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1. Precision agriculture to feed the world 

The world population will grow to 9.1 billion by the end of 2050, and food demand will 

increase by 70%. Due to rapid urbanization, the availability of land for agriculture will 

drastically decrease in the coming years, requiring new strategies to produce more with 

fewer inputs [1] using solutions that consider resource scarcity and farm profitability [2]. 

In recent years, global warming has provoked drastic changes in weather conditions. 

Frequent droughts and heavy rains, combined with poor farm management, are the 

causes of reduced food production. At the same time, agriculture is directly responsible 

for the emission of about 14% of global greenhouse gases and is contributing to 

emissions through land use changes for agricultural expansion, which accounts for a 

further 17% of total emissions [3]. New solutions and strategies are needed to meet the 

upcoming agriculture challenges and ensure sustainable food production. 

Information and communication technologies (ICT), promoted by policymakers 

worldwide and integrated into conventional agricultural management, are helping to 

trigger a fourth agriculture revolution [4] through management information systems, soil 

sensors, accelerometers, wireless sensor networks, remote sensing technologies, web 

platform services, and automated guided vehicles [5,6]. ICT approaches are essential in 

smart agriculture, which focuses on optimizing natural resources, preserving the 

ecosystem and biodiversity, developing an appropriate service structure, and 

implementing digital technologies [7,8] for a more accurate and faster decision-making 

processes.   

The presence of multiple sensors, some of them acquiring images, implies a 

management system able to fast and efficiently transform raw data into useful 

information for farmers. Data obtainment, storage, and elaboration still represent a weak 

point in agricultural digitalization. Among all technologies, the combination of Machine 

Learning (ML) and Unmanned Aerial Systems (UASs) appears strongly correlated in 

different disciplines and promises remarkable performance gains and complexity 

reduction. The large volume of data from UAS and robotic platforms can be processed 

with computer vision and ML techniques to identify and classify crop needs and deficits 

to execute more controlled and optimized farming practices [9]. The following sections 

present a short introduction to UASs and ML focusing on agriculture, and reporting 

potentials, limits, and relevant surveys. 

2. Advances of Unmanned Aerial Systems in smart agriculture  

UAS are remotely piloted aircraft platforms suitable for remote sensing data missions 

across multiple scenarios and scientific disciplines [10]. Able to cover large areas, 

providing high spatial resolution at a high temporal frequency data without impacting and 
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disrupting the observed ecosystems, UASs have become crucial tools for ecological 

monitoring, biodiversity conservation, and agriculture [11]. The last decades of 

technology development represented a driving force for industry growth, helping solve a 

series of problems related to UAS systems application. Big data, network 

communication, cloud computing, and Artificial Intelligence (AI) technologies bring new 

opportunities for UAS implementation [12].  

Satellites provide multispectral and hyperspectral images on a large scale and long-term 

archived. They do not require operators' presence in the studied area, and in the case 

of open data, there are no costs associated with their acquisition. Problems such as 

cloud cover and revisit frequency are intrinsic to this form of sensing and will probably 

continue to exist [13–15]. Low to moderate-resolution satellite imagery has limitations in 

specific agricultural applications, such as orchard and vineyard scenarios [16]. While 

satellite remote sensing represents a low-resolution approach, proximal sensing and 

ground-based data collection offer the highest level of accuracy, but involve more time-

consuming, laborious, and demanding operations. This measurement approach requires 

the physical presence of operators in the surveyed area and the geolocation of each 

sampling location to analyze the spatial variability of the studied variables. Typically, 

proximal level reflectance data collection is performed as ground truth data to validate 

the data from remote sensing sources [17,18]. 

Aerial remote sensing consists of two categories based on platform flight altitude. The 

first is the aerial sensing performed by occupied aircraft, which takes place around 500 

m above ground level and involves small airplanes carrying detection and positioning 

systems attached to stabilization components. This technology offers higher resolution 

and overall data quality than satellite imagery, but the high acquisition costs and 

associated difficulties in acquisition and processing have limited its application in 

agriculture [19]. UASs, the second aerial remote sensing sub-category, represent a 

crucial tool for agricultural surveys and applications over the past decade. Data collection 

via UAS provides a non-destructive, inexpensive, and high-quality method for rapid field 

monitoring using low-cost platforms [20]. The ability of UAS to acquire data close to the 

surface and the integration of correction/calibration systems make the multi-sensor 

image collection of UAS unaffected by cloud cover. Different sensors cannot perform 

optimal data collection during a single mission flight, as their required flight parameters 

may vary, so individual flights for each sensor may be necessary. The ability to develop 

multiple data sets from a single sensor will be a great advantage, especially considering 

the time efficiency of UAS flights and the relatively low acquisition costs [21,22].  

Although UASs are highly automatable and have achieved a high build quality level, still 

many safety issues exist. The presence of a trained and licensed pilot operator is 

mandatory due to national flight regulations [23]. The environmental conditions, the large 
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volumes of data, national and international legislation, the vulnerability of the ground 

control system to interference, and the limited flight autonomy and payload capacity 

represent the most common UASs' limitations. 

Several UAS classifications have been suggested based on components, shape, size, 

and take-off weight which often determines what set of regulations it falls in. The three 

most common and employed UASs are the fixed wings, multirotor, and Vertical Take-Off 

and Landing (VTOL) [11,24]. Fixed wings, launched with specific instruments or 

maneuvers by the operator to take off, are not propelled vertically by any mechanism 

that allows them to hover. They must maintain a minimum flight speed to preserve flight 

altitude and to achieve the desired photos’ overlaps. Able to cover large areas much 

more efficiently, fixed wings offer the best flight range. Multi-rotor UAS, characterized by 

a different number of propellers, can hover, perform agile maneuvers approaching the 

target area, achieve a lower flight speed, and take off and land vertically. Their ability to 

fly at lower altitudes and speeds allows them to obtain high-resolution images, but they 

cover smaller areas than fixed wings and require a longer flight time to cover the same 

field. VTOLs are hybrid UASs derived from fixed-wing and multi-rotor main features 

combination. They combine fixed wings' efficiency with the multirotor' vertical take-off 

and landing ability thanks to a specific system responsible for the transition and 

repositioning of the rotors, which increases both complexity and production costs. Such 

systems retain their respective advantages and overcome their limitations. 

Several UAS applications can help improve knowledge, sustainability, and operational 

efficiency in agriculture [25].  

Water represents an essential and limited resource requiring adequate improvement for 

wastage reduction. The intensification of food production is leading the agricultural sector 

to consume approximately 70% of the freshwater available worldwide [26]. Innovative 

solutions providing reliable and implementable information on appropriate water 

management systems are essential in agricultural management. Precision farming digital 

technologies help optimize agricultural processes and minimize environmental impact 

[27]. The advent of high-resolution thermal and multispectral UAS approaches has 

transformed and improved the accuracy of crop water stress estimations and effective 

irrigation scheduling by providing high-resolution spatial and temporal image in near real-

time [28,29]. Remote sensing UAS combined with agrometeorological information is a 

vital tool for strategic management decisions providing decision-making process 

information and mitigating the risk of crop failure and low yields. Vegetation indices help 

quantify the cumulative effect of water deficit during the production season (long-term 

response), while indexes extracted by thermal sensors, like Crop Water Stress Index 

(CWSI), give an immediate response to crop water stress [30,31].  



10 
 

Agriculture intensification through fertilizer application is one of the main ways to improve 

food production. The massive and improper application of fertilizers poses an 

environmental risk that affects the long-term sustainability of the process and is a cost 

factor [32]. Precise fertilization techniques can improve food production while protecting 

the environment from long-term damage. The latest developments in imaging 

technologies have facilitated the acquisition of spatial and temporal variability as crucial 

information to support fertilization management and improve the cost-effectiveness and 

sustainability of agricultural production. Proximal Data can help obtain high-resolution 

data for field variability management [33]. However, proximal approaches are generally 

time-consuming and labor-intense to perform. Since that remote sensing imagery for 

crop N-status quantification and following fertilization support is not fully standardized, 

calibration with ground data is required for the reliability improvement of fertilizer 

application maps. Variable-rate application combined with soil information can help 

optimize fertilizer inputs, maintain appropriate yields, and reduce environmental 

dispersions. UAS application in management zone delineation is increasing, providing 

insight into how useful these tools are [34,35].  

Agrochemicals pollute the environment, contaminating soil, water, crop vegetation, and 

non-target animals and plants. A variable proportion of crop protection products is lost 

through leaching, runoff, spray drift, and volatilization [36,37] In addition, agrochemical 

application produces dangerous effects on human health. Several studies demonstrated 

how acute and chronic health problems derive from the exposition to chemicals [38]. 

UAS can be employed for monitoring operations, checking crop health and canopy 

architecture, and using this information for creating prescription maps to optimize 

agrochemical treatments with the ground and aerial vehicles, applying the right amount 

where it is needed [39–41]. Agrochemical applications are generally performed through 

land-based or aerial technologies. Large-scale terrestrial applications are carried out by 

ground vehicles equipped with spraying systems that follow a fixed path in the field. 

Ground based treatments are time and labor-intensive and expose operators to health 

risks [42]. Traditional aerial spraying, typically carried out by helicopters and airplanes, 

is performed flying at high altitudes and speeds, increasing the risk of drift, requiring large 

areas for taking off and landing operations, and resulting unsuitable for small-scale farms 

[43–45]. In recent years, multi-rotor UASs for agrochemical applications have gained 

much attention. Unlike traditional aerial spraying, UAS can follow complex patterns, fly 

at low altitudes, adapt to hilly terrain, take off and land vertically, perform very low-volume 

and site-specific agrochemical applications, and avoid operator’s health risks. The key 

factors to consider when working with spraying UASs include droplet size, application 

strategy, payload capacity, weather conditions, flight range, and environmental effects. 

