽 as a control parameter. On the one hand, we will show in
the next Section that it is essential to preserve a stable equilibrium in
the system. Ideally it is to be fixed based on preliminary estimation of
the tourists’ preferences. On the other, it will also be instrumental in
driving the system towards the equilibrium over a path that maximizes
utility, see Section 5.2. In doing so, 𝛽 will also allow to estimate a lower
bound on the time to equilibrium.

3. Existence and stability of equilibria

We now consider the conditions for the existence and local asymp-
totic stability of the equilibrium points, and for the persistence of
the solutions. We also study the instability of the interior equilibrium
though a Hopf bifurcation. If not otherwise specified, we will always
4 
assume 𝑞𝑁 = 𝑎𝑒 − 𝑏𝑑 > 0, so guaranteeing that a natural equilibrium
between the species can be attained without any tourists.

Proposition 1. The equilibria of system (3) are the following.

(i) The trivial equilibrium 𝑃0 = (0, 0, 0) and the axial equilibrium 𝑃𝑥 =
(𝑎
𝑏
, 0, 0

)

exist irrespective of any parametric restrictions.

(ii) If 𝑞𝑁 > 0 a boundary equilibrium point in the 𝑥𝑦-plane exists with the
coordinates 𝑃𝑥𝑦 = (𝑥𝑁 , 𝑦𝑁 , 0).

(iii) Under the parametric restriction 𝜎1 > 𝛽 𝑏∕𝑎, or equivalently 𝛽 <
𝜎1𝑎∕𝑏, a boundary equilibrium point in the 𝑥𝑇 -plane exists with the
coordinates

𝑃𝑥𝑇 =

(

𝛽
𝜎1
, 0,

√

𝜎1𝑎 − 𝛽 𝑏
𝛼1𝜎1

)

(5)

(iv) A unique equilibrium point 𝑃𝑥𝑦𝑇 in the interior may exist with the
coordinates

𝑥𝐼 =
𝑑 + 𝛼2𝑇 2

𝐼
𝑒

= 𝑥𝑁 +
𝛼2
𝑒
𝑇 2
𝐼 , 𝑦𝐼 = 𝑦𝑁 − 𝐴𝑇 2

𝐼 , 𝑇𝐼 =
√

𝑦𝑁 − 𝐵
𝐴 − 𝐶

,

(6)

where 𝐴 = (𝛼2𝑏+𝛼1𝑒)∕𝑐 𝑒 > 0, 𝐵 = (𝛽 𝑒−𝜎1𝑑)∕𝜎2𝑒, 𝐶 = 𝛼2𝜎1∕𝜎2𝑒 > 0.
Such equilibrium exists if the following parametric restrictions are both
satisfied

𝜎2 > 𝜎̂2(𝛽 , 𝜎1) ∶=
𝑐(𝛽 𝑒 − 𝜎1𝑑)

𝑞𝑁
, 𝜎1 < 𝜎̄1(𝛽) ∶=

𝛽(𝛼1𝑒 + 𝛼2𝑏)
𝛼1𝑑 + 𝛼2𝑎

(7)

or if they hold with the inequalities reversed.

Proof. Claims (𝑖) − (𝑖𝑖𝑖) can be verified easily. To obtain the coordinates
f the interior equilibrium point, we put 𝑓 (𝑥, 𝑦, 𝑇 ) = 𝑔(𝑥, 𝑦, 𝑇 ) =
ℎ(𝑥, 𝑦, 𝑇 ) = 0. From ℎ = 0 we obtain 𝑥 = (𝛽−𝜎2𝑦)∕𝜎1. Replacing in 𝑓 = 0
nd 𝑔 = 0 and by algebraic manipulation, we obtain the coordinates (6).
hose coordinates are feasible as long as

⎧

⎪

⎨

⎪

⎩

𝑦𝑁 − 𝐵
𝐴 − 𝐶

> 0

𝑦𝑁 > 𝐴𝑇 2
𝐼

Introducing the function 𝜎̄2(𝜎1) = 𝛼2𝜎1𝑐∕(𝛼1𝑒 + 𝛼2𝑏), the first condition
f the system requires

𝜎2 > max
{

𝜎̂2, ̄𝜎2
}

∨ 𝜎2 < min
{

𝜎̂2, ̄𝜎2
}

Since 𝐴 > 0, the second condition of the system requires
(

𝜎2 > 𝜎̄2 , 𝜎1 < 𝜎̄1
)

∨
(

𝜎2 < 𝜎̄2 , 𝜎1 > 𝜎̄1
)

We conclude that the system is satisfied if
(

𝜎2 > max
{

𝜎̂2, ̄𝜎2
}

, 𝜎1 < 𝜎̄1
)

∨
(

𝜎2 < min
{

𝜎̂2, ̄𝜎2
}

, 𝜎1 > 𝜎̄1
)

For a fixed 𝛽 the graphs of 𝜎̂2(𝛽 , 𝜎1), 𝜎̄2(𝜎1) and 𝜎̄1(𝛽) are straight lines in
he 𝜎1𝜎2-plane. It can easily be verified that 𝜎̂2 = 𝜎̄2 at exactly 𝜎1 = 𝜎̄1.

Moreover, for 𝑞𝑁 > 0 we have 𝜎̂2 > 𝜎̄2 for 𝜎1 < 𝜎̄1, and 𝜎̂2 < 𝜎̄2 for
𝜎1 > 𝜎̄1. In the light of that, for fixed 𝛽 we can state the existence
onditions for 𝑃𝑥𝑦𝑇 more simply as
(

𝜎2 > 𝜎̂2 , 𝜎1 < 𝜎̄1
)

∨
(

𝜎2 < 𝜎̂2 , 𝜎1 > 𝜎̄1
)

(8)

which proves claim (iv). ■

The coordinates of 𝑃𝑥𝑦𝑇 can be rewritten conveniently as
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝑥𝐼 = 1
𝑒

(

𝑑 +
𝛼2𝑞𝑁

𝛼1𝑒 + 𝛼2𝑏
⋅
𝜎2 − 𝜎̂2
𝜎2 − 𝜎̄2

)

𝑦𝐼 = −𝛼1𝑑 + 𝛼2𝑎
𝛼1𝑒 + 𝛼2𝑏

⋅
𝜎1 − 𝜎̄1
𝜎2 − 𝜎̄2

𝑇𝐼 =

√

𝑞𝑁 ⋅
𝜎2 − 𝜎̂2

(9)
⎩ 𝛼1𝑒 + 𝛼2𝑏 𝜎2 − 𝜎̄2
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These expressions have the advantage of making the conditions (8)
xplicit. The conditions can also be rephrased depending on which

variable we consider fixed. If we introduce the function 𝛽(𝜎1) =
𝛼1𝑑 + 𝛼2𝑎

)

𝜎1∕(𝛼1𝑒+𝛼2𝑏), then it is 𝜎1 < 𝜎̄1 if and only if 𝛽 > 𝛽 and the
onditions become
(

𝛽 > 𝛽 , 𝜎2 > 𝜎̂2
)

∨
(

𝛽 < 𝛽 , 𝜎2 < 𝜎̂2
)

(10)

Finally, focusing on the 𝛽 𝜎1-plane for a fixed 𝜎2, we can define 𝜎̂1(𝛽 , 𝜎2)
= 𝛽 𝑒∕𝑑 − 𝜎2𝑞𝑁∕𝑐 𝑑 and observe that 𝜎2 > 𝜎̂2 if and only if 𝜎1 > 𝜎̂1. Then
he feasibility conditions for 𝑃𝑥𝑦𝑇 in the 𝛽 𝜎1-plane can be rephrased as

𝜎̂1 < 𝜎1 < 𝜎̄1 ∨ 𝜎̄1 < 𝜎1 < 𝜎̂1 (11)

In the following proposition we provide local stability conditions
or the feasible equilibrium points of system (3), under the assumption
𝑁 > 0, based on linearization and the Routh–Hurwitz criterion.

Proposition 2. The stability of the equilibria in Proposition 1, as deduced
rom the eigenvalues of the Jacobian matrix 𝐽 (𝑥, 𝑦, 𝑇 ), is summarized as

follows.

• Stability of 𝑃0
The eigenvalues of 𝐽 (𝑃0) are 𝜆1 = −𝑑, 𝜆2 = −𝛽, 𝜆3 = 𝑎, hence the
origin is always a saddle with two-dimensional stable manifold.

• Stability of 𝑃𝑥
𝐽 (𝑃𝑥) has the eigenvalues 𝜆1 = −𝑎, 𝜆2 = 𝑞𝑁∕𝑏 and 𝜆3 = (𝜎1𝑎−𝛽 𝑏)∕𝑏.
The axial equilibrium point 𝑃𝑥 is a saddle with two-dimensional stable
manifold if 𝜎1 < 𝛽 𝑏∕𝑎, otherwise it is a saddle with one-dimensional
stable manifold.

• Stability of 𝑃𝑥𝑦
The eigenvalues of 𝐽 (𝑃𝑥𝑦) read

𝜆1,2 = − 𝑏𝑑
2𝑒

(

1 ∓
√

𝛥
)

, 𝜆3 =
𝑞𝑁
𝑐 𝑒

(

𝜎2 − 𝜎̂2
)

where 𝛥 = 1 − 4𝑒𝑞𝑁∕(𝑏2 ⋅ 𝑑). Since 𝑞𝑁 > 0 we have 𝛥 < 1 and
Re(𝜆1,2) < 0. So 𝑃𝑥𝑦 is a locally stable equilibrium if 𝜎2 < 𝜎̂2 (or
𝜎1 < 𝜎̂1 equivalently) otherwise it is a saddle with two-dimensional
stable manifold. In particular, if 𝜎2 < 𝜎̂2 and 0 ≤ 𝛥 < 1 the
equilibrium is a stable node.

