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Abstract

We model the interactions between physicians and patients, subject to clinical and legal risks, by means of an
evolutionary game. In each instant of time, there is a large number of random pairwise encounters between
members of the two populations. In each encounter, a physician heals a patient. The outcome of the healing
process is uncertain and may result in patient harm; if that happens, the patient may sue the physician for
medical malpractice. Physicians have to choose between two alternative treatments, D and ND, with different
levels of benefits and risks.The treatment D is less risky than the alternative treatment ND, but has the
disadvantage of providing a lower expected benefit to the patient. Therefore its provision corresponds to
practicing “negative” defensive medicine.

Physicians prevent, at least partially, negligence charges by buying medical malpractice insurance. This
transfers the risk of litigation from the physician to the insurer.

The dynamics we analyze are determined by a three-dimensional discrete-time dynamic system, where the
variables x and y are, respectively, the shares of defensive physicians and litigious patients, while the variable a
represents the insurance premium.

In such a context we show that, depending on the policy’s price calculation principle as well as on model’s
parameters related to the accuracy of the judicial system and legal reforms, the game’s final outcome could be
an appealing equilibrium point in which the defensive strategy of physicians and litigious behavior of patients
vanish, an interior (Nash) equilibrium in which all strategies coexist, or even an oscillatory behavior arisen via
a Neimart-Sacker bifurcation in which strategies coexist in a recurrent manner. Furthermore, we state a “no
chaos” conjecture, supported by analytical, numerical and empirical arguments.

Keywords: Defensive medicine, Discrete-time evolutionary dynamics, Medical malpractice insurance

1. Introduction

Defensive medicine is a diversion from best medical practice that allows physicians to defend themselves
against malpractice lawsuits (Ehrlich and Becker, 1972), putting patients at risk of damage from procedures
that are unnecessary or unsuitable (Tancredi and Barondess, 1978). Defensive medicine may be either “positive”
or “negative”. The former consists of additional medical services of negligible or no medical value performed
to deter patients from filing malpractice claims or to persuade the legal system that the standard of care was
met (Antoci et al. 2016)1. The latter, on the other hand, takes the shape of avoidance behavior (Feess,
2012): physicians try to avoid a source of legal danger by adopting safer but less effective therapies. Both
these diversions from best medical practices generate damages to patients, and additional costs for health care
systems. In high-risk specialties, defensive medicine is a global problem. In the United States, 93 percent
of respondents said they practiced it (Studdert et al., 2005), and similar percentages were found in Europe
(Palagiano, 2013; Garcia-Retamero and Galesic, 2014; Ramella et al., 2015; Osti and Steyrer, 2016), China (He,
2014), and Japan (Hiyama et al., 2006). Throughout their careers, U.S. doctors will almost likely encounter a
claim and will almost certainly pay an indemnity (Jena et al., 2011). When adverse events occur, clinical safety
may increase the likelihood of being sued; for example, claims for anesthesia-related death scarcely decreased
after a tenfold decrease in mortality rate (Eichhorn, 1989; Kohn et al., 2000).

The magnitude of the problem is enormous. The medical liability system, which includes defensive medicine,
is expected to cost the US more than 55 billion of dollars a year, or 2.4 percent to 10% of total health care
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spending (Kessler and McClellan, 1996; Price Waterhouse Coopers, 2006; Mello et al., 2010). Defensive medicine
costs the Italian public health care system more than 10 billion of euros per year, accounting for 10.5 percent
of total costs (Palagiano, 2013). Only radiography, orthopedics, and trauma surgery cost the Austrian public
health system roughly 420.8 million of euros per year, or 1.62 percent of total expenditures (Osti and Steyrer,
2016).

The adoption choices of defensive medicine practices may be conditioned by medical malpractice insurance,
which is a sort of professional liability insurance that protects health care providers from medical malpractice
lawsuits. Its market has gone through periods of turmoil (such as in the mid-1970s, mid-1980s, and early 2000s,
see Baker (2005)), which could be attributed in part to a rise in lawsuits. In fact, malpractice claims grew at
a rate of over 10% per year in the 1970s and 1980s (U.S. General Accounting Office, 1986; Danzon, 1991), but
have remained relatively stable since then (Jena et al., 2011). Over the course of the underwriting cycle (Baker,
2005), the cost of medical malpractice insurance can change significantly (Rodwin et al., 2008), more so than
other insurance markets. This cost is determined by the liability system (Danzon et al., 2004), but the impact
of tort changes is still theoretically unclear (Avraham and Schanzenbach, 2010).

In this paper, we model the interactions between physicians and patients, subject to clinical and legal risks,
by means of an evolutionary game. Physicians have to choose between two alternative treatments, with different
levels of benefits and risks, and can prevent, at least partially, negligence charges by buying medical malpractice
insurance. Patients may sue the physicians for medical malpractice when adverse events occur. The adoption
process of choices by patients and physicians is modeled by a three-dimensional discrete-time dynamic system
based on the exponential replicator dynamics proposed in Cabrales and Sobel (1992), augmented by an equation
describing the time evolution of the assurance premium. This way we describe bifurcations of the system, in
particular Neimart -Sacker bifurcations, as well as is ruled out the period doubling bifurcation. Moreover, we
investigate the possible convergence of trajectories to the boundary (precisely, to states where either all or no
patients litigate). Finally, we are led to formulate, on the basis of analytic, numerical and statistic observations,
a no-chaos conjecture, under specific assumptions on the system parameters.

Our paper builds on three previous works. In Antoci et al. (2016 and 2018) we analyzed the adoption
processes of positive and negative defensive medicine, respectively, in a context in which physicians cannot self-
protect themselves buying an insurance policy. In Antoci et al. (2019) we analyzed the coevolution of defensive
medicine choices and the price of insurance policies in a context in which physicians practice “positive” defensive
medicine.

The following is a breakdown of the article’s structure. The model and its assumptions are introduced in
the next section. The consequent evolutionary dynamics is analyzed in Section 3. Section 4 provides comments
on mathematical results of Section 3. Section 5 shows some numerical simulations. Section 6 concludes. The
proofs of Theorems 1 and 2 are postponed in the Appendix.

2. The game

We assume that, at each instant of time t ∈ [0,+∞), a large number of pairwise encounters (via random
matching) occur between physicians and patients. In each encounter, the physician provides a treatment to the
patient. This treatment has an uncertain outcome, and may cause harm to the patient. If this happens, the
patient can sue and bring the physician to court, accusing him of medical malpractice. The outcome of the legal
proceedings is uncertain. The physician may choose to reduce the risk of being sued (and possibly convicted)
by providing a treatment D that has the advantage of being less risky than an alternative treatment ND, but
also the disadvantage of providing a lower expected benefit to the patient with respect to ND. We will say that
physicians who opt for choice D implement defensive medicine.