Major companies are starting to develop specific nozzle types for UAS spraying, but their 
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characteristics are not standardized yet. Further research is needed to find the best 

solution to make treatments as effective as possible [46–48].   

Weed management, crucial for agricultural production, which affects yield crop and 

quality, is generally performed using herbicides or mechanical removal. Neither 

mechanical methods, accused of being energy consuming, impacting soil structure, and 

generating erosion, nor herbicides, harmful to the environment and responsible for 

herbicide-resistant weed selection, can help find a definitive/long-term solution [49–51]. 

Weed identification and classification are crucial for herbicide control and reduction 

strategies. Precision agriculture provides the best technologies for field variability 

assessment for site-specific operations [52]. UASs, able to rapidly cover large areas and 

equipped with several image sensors, represent effective missing weed detection and 

classification tools. The most common approaches involve multispectral and 

hyperspectral cameras to detect and differentiate the spectral signatures of weeds 

[53,54].  

A more recent and revolutionary approach to solving the mentioned problems involves 

ML image analysis [55,56]. UAS-collected information can be analyzed and post-

processed using specific ML and object-based image analysis. Such processes are 

complex tasks that require specialized knowledge and skills to extract useful information 

[57]. The derived benefits will drastically boost the agriculture sector's evolution. 

3. Machine learning challenges in agriculture 

ML, the scientific field that allows machines to learn without being strictly programmed 

[58], is helping create new perspectives and opportunities to analyze and understand 

data in agricultural operational environments. The 'big data' produced by digital 

technologies in agriculture require extensive storage and processing capabilities [59]. 

ML algorithms help solve complex problems where human perception fails. Performance 

metrics, improved with experience over time, and statistical and mathematical models 

are used to calculate the performance of ML models and algorithms. At the end of the 

learning process, the trained model can be used to classify, predict or group new test 

data using the experience gained during the training process [60]. The ML process 

involves data extraction, data preparation, model building, and model deployment 

processes, predicting the output based on the inputs the algorithm has not been trained 

on before.  

Supervised, unsupervised, and reinforcement learning are the three basic ML 

paradigms. In supervised learning, which requires the supervision of an operator, the 

algorithm constructs an input-output relationship based on a labeled data set and 

characterizes or predicts outputs of unseen inputs. The supervised classification 

algorithms output is used for predicting a categorical value, and the regression one for 
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predicting a numerical value. Unsupervised learning algorithms works with unlabeled 

data and discovers unknown objects by grouping similar objects, with the final goal of 

extracting hidden knowledge from the training data set. This approach results harder to 

implement than supervised learning algorithms. Reinforcement learning is another 

approach that learns from the environment through reward and punishment [61]. The 

massive increase in the size of big data affects the analysis and throughput efficiency. 

The core data, small but sufficient to represent the entire content, must be extracted by 

applying a tensor-based feature reduction model. Dimensionality reduction (DR) analysis 

provides a compact representation of the dataset and preserves the original data quality. 

Its application before a classification or regression model helps to avoid dimensionality 

effects. Common DR algorithms are principal component analysis, partial least squares 

regression, and linear discriminant analysis.  

Between the most common supervised ML learning models, regression provides an 

output variable prediction based on known input variables. The k-means, the hierarchical 

technique, and the expectation-maximization technique are clustering techniques of 

unsupervised learning models used to find natural groupings of data (clusters). 

Probabilistic graphical models are applied in Bayesian Models (BM), where probability is 

used to represent all uncertainty within the model related to outputs and inputs within the 

context of Bayesian inference. The comparison of new examples with instances in the 

training database represent the base of Instance-Based Models (IBM). The 

disadvantage of these models regards the growing complexity related to the size 

increment of data.  The Decision trees (DT) is another kind of classification or regression 

models shaped as a tree-like structure.  

Artificial neural networks (ANNs) are inspired by the functionality of the human brain, 

emulating complex functions such as learning and decision-making. Divided into the 

traditional and deep ANN categories, they consist of several nodes arranged in several 

layers. One layer is dedicated to feeding the system with input data, one or more hidden 

layers to learning, and the last output layer is where the decision/prediction is provided. 

Deep ANN, better known as Deep Learning (DL) or Deep Neural Networks (DNNs) [62], 

is a relatively new area of ML research. It consists of computational models composed 

of multiple processing layers dedicated to complex representations of learned data using 

different levels of abstraction [63]. A common DL model is the Convolutional Neural 

Network (CNN), it constitutes a specific class applied to various agricultural and food 

production challenges, where feature maps are extracted by performing convolutions in 

the image domain [64]. DL models have improved agriculture and food production in 

many ways including yield prediction, disease detection, weed identification, crop quality 

quantification, and species recognition.  
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One of the most prominent topics in precision agriculture is yield estimation and mapping 

to match crop supply demand and increase productivity through crop management. DL 

monitoring systems provide an efficient and non-destructive method to automatically 

count fruits, distinguish the harvestable from the non-harvestable ones [65,66], and 

reduce labor requirements [67,68]. Other studies focus on yield prediction to obtain in 

advance information to detect problems and manage the harvesting phase [69–71].  

Disease control in open fields and greenhouses is a crucial problem of modern 

agriculture. Agrochemicals spraying in cultivation areas, the most widely used practice 

for disease control, although effective has high financial and environmental costs. 

Residues can be found in crop products, contaminate ground water, and impact the 

entire eco-systems. ML, frequently used to detect and report symptoms in fruits and 

vegetable parts [72–75], is an integrated part of precision agriculture management, 

where agrochemicals input is targeted in terms of time and place [76].  

Weed detection and management is a significant problem and the most relevant threat 

to crop production because of the high difficulty related to detection and discrimination 

from crops. ML algorithms combined with sensors enable the development of tools and 

robot weed removing, minimizing the need for herbicides [77] at a low cost and without 

environmental problems or side effects [78]. 

ML detection and classification of quality crop features can increase product prices and 

reduce wastage. This approach could be applied to fruit, seeds, and vegetable parts [79–

81]. The main objective of the last subcategory concerns the automatic identification and 

classification of plant species to avoid human intervention and reduce detection and 

classification time [82–84]. 

ML has proven to be a revolutionary technique in agriculture, but despite the high level 

of innovation, several problems need to be solved [85]. Problems associated with 

sensors and ICT technologies implementation on farms and lack of information on their 

usage. Datasets generated by a few people obtaining images or samples in a short 

period and from a limited area do not reflect realistic cases. More efficient ML algorithms 

and scalable computational architectures could lead to faster processing and more 

reliable information. Furthermore, another open problem is that, since most farmers are 

not ML experts, there is a need to develop user-friendly systems, to solve the reported 

problems and to improve the applicability of this technology in daily agricultural 

management. 

4. Objectives of the dissertation 

The work aims at discovering the potential and the efficiency of UAS and ML in 

agriculture scenario, focusing on crop management and agrochemicals distribution 

optimization in orchard and horticultural cropping systems.  
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5. Structure of the dissertation 

The dissertation includes a general introduction, three experimental chapters and a 

general conclusion. 

Chapter 2 illustrates an operational approach to estimate individual and aggregate 

vineyards’ canopy volume using the manual Tree-Row-Volume (TRV) and the remotely 

sensed Canopy Height Model (CHM) techniques, processed with MATLAB scripts, and 

validated through ArcGIS tools.  

Chapter 3 presents the development of a grape bunch detector based on a deep 

convolutional neural network trained to work directly on the field in an uncontrolled 

environment.  

Chapter 4 reports artichoke plant deep learning-based detection and georeferencing as 

the first step for an on-the-fly UAS spraying system and uses the gathered information 

to crop development monitoring in a multi-temporal approach. 

References 

1. How to Feed the World - 2050: High-Level Expert Forum; FAO: Rome, 2009; p. 

35. 

2. Amiri-Zarandi, M.; Hazrati Fard, M.; Yousefinaghani, S.; Kaviani, M.; Dara, R. A 

Platform Approach to Smart Farm Information Processing. Agriculture 2022, 12, 

doi:10.3390/agriculture12060838. 

3. Seebauer, M. Whole Farm Quantification of GHG Emissions within Smallholder 

Farms in Developing Countries. Environmental Research Letters 2014, 9, 

035006, doi:10.1088/1748-9326/9/3/035006. 

4. Knierim, A.; Kernecker, M.; Erdle, K.; Kraus, T.; Borges, F.; Wurbs, A. Smart 

Farming Technology Innovations – Insights and Reflections from the German 

Smart-AKIS Hub. NJAS: Wageningen Journal of Life Sciences 2019, 90–91, 1–

10, doi:10.1016/j.njas.2019.100314. 

5. Sinha, B.B.; Dhanalakshmi, R. Recent Advancements and Challenges of Internet 

of Things in Smart Agriculture: A Survey. Future Generation Computer Systems 

2022, 126, 169–184, doi:https://doi.org/10.1016/j.future.2021.08.006. 

6. Reddy Maddikunta, P.K.; Hakak, S.; Alazab, M.; Bhattacharya, S.; Gadekallu, 

T.R.; Khan, W.Z.; Pham, Q.-V. Unmanned Aerial Vehicles in Smart Agriculture: 

Applications, Requirements, and Challenges. IEEE Sensors Journal 2021, 21, 

17608–17619, doi:10.1109/JSEN.2021.3049471. 



15 
 

7. Wongchai, A.; Jenjeti, D. rao; Priyadarsini, A.I.; Deb, N.; Bhardwaj, A.; Tomar, P. 

Farm Monitoring and Disease Prediction by Classification Based on Deep 

Learning Architectures in Sustainable Agriculture. Ecological Modelling 2022, 

474, 110167, doi:https://doi.org/10.1016/j.ecolmodel.2022.110167. 