• Stability of 𝑃𝑥𝑇
The eigenvalues of 𝐽 (𝑃𝑥𝑇 ) read

𝜆1,2 = − 𝛽 𝑏
2𝜎1

(

1 ∓
√

𝛥
)

, 𝜆3 = −𝛼1𝑑 + 𝛼2𝑎
𝛼1𝜎1

(𝜎1 − 𝜎̄1)

where 𝛥 = 1 − 8𝜎1(𝜎1𝑎 − 𝛽 𝑏)∕𝛽 𝑏2. Since 𝜎1 > 𝛽 𝑏∕𝑎 for 𝑃𝑥𝑇 to exist,
we have 𝛥 < 1 and Re(𝜆1,2) < 0. If 𝜎1 > 𝜎̄1 (or 𝛽 < 𝛽 equivalently)
the point is a locally stable equilibrium (a stable node if 0 ≤ 𝛥 < 1),
otherwise it is a saddle with two-dimensional stable manifold.

• Stability of 𝑃𝑥𝑦𝑇
The Jacobian evaluated at the interior equilibrium point is

𝐽𝑥𝑦𝑇 ∶= 𝐽 (𝑃𝑥𝑦𝑇 ) =
⎛

⎜

⎜

⎝

−𝑏𝑥𝐼 −𝑐 𝑥𝐼 −2𝛼1𝑥𝐼𝑇𝐼
𝑒𝑦𝐼 0 −2𝛼2𝑦𝐼𝑇𝐼
𝜎1𝑇𝐼 𝜎2𝑇𝐼 0

⎞

⎟

⎟

⎠

(12)

The characteristic equation associated with 𝐽𝑥𝑦𝑇 reads 𝜆3 + 𝑎2𝜆2 +
𝑎1𝜆 + 𝑎0 = 0, where 𝑎2 = 𝑏𝑥𝐼 , 𝑎1 = 𝑐 𝑒𝑥𝐼𝑦𝐼 + 2𝑇 2

𝐼 (𝛼1𝜎1𝑥𝐼 + 𝛼2𝜎2𝑦𝐼 )
and 𝑎0 = 2𝑥𝐼𝑦𝐼𝑇 2

𝐼 (𝛼2𝜎2𝑏+𝛼1𝜎2𝑒−𝛼2𝜎1𝑐). First we observe that 𝑎1 > 0
and 𝑎2 > 0 and that 𝑎0 can be written as

𝑎0 = 2𝑞𝑁 (𝜎2 − 𝜎̂2)𝑥𝐼𝑦𝐼

Then, by virtue of the Routh–Hurwitz criterion, 𝑃𝑥𝑦𝑇 is locally asymp-
totically stable if and only if 𝜎2 > 𝜎̂2 and 𝑎2𝑎1 > 𝑎0. If that is the
case, by Descartes’ rule 𝑃𝑥𝑦𝑇 may be a stable node, for three negative
eigenvalues, or a stable equilibrium with one negative eigenvalue
plus two complex ones in the open left half-plane. If 𝜎2 > 𝜎̂2 but
𝑎2𝑎1 ≤ 𝑎0, then 𝐽𝑥𝑦𝑇 must have one negative eigenvalue and two
complex ones with non negative real part, which would make 𝑃𝑥𝑦𝑇
a saddle with one-dimensional stable manifold. Finally, if 𝜎 < 𝜎̂
2 2 (

5 
then 𝐽𝑥𝑦𝑇 has one positive eigenvalue. It may have either two further
eigenvalues with negative real parts, corresponding to a saddle with
two-dimensional stable manifold, or two further complex eigenvalues
in the right half-plane, corresponding to an unstable equilibrium with
no stable manifold.

Remark 1. Note that the conditions 𝜎1 < 𝜎̄1 and 𝜎2 > 𝜎̂2 are
necessary and sufficient to ensure that the equilibrium 𝑃𝑥𝑦𝑇 exists and it
is locally asymptotically stable or a saddle with one-dimensional stable
manifold, depending on the sign of 𝑎2𝑎1 − 𝑎0. The conditions 𝜎1 > 𝜎̄1
and 𝜎2 < 𝜎̂2, on the other hand, guarantees the existence of an unstable
interior equilibrium with two-dimensional stable manifold or no stable
manifold at all. Rewriting 𝜎2 > 𝜎̂2 in terms of 𝛽, the following condition
is necessary for 𝑃𝑥𝑦𝑇 to exist as an attractor

̄ =

(

𝛼1𝑑 + 𝛼2𝑎
)

𝜎1
𝛼1𝑒 + 𝛼2𝑏

< 𝛽 < 𝑑
𝑒
⋅ 𝜎1 +

𝑞𝑁
𝑐 𝑒 ⋅ 𝜎2 = 𝛽sup (13)

Remark 2. Note that the equilibrium points 𝑃𝑥𝑦 and 𝑃𝑥𝑇 are globally
asymptotically stable in the interior of the positive quadrant of the 𝑥𝑦-
lane and 𝑥𝑇 -plane, respectively. With regard to the planar point 𝑃𝑥𝑦,
e consider the following functions 𝐻(𝑥, 𝑦) = 1

𝑥𝑦
, 𝑓 (𝑥, 𝑦, 0) = 𝑓1 =

(𝑎 − 𝑏𝑥 − 𝑐 𝑦) and 𝑔(𝑥, 𝑦, 0) = 𝑔1 = 𝑦(−𝑑 + 𝑒𝑥). Clearly, 𝐻 > 0 in the
nterior of the positive quadrant of the 𝑥𝑦-plane. Thus we have

𝛥(𝑥, 𝑦) = 𝜕
𝜕 𝑥 (𝑓1𝐻) + 𝜕

𝜕 𝑦 (𝑔1𝐻) = − 𝑏
𝑦
< 0.

The quantity 𝛥(𝑥, 𝑦) has constant sign and is not identically zero in
the positive quadrant of the 𝑥𝑦-plane. Therefore, by Bendixson–Dulac
criterion, 𝑃𝑥𝑦 is globally asymptotically stable in the interior of the
ositive quadrant of the 𝑥𝑦-plane. The claim regarding the planar point
𝑥𝑇 can be proven in a similar way.

Table 1 summarizes the conditions for the existence and stability of
the equilibria of model (3), together with their classification. In Fig. 1
we show the equilibria (stable or unstable) in the 𝜎2𝜎1-, 𝜎2𝛽- and 𝜎1𝛽-
plane, for the following benchmark values of those parameters that are
not running.

𝑎 = 5, 𝑏 = 0.25, 𝑐 = 1, 𝑑 = 1, 𝑒 = 0.5,
𝛼1 = 0.00015, 𝛼2 = 0.0001,
𝛽 = 8, 𝜎1 = 0.7 , 𝜎2 = 1.8 , 𝛾 = 2 (14)

A quantitative approach to the management of PAs should take into
account the effects of the variations of 𝛽 , 𝜎1, 𝜎2 on the variables 𝑥, 𝑦, 𝑇
at the equilibrium. Such matter will be discussed in more detail in
Section 4. Here we just comment on the effects of changes to 𝛽 and
the preferences on the stable equilibria of the system, assuming that
nitially it is close to the interior equilibrium.

First we consider 𝛽 fixed. For 𝜎1 also fixed, when 𝜎2 becomes smaller
hat 𝜎̂2 then 𝑃𝑥𝑦 is the only stable equilibrium: the preference for the
redators is then crucial in maintaining tourism. Conversely, for 𝜎2

fixed, when 𝜎1 > 𝜎̄1 the point 𝑃𝑥𝑇 is an attractor: a strong preference
owards the preys leads to the extinction of the predators. When the
revious conditions are met together, 𝑃𝑥𝑦 and 𝑃𝑥𝑇 coexist as stable
quilibria. At the opposite end, a large reduction in 𝜎1 or large increase
n 𝜎2 generally correspond to the system crossing the Hopf bifurcation
urve and entering a region where 𝑃𝑥𝑦𝑇 only exists as an unstable
quilibrium.

Now, for 𝜎1, 𝜎2 both fixed, let us consider the effects of changing 𝛽.
For 𝑃𝑥𝑦𝑇 to be an attractor, 𝛽 < 𝛽 < 𝛽sup must hold at the interior
equilibrium 𝑃𝑥𝑦𝑇 , see Eq. (13). This range sets the boundaries the

anagement of the park should keep to when making changes to the
ntrance fee. It should be observed that the lower bound 𝛽 depends
linearly) on the preference towards the preys alone, while the upper
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Table 1
Conditions for the existence and stability of the equilibria of system (3) and their classification, under the assumption 𝑞𝑁 = 𝑎𝑒 − 𝑏𝑑 > 0. The
phrases ‘‘saddle 2D’’ and ‘‘saddle 1D’’ mean a saddle with two- or one-dimensional stable manifold respectively. 𝑎2, 𝑎1 and 𝑎0 stand for the
coefficients of the characteristic polynomial of the Jacobian 𝐽 (𝑃𝑥𝑦𝑇 ).