The benefits/costs of agents are expressed in monetary (economic) terms, and may also incorporate psycho-
logical and reputation factors. Treatments D and ND provide the patient with certain benefits equal to BD > 0
and BND > 0, respectively, and uncertain harm H > 0, which can occur with (exogenous) probabilities qD
and qND. Thus, the patient’s expected benefits are B̃D = BD − qDH and B̃ND = BND − qNDH. Similarly,
treatments provide the physician with expected benefits BPHD > 0 and BPHND > 0. We assume BPHND > BPHD ,
B̃ND > B̃D and 0 < qD < qND < 1; that is, despite the higher clinical risk, ND treatment can be considered
the optimal treatment.

If the patient suffers the uncertain harm H, he may decide to initiate a malpractice lawsuit incurring an (ex
ante) cost CL > 0. If the patient wins the litigation, he will receive compensation amounting to E > 0.

Let us assume that the judge finds the physician guilty with (exogenous) probabilities pD and pND, which
may depend on the type of treatment. We will assume 0 ≤ pND, pD ≤ 1, without any assumption about the
relative values of pD and pND.

The (one-shot) game works as follows. The physician can play two (pure) strategies, D or ND. Similarly, the
patient can play two strategies: he can choose whether to sue the physician if he suffers the damage H from the
treatment (strategy L) or not (strategy NL). Each player chooses one’s own strategy ex ante, without knowing
the other players’ strategy.
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Summarizing the conditions on the parameters, we have:

BPHND > BPHD ,B̃ND > B̃D,0 < qD < qND < 1,0 ≤ pND, pD ≤ 1,E > 0,CL > 0

We denote by x(t) the share of physicians who choose strategy D at time t, and by 1 − x(t) the share of
physicians who choose strategy ND ; 0 ≤ x(t) ≤ 1.

Similarly, we denote by y(t) the share of litigious patients at time t and by 1− y(t) the share of non-litigious
patients; 0 ≤ y(t) ≤ 1.

We assume that insurance against malpractice litigation is mandatory for physicians. We denote by a (t) the
price of the insurance policy at time t. The insurance company pays compensation E to the litigious patient
who won the malpractice lawsuit, and requires the physician to pay an extra price equal to εa(t), with ε > 0, in
order to incentive best practice choices on the part of the physician. Finally, we assume that physician’s payoffs
are also negatively affected by the reputation damage R > 0 in case of conviction.

Physician’s payoff matrix is:

L NL
D BPHD − a(t)− qD pD [R+ εa(t)] BPHD − a(t)

ND BPHND − a(t)− qND pND [R+ εa(t)] BPHND − a(t)

(1)

while patient’s payoff matrix is:

D ND

L B̃D − qD (CL − pDE) B̃ND − qND (CL − pNDE)

NL B̃D B̃ND

(2)

The price of insurance policy a(t+1) at time t+1 that would allow for a balanced budget (in expected value),
considering the values of the variables at time t as an estimate of the values at time t+ 1 (static expectations),
must satisfy the following balanced budget condition for insurance (N denotes the size of the population of
doctors):

− [qD pDE · y(t)] · x(t)N − [qND pNDE · y(t)] · [1− x(t)]N + a(t+ 1) ·N = 0 (3)

where:
1. qD pDE ·y(t) represents the expected loss for each physician adopting the strategy D (y(t) is the probability

of being matched with a litigious patient);
2. x(t)N is the number of physicians adopting the strategy D ;
3. qND pNDE · y(t) is the expected loss for each physician adopting the strategy ND ;
4. [1− x(t)]N is the number of physicians adopting the strategy ND.
Equation (3) can be written as follows:

a(t+ 1) = {qD pDE · x(t) + qND pNDE · [1− x(t)]} · y(t) (4)

This form of policy pricing implies that a(t + 1) = 0 for y(t) = 0. We define the pricing dynamic more
generally by adding to the value of (4) a constant mark-up a ≥ 0:

a(t+ 1) = [qD pDE · x(t) + qND pNDE · [1− x(t)]] · y(t) + a (5)

We will analyze the exponential replicator dynamics used in Bischi and Merlone (2017) and in Bischi et
al. (2018), based on the monotone selection dynamics proposed in Cabrales and Sobel (1992), augmented by
equation (5). Replicator dynamics are driven by the expected payoffs of the four strategies D, ND, L, NL (here
after, we drop the time t):

M1(y, a) =
[
BPHD − a− qD pD (R+ εa)

]
y +

(
BPHD − a

)
(1− y) =

= BPHD − a− qD pD (R+ εa) y

M2(y, a) =
[
BPHND − a− qND pND (R+ εa)

]
y +

(
BPHND − a

)
(1− y) =

= BPHND − a− qND pND (R+ εa) y

P1(x) =
[
B̃D − qD (CL − pDE)

]
x+

[
B̃ND − qND (CL − pNDE)

]
(1− x) =

= B̃ND − qND (CL − pNDE) +
[
B̃D − B̃ND + qND (CL − pNDE)− qD (CL − pDE)

]
x
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P2(x) = B̃Dx+ B̃ND(1− x) =

= B̃ND +
(
B̃D − B̃ND

)
x

The discrete dynamic system can be expressed as:

x (t+ 1) = x (t) exp kM1(t)
x(t) exp kM1(t)+(1−x(t)) exp kM2(t)

y (t+ 1) = y (t) exp kP1(t)
y(t) exp kP1(t)+(1−y(t)) exp kP2(t)

a (t+ 1) = E {qDpDx (t) + qNDpND [1− x (t)]} y (t) + a

(6)

where k is a positive parameter. In fact, k accounts for different choices of the numeraire and can be also
interpreted as an adjustment speed. Moreover, we observe that the dynamics of the policy price is independent
of k, since, when E and a are multiplied by k, so is a (t+ 1). Hence, both members in the third equation are
multiplied by k, which can be canceled. This implies that the policy price can remain expressed in the original
currency (euros, dollars etc.), which is much more convenient.

3. Analysis of the dynamical system

Let pNDqND > pDqD (the case pNDqND < pDqD will be discussed later) and denote by Π the open
parallelepiped {0 < x < 1, 0 < y < 1, a < a < â}, where â = a+ pNDqNDE, while its closure will be denoted by
Π.