8. Yang, X.; Shu, L.; Chen, J.; Ferrag, M.A.; Wu, J.; Nurellari, E.; Huang, K. A 

Survey on Smart Agriculture: Development Modes, Technologies, and Security 

and Privacy Challenges. IEEE/CAA Journal of Automatica Sinica 2021, 8, 273–

302, doi:10.1109/JAS.2020.1003536. 

9. Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A 

Survey on Machine-Learning Techniques for UAV-Based Communications. 

Sensors 2019, 19, doi:10.3390/s19235170. 

10. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications 

for Precision Agriculture. Information 2019, 10, doi:10.3390/info10110349. 

11. Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in 

Precision Agriculture. Procedia Computer Science 2018, 133, 502–509, 

doi:https://doi.org/10.1016/j.procs.2018.07.063. 

12. Fan, B.; Li, Y.; Zhang, R.; Fu, Q. Review on the Technological Development and 

Application of UAV Systems. Chinese Journal of Electronics 2020, 29, 199–207, 

doi:https://doi.org/10.1049/cje.2019.12.006. 

13. Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine 

Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision 

Agriculture. Sensors 2020, 20, doi:10.3390/s20092530. 

14. Borgogno-Mondino, E.; Lessio, A.; Tarricone, L.; Novello, V.; de Palma, L. A 

Comparison between Multispectral Aerial and Satellite Imagery in Precision 

Viticulture. Precision Agriculture 2018, 19, 195–217, doi:10.1007/s11119-017-

9510-0. 

15. Di Gennaro, S.F.; Dainelli, R.; Palliotti, A.; Toscano, P.; Matese, A. Sentinel-2 

Validation for Spatial Variability Assessment in Overhead Trellis System 

Viticulture Versus UAV and Agronomic Data. Remote Sensing 2019, 11, 

doi:10.3390/rs11212573. 

16. Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. 

Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard 

Variability Assessment. Remote Sensing 2019, 11, doi:10.3390/rs11040436. 



16 
 

17. Deery, D.; Jimenez-Berni, J.; Jones, H.; Sirault, X.; Furbank, R. Proximal Remote 

Sensing Buggies and Potential Applications for Field-Based Phenotyping. 

Agronomy 2014, 4, 349–379, doi:10.3390/agronomy4030349. 

18. Fiorentini, M.; Zenobi, S.; Orsini, R. Remote and Proximal Sensing Applications 

for Durum Wheat Nutritional Status Detection in Mediterranean Area. Agriculture 

2021, 11, doi:10.3390/agriculture11010039. 

19. Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, 

J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft 

and Satellite Remote Sensing Platforms for Precision Viticulture. Remote 

Sensing 2015, 7, 2971–2990, doi:10.3390/rs70302971. 

20. Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-Based Multispectral 

Remote Sensing for Precision Agriculture: A Comparison between Different 

Cameras. ISPRS Journal of Photogrammetry and Remote Sensing 2018, 146, 

124–136, doi:https://doi.org/10.1016/j.isprsjprs.2018.09.008. 

21. Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A Technical Study 

on UAV Characteristics for Precision Agriculture Applications and Associated 

Practical Challenges. Remote Sensing 2021, 13, doi:10.3390/rs13061204. 

22. Aslan, M.F.; Durdu, A.; Sabanci, K.; Ropelewska, E.; Gültekin, S.S. A 

Comprehensive Survey of the Recent Studies with UAV for Precision Agriculture 

in Open Fields and Greenhouses. Applied Sciences 2022, 12, 

doi:10.3390/app12031047. 

23. Kakaletsis, E.; Symeonidis, C.; Tzelepi, M.; Mademlis, I.; Tefas, A.; Nikolaidis, N.; 

Pitas, I. Computer Vision for Autonomous UAV Flight Safety: An Overview and a 

Vision-Based Safe Landing Pipeline Example. ACM Comput. Surv. 2021, 54, 

doi:10.1145/3472288. 

24. Rahman, M.F.F.; Fan, S.; Zhang, Y.; Chen, L. A Comparative Study on 

Application of Unmanned Aerial Vehicle Systems in Agriculture. Agriculture 2021, 

11, doi:10.3390/agriculture11010022. 

25. Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A 

Compilation of UAV Applications for Precision Agriculture. Computer Networks 

2020, 172, 107148, doi:https://doi.org/10.1016/j.comnet.2020.107148. 

26. Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-

Sánchez, I.M. Sustainable Water Use in Agriculture: A Review of Worldwide 

Research. Sustainability 2018, 10, doi:10.3390/su10041084. 



17 
 

27. Schieffer, J.; Dillon, C. The Economic and Environmental Impacts of Precision 

Agriculture and Interactions with Agro-Environmental Policy. Precision 

Agriculture 2015, 16, 46–61, doi:10.1007/s11119-014-9382-5. 

28. Maimaitiyiming, M.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Miller, A.J.; 

Kwasniewski, M. Leveraging Very-High Spatial Resolution Hyperspectral and 

Thermal UAV Imageries for Characterizing Diurnal Indicators of Grapevine 

Physiology. Remote Sensing 2020, 12, doi:10.3390/rs12193216. 

29. Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping Maize Water Stress Based on 

UAV Multispectral Remote Sensing. Remote Sensing 2019, 11, 

doi:10.3390/rs11060605. 

30. Pádua, L.; Marques, P.; Adão, T.; Guimarães, N.; Sousa, A.; Peres, E.; Sousa, 

J.J. Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess 

Climate Change Impacts. Agronomy 2019, 9, doi:10.3390/agronomy9100581. 

31. Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; Hernández-Montes, E.; O’Connell, M. 

Adaptive Estimation of Crop Water Stress in Nectarine and Peach Orchards 

Using High-Resolution Imagery from an Unmanned Aerial Vehicle (UAV). 

Remote Sensing 2017, 9, doi:10.3390/rs9080828. 

32. Jan, P.; Calabrese, C.; Lips, M. Determinants of Nitrogen Surplus at Farm Level 

in Swiss Agriculture. Nutrient Cycling in Agroecosystems 2017, 109, 133–148, 

doi:10.1007/s10705-017-9871-9. 

33. Sozzi, M.; Kayad, A.; Gobbo, S.; Cogato, A.; Sartori, L.; Marinello, F. Economic 

Comparison of Satellite, Plane and UAV-Acquired NDVI Images for Site-Specific 

Nitrogen Application: Observations from Italy. Agronomy 2021, 11, 

doi:10.3390/agronomy11112098. 

34. Seo, B.; Lee, J.; Lee, K.-D.; Hong, S.; Kang, S. Improving Remotely-Sensed Crop 

Monitoring by NDVI-Based Crop Phenology Estimators for Corn and Soybeans 

in Iowa and Illinois, USA. Field Crops Research 2019, 238, 113–128, 

doi:https://doi.org/10.1016/j.fcr.2019.03.015. 

35. Kayad, A.; Sozzi, M.; Gatto, S.; Whelan, B.; Sartori, L.; Marinello, F. Ten Years 

of Corn Yield Dynamics at Field Scale under Digital Agriculture Solutions: A Case 

Study from North Italy. Computers and Electronics in Agriculture 2021, 185, 

106126, doi:https://doi.org/10.1016/j.compag.2021.106126. 

36. Carazo-Rojas, E.; Pérez-Rojas, G.; Pérez-Villanueva, M.; Chinchilla-Soto, C.; 

Chin-Pampillo, J.S.; Aguilar-Mora, P.; Alpízar-Marín, M.; Masís-Mora, M.; 



18 
 

Rodríguez-Rodríguez, C.E.; Vryzas, Z. Pesticide Monitoring and Ecotoxicological 

Risk Assessment in Surface Water Bodies and Sediments of a Tropical Agro-

Ecosystem. Environmental Pollution 2018, 241, 800–809, 

doi:https://doi.org/10.1016/j.envpol.2018.06.020. 

37. Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; 

Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the 

Environment. International Journal of Environmental Research and Public Health 

2021, 18, doi:10.3390/ijerph18031112. 

38. Singh, N.S.; Sharma, R.; Parween, T.; Patanjali, P.K. Pesticide Contamination 

and Human Health Risk Factor. In Modern Age Environmental Problems and their 

Remediation; Oves, M., Zain Khan, M., M.I. Ismail, I., Eds.; Springer International 

Publishing: Cham, 2018; pp. 49–68 ISBN 978-3-319-64501-8. 

39. Mathews, A.J.; Jensen, J.L.R. Visualizing and Quantifying Vineyard Canopy LAI 

Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from 

Motion Point Cloud. Remote Sensing 2013, 5, 2164–2183, 

doi:10.3390/rs5052164. 

40. Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K. Leaf 

Area Index Estimation In Vineyards From UAV Hyperspectral Data, 2D Image 

Mosaics And 3D Canopy Surface Models. The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences 2015, XL-

1/W4, 299–303, doi:10.5194/isprsarchives-XL-1-W4-299-2015. 

41. Weiss, M.; Baret, F. Using 3D Point Clouds Derived from UAV RGB Imagery to 

Describe Vineyard 3D Macro-Structure. Remote Sensing 2017, 9, 

doi:10.3390/rs9020111. 

42. Dhananjayan, V.; Ravichandran, B. Occupational Health Risk of Farmers 

Exposed to Pesticides in Agricultural Activities. Current Opinion in Environmental 

Science & Health 2018, 4, 31–37, 

doi:https://doi.org/10.1016/j.coesh.2018.07.005. 