Existence Stability Stable classification Unstable classification

𝑃0 Always Always unstable – Saddle 2D

𝑃𝑥 Always Always unstable – Saddle 2D if 𝜎1 < 𝛽 𝑏∕𝑎
Saddle 1D otherwise

𝑃𝑥𝑦 Always 𝜎2 < 𝜎̂2 Stable node if:
0 < 𝑞𝑁 ≤ 𝑏2𝑑∕4𝑒
Other stable equilibrium if:
𝑞𝑁 > 𝑏2𝑑∕4𝑒

Saddle 2D

𝑃𝑥𝑇 𝜎1 > 𝛽 𝑏∕𝑎 𝜎1 > 𝜎̄1 Stable node if:
8𝜎21𝑎∕(8𝜎1𝑏 + 𝑏

2) ≤ 𝛽 < 𝜎1𝑎∕𝑏
Other stable equilibrium if:
𝛽 < 8𝜎21𝑎∕(8𝜎1𝑏 + 𝑏

2)

Saddle 2D

𝑃𝑥𝑦𝑇 𝜎2 > 𝜎̂2 , 𝜎1 < 𝜎̄1 ∨
𝜎2 < 𝜎̂2 , 𝜎1 > 𝜎̄1

𝜎2 > 𝜎̄2 ∧ 𝑎2𝑎1 > 𝑎0 Stable node or other stable
equilibrium

Saddle 1D if:
𝜎2 > 𝜎̄2 , 𝑎2𝑎1 < 𝑎0
Saddle 2D or no stable manifold
if: 𝜎2 < 𝜎̄2
Fig. 1. Existence and stability of the fixed points for the benchmark parameters (14). The top-left panel also classifies seven regions of interest with letters.
6 
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bound 𝛽sup is given by a linear combination of both preferences. Raising
𝛽 above 𝛽sup eventually leads the system into the region of the attractor
𝑥𝑦 (suppression of tourism), while if 𝛽 goes below 𝛽 the extinction of
he predators is expected. In both cases, the system may transiently go

across the instability region delimited by the Hopf curve.
Such analysis highlights that the admissible values of 𝛽 are strictly

constrained by the tourists’ preferences for the species. For values
outside the range, species loss or tourism depletion are expected. The
latter circumstance arises when 𝛽 > 𝛽sup: increasing 𝛽 higher than
the upper bound determined by the preferences suppresses tourism.
On the other hand, a lower bound for 𝛽 exists that is determined by
𝜎1 alone. For 𝛽 < 𝛽 more tourists will visit the park, which means
more disturbance to the species. Both the predators and the preys
would diminish due to the disturbance, but so more the predators since
they could prey on less. Net of the two effects, this would ultimately
esult in the extinction of the predators. Fig. 2 shows some sample

trajectories for different choices of 𝜎1, 𝜎2, corresponding to the regions
distinguished by capital letters in the top-left panel of Fig. 1.

Such analysis and the above discussion suggest applicable policies
that park managers could consider. For instance, let us assume that,
for given parameters (𝛽𝑜, 𝜎𝑜1 , 𝜎𝑜2), the system currently occupies region
A of the plane, where a stable equilibrium is achieved in the long
run with strictly positive 𝑥(∞), 𝑦(∞), 𝑇 (∞). In response to changes in
the tourists’ preferences for the species (over which managers have no
direct control), the decision-maker may need to adjust the entrance fee
(𝛽). That could avoid shifting to one of the other regions, which would
cause the internal equilibrium to become unstable (region B) or lead
the protected area to loose its sustainability due to the extinction of
one of the species or the ‘‘extinction’’ of the tourists.

Remark 3. Throughout the rest of the article, the values of 𝑎, 𝑏, 𝑐 , 𝑑 , 𝑒,
𝛼1, 𝛼2, 𝛾 are kept fixed at their benchmark values (14). Depending on
he analysis, the values of 𝛽, 𝜎1 and 𝜎2 may vary and their values will

be explicitly given. Otherwise it is assumed that their values are also
as in (14).

3.1. Bifurcation analysis of the interior equilibrium

The parametric conditions for a locally stable equilibrium in the
interior suggest the existence of a Hopf bifurcation, and in this section
we prove that numerically. According to Proposition 2 and Remark 1,
the interior point 𝑃𝑥𝑦𝑇 is locally asymptotically stable if and only if
𝜎2 > 𝜎̂2, 𝜎1 < 𝜎1, and 𝑎2𝑎1 − 𝑎0 > 0. Liu [45] derived a criterion for
the existence of a simple Hopf bifurcation that does not require the
eigenvalues of the Jacobian matrix evaluated at the point. Assume that
he coordinates of 𝑃𝑥𝑦𝑇 depend smoothly on a parameter 𝑆, for 𝑆 in

an open interval (0, 𝑠), and let 𝜆3 + 𝑎2(𝑆)𝜆2 + 𝑎1(𝑆)𝜆 + 𝑎0(𝑆) = 0 be the
characteristic equation of 𝐽 (𝑃𝑥𝑦𝑇 ). Also assume that 𝑎2(𝑆), 𝑎1(𝑆) and
𝑎0(𝑆) are smooth in an open interval about 𝑆𝐻 ∈ (0, 𝑠). A simple Hopf
bifurcation occurs at 𝑆 = 𝑆𝐻 if the following conditions hold

(a) 𝑎2(𝑆𝐻 ) > 0, 𝑎1(𝑆𝐻 ) > 0 and 𝛥(𝑆𝐻 ) = 0;

(b)
(

𝑑 𝛥(𝑆)
𝑑 𝑆

)

𝑆=𝑆𝐻
≠ 0.

where 𝛥(𝑆) = 𝑎2(𝑆)𝑎1(𝑆) − 𝑎0(𝑆). It is difficult to write down explicit
parametric restrictions ensuring the local asymptotic stability of 𝑃𝑥𝑦𝑇
ut we can discuss it for a specific choice of the model parameters. In
he following, we specify a set of parameters and prove the existence
f a simple Hopf bifurcation, assuming 𝜎2 as the bifurcation parameter
nd checking that the conditions of Liu’s criterion are actually verified.
f course, other choices are acceptable for the bifurcation parameter,

uch as 𝜎1 or 𝛽.
For the parameters (14) we have 𝜎̄1 = 16∕13, 𝜎̄2 = 7∕10 and

𝜎̂ = 22∕15. According to Proposition 2, a bifurcation exists for 𝜎 > 𝜎̂
2 2 2

7 
(note that we have 𝜎1 < 𝜎̄1). The coordinates of the interior equilibrium
read

𝑃𝑥𝑦𝑇 =
⎛

⎜

⎜

⎝

65𝜎2 − 80
10𝜎2 − 7 ,

69
20𝜎2 − 14 , 50

√

6

√

15𝜎2 − 22
10𝜎2 − 7

⎞

⎟

⎟

⎠

and 𝑎2 and 𝑎1 are positive for 𝜎2 > 22∕15 (refer to the discussion at
the end of Proposition 2 for the expressions of the coefficients of the
haracteristic polynomial). We also have

𝛥(𝜎2) =
−412425𝜎32 + 1551435𝜎22 − 1859736𝜎2 + 707712

16
(

10𝜎2 − 7)3

which is positive in
(

22
15 , 𝜎2,𝐻

)

, negative in (𝜎2,𝐻 ,+∞) and vanishes

at 𝜎2,𝐻 = 5353+23
√

7009
4230 ≈ 1.285. It is also 𝛥′(𝜎2,𝐻 ) ≠ 0, so that the

onditions of Liu’s criterion are satisfied for a simple Hopf bifurcation
o exist at 𝜎2 = 𝜎2,𝐻 . There the interior equilibrium becomes unstable
nd small-amplitude periodic solutions originate from 𝑃𝑥𝑦𝑇 .

More generally, from the discussion regarding the stability of 𝑃𝑥𝑦𝑇
(see Proposition 2), we derive the Hopf curve equation, which reads
[

− 𝑐 𝑏𝑒
2
𝑥𝐼 + 𝑇 2

𝐼 (𝛼1𝜎2𝑒 − 𝛼2𝜎1𝑐)
]

𝑦𝐼 − 𝑇 2
𝐼 𝑥𝐼𝛼1𝜎1𝑏 = 0 (15)

where 𝑥𝐼 , 𝑦𝐼 , 𝑇𝐼 stand for the coordinates (6) of the interior equi-
librium. When letting a parameter vary, we can solve the equation
for a second parameter and obtain a whole bifurcation curve. Fig. 1
shows the curves 𝜎2,𝐻 (𝜎1), 𝜎2,𝐻 (𝛽) and 𝜎1,𝐻 (𝛽) (the red lines). It is clear
from the picture that horizontal lines at suitable values of the ordinate
would intersect the bifurcation curve twice. Correspondingly we can
have one or two bifurcations depending on the parameters. As a further
numerical example, we consider the solutions of the previous equation
in the unknown 𝜎1, for 𝜎2 = 339∕200 = 1.695. Its two solutions are
𝜎(1)1 ≈ 0.446 and 𝜎(2)1 ≈ 0.674. For 𝜎1 ∈ [𝜎(1)1 , 𝜎(2)1 ], the corresponding
nterior equilibria are unstable and accompanied by the formation of
imit cycles. When varying 𝜎1 smoothly in that interval, those cycles
roduce the surface depicted in Fig. 3. Highlighted in red are the
ycles at 𝜎1 = 0.673, 0.611, 0.496, while the equilibrium points for 𝜎1 ∈
𝜎(1)1 , 𝜎(2)1 ] lie on the black dashed line. The points 𝐻1 and 𝐻2 are the

bifurcation points for 𝜎1 = 𝜎(1)1 and 𝜎1 = 𝜎(2)1 . The figure also shows a
trajectory starting slightly apart from the equilibrium and approaching
the cycle asymptotically.