3.1. Boundary equilibria

Besides the four vertices:

Q1 = (0, 0, a1) (all physicians play ND and all patients playNL)

Q2 = (0, 1, a2) (all physicians play ND and all patients playL)

Q3 = (1, 0, a3) (all physicians play D and all patients playNL)

Q4 = (1, 1, a4) (all physicians play D and all patients playL)

where the ai are easily computed, there may be a further equilibrium inside the plane y = 1, say Q̃ = (x̃, 1, ã),

0 < x̃ < 1, in the case 1
ε

(
BPH

ND−B
PH
D

qNDpND−qDpD −R
)
− a − qNDpNDE has the same sign but is smaller in absolute

value than qDpDE − qNDpNDE.

3.2. Interior equilibrium

An interior equilibrium can exist if M1 (t) = M2 (t), P1 (t) = P2 (t), a (t+ 1) = a (t). Denoting the possible
equilibrium as Q0 = (x0, y0, a0), it is easily computed that 0 < x0 < 1 implies (CL − pDE) (CL − pNDE) < 0,
while, posing a (t) = F (x (t) , y (t)), one is led to the second degree equation in y:

(R+ εF (x, y)) y (qNDpND − qDpD) = BPHND −BPHD

so that a necessary condition for y0 ∈ (0, 1) is
(
BPHND −BPHD

)
(qNDpND − qDpD) > 0, i.e., qNDpND−qDpD >

0. In such a case the second degree equation admits exactly one positive solution y0, corresponding to an interior
equilibrium if 0 < y0 < 1. Hence, the interior equilibrium, if it exists, is unique.

3.3. Stability of the interior equilibrium

Suppose the interior equilibrium Q0 = (x0, y0, a0) exists. Calling J the corresponding Jacobian matrix, we
have to compute the eigenvalues, i.e. the zeroes λ1, λ2, λ3 of the equation

det (J − λI) = 0

If |λ1| , |λ2| , |λ3| < 1, the equilibrium is attracting. Setting, by convenience of computation, λ = 1 + α, we
find that:

J − (1 + α) I =

 −α b c
d −α 0
e f −1− α


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(a) α = −0.2 (b) α = −0.5

(c) α = −0.85

Figure 1: Parameter values are provided in Table 1.

where:

b = kx0 (1− x0) (qNDpND − qDpD) (R+ εa0)

c = kx0 (1− x0) (qNDpND − qDpD) εy0

d = ky0 (1− y0) (qND (CL − pNDE)− qD (CL − pDE))

e = −Ey0 (qNDpND − qDpD)

f = E(qDpDx0 + qNDpND (1− x0))

In fact, a necessary condition for Q0 to be attracting is that, posed H = J − I, detH ≤ 0. We consider the
generic case detH < 0. In particular, assuming qNDpND − qDpD > 0, it follows from lengthy calculations that
b, c, f > 0, while d, e < 0. Hence, the characteristic polynomial of H can be computed to be:

−α3 − α2 − pα− q

with p and q = − detH positive. Therefore, if the three eigenvalues of H are real, they belong to the interval
(−1, 0) and consequently the eigenvalues of J belong to (0, 1), implying the attractiveness of Q0. However, when
H (and thus J) has two complex conjugate eigenvalues, the real one, say α0, lies, as we will see, in (−2, 0),
but the two complex conjugate eigenvalues of J may cross the circle of radius 1. Assume this occurs and pose
−α0 = γ. If we consider H, whose trace is −1, the real part of the complex eigenvalues is equal to (1 + γ) /2

and consequently those of J have real part (1 + γ) /2. Thus, calling β the imaginary part, ((1 + γ) /2)
2
+β2 = 1,

that is β2 = 1 − ((1 + γ) /2)
2
. Going back to H and considering the product of the eigenvalues, fairly long

computations lead to the second degree equation:

−γ

[(
−1 + γ

2

)2

+ 1−
(

1 + γ

2

)2
]

= detH = −q
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Hence:

γ1,2 =
1±
√

1− 4q

2

implying q < 1
4 .

Therefore, −γi ∈ (−1, 0), i = 1, 2, must be an eigenvalue of H, i.e.:

−γ3i + γ2i + pγi + q = 0

which gives the two relations between p and q generating a Neimark-Sacker bifurcation.

3.4. Bifurcations and conjectures
When a Neimark-Sacker bifurcation occurs an invariant closed curve, say Γ, generically arises. In fact,

naming δ = 1−γ the real eigenvalue of J (the Jacobian matrix of the fixed point Q0) corresponding to γ, it can
be shown that, when δ ∈ (δ1, δ2) ⊂ (0, 1), Q0 is an attractor, whereas for δ > δ2 and δ < δ1 an invariant closed
curve Γi arises through the Neimark-Sacker bifurcation. In fact, when an interior equilibrium exists, detH < 0
is checked to imply pND > pD and we will prove in Theorem1 that in such a case no trajectory starting in Π
can tend to the boundary of Π. Hence, some interior attractor exists and we can expect the curve generated
by a Neimark-Sacker bifurcation to be attracting, as confirmed by numerical simulations. Moreover, by the
Central Manifold Theorem, it lies on an invariant two-dimensional manifold. From then on other bifurcations
occur. In order to investigate them, we can let δ, i.e. the real eigenvalue of J , vary, assuming the other two
eigenvalues to be complex conjugate. Hence, consider first the case δ > δ2. A bifurcation occurs when δ = 1,
corresponding to detH = 0, so that detH > 0 when δ > 1. That can be seen as caused by pND becoming
smaller than pD (a verdict favorable to the patient is more probable if the physician adopts a defensive strategy),
so that CL− pDE < 0 < CL− pNDE. When that occurs, we can conjecture that the invariant two-dimensional
manifold, where Q0 and Γ2 lie, becomes a separatrix between the attracting basins of two boundary attractors
(e.g., fixed points (0, 0, a′) and (x̃, 1, ã). Consider, next, the opposite case δ < δ1. We can let δ decrease until it
crosses the value 0, after which we can expect that trajectories approaching the curve Γ1 do so both rotating and
flipping from one to the other side of the invariant surface where Γ1 lies. Finally, a period-doubling bifurcation
could occur when δ crosses the value −1, so that the new attractor would be constituted by a pair of invariant
curves, between which the rotating trajectories oscillate. However, as we will see, the assumptions of our model
rule out such a possibility.

3.5. Behavior at the boundary
Assume the existence of an interior equilibrium, which implies, in particular, (CL − pDE) (CL − pNDE) < 0

and
(
BPHND −BPHD

)
(qNDpND − qDpD) > 0. Then, the main difference is constituted by the sign of pND − pD.