43. Woods, N.; Craig, I.P.; Dorr, G.; Young, B. Spray Drift of Pesticides Arising from 

Aerial Application in Cotton. Journal of Environmental Quality 2001, 30, 697–701, 

doi:https://doi.org/10.2134/jeq2001.303697x. 

44. Baio, F.H.R.; Antuniassi, U.R.; Castilho, B.R.; Teodoro, P.E.; Silva, E.E. da 

Factors Affecting Aerial Spray Drift in the Brazilian Cerrado. PLOS ONE 2019, 

14, 1–16, doi:10.1371/journal.pone.0212289. 



19 
 

45. Grella, M.; Gallart, M.; Marucco, P.; Balsari, P.; Gil, E. Ground Deposition and 

Airborne Spray Drift Assessment in Vineyard and Orchard: The Influence of 

Environmental Variables and Sprayer Settings. Sustainability 2017, 9, 

doi:10.3390/su9050728. 

46. Qin, W.-C.; Qiu, B.-J.; Xue, X.-Y.; Chen, C.; Xu, Z.-F.; Zhou, Q.-Q. Droplet 

Deposition and Control Effect of Insecticides Sprayed with an Unmanned Aerial 

Vehicle against Plant Hoppers. Crop Protection 2016, 85, 79–88, 

doi:https://doi.org/10.1016/j.cropro.2016.03.018. 

47. Lou, Z.; Xin, F.; Han, X.; Lan, Y.; Duan, T.; Fu, W. Effect of Unmanned Aerial 

Vehicle Flight Height on Droplet Distribution, Drift and Control of Cotton Aphids 

and Spider Mites. Agronomy 2018, 8, doi:10.3390/agronomy8090187. 

48. Ahmad, F.; Qiu, B.; Dong, X.; Ma, J.; Huang, X.; Ahmed, S.; Chandio, F.A. Effect 

of Operational Parameters of UAV Sprayer on Spray Deposition Pattern in Target 

and Off-Target Zones during Outer Field Weed Control Application. Computers 

and Electronics in Agriculture 2020, 172, 105350, 

doi:https://doi.org/10.1016/j.compag.2020.105350. 

49. Scavo, A.; Mauromicale, G. Integrated Weed Management in Herbaceous Field 

Crops. Agronomy 2020, 10, doi:10.3390/agronomy10040466. 

50. López-Granados, F.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.I.; 

Mesas-Carrascosa, Fco.-J.; Peña, J.-M. Early Season Weed Mapping in 

Sunflower Using UAV Technology: Variability of Herbicide Treatment Maps 

against Weed Thresholds. Precision Agriculture 2016, 17, 183–199, 

doi:10.1007/s11119-015-9415-8. 

51. Pavlović, D.; Vrbničanin, S.; Anđelković, A.; Božić, D.; Rajković, M.; Malidža, G. 

Non-Chemical Weed Control for Plant Health and Environment: Ecological 

Integrated Weed Management (EIWM). Agronomy 2022, 12, 

doi:10.3390/agronomy12051091. 

52. Gerhards, R.; Andújar Sanchez, D.; Hamouz, P.; Peteinatos, G.G.; Christensen, 

S.; Fernandez-Quintanilla, C. Advances in Site-Specific Weed Management in 

Agriculture—A Review. Weed Research 2022, 62, 123–133, 

doi:https://doi.org/10.1111/wre.12526. 

53. De Castro, A.I.; Torres-Sánchez, J.; Peña, J.M.; Jiménez-Brenes, F.M.; Csillik, 

O.; López-Granados, F. An Automatic Random Forest-OBIA Algorithm for Early 

Weed Mapping between and within Crop Rows Using UAV Imagery. Remote 

Sensing 2018, 10, doi:10.3390/rs10020285. 



20 
 

54. Peña, J.M.; Torres-Sánchez, J.; de Castro, A.I.; Kelly, M.; López-Granados, F. 

Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of 

Unmanned Aerial Vehicle (UAV) Images. PLOS ONE 2013, 8, null, 

doi:10.1371/journal.pone.0077151. 

55. Islam, N.; Rashid, M.M.; Wibowo, S.; Xu, C.-Y.; Morshed, A.; Wasimi, S.A.; 

Moore, S.; Rahman, S.M. Early Weed Detection Using Image Processing and 

Machine Learning Techniques in an Australian Chilli Farm. Agriculture 2021, 11, 

doi:10.3390/agriculture11050387. 

56. Bah, M.D.; Hafiane, A.; Canals, R. Deep Learning with Unsupervised Data 

Labeling for Weed Detection in Line Crops in UAV Images. Remote Sensing 

2018, 10, doi:10.3390/rs10111690. 

57. Esposito, M.; Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and Sensor 

Technology for Sustainable Weed Management: A Review. Chemical and 

Biological Technologies in Agriculture 2021, 8, 18, doi:10.1186/s40538-021-

00217-8. 

58. Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. 

IBM Journal of Research and Development 2000, 44, 206–226, 

doi:10.1147/rd.441.0206. 

59. Cravero, A.; Sepúlveda, S. Use and Adaptations of Machine Learning in Big 

Data—Applications in Real Cases in Agriculture. Electronics 2021, 10, 

doi:10.3390/electronics10050552. 

60. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning 

in Agriculture: A Review. Sensors 2018, 18, doi:10.3390/s18082674. 

61. Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for 

Precision Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–

4873, doi:10.1109/ACCESS.2020.3048415. 

62. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444, 

doi:10.1038/nature14539. 

63. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. 

Computers and Electronics in Agriculture 2018, 147, 70–90, 

doi:https://doi.org/10.1016/j.compag.2018.02.016. 

64. Kamilaris, A.; Prenafeta-Boldú, F.X. A Review of the Use of Convolutional Neural 

Networks in Agriculture. J. Agric. Sci. 2018, 156, 312–322, 

doi:10.1017/S0021859618000436. 



21 
 

65. Rahnemoonfar, M.; Sheppard, C. Deep Count: Fruit Counting Based on Deep 

Simulated Learning. Sensors 2017, 17, doi:10.3390/s17040905. 

66. Yamamoto, K.; Guo, W.; Yoshioka, Y.; Ninomiya, S. On Plant Detection of Intact 

Tomato Fruits Using Image Analysis and Machine Learning Methods. Sensors 

2014, 14, 12191–12206, doi:10.3390/s140712191. 

67. Zhang, X.; He, L.; Zhang, J.; Whiting, M.D.; Karkee, M.; Zhang, Q. Determination 

of Key Canopy Parameters for Mass Mechanical Apple Harvesting Using 

Supervised Machine Learning and Principal Component Analysis (PCA). 

Biosystems Engineering 2020, 193, 247–263, 

doi:https://doi.org/10.1016/j.biosystemseng.2020.03.006. 

68. Khan, H.; Esau, T.J.; Farooque, A.A.; Abbas, F. Wild Blueberry Harvesting 

Losses Predicted with Selective Machine Learning Algorithms. Agriculture 2022, 

12, doi:10.3390/agriculture12101657. 

69. Klompenburg, T. van; Kassahun, A.; Catal, C. Crop Yield Prediction Using 

Machine Learning: A Systematic Literature Review. Computers and Electronics 

in Agriculture 2020, 177, 105709, 

doi:https://doi.org/10.1016/j.compag.2020.105709. 

70. Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.L.; Mouazen, A.M. Wheat 

Yield Prediction Using Machine Learning and Advanced Sensing Techniques. 

Computers and Electronics in Agriculture 2016, 121, 57–65, 

doi:https://doi.org/10.1016/j.compag.2015.11.018. 

71. Rashid, M.; Bari, B.S.; Yusup, Y.; Kamaruddin, M.A.; Khan, N. A Comprehensive 

Review of Crop Yield Prediction Using Machine Learning Approaches With 

Special Emphasis on Palm Oil Yield Prediction. IEEE Access 2021, 9, 63406–

63439, doi:10.1109/ACCESS.2021.3075159. 

72. Doh, B.; Zhang, D.; Shen, Y.; Hussain, F.; Doh, R.F.; Ayepah, K. Automatic Citrus 

Fruit Disease Detection by Phenotyping Using Machine Learning. In Proceedings 

of the 2019 25th International Conference on Automation and Computing (ICAC); 

2019; pp. 1–5. 

73. Patil, S.S.; Thorat, S.A. Early Detection of Grapes Diseases Using Machine 

Learning and IoT. In Proceedings of the 2016 Second International Conference 

on Cognitive Computing and Information Processing (CCIP); 2016; pp. 1–5. 

74. Ahmed, K.; Shahidi, T.R.; Irfanul Alam, S.Md.; Momen, S. Rice Leaf Disease 

Detection Using Machine Learning Techniques. In Proceedings of the 2019 



22 
 

International Conference on Sustainable Technologies for Industry 4.0 (STI); 

2019; pp. 1–5. 

75. Jian, Z.; Wei, Z. Support Vector Machine for Recognition of Cucumber Leaf 

Diseases. In Proceedings of the 2010 2nd International Conference on Advanced 

Computer Control; 2010; Vol. 5, pp. 264–266. 

76. Thakur, P.S.; Khanna, P.; Sheorey, T.; Ojha, A. Trends in Vision-Based Machine 

Learning Techniques for Plant Disease Identification: A Systematic Review. 

Expert Systems with Applications 2022, 208, 118117, 

doi:https://doi.org/10.1016/j.eswa.2022.118117. 

77. Wang, A.; Zhang, W.; Wei, X. A Review on Weed Detection Using Ground-Based 

Machine Vision and Image Processing Techniques. Computers and Electronics 

in Agriculture 2019, 158, 226–240, 

doi:https://doi.org/10.1016/j.compag.2019.02.005. 

78. Liu, B.; Bruch, R. Weed Detection for Selective Spraying: A Review. Current 

Robotics Reports 2020, 1, 19–26, doi:10.1007/s43154-020-00001-w. 