Remark 4. The presence of a Hopf bifurcation and resulting limit
cycles cause periodic oscillations in population levels, which brings
significant challenges for the management of PAs. These fluctuations
can lead to ecological instability, as populations may approach critical
levels, raising the risk of extinction. Additionally, oscillating popula-
ions can impact a tourist’s experience, potentially reducing visitor
atisfaction if they are unable to observe the species they came to

see. This dynamic also complicates management strategies, as the
anager must carefully balance revenue generation with conservation

oals by adjusting tourist numbers to maintain ecological stability. The
ariability introduced by limit cycles makes long-term planning diffi-

cult and requires continuous monitoring. To mitigate these risks, the
anager should adopt an adaptive management approach, closely track

cological and tourism data, and flexibly adjust policies as needed.

3.2. Uniform persistence

In general, persistence means that a species does not go extinct; its
population stays above zero over time. The term “uniform’’ implies that
this persistence is consistent across the system and does not depend
n specific initial conditions, as long as they are within a certain

range (usually positive). Uniform persistence is vital for studying the
long-term sustainability and coexistence of species in an ecosystem.

Proposition 3. System (3) is persistent if the equilibrium point 𝑃𝑥𝑦𝑇 exists
nd it is not a saddle with two-dimensional manifold
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Fig. 2. Sample trajectories in the phase space for choices of the preferences 𝜎1, 𝜎2 corresponding to the regions labelled with letters in the top-left panel of Fig. 1.
Proof. For 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑇 ≥ 0 consider the positive definite Lyapunov
function

𝜓(𝑥, 𝑦, 𝑇 ) = 𝑥𝜇1𝑦𝜇2𝑇 𝜇3

where 𝜇𝑖 ≥ 0, 𝑖 = 1, 2, 3. If we evaluate the logarithmic derivative of
𝜓(𝑥, 𝑦, 𝑇 ) along solution trajectories we obtain
𝜓̇ 2 2

𝜓

= 𝜇1(𝑎 − 𝑏𝑥 − 𝑐 𝑦 − 𝛼1𝑇 ) + 𝜇2(−𝑑 + 𝑒𝑥 − 𝛼2𝑇 ) + 𝜇3(−𝛽 + 𝜎1𝑥 + 𝜎2𝑦)

8 
Remark 2 implies that are no periodic orbits in the interior of the
positive quadrants of the 𝑥𝑦-plane and 𝑥𝑇 -plane. Thus, it is sufficient to
demonstrate that for the equilibria 𝑃0, 𝑃𝑥, 𝑃𝑥𝑦 and 𝑃𝑥𝑇 , the logarithmic
derivatives of 𝜓 are always positive for an appropriate choice of 𝜇𝑖. The
condition is ensured at the origin by the choice 𝑎𝜇1 > 𝑑 𝜇2 + 𝛽 𝜇3, while
for the remaining equilibrium points we have:
𝑃𝑥 ∶ 𝜇2(−𝑑 + 𝑒 𝑎

𝑏
) + 𝜇3(−𝛽 + 𝜎1 𝑎𝑏 ) > 0, 𝑃𝑥𝑦 ∶ 𝜎2 > 𝜎2,

𝛽(𝑒𝑎 + 𝛼2)
𝑃𝑥𝑇 ∶ 𝜎1 < 𝛼1𝑑 + 𝑎𝜎2
= 𝜎̂1.
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Fig. 3. Surface formed by the limit cycles when varying 𝜎1 between the values 𝜎(1)1 ≈ 0.446 and 𝜎(2)1 ≈ 0.674 that correspond to the bifurcation points 𝐻1 and 𝐻2 (𝜎2 = 339∕200,
the other parameters as in (14)). Three sample cycles are highlighted in red. The (unstable) equilibrium points lie on the dashed line. In black, a trajectory originating close to
the equilibrium and approaching the limit cycle.
By Remark 1, the above conditions assure that the feasible equilibrium
𝑃𝑥𝑦𝑇 is not a saddle with two-dimensional stable manifold. ■

By analysing the local asymptotic stability of the equilibrium points
at the boundary and taking into account their persistence, we may
deduce that all boundary equilibrium points lose stability and just one
interior equilibrium point remains.

Furthermore, it is seen that all solutions persist within the first
octant, indicating the potential coexistence of species 𝑥, 𝑦, and tourists
𝑇 in this scenario. This coexistence may manifest as either a stable
equilibrium point or a periodic solution.

4. Sensitivity analysis

4.1. Local sensitivity of the interior equilibrium

Now we turn our attention to the sensitivity of the coordinates of
𝑃𝑥𝑦𝑇 to the parameters 𝛽, 𝜎1 and 𝜎2. The partial derivatives of the
expressions (6), or equivalently (9), provide a measure of how much
the number of individuals of the two species and of visitors near the
interior equilibrium are affected by small changes in the entrance fee
and the visitors’ preferences. We find the following expressions for the
Jacobian matrix of the coordinates of the interior attractor

( 𝜕 𝑃𝑥𝑦𝑇
𝜕 𝛽

𝜕 𝑃𝑥𝑦𝑇
𝜕 𝜎1

𝜕 𝑃𝑥𝑦𝑇
𝜕 𝜎2

)

= 1
(𝐴 − 𝐶)𝜎2

⎛

⎜

⎜

⎜

⎜

⎝

−
𝛼2
𝑒

𝛼2
𝑒
𝑥

𝛼2
𝑒
𝑦

𝐴 −𝐴𝑥 −𝐴𝑦

− 1
2𝑇

𝑥
2𝑇

𝑦
2𝑇

⎞

⎟

⎟

⎟

⎟

⎠

(16)

It is 𝐴 > 0 by definition and 𝐴 − 𝐶 must be positive for 𝑃𝑥𝑦𝑇 to
be stable. Keeping into account that the coordinates at the interior
equilibrium are positive, we conclude that the derivatives have the
signs summarized in Table 2.

In particular, rising 𝛽 has a negative effect on 𝑇 , as was clear from
the dynamics (3). An increase in the entrance fee produces an increase
9 
Table 2
Variations of the coordinates of 𝑃𝑥𝑦𝑇 due to variations of the parameters 𝛽, 𝜎1 and 𝜎2,
as deduced from the expressions (16).

𝛽 ↑ 𝜎1 ↑ 𝜎2 ↑

𝑥𝐼 ↓ ↑ ↑

𝑦𝐼 ↑ ↓ ↓

𝑇𝐼 ↓ ↑ ↑

Legend: ↑ increasing; ↓ decreasing.

in the number of predators, this effect becoming smaller in relative
terms for larger 𝛽, and ultimately a reduction in the number of preys.

Interestingly, increased preferences for both the predators and the
preys result in more tourists, greater disturbance to the ecosystem
and fewer individuals of both species at first. However, the predators
are penalized because, beside being disturbed by tourists, they also
find less preys to prey on. At the equilibrium such dynamics goes to
the detriment of the predators, which ultimately diminish. The preys
ultimately grow, benefiting from the reduced number of predators.

Fig. 4 (left panels) shows the elasticities of the coordinates com-
puted by using the values of the derivatives (16) and of the coordinates
at the interior equilibrium, and varying the designated parameter. The
right panel of the figure shows the sensitivity of the coordinates at the
equilibrium for 𝜎2 = 1.5 where we have a stable interior equilibrium.
Despite the term ‘‘sensitivity’’ being usually adopted when referring to
the derivatives, the values of the bars here represent elasticities, which
partially mitigate the difference in magnitude between the derivatives
of 𝑥𝐼 , 𝑦𝐼 and those of 𝑇𝐼 . As observed earlier, increasing 𝛽 obviously
decreases the visitors. Less visitors means smaller disturbances to both
the preys and the predators, which would increase 𝑥 and 𝑦. But more
predators would prey more and, for the given parameters the final
balance would be unfavourable to the preys. Increasing the preferences
towards the preys or the predators has qualitatively similar effects, but
the partial effect of 𝜎 is noticeably larger. An increased number of
2
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Fig. 4. Elasticities of the coordinates of the interior equilibrium with respect to 𝛽, 𝜎1, 𝜎2. The equilibrium is an attractor outside the shadowed region. 𝜎2 = 1.5, the other parameters
as in (14).
tourists negatively affects the two species, which would both decrease.
But 𝑦 further decreases when 𝑥 does, while the reverse is true for 𝑥.
With the given value of the parameters, the final balance penalizes the
predators and favour the preys.

4.2. Global sensitivity analysis

This section focuses on global sensitivity analysis, which is a broader
version of local sensitivity analysis. The objective is to comprehen-
sively examine all parameters simultaneously, while also seeing the
interplay between the parameters over the whole input space. Through
conducting a comprehensive analysis, one may not only see the level
of sensitivity of each parameter, but also identify the parameter com-
binations that have the greatest impact on the output and understand
the interactions between the model’s parameters.

Out of all the global sensitivity analysis approaches, the Sobol
sensitivity analysis based on variance decomposition is now considered
one of the most effective.