Precisely, if pND − pD > 0, the real eigenvalue at the equilibrium Q0, which we have chosen as a bifurcation
parameter, is smaller than 1, whereas pND−pD < 0 implies the above eigenvalue to be greater than 1. Consider,
then, the former case. The dynamic system is defined in a closed parallelepiped:

Π = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1, a ≤ a ≤ ã}

where the value of ã depends on the sign of qNDpND− qDpD. So, the first step is to study the local stability
of the four equilibria corresponding to pairs of pure strategies adopted by physicians and patients, namely
Q1 = (0, 0, a1), Q2 = (0, 1, a2), Q3 = (1, 0, a3), Q4 = (1, 1, a1). In fact, straightforward computations show that
all the respective Jacobian matrixes Ji have one real eigenvalue larger than 1 and one real eigenvalue smaller
than 1, corresponding to the first two diagonal entries. Hence, such equilibria are all saddles. Moreover, passing
from Q1 to Q2, from Q3 to Q4, from Q1 to Q3 and from Q2 to Q4 the positions of eigenvalues larger and smaller
than 1 in the Jacobian matrixes are inverted, due, precisely, to the existence of the interior equilibrium. Finally,
one further equilibrium may exist on the plane y = 1, say Q̃ = (x̃, 1, ã), where x̃ > x0 and ã < a0, as it is easily

calculated. That implies Q̃ not to be attracting either. What we expect, then, is that no open region exists in
Π whose trajectories converge to the boundary.

Consider, now, the case pND − pD < 0, corresponding to the above real eigenvalue of Q0 larger than 1.
Continuing to assume BPHND > BPHD and therefore, for the existence of the interior equilibrium, qNDpND > qDpD,
we can consider again the local stability of Q1, Q2, Q3, Q4. It turns out that Q1 has two eigenvalues ∈ (0, 1)
and one eigenvalue equal to 0 and, in fact, it is attracting for trajectories starting sufficiently near it. On the
other hand, Q2 and Q3 are, as above, saddles. As to Q4, it is also attracting if no interior equilibrium Q̃ exists
within the side y = 1. Otherwise, Q̃ or a closed curve surrounding it (after a Neimark-Sacker bifurcation) may
be attracting.

All that is consistent with the above conjectures. Precisely, we can conjecture that, when an interior
equilibrium exists, if pND − pD > 0, generic trajectories converge to an interior attractor; whereas, when
pND − pD < 0, trajectories converge, generically, either to Q1 or to an attractor lying on y = 1, and the two
basins of attraction are separated by an invariant surface through Q0 .
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Figure 2: About trajectories tending to the boundary. qND = 0.5, qD = 0.2 , ε = 1, pD = 0.41, pND = 0.3983, k = 7.1687,
E = 100, BPH

ND = 1.3443, BPH
D = 1, B̃D = 1, B̃ND = 1.05, R = 0, CL = 40, ā = 0

3.6. Invertibility of the map

Now we drop the assumption of the existence of an interior equilibrium. Renaming (x (t) , y (t) , a (t)) as
(x, y, a) and (x (t+ 1) , y (t+ 1) , a (t+ 1)) as (x′, y′, a′), we consider the map F : (x, y, a)→ (x′, y′, a′), generat-
ing the dynamic system, under the original conditions on the parameters, in particular qND > qD.

Hence, F is defined by:

x′ = x exp kM1(y,a)
x exp kM1(y,a)+(1−x) exp kM2(y,a)

y′ = y exp kP1(x)
y exp kP1(x)+(1−y) exp j

a′ = [qDpDEx+ qNDpNDE (1− x)] y + a

We distinguish two cases:

1. qNDpND > qDpD
2. qNDpND < qDpD.

In case 1, consider the Jacobian matrix of the map F . It follows from straightforward computations that,
by choosing kE ≤ 1, its determinant is positive. This way, the local invertibility of F is proved. However, since
parallelepipeds are obviously simply connected, that leads to the global invertibility of the map F (Theorem
of Hadamard-Caccioppoli, see Krantz and Parks, 2013).

In case 2, being BPHND − BPHD > 0, no interior equilibrium exists and in fact it will be seen that x (t) → 0.
Hence, the possible non-invertibility of F does not affect the asymptotic outcomes of the trajectories.

Finally, as it concerns the invariant sides x = 0, x = 1,y = 0, y = 1, on the former three the map induces a
one-dimensional dynamics, while the map is easily seen to be invertible on y = 1.

3.7. About trajectories tending to the boundary

Let pNDqND > pDqD. Assume there exists an interior equilibrium, i.e. a stationary point Q0 = (x0, y0, a0) ∈
Π. Then the following theorem holds.
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Theorem 1. Under the above assumptions, suppose pND > pD. Then no trajectory starting in Π can tend to
the boundary of Π, in particular to the planes y = 0 and y = 1. Vice-versa, suppose pD > pND. Then there
exist in Π two open regions whose trajectories converge, respectively, to y = 0 and y = 1. In the former case,
x converges to zero; whereas, in the latter, there may exist a further equilibrium (x̃, 1, ã) which is attracting or
surrounded by an attracting curve.

Proof. See the Appendix.

3.8. No interior equilibrium

We investigate the dynamics in the case there is no interior equilibrium, i.e. no equilibrium lying in the open
parallelepiped Π. Then the following theorem holds.

Theorem 2. If no interior equilibrium exists, all the trajectories starting inside the parallelepiped Π converge
either to the side y = 0 or to the side y = 1.

Proof. See the Appendix.

3.9. Period doubling

Suppose an interior equilibrium Q0 = (x0,y0, a0) exists. Consider, as above, the Jacobian matrix J and the
matrix H = J − I. If α is an eigenvalue of H, 1 + α is an eigenvalue of J . Starting from det (H) < 0, with
pDE < CL < pNDE, assuming the existence of two complex conjugate eigenvalues, we can see how bifurcations
occur when the real negative eigenvalue α of H varies. In fact, posed q = −det (H), α must satisfy the
equation:

α3 + α2 + pα+ q = 0

Explicitly

q = k2x0y0 (1− x0) (1− y0) [qND (pNDE − CL) + qD (CL − pDE)] (qNDpND − qDpD) (R+ 2εa0 − εa)

p = k2x0y0 (1− x0) (1− y0) [qND (pNDE − CL) + qD (CL − pDE)] (qNDpND − qDpD) (R+ εa0) +

+ kεx0(1− x0)y20E (qNDpND − qDpD)
2

The period doubling (flip) bifurcation requires α = −2: therefore it cannot occur in our model, since it is
easily checked that q < 2p.

We observe that such a conclusion holds also in case the insurance price includes a loading, proportional to
the expected loss. Hence, we can state that the existence itself of a medical malpractice insurance may prevent
the occurrence of period doubling bifurcations.