79. Manthou, E.; Karnavas, A.; Fengou, L.-C.; Bakali, A.; Lianou, A.; Tsakanikas, P.; 

Nychas, G.-J.E. Spectroscopy and Imaging Technologies Coupled with Machine 

Learning for the Assessment of the Microbiological Spoilage Associated to 

Ready-to-Eat Leafy Vegetables. International Journal of Food Microbiology 2022, 

361, 109458, doi:https://doi.org/10.1016/j.ijfoodmicro.2021.109458. 

80. Ren, A.; Zahid, A.; Zoha, A.; Shah, S.A.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. 

Machine Learning Driven Approach Towards the Quality Assessment of Fresh 

Fruits Using Non-Invasive Sensing. IEEE Sensors Journal 2020, 20, 2075–2083, 

doi:10.1109/JSEN.2019.2949528. 

81. Genze, N.; Bharti, R.; Grieb, M.; Schultheiss, S.J.; Grimm, D.G. Accurate 

Machine Learning-Based Germination Detection, Prediction and Quality 

Assessment of Three Grain Crops. Plant Methods 2020, 16, 157, 

doi:10.1186/s13007-020-00699-x. 

82. Habibi, L.N.; Watanabe, T.; Matsui, T.; Tanaka, T.S.T. Machine Learning 

Techniques to Predict Soybean Plant Density Using UAV and Satellite-Based 

Remote Sensing. Remote Sensing 2021, 13, doi:10.3390/rs13132548. 

83. Kartal, S.; Choudhary, S.; Masner, J.; Kholová, J.; Stočes, M.; Gattu, P.; 

Schwartz, S.; Kissel, E. Machine Learning-Based Plant Detection Algorithms to 



23 
 

Automate Counting Tasks Using 3D Canopy Scans. Sensors 2021, 21, 

doi:10.3390/s21238022. 

84. Ghosal, S.; Zheng, B.; Chapman, S.C.; Potgieter, A.B.; Jordan, D.R.; Wang, X.; 

Singh, A.K.; Singh, A.; Hirafuji, M.; Ninomiya, S.; et al. A Weakly Supervised 

Deep Learning Framework for Sorghum Head Detection and Counting. Plant 

Phenomics 2019, 2019, 1525874, doi:10.34133/2019/1525874. 

85. Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. 

Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 

2021, 21, doi:10.3390/s21113758. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

Chapter 2 - Integrating UASs and canopy height models in 
vineyard management: a time-space approach 

This is the published version of the manuscript in the Remote Sensing (MDPI) journal: 

Sassu, A.; Ghiani, L.; Salvati, L.; Mercenaro, L.; Deidda, A.; Gambella, F. Integrating 

UAVs and Canopy Height Models in Vineyard Management: A Time-Space Approach. 

Remote Sens. 2022, 14, 130. https://doi.org/10.3390/rs14010130.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

Abstract 

The present study illustrates an operational approach estimating individual and 

aggregate vineyards’ canopy volume through three years Tree-Row-Volume (TRV) 

measurements and remotely sensed imagery acquired with an Unmanned Aerial System 

(UAS) Red-Green-Blue (RGB) digital camera, processed with MATLAB scripts, and 

validated through ArcGIS tools. The TRV methodology was applied by sampling a 

different number of rows and plants per row each year to evaluate the reliability and 

accuracy of this technique compared with a remote approach. The empirical results 

indicate that the estimated tree-row-volumes derived from a UAS Canopy Height Model 

(CHM) are up to 50% different from those measured on the field using the routinary TRV 

technique in 2019, with a much higher difference in the 2016. These findings outline the 

importance of data integration among techniques that mix proximal and remote sensing 

in routine vineyards’ agronomic practices, helping to reduce management costs and 

increase the environmental sustainability of traditional cultivation systems. 

Keywords: precision viticulture; TRV; CHM; unmanned aerial systems; digital models; 

grapevine canopy measurement. 

1. Introduction 

Precision farming techniques assume the input optimization to improve production 

efficiency and sustainability [1,2,3,4]. A more efficient use of plant protection products 

and tools leads to fewer rural environments pollution loads, higher crop quality, less 

monetary costs, and increased production rates, positively impacting the economic and 

ecological sustainability of farms [5,6,7,8,9,10]. 

The vineyard is a heterogeneous environment where spatial monitoring techniques 

application for biomass development and volume characterization can be integrated into 

a decision support system for plant protection strategies optimization 

[11,12,13,14,15,16,17,18,19,20,21,22].  

Farm field measurements are routinely carried out, determining the total amount of plant 

protection products via simplified mathematical approaches that require direct 

measurement of canopy height, thickness, and distance between canopies. More 

specifically, the Tree-Row-Volume (TRV) technique, requiring manual vineyard 

measurements, estimates the total plant volume by ground unit (m3 ha−1) in vineyard 

crown height, width, and inter-row distance [23,24,25,26]. TRV is relatively well known 

to grape growers and agronomists. This method has been extensively used for various 

purposes, including rough estimation of the adequate treatment dosage for plant 

protection within a specific vineyard, leading to a more comprehensive canopy 
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management. Other volume measurement systems such as leaf wall area (LWA) and 

Unit Canopy Row (UCR) were not considered in this study because they primarily 

referred to viticultural contexts with peculiar territorial or productive characteristics. 

Despite a consensus application to plant/row monitoring in largely variable agronomic 

and ecological field conditions in Europe as well as in other productive contexts, TRV 

determination is a labour-intensive and time-consuming task. To our knowledge, a 

specific analysis of model errors and uncertainties related to this routine approach is still 

lacking, despite the intense development of vineyards’ canopy proximal monitoring 

techniques [27,28]. 

At the same time, a precise characterization of plants’ structure was more recently 

performed using remote sensing tools such as image analysis techniques, stereoscopic 

photography, analysis of the light spectrum, and ultrasonic and optical ranging 

[29,30,31,32,33,34,35]. Earlier Structure from Motion (SfM) approaches provided a basic 

framework for 3D vineyard point clouds reconstruction, with the aim of quantifying 

grapevine canopy volume and Leaf Area Index (LAI) [36,37,38]. These estimations were 

extensively used to optimize canopy management and pest control, especially when 

Variable Rate Technology (VRT) was employed [39]. More recently, the acquisition of 

high-resolution Unmanned Aerial System (UAS) RGB imagery of the canopy has proved 

to be an effective tool for plant architecture estimation through the accurate and reliable 

digital models’ computation [40,41,42,43]. The use of Ground Control Points (GCPs), 

located within the orchard’s scene, represents an essential practice for spatial accuracy 

and minimization of model’s errors [44,45]. 

Based on these premises, the present study illustrates a methodology aiming to estimate 

individual and aggregate vineyard canopy volume through UAS remotely sensed 

imagery acquired with an RGB digital camera, analysed with MATLAB 2018b scripts, 

and validated by ArcGIS 10.7.1 tools at various growth phase. More specifically, canopy 

volumes routinely measured on the field following a TRV approach were compared to 

remotely acquired volumes from an integrated analysis of Digital Surface Models 

(DSMs), Digital Terrain Models (DTMs), and Canopy High Models (CHMs) derived from 

SfM assessment at different time points. These results contribute to assessing the 

reliability of the TRV technique, verifying if the estimated volumes derived from UAS 

detection are comparable with, or statistically different from, the one measured in the 

field. 
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2. Materials and Methods 

2.1. Study Area 

The survey took place in an experimental field of 0.8 ha (Figure 1) in Usini, North-Eastern 

Sardinia, Italy (Lat. 40°40′10.13″; Long. 8°29′37.35″; WGS84, EPSG 4326), at 144 m 

above the sea level. The grapevines (Cagnulari cv.) were planted in a clay-loam soil with 

a 0.90 × 2.10 m spacing (East-West rows orientation) and trained as Vertical Shoot 

Position (VSP). A GNSS Leica 900 RTK receiver (Leica Geosystems) was used to record 

the X-Y coordinates of six GCPs for accurate georeferencing of the ortho-mosaics 

analysed in this study. Twenty-four additional sample points were identified over the 

entire surface area and geo-referenced to characterize the canopy after every UAS flight. 

Field measurements were run under sunny, clear sky conditions during the vine growing 

season in 2016 (July and August), 2017 (July), and 2019 (June), at the same 

phenological phase based on the specific year’s weather profile. 

 

Figure 1. The experimental field located in Usini, North-Eastern Sardinia, Italy (WGS84-UTM 32N, EPSG 

32632 projected coordinate system). 

2.2. TRV-Based Field Measurements 

In 2016, twelve measurements (every ten plants) for nine random rows were extracted, 

whereas 105 measurements (one for each plant of the row) were collected for four 

random rows used in 2017 and for six random rows in 2019. For TRV estimation, 

measurements were taken using a rolling tape marked on a wooden rod to facilitate 

height/width detection and limit the operator fatigue. 

In 2016, field measurements were performed considering the highest and widest 

extension reached by the plant (even isolated shoots, highlighted in red color in Figure 
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2b) in a measurement point conventionally identified as the plant’s center (Figure 2a). In 

2017 and 2019, the shoots outside the uniform row shape (falling inside the blue polygon 

in Figure 2b) were not considered.  

Since height measurements were performed considering the distance from the ground 

surface to the highest part of the row, also taking account of the height of the trunk, each 

height measurement was referred to the canopy by subtracting 0.90 m from the total 

value. The “cutting height” of 0.90 m (represented by the red line parallel to the ground 

in Figure 2a) matches the branches production zone in the cultivation system considered 

in this study. 