Sobol’s technique relies on decomposing the variance of the model
output into individual variances of the input parameters, with increas-
ing dimensionality [46–48]. It assesses the impact of each input pa-
rameter and their interactions on the overall variability of the model’s
output.
10 
Sobol’s sensitivity analysis aims to quantify the extent to which the
variability in model output is influenced by individual parameters or
the interaction between several factors. The breakdown of the output
variance in a Sobol sensitivity analysis utilizes the same idea as the
conventional analysis of variance in a factorial design.

Let 𝑧 = (𝑧1, 𝑧2,… , 𝑧𝑛) be independent random input parameters,
with joint probability density function

𝑃 (𝑧1, 𝑧2,… , 𝑧𝑛) =
𝑛
∏

𝑖=1
𝑝𝑖(𝑧𝑖).

The model output whose sensitivity to the inputs we want to mea-
sure is a function of 𝑧, say 𝑓 (𝑧). If we interpret the parameters in a
probabilistic way, then 𝑓 (𝑧) is random with mean 𝑓0 and variance 𝑉

𝑓0 = ∫ ∫ …∫ 𝑓 (𝑧1, 𝑧2 … , 𝑧𝑛)
𝑛
∏

𝑖=1
𝑝𝑖(𝑧𝑖)𝑑 𝑧𝑖 (17)

𝑉 = ∫ ∫ …∫ 𝑓 2(𝑧1, 𝑧2 … , 𝑧𝑛)
𝑛
∏

𝑖=1
𝑝𝑖(𝑧𝑖)𝑑 𝑧𝑖 − 𝑓 2

0 (18)

Sobol’s technique relies on the decomposition of the variable 𝑉 into
individual contributions from single parameters, combined impacts
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Fig. 5. First-order and total Sobol indices of the interior equilibrium coordinates (same values as Table 3).
Table 3
Sobol indices of the interior equilibrium coordinates 𝑥𝐼 , 𝑦𝐼 , 𝑇𝐼 (9), with model inputs (𝛽 , 𝜎1 , 𝜎2).

𝑥𝐼 𝑦𝐼 𝑇𝐼
𝑆 𝑆𝑇 𝑆 𝑆𝑇 𝑆 𝑆𝑇

𝛽 0.8795913803 0.88349 0.8795902834 0.88318 0.87761268 0.88254145
𝜎1 0.08548 0.086652 0.08606 0.08672191 0.08445450 0.08494741
𝜎2 0.030771 0.03404912 0.03249013 0.03400991 0.03249013 0.03770102
r
i

g
c

from pairs of parameters, and so on. Initially, the process involves
breaking down the function 𝑓 (𝑧) into its constituent parts.

𝑓 (𝑧) = 𝑓0 +
𝑛
∑

𝑖=1
𝑓𝑖(𝑧𝑖) +

𝑛
∑

𝑖=1

𝑛
∑

𝑗 >𝑖
𝑓𝑖𝑗 (𝑧𝑖, 𝑧𝑗 ) +⋯+ 𝑓1,2,…,𝑛(𝑧1, 𝑧2,… , 𝑧𝑛). (19)

Let 𝑧 = (𝑧1, 𝑧2, 𝑧3) = (𝛽 , 𝜎1, 𝜎2) be our uniform input variables with
(𝛽 , 𝜎1, 𝜎2) = 1

𝛽𝑀 − 𝛽𝑚
⋅

1
𝜎𝑀1 − 𝜎𝑚1

⋅
1

𝜎𝑀2 − 𝜎𝑚2
. Let 𝑓 (𝛽 , 𝜎1, 𝜎2) be any of

the coordinates 𝑥𝐼 , 𝑦𝐼 , 𝑇𝐼 of the interior equilibrium 𝑃𝑥𝑦𝑇 (9). Then the
output variance decomposes as follows

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉12 + 𝑉13 + 𝑉23 + 𝑉123 (20)

The first-order indices (𝑆) are 𝑉𝑖∕𝑉 and the total indices (𝑆𝑇 ) read 𝑆𝑖,𝑇 =
𝑉𝑖 +

∑

𝑗≠𝑖 𝑉𝑖𝑗 + 𝑉123)∕𝑉 , where it is implicit 𝑉𝑖𝑗 = 𝑉𝑗 𝑖 for 𝑗 < 𝑖. We
efer the reader to the Appendix for further details and explicit integral
xpressions for the terms in (19) and (20).

If we consider a symmetric range of ±10% around 𝛽 = 8, and of ±5%
round 𝜎1 = 1 and 𝜎2 = 2, we obtain the values in Table 3 for the first-

order and total Sobol indices of the interior equilibrium coordinates.
uch ranges ensure that the equilibrium is attractive (see the Appendix

for the lower and upper bounds of the ranges).
The same values are visualized in Fig. 5. Both the indices are

imilar for all the coordinates at the equilibrium, which means that
he contributions of 𝛽 𝜎1, 𝛽 𝜎2, 𝜎1𝜎2 and 𝛽 𝜎1𝜎2 to the total variance are
egligible. In the context of sensitivity analysis using Sobol indices, the
alues of 𝑆𝑇 (88%, 9%, and 3% approximately) suggest the following:

• The fact that the parameter 𝛽 has a total Sobol index of 88%
indicates that it is the dominant factor influencing the output
𝑂𝐼 = (𝑥𝐼 , 𝑦𝐼 , 𝑇𝐼 ). This means that 88% of the variability in the
output can be attributed to variations in 𝛽. Therefore, 𝛽 has a
11 
significant impact on the model’s behaviour, and controlling or
optimizing it will likely lead to the most significant change in the
output.

• The parameter 𝜎1 has a much lower total Sobol index (9%),
indicating that it has a smaller but still noticeable effect on
the output. While not as dominant as 𝛽, changes in 𝜎1 can still
contribute to some degree of variability in the output, but its
influence is much weaker compared to the entrance fee.

• With a total Sobol index of 3%, 𝜎2 has the least influence on the
output. This suggests that, even though 𝜎2 might have some effect,
it contributes relatively little to the variability in the model’s
behaviour. Therefore, the tourists’ preference for the predator
is a less critical parameter when considering how to control or
optimize the output.

In summary, if we aim to optimize or control the output “equilib-
ium point 𝑂𝐼” focusing on 𝛽 will likely yield the most significant
mprovement, whereas 𝜎1 and 𝜎2 can be considered secondary factors.

5. Optimization with respect to the entrance fee

5.1. Static optimization

The parameter 𝛽 can be controlled directly by the managers of the
natural park. In principle we may be interested in finding the value 𝛽∗
that maximizes some objective function 𝛱(𝑥, 𝑦, 𝑇 ; 𝛽) for 𝛽 in the set that
uarantees the existence of the stable equilibrium 𝑃𝑥𝑦𝑇 . The necessary
ondition for 𝑃𝑥𝑦𝑇 to exist as an attractor is 𝛽 ∈ 𝑆1, where

𝑆1 = {𝛽 > 0 ∣ 𝜎1 < 𝜎̄1(𝛽) ∧ 𝜎2 > 𝜎̂2(𝛽 , 𝜎1)}

=
(

𝛼1𝑑 + 𝛼2𝑎 ⋅ 𝜎 , 𝑑 ⋅ 𝜎 +
𝑞𝑁 ⋅ 𝜎

)

= (𝛽 , 𝛽 ) (21)

𝛼1𝑒 + 𝛼2𝑏

1 𝑒 1 𝑐 𝑒 2 sup
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The previous set is nonempty because 𝜎1 < 𝜎̄1 ∧ 𝜎2 > 𝜎̂2 also imply
2 > 𝜎̄2 = 𝛼2𝜎1𝑐∕(𝛼1𝑒 + 𝛼2𝑏) and so 0 < 𝛽 < 𝛽sup. For 𝑃𝑥𝑦𝑇 to be stable
e also need 𝛥(𝑠) = 𝑎2(𝑠) ⋅ 𝑎1(𝑠) − 𝑎0(𝑠) > 0, as discussed at the end

of Proposition 2 and in Section 3.1, where 𝑆 is a chosen bifurcation
parameter in terms of which we can write the coefficients 𝑎2, 𝑎1 and
𝑎0 of the characteristic polynomial for 𝐽 (𝑃𝑥𝑦𝑇 ). First, observe that for
𝛽 ∈ 𝑆1 we have 𝑥 > 0 and equivalently we can consider the inequality
𝛥 = 𝛥 ⋅ 𝑒∕𝑥 > 0. By making use of the expressions (5), it can be checked
irectly that 𝛥 equals the following second-degree polynomial in the

variable 𝛽

̃=
𝑝2

(𝜎2(𝐴 − 𝐶))2
𝛽2 − 1

𝜎2(𝐴 − 𝐶)

[

2𝑝2
𝐴 − 𝐶

(

𝑦𝑁 +
𝜎1𝑑
𝜎2𝑒

)

+ 𝑝1

]

𝛽

+
𝑦𝑁 + 𝜎1𝑑

𝜎2𝑒

𝐴 − 𝐶

[

𝑝2
𝐴 − 𝐶

(

𝑦𝑁 +
𝜎1𝑑
𝜎2𝑒

)

+ 𝑝1

]

+ 𝑝0

where

𝑝0 = 𝑏 𝑑 𝑞𝑁 ,

𝑝1 = 𝑞𝑁

[

𝛼2𝑏 −
2(𝛼1𝜎2𝑒 − 𝛼2𝜎1𝑐)

𝑐

]

+ 𝑏 𝑑(2𝛼1𝜎1 − 𝛼2𝑏 − 𝛼1𝑒) ,

2 =
𝛼2𝑏 + 𝛼1𝑒

𝑐
(2𝛼1𝜎2𝑒 − 2𝛼2𝜎1𝑐 − 𝛼2𝑏𝑐) + 2𝛼1𝛼2𝜎1𝑏

The intersection 𝑆𝛽 = 𝑆2 ∩ 𝑆1 between the set 𝑆2 = {𝛽 ∣ 𝛥(𝛽) >
} and the interval (21) provides the region of admissible 𝛽 for the
ptimization problem. Because 𝑆1 and 𝑆2 are open sets, there is no
uarantee that a maximum of the objective function exists in 𝑆𝛽 . In
he light of that, we solve the optimization problem in a closed subset
̄𝛽 ⊆ 𝑆𝛽 obtained replacing possible exterior endpoints of 𝑆𝛽 with
ufficiently close interior points.