3.10. No chaos?

We have seen that, when pNDqND > pDqD and thus an interior attractor may exist, a suitable choice of the
positive parameter k (such that kE ≤ 1) leads to invertibility of the map F : Π→ Π, while the assumption that
the policy price is proportional to the expected loss rules out the possibility of a period doubling bifurcation.
Actually, neither result allows to conclude that chaotic behaviors cannot occur, although, in particular, the
route to chaos through a cascade of period doubling bifurcations is not admitted. On the other hand, numerical
experiments, even when the map is possibly not invertible (kE > 1), show that an interior attractor, whenever it
exists, consists of a single point or a closed curve. Finally, a further empirical argument can be added. Namely,
we can hypothesize that the introduction of insurance policies (mandatory for physicians) plays a stabilizing
role in the dynamics generated by defensive medicine and patients’ litigation, and we expect that our model
captures this empirical intuition.

For example, the Italian statistics relative to medical malpractice insurance and litigations in the arc of
time 2010-2020 (IVASS,2021) appear to be quite well explained by our model. In fact, skipping details, the
data report an increased length of the trials, a constant decrease of litigation cases and an oscillation in the
insurance price, more consistent than that of the compensation amount. Now, the increased length of trials
can be explained by a lower value of k (adjustment speed), so that kE remains small (say, ≤ 1), guaranteeing
the invertibility of the map. On the other hand, longer trials imply higher legal costs, so that the litigation
rate, y, decreases (even if compensation increases). But, in turn, this implies, because of the first equation of
the system, that the rate of defensive physicians, x, decreases as well. However (see the third equation of the
system), as a consequence, the insurance price increases (even if the compensation does not vary or varies by
a small amount), so that, coming back to the first equation, x now increases and so on. In conclusion, we can
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Figure 3: Comparative statics (solid line attractive equilibrium, dot line no attractive equilibrium ) varying the parameter values
CL. The other parameter values are: qND = 0.4, qD = 0.1, ε = 2.1, pD = 0.5962, pND = 0.6038, k = 2.8197, E = 100,
BPH

ND = 1.9167, BPH
D = 1, B̃D = 1, B̃ND = 1.05, R = 0, ā = 0

hypothesize an oscillation of the system around an equilibrium with a rather low level of the litigation rate,
which confirms the stabilizing role played by insurances.

Hence, on the basis of all the above considerations, we are led, anyway, to formulate the following

Conjecture 1. Assume the system parameters satisfy the conditions of Section 2 and kE ≤ 1. Then under no
parameter configuration the system can exhibit a chaotic behavior.

4. Interpretation of results

Let us start by remembering that, according to our assumptions BPHND > BPHD and B̃ND > B̃D, the equi-
librium Q1 = (0, 0, a1) (where all physicians play ND and all patients play NL) represents the social optimum.
Despite the higher clinical risk, ND treatment can be considered as the optimal treatment, both for physicians
and patients.

The analysis of the dynamic system
(6) has showed that at most one interior equilibrium, Q0 = (x0, y0, a0), exists. In Q0, all the strategies D,

ND, L, NL coexist (i.e., they are played by strictly positive shares of physicians and patients, 0 < x0 < 1 and
0 < y0 < 1). In case Q0 does not exist, all the trajectories starting from inside the parallelepiped:

Π = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1, a ≤ a ≤ â} (7)

tend to either the side y = 0 (where no patient chooses strategy L) or to the side y = 1 (where all patients
choose strategy NL), depending on the legal cost CL faced (ex-ante) by each patient choosing strategy L.

Necessary conditions for the existence of Q0 are:

(pDE − CL) (pNDE − CL) < 0 (8)
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Figure 4: Comparative statics varying the parameter value E. The other parameter values: qND = 0.4, qD = 0.1, ε = 2.1,
pD = 0.5962, pND = 0.6038, k = 2.8197, E = 100, BPH

ND = 1.9167, BPH
D = 1, B̃D = 1, B̃ND = 1.05, R = 0, CL = 60,

ā = 0qND = 0.4, qD = 0.1, ε = 2.1, pD = 0.5962, pND = 0.6038, k = 2.8197, BPH
ND = 1.9167, BPH

D = 1 , B̃D = 1, B̃ND = 1.05,
R = 0, CL = 60, ā = 0

(
BPHND −BPHD

)
(qNDpND − qDpD) > 0 (9)

while a necessary condition for its local attractiveness is:

pND > pD (10)

Since BPHND > BPHD (i.e., the choice ND provides the physician a higher expected benefit, when the uncertain
harm H > 0 does not occur) by assumption, condition (9) requires:

qNDpND > qDpD (11)

If (11) holds, then the probability that the uncertain harm occurs and the judge finds the physician guilty
is higher for physicians adopting the non defensive strategy ND. Condition (11) may be interpreted as repre-
senting a context in which the judicial system is not efficient. The higher clinical risk qND (remember that, by
assumption, qND > qD) of the socially optimal strategy ND is not compensated by a lower enough probability
pND of winning the litigation against a physician playing ND. Notice that, if the stability condition (10) holds,
then condition (11) holds.

To interpret condition (8), remember that pNDE and pDE represent the expected compensations (when the
uncertain harm occurs) for litigious patients when matched with physicians adopting ND and D, respectively,
while CL represents the (ex ante) legal cost of strategy L. So, condition (8) requires that the relative performance
of strategies L and NL depends on the strategy played by the physician. More specifically, in the context in
which the stability condition (10) holds, condition (8) requires that the (expected) gain of strategy L is higher
than that of strategy NL if the physician adopts ND (i.e. pNDE − CL > 0) and lower if the physician adopts
D (i.e. pDE − CL < 0). Vice-versa it occurs when the opposite of condition (10) holds.

When the interior equilibrium exists, then Neimart-Sacker bifurcations –where stability shifts from an equi-

10



librium point to a curve– occur. There is a striking difference when pND > pD (i.e. the stability condition (10)
holds) or vice-versa. If pND > pD, then most trajectories in the parallelepiped tend to an interior attractor,
either the equilibrium point Q0 or a cycle. If, instead, pND < pD, then there exists a surface, containing the
interior equilibrium point Q0, “separating” trajectories tending to y = 0 (where all patients choose NL) from
trajectories tending to y = 1 (where all patients choose L). In the former case, x converges to zero; whereas,
in the latter, there may exist a further equilibrium (x̃, 1, ã) which is attracting or surrounded by an attracting
curve (if it does not exist, then, along trajectories where y → 1, x→ 1). Furthermore, we were led by analytical,
numerical and empirical arguments to formulate a conjecture. In fact, in a system like ours (three-dimensional
and non-linear) chaotic behaviors frequently appear. Vice-versa, the arguments discussed in 3.10 motivated us
to conjecture that in our system (when 0 < kE ≤ 1) chaos never occurs, which in a sense amounts to hypothesize
a stabilizing role, in the dynamics, played by the introduction of (mandatory) malpractice insurance policies.