 

Figure 2. (a) The measurements of height and width rows using the wooden rod. Canopy heights were 

calculated subtracting 0.90 m (red line) from the total measure; (b) an exemplification of the influence of 

isolated shoots (in red) in height and width determination during field measurements. The blue shape 

represents the volume estimated in 2017 and 2019, excluding the shoots out of the row’s shape 

considered in 2016. 

TRV was calculated multiplying the average rows height and width values, by an aerial 

conversion factor (10,000) (1 ha = 10,000 m2), in turn divided by the inter-row width [23] 

(Equation 1): 

𝑇𝑅𝑉 =
𝐻 × 𝑉 × 10000

𝐼
 (1) 

where H is the average row height (m), W is the average row thickness (m), and I is the 

inter-row width (m). 
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2.3. UAS-Based Sensing 

Data acquisition in the first survey year was carried out using a customized hexacopter 

equipped with a CMOS sensor Canon EOS 750D of 24 megapixels resolution, sensor 

size 22.3 mm × 14.9 mm, focal length 50 mm f/2.8. In the following years, a DJI Phantom 

4 Pro (Shenzhen, China) equipped with RGB CMOS 1" sensor of 21 megapixels 

resolution, Field of View (FOV) 84°, 8.8 mm/24 mm (35 mm format equivalent), f/2.8-f/11 

autofocus 1 m-∞ was adopted for field measurement.  

The photographic sets were acquired with a 75% front overlap and 85% side overlap at 

35 m height Above Ground Level (AGL) in 2016 and 2019, and 50 m in 2017. The 

different sensors and the flight altitude, combined with specific elaboration processes, 

involved a different Ground Sampling Distance (GSD) of the digital models in the five 

dates. Survey information about Day of Year (DOY), Biologische Bundesanstalt, 

Bundessortenamt und CHemische Industrie (BBCH), and Growing Degree Day (GDD) 

are summarized in Table 1. 

Table 1. The flight surveys details, ortho-mosaics’ properties, Ground Sample Distance (GSD), vineyard 
Day of the Year (DOY), BBCH, and Growing Degree Day (GDD) values. 

Year Date Orthomosaics Vineyard phenology 
  GSD (cm) RMSE (cm) DOY BBCH GDD 

2016 
07/07 0.26 3.3 189 79 798 
02/08 0.26 3.1 215 81 1176 

2017 
17/07 0.90 6.4 198 79 798 
31/07 1.22 5.7 212 81 1282 

2019 26/06 0.92 2.5 177 71 665 

2.4. Identification of the Canopy Height Model 

Standard approaches to create 3D models derived from SfM processing and CHM 

[44,46] adopt the absolute height of crop canopies as a target variable and define a CHM 

as the difference between the DSM and the DTM. In the present study, Agisoft 

Metashape allowed the estimation of the vineyard’s soil surface elevation profile (DTM) 

through the classification of the dense cloud, the essential 3D model needed to obtain 

the 2D digital models (DSM and DTM) in the software’s workflow. The specific tool 

named “Classify Ground Points” (located into the Dense Cloud Tools’ menu) for points’ 

classification, was used to detect the ground points and enhance the hole filling derived 

by the removal of the canopy points. The models’ approximation derives from the inability 

of nadir images, taken from above, to reconstruct the lower part of the plants (Figure 3 

and Figure 4a).  

Starting from the resolution of each digital model (defined by the surface occupied by a 

single pixel), MATLAB and ArcGIS CHMs analysis extracted the covered area height 

information from the vineyard rows by integrating the volume of all individual pixels that 
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constitute the canopy. This approach generated a file containing the height values on a 

reference plane placed 0.90 m above the soil’s surface (represented by the red line in 

Figure 2a). This height matches the production zone where the branches are located, 

contributing to remove the influence of soil surface and the stumps, allowing the 

measurement of the effective volume occupied by the canopy. The height information 

contained in the CHM is free from interference derived by background colors, shadows, 

or infesting plants, at least until their height exceeds the set limit of 0.90 m. 

 

Figure 3. The Digital Surface Model (DSM) raster (colored with a pseudo-colors palette to emphasize the 

altitude of each pixel above sea level) employed during the MATLAB processing and divided into 0.90 m × 

2.10 m blocks (as shown in the enlarged upper left portion of the ortho-image). Canopy and terrain pixels 

are represented with different colors in each block. 

 

Figure 4. (a) The three-layer used to obtain canopy volumes through ArcGIS; (b) an exemplification of the 

Canopy Height Model (CHM) derived from the difference between Digital Surface Model (DSM) and Digital 

Terrain Model (DTM) rasters. Each square represents a pixel with the relative altitude above the sea level 

(DSM and DTM) and height above ground (CHM). The CHM height values were used to calculate the 

rows’ volumes. 
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The MATLAB analysis was run solely on DSMs (Figure 3). The altitude of each row was 

estimated by averaging the visible soil values between each row. Measurements were 

performed creating a rows x columns pixel raster matrix of 0.26 cm/pixel in 2016, 1.22 

cm/pixel in 2017, and 0.92 cm/pixel in 2019 (based on the Ground Sampling Distance) 

and dividing the raster matrix into blocks of 0.90 m × 2.10 m. The raster matrix was 

oriented so that the x columns and y rows were parallel and perpendicular to the vines’ 

rows, respectively, and each block included the canopy and a small part of the ground 

(Figure 3). This approach allowed the reduction of the influence of vineyard slope 

(represented by a pseudo-color palette ranging from purple to orange color) on the 

canopy height measurement, providing a reference surface that consists of pixels with 

the same elevation. All pixel values included in the volume estimation were obtained by 

extracting height information above 0.90 m from the reference plan (ground) consisting 

of the minimum values in each block. 

 

Figure 5. Flowcharts summarizing the two approaches implemented in this study, (a) the ArcGIS CHM 

workflow and (b) the MATLAB workflow. 

ArcGIS measurements were performed by subtracting the elevation value included in the 

first basic input raster (DTM) from the second input raster (DSM) pixel-by-pixel value and 

deducting 0.90 m from each pixel height (Figure 4) using the “Raster Calculator” tool. 

The raster output (CHM), containing the new reference plane and the canopy, was used 

to calculate the volumes occupied by each row by multiplying every pixel surface to its 
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height without any interference related to the vineyard’s slope. The Agisoft Metashape-

ArcGIS CHM generation followed the same methodology of [31].  

Both MATLAB and ArcGIS methods allowed an easy calculation of the Green Canopy 

Cover (GCC) as the percentage of field surface occupied by grapevine vegetation. The 

number of canopy pixels above the cutting edge of 0.90 m (as summarized in Figure 5) 

were counted and expressed as a per cent share in the total number of pixels in the field. 

3. Results 

Table 2 reports the canopy volumes determined for all grape-vine rows through field 

measurement and the average percentage of the GCC area [47]. The measurements 

were performed using the TRV technique (Equation 1) and automatic approaches based 

on UAS-derived digital models created using ArcGIS and MATLAB software. 

Table 2. The Tree-Row-Volume (TRV) field measurements compared with the grapevine volumes calculated 
by ArcGIS and MATLAB, and the Green Canopy Cover (GCC), at five different dates. 

Date Field  
TRV(m3/ha) 

ArcGIS 
TRV(m3/ha) 

MATLAB 
TRV(m3/ha) 

MATLAB  
GCC (%) 

07/07/2016 59711 1991 1898 29 
02/08/2016 59841 1649 1580 26 
17/07/2017 12712 1343 1427 24 

31/07/2017 13112 1316 1353 30 

26/06/2019 23603 1550 1572 32 

1 Twelve measurements repeated for nine rows were used to extract the TRV value. 
2 One hundred measurements repeated for four rows were used to extract the TRV value. 
3 One hundred measurements repeated for six rows were used to extract the TRV value. 

The intrinsic differences between the three years reflect differential plant growth and 

vineyard management expressed by different volume estimation through TRV, ArcGIS, 

and MATLAB techniques. 

3.1. TRV Measurement Results 

When estimating the vineyard field characteristics, the TRV technique, based on width 

and height rows measurements, was frequently regarded as a decent representation of 

the canopy structure. Canopy volumes estimation in 2016 was similar on both dates, and 

the same result was observed for 2017. In 2019, the estimated volume reached an 

intermediate value between 2016 and 2017. These differences are related to natural 

canopy growth differences among years and different measurement approaches. The 

number of rows and the measurements for each row played a crucial role in volume 

evaluation. A statistical analysis demonstrating the substantial instability of field 

estimation of canopy volumes, based on a subsample of rows, is reported in Figure 6. In 

this exercise, TRV was routinely re-calculated considering progressively smaller 
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randomly selected samples of rows in the vineyard. TRV was expressed as a percentage 

departure from the TRV measure derived from the full sample. Particularly, 

heterogeneous results of this analysis carried out at the different experimental dates for 

2016, 2017, and 2019, indicate a limited robustness of the TRV estimate at decreasing 

sample sizes. For instance, calculating TRV on sub-samples with half number rows led 

to a mis-estimation above 10% of the estimated value on the whole sample. Only 

estimations based on a sub-sample with a high (or very high) proportion of plants, in 

respect of the total population, provide reliable canopy volume values. These results 

were consistent at different survey dates over the three study years. 

 

Figure 6. Statistical stability (per cent departure from whole-sample TRV estimate) of canopy volume field 

measurements as a function of sample size by survey date (a) 7 July 2016; (b) 2 August 2016; (c) 31 July 

2017; (d) 26 June 2019. 