As a straightforward application, we consider the quantity 𝑥 𝑦 𝑇 as a
function of 𝛽. In an abstract sense, that may be regarded as a ‘‘fitness’’
function of the park. The product 𝑥 𝑦 may be interpreted as a proxy of
biodiversity, which is then multiplied by 𝑇 . Indeed, in the mission of
PAs is the promotion of responsible tourism and in principle we would
like to maximize biodiversity and tourism affluence as well. Thus we
consider the following problem of maximization of the (log) fitness

max
∈𝑆̄𝛽

(log 𝑥 + log 𝑦 + log 𝑇 )

Replacing the expressions (6) shows that 𝛱(𝛽) = log 𝑥 + log 𝑦 + log 𝑇 is
concave and always has a maximum at 𝛽1 with 𝛽1 ∈ 𝑆1. So 𝛱(𝛽1) solves
the constrained optimization problem as long as 𝛽1 ∈ 𝑆𝛽 , otherwise
the constrained maximum is reached at one of the endpoints of 𝑆̄𝛽 .
In Fig. 6 we show the values of 𝛽∗ and the maximum of 𝛱 when
varying the preferences 𝜎1 and 𝜎2. Within the red lines are points
for which 𝛽1 ∈ 𝑆𝛽 and then 𝛽∗ = 𝛽1. Elsewhere it is 𝛽1 ∈ 𝑆1 but
𝛽1 ∉ 𝑆2, that is 𝛽1 corresponds to an unstable equilibrium. So 𝛽∗

equals one of the endpoints of 𝑆̄2 and the maximum is attained at the
boundaries of the stability region of 𝑃𝑥𝑦𝑇 . Interestingly, the optimal
fitness 𝛱(𝛽∗) exhibits small variations across 𝜎1 and 𝜎2 (right panel).
At the same time optimality requires slightly large variations of 𝛽 (left
panel). Remarkably, the preference for the preys has a larger impact
on 𝛽∗, even though a higher 𝜎1 comes with a higher 𝜎2 if we restrict to
the region where a maximum exists in the interior of 𝑆𝛽 .

5.2. Optimal control

As defined in the Introduction, the two main objectives in managing
a PA are to preserve the species living within it and, at the same time, to
make the area accessible to visitors. In this regard, the park manager is
interested in optimizing a certain utility function 𝑈 , using the entrance
fee 𝛽 ∈ [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥] as the control variable. The control problem over an
infinite time horizon is given by

max
∈[𝛽𝑚𝑖𝑛 ,𝛽𝑚𝑎𝑥]

𝐽 (𝛽) = max
𝛽∈[𝛽𝑚𝑖𝑛 ,𝛽𝑚𝑎𝑥]∫

+∞

0
𝑈 (𝑡, 𝑥, 𝑦, 𝑇 , 𝛽)𝑒−𝛿 𝑡𝑑 𝑡 (22)

subject to the constraints (3) and 𝑥 > 0, 𝑦 > 0, 𝑇 > 0.
0 0 0
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The function 𝑈 can be thought of as a logarithmic transformation
of the Cobb–Douglas utility function, which has the characteristics of
concavity and monotonicity. So 𝑈 (𝑡, 𝑥, 𝑦, 𝑇 , 𝛽) = 𝑝 log 𝑥+𝑞 log 𝑦+ 𝑟 log 𝑇 ,
where 𝑝, 𝑞, and 𝑟 are strictly positive parameters, see [49]. With this
choice, strictly positive values of 𝑥, 𝑦, 𝑇 are required. Indeed the partial
derivatives of 𝑈 with respect to 𝑥, 𝑦 and 𝑇 go to +∞ if 𝑥, 𝑦 or 𝑇
go to zero respectively (ceteris paribus), and the agent would suffer an
infinite utility loss. Moreover, the agent cares for biodiversity [49].
The parameter 𝛿 indicates the subjective discount rate (𝛿 > 0).3 The
associated Hamiltonian function is given by

(𝑡, 𝑥, 𝑦, 𝑇 , 𝛽) = (𝑝 log 𝑥 + 𝑞 log 𝑦 + 𝑟 log 𝑇 )𝑒−𝛿 𝑡 + 𝜆1𝑥(𝑎 − 𝑏𝑥 − 𝑐 𝑦 − 𝛼1𝑇 2)

+ 𝜆2𝑦(−𝑑 + 𝑒𝑥 − 𝛼2𝑇 2) + 𝜆3𝑇 (−𝛽 + 𝜎1𝑥 + 𝜎2𝑦)
where 𝜆1, 𝜆2, 𝜆3 are adjoint variables corresponding to the states 𝑥, 𝑦,

respectively. The Hamiltonian is linear in the control variable 𝛽 and
then the optimal strategy involves singular and bang–bang controls.
The control 𝛽(𝑡) that maximizes  (optimal control) must satisfy the
ollowing condition:

𝛽𝑜(𝑡) =
⎧

⎪

⎨

⎪

⎩

𝛽 , if 𝜕
𝜕 𝛽 ≠ 0

𝛽∗, if 𝜕
𝜕 𝛽 = 0 (23)

The optimal control (23) suggests dividing the problem into two sub-
problems [50,51]. The first involves finding the minimum time (𝜏)
necessary for the system (i.e., the trajectories 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑇 (𝑡))) to
each the internal equilibrium,𝑋𝐼 = (𝑥𝐼 , 𝑦𝐼 , 𝑇𝐼 ), through the bang–bang
ontrol policy (𝛽), which involves alternating between the entrance fees
𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥. The second sub-problem, once equilibrium is reached,
.e., 𝑋(𝜏) = 𝑋𝐼 , is to apply the singular control 𝛽(𝑡) = 𝛽∗ for 𝑡 > 𝜏.

In order to solve the second sub-problem (referred to in [52,53]),we
applied Pontryagin’s Maximum Principle, where the system

𝜆̇1 = − 𝜕
𝜕 𝑥 = −𝑇 𝜎1𝜆3 − 𝜆1

(

−𝑇 2𝛼1 − 𝑏𝑥 − 𝑐 𝑦 + 𝑎) + 𝜆1𝑥𝑏 − 𝜆2𝑦𝑒 −
𝑝 e−𝛿 𝑡
𝑥

̇ 2 = − 𝜕
𝜕 𝑦 = −𝑇 𝜎2𝜆3 + 𝜆1𝑥𝑐 − 𝜆2

(

−𝑇 2𝛼2 + 𝑒𝑥 − 𝑑
)

−
𝑞 e−𝛿 𝑡
𝑦

(24)

𝜆̇3 = − 𝜕
𝜕 𝑇 = − (

𝜎1𝑥 + 𝜎2𝑦 − 𝛽
)

𝜆3 + 2𝜆1𝑥𝑇 𝛼1 + 2𝜆2𝑦𝑇 𝛼2 − 𝑟 e−𝛿 𝑡
𝑇

.

represents the dynamics of adjoint variables and 𝜕
𝜕 𝛽 = 0 gives

−𝑇 𝜆3 = 0 ⇒ 𝜆3(𝑡) = 0.
The singular control must also satisfy equations (once the system has
reached the equilibrium point, so 𝜕

𝜕 𝛽 = 0)
⎧

⎪

⎨

⎪

⎩

𝑎 − 𝑏𝑥 − 𝑐 𝑦 − 𝛼1𝑇 2 = 0
−𝑑 + 𝑒𝑥 − 𝛼2𝑇 2 = 0
−𝛽 + 𝜎1𝑥 + 𝜎2𝑦 = 0.