Finally, if the interior equilibrium Q0 does not exist, then we have the following cases (see the proof of
Theorem 2, in Appendix):

1. If:

CL > max (pNDE, pDE) (12)

then y → 0 and consequently x→ 0.
2. If:

CL < min (pNDE, pDE) (13)

then y → 1. In that case, if pDqD > pNDqND, x → 0. Conversely, an equilibrium may exist in the plane
y = 1, Q̃ = (x̃, 1, ã), 0 < x̃ < 1, which is an attractor or surrounded by an attractive closed curve. If such an
equilibrium does not exist, then x→ 0.

3. If:

pNDE < CL < pDE and pDqD > pNDqND or pDqD < pNDqND (14)

then y → 0 and x→ 0.
4. If:

pDE < CL < pNDE (and therefore pDqD < pNDqND) (15)

then y → 1. If there exists an equilibrium in the plane y = 1, Q̃ = (x̃,1,ã), 0 < x̃ < 1, such equilibrium
is an attractor or surrounded by an attractive closed curve, to which all the trajectories starting in the open
parallelepiped converge. If that equilibrium does not exist, then x→ 0.

If condition (12) holds, then the legal cost CL is higher than the expected compensations pNDE and pDE,
and the system converges to the socially optimal equilibrium Q1 = (0, 0, a1), where all physicians play ND and
all patients play NL, with a1 = a ≥ 0.

If condition (13) holds, the legal cost CL is lower than the expected compensations pNDE and pDE. In
such a case, the share y of litigious patients always tends to 1. However, if the judicial system is efficient
(i.e. pDqD > pNDqND), the share x of defensive physicians tends to 0 and the system converges to the
equilibrium Q2 = (0, 1, a2), where all physicians play ND and all patients play L. If this is not the case (i.e.

pDqD < pNDqND), then an equilibrium may exist Q̃ = (x̃, 1, ã), with 0 < x̃ < 1 (where both strategies D and
ND coexist), which is an attractor or surrounded by an attractive closed curve. If such an equilibrium does not
exist, then the system converges to Q2 = (0, 1, a2).

Condition (14) represents a context in which the judicial system is efficient (i.e. pD > pND), and the legal
cost CL of strategy L is higher than pNDE but lower than pDE. In such a case, the system converges to the
socially optimal equilibrium Q1 = (0, 0, a1), no matter what is the sign of pDqD − pNDqND.

Finally, condition (15) represents a context in which the conditions pNDE − CL > 0 > pDE − CL > 0 and

consequently pDqD < pNDqND hold. In such a context, if an equilibrium exists in the plane y = 1, Q̃ = (x̃, 1, ã),
0 < x̃ < 1, then that equilibrium is an attractor or surrounded by an attractive closed curve. If such an
equilibrium does not exist, then the system converges to Q2 = (0, 1, a2).

5. Numerical Simulations

Numerical simulations have the goal of illustrating

i) the analytical results obtained in the previous sections (see Example 1);

ii) how the values of x (the share of defensive physicians), y (the share of litigious patients), and a (the price
of the insurance policy) –evaluated at the interior equilibrium Q0 = (x0, y0, a0)– vary as the values of
parameters CL, E, and qND increase (see Example 2).
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Figure 5: Comparative statics varying the parameter value qND. The other parameter values are: qD = 0.1, ε = 2.1, pD = 0.5962,
pND = 0.6038, k = 2.8197 , E = 100, BPH

ND = 1.9167, BPH
D = 1, B̃D = 1, B̃ND = 1.05, R = 0, CL = 60, ā = 0

Example 1. Given a large number of parameters in the system (6), an “algorithm” for their choice is described
in the Appendix.

Table 1 summarizes the parameter values used for the numerical simulation shown in Figure 1, which
illustrate the behaviors in case an interior equilibrium exists and pND > pD: the attractor is either a closed
curve (panels (a) and (c)) or a point (panel (b)).

α qND qD ε pD pND k E BPHND BPHD B̃D B̃ND R CL ā
−0.2 0.5 0.2 1 0.39979 0.40020 13.62940 100 1.34326 1 1 1.05 0 40 0
−0.5 0.5 0.2 1 0.39925 0.40074 7.16873 100 1.34434 1 1 1.05 0 40 0
−0.85 0.5 0.2 1 0.39661 0.40338 3.32896 100 1.34963 1 1 1.05 0 40 0

Table 1: Parameter values of Figure 1. The equilibrium point is (x0, y0, a0) =

(
5

7
,

1

2
, 5.7143

)

Remark 3. Our parameter values lead q to be
3

16
, which implies the two Neimark-Sacher bifurcations to occur

at α1
NS = −0.2 and α2

NS = −0.75. These values divide the interval (−1, 0) in three parts: I1 = (α1
NS , 0),

I2 = (α2
NS , α

1
NS), I3 = (−1, α2

NS). We choose the different values of α as α1 = −0.2 ∈ I1, α2 = −0.5 ∈ I2,
α3 = −0.85 ∈ I3.

Figure 2, instead, illustrates the dynamics when pD > pND: a surface through Q0 separates trajectories
tending to y = 0 from trajectories tending to y = 1. Parameter values for this simulation are provided in the
figure caption.

Example 2. Panels (a)–(c) of Figures 3–5 show how the values of x (the share of defensive physicians), y
(the share of litigious patients), and a (the price of the insurance policy) –evaluated at the interior equilibrium
Q0 = (x0, y0, a0)– vary as the values of parameters CL, E, and qND increase. Panel (d) of Figures 3–5 shows
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how the payoffs of physicians (blue lines) and patients (orange lines) –evaluated at Q0– change in response to
variations in CL, E, and qND . Continuous lines indicate that Q0 is locally attractive, while dotted lines indicate
that Q0 is not attractive and “surrounded” by an attractive closed trajectory.

Figure 3 shows that if the (ex ante) legal cost CL increases, then the number of physicians adopting the
virtuous strategy ND and the number of non-litigious patients increase; however, the price of the insurance
policy a increases. Such a result can be explained taking into account that the ND strategy is characterized by
a higher clinical risk (qND > qD). So, a reduction in the share of defensive physicians generates an (expected)
increase in the number of medical services that have an adverse outcome. In the numerical example illustrated
in Figure 3, such an increase is not offset by the increase in the number of non-litigious patients.