3.2. MATLAB and ArcGIS Results 

Significant differences between field and remote measurements were also observed in 

this study. Conversely, the remotely sensed canopy volumes estimated through 

MATLAB and ArcGIS procedures provided similar and consistent results for the three 

years of investigation. Compared to TRV results, the remote sensing data appeared 
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different at both dates in 2016 and slightly different in 2019. These discrepancies may 

confirm reliability and precision of the digital model to obtain canopy volume estimation 

compared with manual measurements. Considering non-parametric inference, 

differences in volume estimates derived from ArcGIS and MATLAB software were 

statistically insignificant (Mann Whitney U test, p > 0.05). By contrast, differences in 

volume estimates derived from field TRV measurement and MATLAB software (or 

ArcGIS software) were, in both cases, statistically significant (Mann Whitney U test, p < 

0.05). The 2017 and 2019 field data had a slightly higher similarity with the values 

obtained through software elaboration. These results can be justified with (i) the different 

measure extraction process (in 2016 the measurements were performed considering the 

highest and widest extension reached by the plant, even isolated shoots) and (ii) the 

extension of measurements to all the plants of the investigated rows (four rows in 2017 

and six in 2019). In 2019, 20 orange cards were uniformly applied in different plants over 

the field area to evaluate the precision of the CHM reconstruction. A comparison between 

the height values extracted by ArcGIS and MATLAB software, and those measured in 

the field, confirms the CHM model precision (R2 = 0.80, p < 0.001, RSME = ±10.28). The 

GCC range of 24% and 32% obtained in July and August was similar to the values 

correlated with LAI obtained by Ballesteros et al. [47] on red grapevine Tempranillo cv. 

and Cabernet Sauvignon cv. TRV and GCC had a similar pattern of development. 

 

Figure 7. The absolute variation of volume (m3) and surface area (m2) of four vineyard rows with imposed 

cutting heights (MATLAB elaboration) in 2019. 

Figure 7 highlights the importance of selecting the correct cutting height during the CHM 

elaboration to have a representative volume of the canopy. Its variation involves a 

constant reduction in volume and a non-linear change in surface area due to the 

progressive narrowing of canopy width from the bottom part to the upper. Surface and 
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volume variations were calculated for seven different cutting heights, ranging between 

0.4 m up to 1.0 m, with 0.1 m intervals. Based on this elaboration, Figure 7 indicates how 

canopy volumes in June 2019 vary almost linearly, differently from the surfaces, quite 

limited in the early stages and decreasing afterward with the same time pattern observed 

for 2016 and 2017. 

4. Discussion 

The study aimed at estimating volume and surface variation on an experimental vineyard 

over three years (2016, 2017, and 2019) by correlating TRV field measurements with 

RGB-UAS remote sensed estimations. The combination of UAS and SfM algorithms was 

appropriate for vineyard volume and GCC calculation, contributing to a comprehensive 

description of grapevines canopy structure. These tools are of relevance since traditional 

methods for physiological variable estimation, routinely used by winemakers, are often 

time-consuming and require expensive and long-term procedures in both the field and 

laboratory [46]. 

Compared with classic methods for row volume calculation, such as the TRV, the 

proposed approach provided larger information, greater measurement detail, and a 

precision level not subjected to annual variability derived from different measurement 

approaches and operators’ skills over the years [27]. The canopy evaluation by UAS-

based imagery allows a non-destructive and standardized framework [28] avoiding (or at 

least reducing) the sampling error intrinsic in manual measurements [47]. The intrinsic 

variability of manual measurements and the related sampling errors derive from the 

difficulty to measure the exact height and width of the canopy, often compromised by the 

presence of single shoots coming out from the main volume of the row and thus affecting 

the overall measure [31]. Furthermore, large surface extension and a high amount of 

sampling points determine operator’s fatigue and may lead to a high and hardly 

controlled level of measurement approximation [32].  

Based on the empirical results of this study, UASs’ high-resolution datasets provide 

accurate geo-referenced imagery with a high spatial and temporal resolution that is near-

real-time delivered [33]. The immediate availability of data would lead farmers to consider 

remote sensing technology as a useful tool for timely operations [34]. Further efforts 

should be made to develop dedicated and user-friendly software for image analysis and 

automatic detection of relevant management indexes for specific agronomic practices, 

such as the TRV. 

In this study, two simulation exercises on remotely sensed input data were proposed, 

respectively based on a simplified approach grounded on a user-friendly software 

(ArcGIS) and on a less intuitive programming scheme developed through MATLAB 

software. These two approaches represent different computational strategies, the former 
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reflecting a possible software implementation for visual integration of proximal (field) and 

remote sensing at the vineyard/farm scale, and the latter reflecting a generalized 

application for batch computation and assessment over larger spatial scales [40]. 

Interestingly, remote measurement techniques showed comparable results in terms of 

the output variables, suggesting how the use of a user-friendly approach and a more 

complex programming scheme does not affect the final estimation of the target variable 

[33]. However, MATLAB scheme allows calculation of the canopy volume directly from 

the DSM, thus overcoming the use of third-part software (in our case, Agisoft Metashape) 

to estimate differences between DSM and DTM as a preliminary step to the creation of 

the CHM. 

Measurement heterogeneity was associated, in large part, with the difference between 

manual estimates and remote analysis methodologies [48,49,50,51,52]. Based on this 

evidence, and thanks to the intrinsic variability of the canopy structure across rows, it 

seems unreasonable to estimate TRV based on individual model rows or even 

representative plants, although this practice was frequently adopted to expedite fieldwork 

[37]. It has been demonstrated how whole-sample estimations are frequently biased 

when using a sub-sample of measures. Although earlier studies have been devoted to 

optimal measurement of canopy geometric features, indicating TRV techniques as a 

reliable reference to estimate canopy volumes [11,53], it can be assumed that the TRV 

scheme cannot be used as an accurate representation of geometric canopy 

characteristics of the whole vineyard, due to its inability to detect heterogeneity with a 

reduced amount of sampling [36]. For this reason, TRV measures should be considered 

as unrepresentative (or largely biased) in comparison with results from UAS analysis, 

unless TRV is performed under a huge number of measurements, which is time-

consuming and unrealistic for the purposes of standard fieldwork. 

In this direction, the empirical results of this study document a significant difference 

between the estimated volume derived from UAS techniques and TRV field measures. 

A precise estimation of vineyard’s row volumes is crucial for (i) planning agrochemical 

spraying on both small and large-scale plant protection schemes, (ii) monitoring 

agronomic operations associated with the crop status, and (iii) preserving the quality of 

the final product, especially for cultivars that require specific canopy volume extension. 

In this perspective, the directives 2009/127/EC [54] and 2009/128/EC [55] of the 

European Parliament, referring to the sustainable use of pesticide, focused on the 

possible strategies to contain volume distribution excess doses. Assuming the crucial 

role in determining pesticide doses appropriate for a given vineyards, the possible 

overestimation of TRV based on field measures may determine an excessive use of 

chemicals, with negative implications for both economic management and environmental 

quality of farms [28]. 
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The remote sensing methodology illustrated here allowed for an easy detection of plants 

(i.e., automatically scanning the whole surface relevant to measurement), evaluating 

apparent variations in the thickness of the canopy [34]. Moreover, this technique allowed 

row segmentation by using canopy pixels selected through the CHM [33]. In vineyards 

remote sensing is also crucial to exclude the soil and surface weeds from the analysis to 

avoid the mis-estimation of canopy pixel values [31]. Computer performance did not 

represent a limit for processing operations, needing only 2 to 4 hours for the models 

proposed here and resulting in significantly less effort than the manual field 

measurements [27]. Such a simple approach becomes more complex when images from 

the top and the derived digital models are not available. GCC values were comparable 

to the results of earlier studies reporting canopy coverage between 30% and 40% in 

similar trellis systems [56,57]. These results were achieved after shoot pruning and 

remained constant until harvest [47]. Since the BBCH values reported in Table 1 for the 

three survey years range from fruit set (BBCH-71) to veraison (BBCH-81), the GCC 

results of this study can be perfectly comparable with those mentioned above. To obtain 

a more reliable indicator of canopy status, this variable can be considered when 

estimating row volumes. 

Disadvantages of UAS remote sensing applications lie in the inability to perform flights 

under adverse meteorological conditions, which might damage the UAS and provide 

unreliable data due to insufficient sunlight irradiation of the crop. Compared with other 

technology developed for similar purposes, UASs are relatively inexpensive with critical 

limitations derived from the need for specific piloting skills and knowhow to process, 

analyze, and to convert the acquired data into useful information for winegrowers [37]. 

These findings suggest the need of new technical skills able to fill the gap between 

winegrowers and information technologies and develop user-friendly tools to spread their 

use, especially in rural areas specialized in high-value wine production. The main 

limitation is the integration of this innovation into a complex decision support system 

aimed at optimizing crop management, reducing costs, operator fatigue, and the release 

of pollutants derived by agrochemicals’ over-dosage. 

The specific ArcGIS exercise developed in our study may answer this limitation, 

providing a simplified interface for the collection and processing of remotely sensed data 

and guaranteeing an easy management and integration of data recorded on the field. 

This technology would help farmers to control grapevine vigor and canopy growth 

patterns, improve support decisions for crop management, optimize pesticide and 

fertilizer application, and enhance yield forecasting [27]. The use of dedicated software 

allows for a more precise volume evaluation, analyzing the smallest details, at least in 

the visible parts from the top of each plant [46]. The height model resolution was 
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demonstrated to be comparable with results derived from more expensive sensors, such 

as the Lidar [26,58]. 