(25)

From the Eqs. (24) along with steady state (25) gives

𝜆̇1 = 𝜆1𝑥𝐼𝑏 − 𝜆2𝑦𝐼𝑒 −
𝑝 e−𝛿 𝑡
𝑥𝐼

𝜆̇2 = 𝜆1𝑥𝐼 𝑐 −
𝑞 e−𝛿 𝑡
𝑦𝐼

(26)

𝜆̇3 = 2𝜆1𝑥𝐼𝑇𝐼𝛼1 + 2𝜆2𝑦𝐼𝑇𝐼𝛼2 − 𝑟 e−𝛿 𝑡
𝑇𝐼

= 0

3 The discount rate (𝛿) applies a weighting factor to future payoffs, reflect-
ing the idea that a payoff received sooner is more valuable than one received
ater. The discount rate is key in determining the present value of future utility

cumulated over an infinite time horizon. If 𝛿 is high, future utility is discounted
ore heavily, making near-term benefits more influential in determining the

ptimal policy. If 𝛿 is low, future outcomes have relatively more weight,
mphasizing the importance of long-term outcomes in decision-making. Thus,

in an infinite-horizon control problem, the discount rate’s function is twofold:
it serves both as a mechanism to manage the trade-off between present and
future payoffs and as a mathematical tool to ensure convergence of the

objective function.
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Fig. 6. Static optimization of the objective function log 𝑥 + log 𝑦 + log 𝑇 at the interior attractor.
where we have put 𝜆3(𝑡) = 0. The system of first-order linear ordinary
differential equations defined by the first and second equation in (26)
can now be solved by applying the operator method. Elimination of 𝜆1
leads to the equation

[𝐷2 − 𝑏𝑥𝐼𝐷 + 𝑐 𝑒𝑥𝐼𝑦𝐼 ]𝜆2 = 𝑃1𝑒
−𝛿 𝑡 (27)

where 𝑃1 = (𝛿 − 𝑏𝑥𝐼 )
𝑞
𝑦𝐼

− 𝑝𝑐 and 𝐷 = 𝑑
𝑑 𝑡 . The complete solution

of Eq. (27) is:

𝜆2(𝑡) = 𝐶1𝑒
𝑚1𝑡 + 𝐶2𝑒

𝑚2𝑡 +
𝑃1
𝑄
𝑒−𝛿 𝑡 (28)

where 𝐶1, 𝐶2 are arbitrary constants, and 𝑄 = (𝛿2 + 𝑏𝑥𝐼𝛿 + 𝑐 𝑒𝑥𝐼𝑦𝐼 ) ≠ 0
𝑚𝑗 =

1
2

(

𝑏𝑥𝐼 ±
√

(𝑏𝑥𝐼 )2 − 4𝑐 𝑒𝑥𝐼𝑦𝐼
)

, 𝑗 = 1, 2.
We note that when 𝑡 → +∞, then the shadow price 𝜆2(𝑡) is bounded

if 𝐶1 = 𝐶2 = 0, so
𝜆2(𝑡) =

𝑃1
𝑄
𝑒−𝛿 𝑡.

Proceeding in a similar manner, we have:

𝜆1(𝑡) = 𝑃 2
𝑄
𝑒−𝛿 𝑡

where 𝑃2 = 𝑒𝑞 +
𝛿 𝑝
𝑥𝐼

.
Replacing 𝜆1(𝑡), 𝜆2(𝑡) in the third equation of (26), we get

− 𝛿2𝑟 +
((

2𝛼1𝑝 + 2𝛼2𝑞
)

(𝑇𝐼 )2 − 𝑏𝑟𝑥𝐼
)

𝛿

+
(

2𝑞
(

𝛼1𝑒 + 𝛼2𝑏
)

𝑥𝐼 − 2𝛼2𝑐 𝑝𝑦𝐼
)

(𝑇𝐼 )2 − 𝑐 𝑒𝑟𝑥𝐼𝑦𝐼 = 0 (29)

The above equation gives the desired singular path (see [50,51]). Using
the expressions of the coordinates 𝑥𝐼 , 𝑦𝐼 , 𝑇𝐼 of the interior equilibrium
point into (29) we obtain the equation for 𝛽.

The optimal fee policy is given by

𝛽0(𝑡) =
{

𝛽(𝑡), 𝑡 ∈ [0, 𝜏],
𝛽∗, 𝑡 > 𝜏 , (30)

with the optimal path

𝛤 0(𝑡) =
{

𝛤 (𝑡), 𝑡 ∈ [0, 𝜏]
(31)
𝑋𝐼 , 𝑡 > 𝜏 ,
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where 𝛤 (𝑡) is the solution of the minimum-time control problem

min
𝛽∈[𝛽𝑚𝑖𝑛 ,𝛽𝑚𝑎𝑥]

𝑡𝑓

subject to the constraints (3) and 𝑥0 > 0, 𝑦0 > 0, 𝑇0 > 0.

Numerical example. We set the parameter values4 as follows: 𝑎 =
5, 𝑏 = 0.25, 𝑐 = 1, 𝑑 = 1, 𝑒 = 0.5, 𝑝 = 𝑞 = 𝑟 = 1, 𝛼1 = 3

20000 , 𝛼2 = 1
10000 , 𝜎1 =

1, 𝜎2 = 2, 𝛿 = 1
100 . Then Eq. (29) becomes

1
4
𝛽2 − 20509

400
𝛽 + 642481

2500
= 0 (32)

which has the roots 𝛽1 = 8.718983719, 𝛽2 = 11.79001628. For our choice
of the parameters, the admissible values for 𝛽 are those in 𝑆𝛽 = (6.5, 11),
see Section 5.1. So 𝛽1 is the only feasible value as 𝛽2 ∉ 𝑆𝛽 .

Hence 𝛽∗ = 𝛽1 and the equilibrium point (𝑥𝐼 , 𝑦𝐼 , 𝑇𝐼 ) = (4.281016281,
2.218983719, 106.7945757) is reached at time 𝜏 = 0.4591 for the initial
conditions 𝑥0 = 0.7575, 𝑦0 = 0.7234, 𝑇0 = 113.9508. Thus, the optimal
fee policy results

𝛽0(𝑡) =
⎧

⎪

⎨

⎪

⎩

6.5, when 𝑡 ∈ [0, 0.2268],
11, when 𝑡 ∈ [0.2268, 0.4591],
𝛽∗, when 𝑡 > 𝜏 .

(33)

where we chose 𝛽min and 𝛽max close to the endpoints of the admissible
range 𝑆𝛽 .

Fig. 7 shows the results. In the top–left panel the evolution of the
controlled variables in represented. The number of prey (blue line) has
the maximum for 𝑡 = 0.1, while the number of predator (orange line)
and tourists (green line) have the maximum for 𝑡 = 0.23, corresponding
to the 𝛽𝑚𝑖𝑛 fee (6.5). The number of predators and tourists is decreasing
for 0.23 ≤ 𝑡 ≤ 0.46, corresponding to the 𝛽𝑚𝑎𝑥 fee (8.72). In the top
right panel the fee policy (33) is represented. The bottom panel shows
the trajectory of the uncontrolled system (3) converging to the stable
equilibrium 𝑃𝑥𝑦𝑇 (blue line). This point is the attractor that corresponds
to 𝛽 = 𝛽∗ and is reached only for 𝑡 → +∞. In the same panel,

4 In particular, we chose 𝑝 = 𝑞 = 𝑟 = 1 in order to maximize the same fitness
function log 𝑥+ log 𝑦+ log 𝑇 , already considered in a static optimization setting
in Section 5.1.
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Fig. 7. Top panels: time evolution of the controlled variables (left) and values of the control applied (right). Bottom: trajectory of the uncontrolled system (3) converging to the
𝑃𝑥𝑦𝑇 equilibrium (blue line); controlled system (31) converging to the same equilibrium (red line). 𝛽 = 8.719, 𝜎1 = 1, 𝜎2 = 2. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
the trajectory 𝛤 0 of the controlled system is also shown (red line).
It is important to stress that 𝛤 0 reaches the same equilibrium 𝑃𝑥𝑦𝑇
of the uncontrolled system in finite time, exactly for 𝑡 = 𝜏, and then
it stays there indefinitely. In particular, the optimal fee policy allows
the system to reach the attractive equilibrium in minimum time, not
just to approach it asymptotically. The trajectory 𝛤 (𝑡) from 𝑡 = 0 to
𝑡 = 𝜏 (bottom panel), corresponding to the optimal fee policy, is by
construction the trajectory over which the cumulated discounted utility
in (22) attains its maximum. From a practical viewpoint, this control
exercise provides a mean to drive the system towards the equilibrium
state in a way that guarantees the maximum discounted utility. Also,
𝜏 can be regarded as estimating the minimum time for the system to
reach 𝑃𝑥𝑦𝑇 and 𝛽 as a control parameter instrumental in computing such
an estimate.
14 
6. Conclusions

In recent years, the literature on PAs has shifted towards under-
standing their dual role of preserving natural environments and pro-
moting recreational and cultural activities. The emergence of eco-
tourism has become a significant source of funding for PAs, with a
positive impact on both nature conservation and community develop-
ment. Revenues generated from tourism can be utilized to preserve
natural environments and biodiversity.

In this study, we introduce a three-dimensional Lotka–Volterra
model that not only considers the dynamics of prey and predator
populations, but also incorporates tourists. The dynamics of tourists
is influenced by the cost of the entrance fee and by the preferences
for observing the prey and predator species. The equilibrium points
of the system are analysed through conditions of existence and stabil-
ity. The parametric conditions for a locally stable equilibrium in the
interior indicate the existence of a Hopf bifurcation, which is proved
numerically.

A sensitivity analysis is performed at the interior equilibrium with
respect to the entrance fee (𝛽) and the preferences for the two species
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(𝜎1 and 𝜎2). The entrance fee can be controlled directly by the park
anager and its increase has a negative impact on the number of

ourists. But that also leads to an increase in the number of predators
nd to a reduction in the number of preys at last. On the other hand,
igher preferences for both species lead to more tourism. This comes
o the detriment of the predators, which are deemed to diminish. The
tability analysis of the dynamical system also suggests that a strong
reference for the preys may lead to the extinction of the predators. At
he same time, the preference for the predators is crucial in maintaining
 positive number of tourists. In terms of the fee parameter, for an
ttractive equilibrium to exists we find that 𝛽 is bound by the values of
he preferences. Outside such range, the extinction of the predators or
f the tourists can be expected.