Note that the growth in CL generates an increase in patient payoffs (panel (d) of Figure 3) but a decrease
in physician payoffs. The former result is due to an increase in the number of physicians adopting the strategy
ND, characterized by higher expected benefits for patients and physicians (BPHND > BPHD , B̃ND > B̃D). The
latter result is due to the growth of the insurance policy price a, which negatively affects physicians’ payoffs.

A symmetric result is generated by an increase in the compensation E for patients winning the litigation (see
Figure 4): the number of physicians adopting the non-virtuous strategy D and the number of litigious patients
increase, the price of the insurance policy a decreases, patients’ payoffs decrease, and physicians’ payoffs increase.

Figure 5 illustrates the effects due to an increase in clinical risk qND of the virtuous strategy ND, in a
context in which the judicial system is not efficient (i.e. qNDpND > qDpD), and therefore defensive medicine is
an effective self-protection choice against litigious patients. Observe that, as expected, the number of physicians
adopting the defensive strategy D increases and the number of litigious patients decreases. The increase in the
share of defensive physicians generates an (expected) reduction in the number of medical services that have an
adverse outcome, and consequently a reduction in the policy price a. The inverse relationship between clinical
risk qND of strategy ND and the share y of litigious patients may seem a paradoxical result. However, it can be
explained by a predator-prey relationship between patients and physicians. Accordingly, a decrease in clinical
risk qND favors not-defensive physicians and pushes, ceteris paribus, the share of defensive physicians below;
therefore, the fitness of litigious patients improves (with respect to not-litigious ones) and their equilibrium share
y increases. Increasing safety in clinical practice, then, may increase malpractice litigation against physicians
when adverse events occur.

Parameters values per the numerical simulation in this example are given in the figure captions.

6. Conclusions

The main results of the analysis can be summarized as follows:

1. If one interior equilibrium exists, then qNDpND − qDpD > 0. The occurrence of Neimark- Sacker bifurca-
tions is investigated.

2. In the above case, the global dynamics strongly depends on the sign of pND−pD. Namely, if pND−pD > 0,
the trajectories starting in the open parallelepiped Π converge, generically, to an interior attractor, either
the equilibrium point or a closed curve surrounding it. Vice-versa, if pND − pD < 0, there exists a
surface containing the equilibrium point, which separates trajectories tending to the side y = 0 of Π from
trajectories tending to the side y = 1 of Π.

3. Choosing the parameter k (say, a speed adjustment) sufficiently small (e.g., k ≤ E−1), in case the dynamics
is not trivial (i.e., one interior equilibrium exists), the map F : (x, y, a)→ (x′, y′, a′), defining the discrete
dynamics, is invertible.

4. Having chosen the insurance price proportional to the expected loss plus a fixed tariff, a period doubling
bifurcation can never occur.

According to 1, an interior equilibrium (where strategies D, ND, L, and NL coexist) can exist if the probability
that the uncertain harm occurs and the judge finds the physician guilty is higher for physicians adopting the
non defensive strategy ND. That is, the higher clinical risk qND (remember that, by assumption, qND > qD)
of the socially optimal strategy ND is not compensated by a lower enough probability pND of winning the
litigation against a physician playing ND. So, such a condition may be interpreted as representing a context
in which the judicial system is not efficient. In the opposite case qNDpND − qDpD < 0 (the judicial system is
efficient, and therefore the interior equilibrium Q0 does not exist), if the legal cost CL is high enough w.r.t. the
expected compensations pNDE and pDE, then the dynamic system converges to the socially optimal equilibrium
Q1 = (0, 0, a1), where all physicians play ND and all patients play NL There remains the open question whether
chaotic behaviors could occur under the assumed configurations of the parameters: if they could not, as we
are led to conjecture, that could be interpreted as a stabilizing role played by the introduction of malpractice
insurance policies.
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7. Appendix

7.1. Proof of Theorem 1

At a given time t > 1, a (t) = a (x, y) = a+ (pNDqND − x (pNDqND − pDqD))Ey, where x = x (t− 1) , y =
y (t− 1). Assume an interior equilibrium Q0 = (x0, y0, a0), exists. Hence, the curve M1−M2 = 0, in the square

(x, y) ∈ [0, 1]
2
, has the shape of a hyperbolic arc joining two points (0, ỹ0) and (x̃1,ỹ1), 0 < ỹ0 < y0, x0 < x̃1, ≤ 1,

y0 < ỹ1, ≤ 1. Denote by f (x, y) = 0 the equation of the curve. Suppose, first, pND > pD. Then, y increases
when x < x0, while x increases when f (x, y) > 0, Consider a trajectory starting from Q (0) = (x (0) , y (0) , a (0))
such that x (1) < x (0) < x0, y (0) > y0 is sufficiently close to 1. Hence f (x (0) , y (0)) > 0, so that x (2) > x (1)
and so on. If along the trajectory x (t) tended to x0 and y (t) to some y > y0, posing x (0) = x0, y (0) = y,
a (0) = a (x0, y), a trajectory would move from that point satisfying y (1) = y (0) and x (1) > x (0) = x0. Hence
the original trajectory must continue until, eventually, x (t) > x0, so that y (t) starts decreasing. Vice-versa,
suppose to start from Q (0) with y (0) sufficiently close to zero, in particular 0 < y (0) < ỹ0 < y0. Then, for y to
decrease x must be larger than x0. So, assume x (0) > x0.. By arguments as above, one can see that, at some
time t, x (t) will become smaller than x0 and y will start increasing.

Now, consider instead pD > pND. Then y increases when x > x0 and decreases when x < x0. Let us start
from Q (0) = (x (0) , y (0) , a (0)) with y (0) close to 1. In particular, if the right end-point of f (x, y) = 0 is
(1, ỹ1) with ỹ1 < 1, we can choose y (0) > ỹ1. Then, if x (0) > x0, y keeps increasing and so does x, until both
tend to the value 1. Suppose, instead, the right end-point of f (x, y) = 0 is (x̃1, 1) with x0 < x̃1 ≤ 1. Let
a (0) be such that x is increasing, with y (0) sufficiently high and x0 < x (0) < x̃1 satisfying f (x (0) , y (0)) > 0.
Then x and y increase. However, it may happen that at some instant t − 1 > 0 f (x (t− 1) , y (t− 1)) < 0,
so that x (t+ 1) < x (t). However, if y (0) has been chosen very close to 1, the increase of y, in particular
y (t− 1) − y (t− 2) is very small, so that, being f (x (t− 2) , y (t− 2)) > 0, f (x (t− 1) , y (t− 1)) = −δ, δ > 0
being small. Specifically, x (t+ 1) > x0. Hence y keeps increasing, so that y (t+ 1) > y (t) and, after a certain
number k of steps, f (x (t+ k) , y (t+ k)) > 0. This proves that eventually y (t) tends to 1, while x (t) tends to
x̃1 if (x̃1, 1, a (x̃1, 1)) is a sink. Let us start, instead, from a point Q (0) = (x (0) , y (0) , a (0)) with y (0) < ỹ0,
x (0) < x0, and a (0) such that x (1) < x (0). Then f (x (0) , y (0)) < 0 and both x and y keep decreasing, tending
to (0, 0) .

7.2. Proof of Theorem 2

In the following we will assume pND > pD. If, instead, pD > pND, analogous arguments apply.
Assuming there is no interior equilibrium in Π, we distinguish the following cases:

1. CL > pNDE

2. CL < pDE

3. pDE < CL < pNDE.

Clearly, in case 1 (litigating is never convenient), y → 0. Then, being BPHD < BPHND, x → 0 as well, while
a→ a.

Vice-versa, in case 2, x→ 0 if there is no equilibrium interior to the side y = 1; otherwise, in the dynamics
restricted to y = 1, (0, a) becomes a saddle, while the interior equilibrium, say (x1, a1), can be either attracting
or surrounded by an attracting curve, through a Neimart-Sacker bifurcation.

Consider, finally, case 3. Posed

x0 =
qND (pNDE − CL)

qND (pNDE − CL) + qD (CL − pDE)

it is easily checked that y′ > y if x < x0, while y′ < y if x > x0.
We distinguish two sub-cases:

a) no interior equilibrium exists inside y = 1;

b) there is an interior equilibrium (x1, a1) inside y = 1.

In case a) M1 (y, a) < M2 (y, a) whatever is y, so that x keeps decreasing and y increases when x < x0.
Therefore, the trajectories tend, generically, to (x, y, a) = (0, 1, ã), where ã = pNDqND + a.

Consider, now, case b). Since a (x, y) decreases with x, we can assume, generically, 0 < x1 < x0. Hence,
after some steps:

(pNDqND − pDqD) [εE (pNDqND − x0 (pNDqND − pDqD)) + εa+R] < BPHND −BPHD (16)

whereas:
(pNDqND − pDqD) [εEpNDqND + εa+R] > BPHND −BPHD
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In order to simplify the notations, we will set in the following R = a = 0, BPHND −BPHD = 1 (nothing changes
by different choices satisfying the above inequalities).

In any case, a = a (x, y) with x ≥ x0 implies x′ < x, so that eventually x becomes smaller than x0 and y
starts increasing.

For reversing such dynamics, x should become, again, greater than x0. Therefore, since x′ may increase only
for values x < x1, it should happen, at some time, x′ − x > x0 − x1.

Now:

x′ − x =
xeM1

xeM1 + (1− x) eM2
− x =

x (1− x)
(
eM1−M2 − 1

)
xeM1−M2 + 1− x

Then, by straightforward computations, recalling R = a = 0:

M1 −M2 < εE (pNDqND − pDqD) (pNDqND − x1 (pNDqND − pDqD))− 1

Since, from (16):

εE <
1

(pNDqND − pDqD) (pNDqND − x0 (pNDqND − pDqD))

we obtain:

M1 −M2 <
(x0 − x1) (pNDqND − pDqD)

pNDqND − x0 (pNDqND − pDqD)
= µ (17)

As the possibility that x′−x > x0−x1 is clearly as much higher as closer are x0 and x1, we can approximate
eµ by 1 + µ, so that:

x′ − x < x (1− x)µ

1 + xµ

Recalling x < x1, straightforward computations lead to the conclusion that x′ − x < x0 − x1 if:

x1 (1− x0) (pNDqND − pDqD)

pNDqND − x0 (pNDqND − pDqD)
< 1

which clearly holds, being pNDqND − pDqD < pNDqND and x0 (1− x1) + x1 < 1.
In conclusion, y keeps increasing and all the trajectories starting in the open parallelepiped tend to y = 1.

7.3. Steps for finding parameter values for the numerical simulation in Figure 1.

For the sake of convenience, recall the following equations

α3 + α2 + pα+ q = 0, (characteristic equation of H). (18)

Explicitly

q = k2x0y0 (1− x0) (1− y0) [qND (pNDE − CL) + qD (CL − pDE)] (qNDpND − qDpD) (R+ 2εa0 − εa) (19)

p = k2x0y0 (1− x0) (1− y0) [qND (pNDE − CL) + qD (CL − pDE)] (qNDpND − qDpD) (R+ εa0) +

+ kεx0(1− x0)y20E (qNDpND − qDpD)
2
.

(20)

where x0, y0, a0 are the coordinates of the interior equilibrium.
Eigenvalues of Neimark-Sacker bifurcation

α1,2
NS =

−1±
√

1− q
2

. (21)

The calculation steps are described below

STEP 1: Pose CL =
pND + pD

2
E, R = 0 and ā = 0, then it is easy check that

x0 =
qND

qND + qD
y0 =

BPH
ND − BPH

D

ε aP
, a0 = x0y0qDwE. (22)
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and

q =
2 z2y20(1− y0)qND

2q2D (P + 1/2 (−qND + qD)w)Pεw

(qND + qD)3
(23)

p =
q

2
+

zεy20qDqND
(qND + qD)2

P 2 (24)

where P = qNDqND − qDpD, z = kE and w = pND + qD.

STEP 2: Arbitrarily choose the values of qND, qD(qD < qND), y0(0 ∈ (0, 1), ε > 0, and w.

STEP 3: Arbitrarily choose a value of q, say q̄ in (0, 14 ). Calculate the N-S bifurcations, by the (21).

STEP 4: Solve the system (in the variables P and z) above{
q(P, z) = q0

ᾱ3 + ᾱ2 + p(P, z)ᾱ+ q(P, z) = 0

where ᾱ is a suitable value in (−1, 0) and q(P, z) and p(P, z) are given by (23) and (24) respectively.
Denoting P̄ and z̄ this solution, if 0 < P̄ < 1 and z̄ > 0 holds, go to the next step; otherwise, go back to
STEP2.

STEP 5 Solve the system of equations P̄ = qNDqND − qDpD and w = pND + pD, to find the values of parameters
pND and pD. If qND > qD holds, go to the next step; otherwise, go back to STEP 2.

STEP 6 By z̄ = kE, choose a positive value of E, and calculate k or vice-versa. Calculate ∆BPH = BPHND −BPHD
and a0 by (22). Keeping ∆BBH > 0, fix an value of BPHND and calculate BPHD or vice-versa. Finally, choose
arbitrary values of the parameters B̃D and B̃ND, such a that B̃ND > B̃D holds.
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