A static sensitivity analysis confirms that rising 𝛽 has a negative ef-
ect on 𝑇 and ultimately determines a reduction of the number of preys.
ncreased preferences determine more tourists and disturbance for the

species but, at the equilibrium, the dynamics favour the preys which
ultimately grow while the predators diminish. Then a global sensitivity
analysis is performed by variance decomposition using Sobol’s method.
The entrance fee 𝛽 turns out to be the most influential model input,
determining 88% of the model output, with 𝜎1 and 𝜎2 accounting for
just 9% and 3% respectively.

A static optimization at the interior equilibrium is performed to
aximize the ‘‘fitness’’ of the park in terms of the numbers of preys,
redators and tourists as well, subject to the constraint that the equilib-
ium remains an attractor. This shows that the maximum of the fitness
s rather stable across values of 𝜎1 and 𝜎2 and that the optimal 𝛽 is
ostly influenced by the preference for the preys.

Finally an optimal control policy is implemented that allows the
administrators of the park to maximize the discounted cumulated utility
using 𝛽 as a control instrument. By applying this control the park man-
ager ensures that the system reaches in minimum time the same stable
equilibrium as in the absence of control, and the corresponding system’s
trajectory maximizes the total discounted benefit at the same time.
As a by-product, the optimal fee policy provides a way to indirectly
estimate a lower bound on the time required for the system to reach
the equilibrium.

We believe our study contributes to clarify the interplay between
tourist preferences and entrance fee in PAs. The theoretical analysis is
also able to provide relevant policy indications as far as the problem of
tuning 𝛽 in relation to the preferences is concerned. More generally it
provides policy makers a powerful framework to analyse the possible
dynamical scenarios that arise depending on the tourists’ preferences
for the species, for every choice of 𝛽. This is accomplished through
the analysis of a proposed three-dimensional dynamical model that
provides a reasonable, albeit simplified, picture of the interactions
between the tourists and the species.

As a future perspective, comparison with data-driven models and
ethodologies may provide new insights and suggest further terms of

nteractions to include in the model’s equations (even if at the cost of
osing complete analytical tractability). Also, attempts could be made to

fit the model against real-world (𝑥, 𝑦, 𝑇 ) time-series collected at specific
PAs, possibly using exogenous estimates to fix some of the parameters
(e.g. ecological or biological studies considering the natural dynamics
without tourists, or survey studies estimating tourists’ preferences).
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Appendix

Formula (19) is called ANOVA (Analysis Of Variances)-
representation of 𝑓 (𝑧) if

∫
𝑓𝑖1 ,𝑖2…𝑖𝑛 (𝑧1, 𝑧2 … , 𝑧𝑛)

𝑛
∏

𝑘=1
𝑝𝑘(𝑧𝑘) d𝑧𝑘 = 0, for 𝑘 = 𝑖1, 𝑖2 … 𝑖𝑛. (34)

It follows from (34) that the members in (19) are orthogonal and can
e expressed as integrals of 𝑓 (𝑧).

Let us set the parameter values as : 𝑎 = 5, 𝑏 = 0.25, 𝑐 = 1, 𝑑 = 1,
= 0.5, 𝛼1 = 0.00015, 𝛼2 = 0.0001, then the first equation in (9) became

𝑥𝐼 =
2𝛽 − 13𝜎2
2𝜎1 − 2𝜎2

.
Then the summands in (19), with 𝑓 (𝑧) = 𝑥𝐼 , can be computed as:

𝑓0 =
1

(𝛽𝑀 − 𝛽𝑚)(𝜎𝑀1 − 𝜎𝑚1 )(𝜎
𝑀
2 − 𝜎𝑚2 )

× ∫

𝛽𝑀

𝛽𝑚 ∫

𝜎𝑀1

𝜎𝑚1
∫

𝜎𝑀2

𝜎𝑚2

𝑥𝐼 d𝛽 d𝜎1 d𝜎2

𝑓1(𝛽) = 1
(𝜎𝑀1 − 𝜎𝑚1 )(𝜎

𝑀
2 − 𝜎𝑚2 ) ∫

𝜎𝑀1

𝜎𝑚1
∫

𝜎𝑀2

𝜎𝑚2

𝑥𝐼 d𝜎1 d𝜎2 − 𝑓0

𝑓2(𝜎1) = 1
(𝛽𝑀 − 𝛽𝑚)(𝜎𝑀2 − 𝜎𝑚2 ) ∫

𝛽𝑀

𝛽𝑚 ∫

𝜎𝑀2

𝜎𝑚2

𝑥𝐼 d𝛽 d𝜎2 − 𝑓0

𝑓3(𝜎2) = 1
(𝛽𝑀 − 𝛽𝑚)(𝜎𝑀1 − 𝜎𝑚1 ) ∫

𝛽𝑀

𝛽𝑚 ∫

𝜎𝑀1

𝜎𝑚1

𝑥𝐼 d𝛽 d𝜎1 − 𝑓0

1(𝜎1, 𝜎2) =
∫ 𝛽

𝑀

𝛽𝑚 𝑥𝐼 d𝛽

𝛽𝑀 − 𝛽𝑚
, 𝐸2(𝛽 , 𝜎2) =

∫
𝜎𝑀1
𝜎𝑚1

𝑥𝐼 d𝜎1

𝜎𝑀1 − 𝜎𝑚1
,

𝐸3(𝛽 , 𝜎1) =
∫
𝜎𝑀2
𝜎𝑚2

𝑥𝐼 d𝜎2

𝜎𝑀2 − 𝜎𝑚2
𝑓1,2 = 𝐸3 − 𝑓1 − 𝑓2 − 𝑓0, 𝑓1,3 = 𝐸2 − 𝑓1 − 𝑓3 − 𝑓0,

𝑓2,3 = 𝐸1 − 𝑓2 − 𝑓3 − 𝑓0
𝑓1,2,3 = 𝑥𝐼 − 𝑓1 − 𝑓2 − 𝑓3 − 𝑓1,2 − 𝑓1,3 − 𝑓2,3 − 𝑓0

The variances can be computed as:

𝑉1 =
∫ 𝛽

𝑀

𝛽𝑚 𝑓 2
1 d𝛽

𝛽𝑀 − 𝛽𝑚
, 𝑉2 =

∫
𝜎𝑀1
𝜎𝑚1

𝑓 2
2 d𝜎1

𝜎𝑀1 − 𝜎𝑚1
, 𝑉3 =

∫
𝜎𝑀2
𝜎𝑚2

𝑓 2
3 d𝜎2

𝜎𝑀2 − 𝜎𝑚2

𝑉1,2 =
1

(𝛽𝑀 − 𝛽𝑚)(𝜎𝑀1 − 𝜎𝑚1 ) ∫

𝛽𝑀

𝛽𝑚 ∫

𝜎𝑀1

𝜎𝑚1

𝑓 2
1,2 d𝛽 d𝜎1

𝑉1,3 =
1

(𝛽𝑀 − 𝛽𝑚)(𝜎𝑀1 − 𝜎𝑚1 ) ∫

𝛽𝑀

𝛽𝑚 ∫

𝜎𝑀2

𝜎𝑚2

𝑓 2
1,3 d𝛽 d𝜎2

𝑉2,3 =
1

𝑀 𝑚 𝑀 𝑚 ∫

𝜎𝑀1

𝑚 ∫

𝜎𝑀2

𝑚
𝑓 2
2,3 d𝜎1 d𝜎2
(𝜎1 − 𝜎1 )(𝜎2 − 𝜎2 ) 𝜎1 𝜎2
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𝑉1,2,3 =
1

(𝛽𝑀 − 𝛽𝑚)(𝜎𝑀1 − 𝜎𝑚1 )(𝜎
𝑀
2 − 𝜎𝑚2 ) ∫

𝛽𝑀

𝛽𝑚 ∫

𝜎𝑀1

𝜎𝑚1
∫

𝜎𝑀2

𝜎𝑚2

𝑓 2
1,2,3 d𝛽 d𝜎1 d𝜎2

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉1,2 + 𝑉1,3 + 𝑉2,3 + 𝑉1,2,3.

Thus, the first-order (𝑆) Sobol indices are:

𝑆1 =
𝑉1
𝑉
, 𝑆2 =

𝑉2
𝑉
, 𝑆3 =

𝑉3
𝑉

while, the total (𝑆𝑇 ) Sobol indices are:

𝑆1𝑇 =
𝑉1 + 𝑉1,2 + 𝑉1,3 + 𝑉1,2,3

𝑉
, 𝑆2𝑇 =

𝑉2 + 𝑉1,2𝑉2,3 + 𝑉1,2,3
𝑉

,

𝑆3𝑇 =
𝑉3 + 𝑉1,3 + 𝑉2,3 + 𝑉1,2,3

𝑉
.

Replacing, 𝛽𝑚 = 36
5
, 𝛽𝑀 = 44

5
, 𝜎𝑚1 = 19

20
, 𝜎𝑀1 = 21

20
, 𝜎𝑚2 = 19

10
, 𝜎𝑀2 = 21

10
,

we obtain the first two columns of Table 3. We proceed in a similar

ay for 𝑓 (𝑧) = 𝑦𝐼 = −2𝛽+13𝜎1
2𝜎1−2𝜎2

and 𝑓 (𝑧) = 𝑇𝐼 = 50
√

2𝛽−4𝜎1−9𝜎2
𝜎1−𝜎2

.

Remark 5. The integrals involving the model outputs 𝑥𝐼 and 𝑦𝐼 were
alculated analytically, while for 𝑇𝐼 they were estimated numerically
sing Jansen’s formulas [54].

Data availability

No data was used for the research described in the article.
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