5. Conclusions 

This contribution focused on the possible use of additional techniques replacing TRV 

field estimation with remote estimation. The empirical results of our study confirm the 

appropriateness of integrating (or even replacing) field measures with more precise and 

accurate techniques when estimating orchards structural characteristics for optimization 

of chemical application and other agronomic practices with a direct impact on economic 

costs and ecological sustainability. Although field estimation of TRV is a routinary 

sampling methodology still applied in many agronomic contexts, it has been 

demonstrated that remote applications may provide reliable and accurate tools to 

estimate TRV. Based on these results, extensive use of TRV is recommended, when 

supported by remote sensing, to better qualify errors and heterogeneities in field 

estimates. This is particularly important when decisions on cost estimation, agronomic 

practices, and sustainability issues are uniquely taken based on information derived from 

TRV field assessment. Proximal and remote sensing together represent promising tools 

in precision viticulture. In this perspective, further studies should propose new (or refined) 

techniques quantifying specific canopy characteristics (in addition to height and volume) 

from an expert interpretation of unmanned aerial vehicles’ images. This specific 

knowledge may provide the necessary information for a comprehensive understanding 

of structural characteristic and functional traits of vineyards, having the final objective of 

enhancing together economic performances and environmental sustainability of 

productive farms. 
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Abstract 

An early estimation of the exact number of fruits, flowers, and trees would help farmers 

to make better decisions on cultivation practices, plant disease prevention, and estimate 

harvest labor force size. The current practice of yield estimation based on manual 

counting of fruits or flowers by workers is a time consuming and expensive process and 

it is not feasible for large fields. Automatic yield estimation based on artificial intelligence 

and agricultural robots provides a viable solution in this regard. In a typical image 

classification process, the task is not only to specify the presence or absence of a given 

object on a specific location, while counting how many objects are present in the scene. 

The success of these tasks largely depends on the availability of a large amount of 

training samples. This paper presents a detector of grape bunches, based on a deep 

convolutional neural network trained to detect vine bunches directly on the field. 

Experimental results show a 91% mean average precision. 

Keywords: deep learning; grape detection; object detection; precision agriculture; 

precision viticulture 

1. Introduction 

Precision agriculture evaluates spatial and temporal variability of field data through 

automatic collection and digitization of extensive information databases. Different types 

of sensors are applied to develop high-efficiency approaches to optimize input use, 

maximize crop production, reduce wastes, guarantee environmental sustainability, and 

obtain economic benefits [1,2,3,4]. These approaches apply to viticulture in terms of 

efficient use of inputs, such as fertilizers, water, chemicals, or organic products [5,6]. In 

this context, the use of machinery and labor for harvesting, pruning, or other crop 

management operations focuses on improving the efficiency of each plot within the 

vineyard [7,8,9,10,11].  

Vineyards are characterized by high spatial and temporal heterogeneity and are 

influenced by pedo-morphological characteristics, climate, phenology, and cropping 

practices [12]. These variables can influence grape yields and quality, and their 

prediction is the main goal of precision viticulture. Farmers are encouraged to pursue the 

economic benefits and achieve the desired oenological results by the latest technologies 

combined with decision support techniques [13,14,15]. 

Emerging viticulture technologies are not fully developed, and several challenges still 

need to be addressed. While much of the work is currently promising, much effort is 

required to the so-called “vineyard of the future”. Viticulturists may therefore get 

advantage of modern tools to monitor and tailor the management of their vineyards. Data 
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in vineyard management include knowledge of the leaf area, fruit harvesting, yield 

estimation, evaluation of grapes quality, and grapevine cultivar identification [16,17]. 

Yield estimation is of critical importance in the wine industry. Traditionally, yield forecasts 

were based on manual counting of grapevine numbers, bunch numbers per vine, and 

manual and destructive sampling of bunches to determine their weights, berry size, and 

number. 

When computer vision [18] and Machine Learning (ML) [19] are considered, object 

detection [20] represents a technique that deals with the detection of one or more 

categories of objects via the digitization of a given image or video. Object detection tasks 

can be roughly split into the object localization (where each object is located within the 

image) and object classification (which category each object belongs to). The location of 

the bounding box around each detected object will be returned in pixels as the x and y 

coordinates of the top left corner, and the width and height of the box.  

As in many other applications of machine learning, in the last decade, Deep Learning 

(DL) [21] methods proved to be among the most effective in object detection [22,23]. 

Many different techniques have been implemented starting from R-CNN (Region Based 

Convolutional Neural Networks) [24], Fast R-CNN [25], and Faster R-CNN [26] up to, 

among many others, YOLO (You Only Look Once) [27] and Mask R-CNN [28]. Many of 

these techniques have been successfully applied in the agricultural field.  

The aim of the work of Sa et al. [29] was to build a fruit detection system. Using transfer 

learning and fine-tuning techniques they were able to train a multi-modal Faster R-CNN 

model with a really limited number of images. They combined RGB (Red Green Blue) 

and NIR (Near InfraRed) information building in a reliable multi-modal system. The 

comparison with a Conditional Random Field with hand-crafted features method 

previously presented by the same team proved the validity of the approach. Bresilla et 

al. [30] trained a YOLO convolutional network for fruit detection and localization in 

images of apple and pear trees. Preliminary results were improved by some network 

modification, dataset augmentation, and the generation of synthetic images. The network 

was first trained to detect apples using apple trees images. The trained network was then 

“fine-tuned” with pear tree images to also detect pears. To estimate the biovolume of 

olive trees, Safonova et al. [31] used deep learning instance segmentation methods. 

They analyzed RGB images and two well-known normalized difference vegetation 

indexes. Several Mask R-CNN-based models were used for the segmentation of olive 

tree crowns and shadows to estimate the biovolume of individual trees. Fuentes et al. 

[32] proposed a robust DL-based detector for real-time tomato diseases and pests 

recognition.  

Several experiments were conducted with an in-depth analysis of various deep learning 

architectures and feature extractors. Accuracy was further increased by data 
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augmentation techniques and the system was able to effectively recognize nine different 

types of diseases and pests. Picon et al. [33] presented several crop disease 

classification methods for mobile devices (Android, iOS, and Windows Phones) using a 

Deep Residual Neural Network with 50 layers and 224 × 224 input image size. They first 

extended an already existing dataset collecting leaves images in Spain and Germany. 

The leaves were labeled as healthy or affected by Rust, Septoria, and Tan Spot. Three 

different kinds of inputs were provided to the neural network: the resized full image, a 

leaf mask crop, and a superpixel based tile. Several data augmentation techniques were 

applied, and the training phase was repeated adding an artificial background to the 

images. Experimental results proved to be interesting with significant increases caused 

by the super pixel segmentation, the artificial background, and the image augmentation. 

To detect bunches of grapes or single berries, several methods have been proposed. 

Reis et al. [34] were able to detect red and white grapes, experimentally selecting a few 

intervals of RGB values by trial and error, collecting images during the night to limit 

light/brightness variations. After a sequence of iterations of the morphological dilation, 

the bunch regions were located and measured. Diago et al. [35] automatically estimated 

the number of flowers per inflorescence. The images of the inflorescences, with a uniform 

background of black color, were first converted from the RGB to the CIELAB color space 

(CIE L*a*b, where CIE stands for International Commission on Illumination in French), 

then segmented using thresholding based on histogram values. The elimination of local 

peaks (lower than a threshold) and a final post-processing filtering allowed to find and 

identify the brighter points corresponding to the flowers. An automatic system for shoot 

detection and yield estimation has been proposed by Liu et al. [36]. Images were 

converted from the RGB to the L*a*b color space and an Otsu thresholding technique 

[37] is used for the first segmentation step. An unsupervised feature selection followed 

by an unsupervised shoot classification using the K-means clustering algorithm leads to 

the shoot identification. Diago et al. [38] proposed a methodology to characterize the 

grapevine canopy and assess leaf area and yield through RGB images. They used the 

Mahalanobis distance to classify leaves (young or old), wood, grapes, and background. 

Font et al. [39] acquired images at night under controlled artificial illumination to simplify 

the grape segmentation procedure. They analyzed both the RGB and the Hue, 

Saturation, and Value (HSV) color spaces and segmented the images with five different 

methods: thresholding with the Otsu method followed by a sequence of morphological 

filtering; Mahalanobis distance between the three-dimensional color intensities; a 

Bayesian classifier; a Linear Color Model; a three-dimensional color-intensity histogram. 

A methodology for segmenting inflorescence grapevine flowers was presented by 

Aquino et al. [40]. They applied some morphological operators to the images in the HSV 

color spaces and a top-hat transformation to emphasize bright details. After binarization 
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and pyramidal decomposition, the regional peak corresponding to the inflorescence was 

found. An automated image analysis framework for berry size determination was 

proposed by Roscher et al. [41]. Working in the YIQ color space and after the detection 

of berry candidates with the circular Hough transform, they extracted several features 

from the image patches around the detected circles. Berry diameters were measured 

after using conditional random field to classify those patches as berry or non-berry. 

Another berry detection method using images converted to the CIELAB color space was 

proposed by Aquino et al. [42]. Images were acquired with dark cardboard placed behind 

the cluster. After an Otsu thresholding and some filtering, berries candidates were 

selected by finding regional maxima of illumination, and then six descriptors were 

extracted, and false positives were discarded using two different supervised-learning 

classifiers: Neural Network and Support Vector Machine. Liu and Whitty [43] eliminated 

irrelevant regions in the image by thresholding the H and V channels in the HSV color 

space obtaining potential bunch areas and reduced the noise by applying several 

morphological operations. The resulting bunches in 80 images were manually labeled as 

true or false and 54 different measures from RGB, HSV, and L*a*b color spaces were 

extracted. After applying the ReliefF algorithm and a sequential feature selection to 

reduce the feature dimensions, the SVM was used to train the system. Nuske et al. [44] 

predicted yields in vineyards through cameras and illumination mounted on a vehicle. 

They detect potential berry locations using a Radial Symmetry Transform and an 

Invariant Maximal Detector, then they use Gabor filters, a SIFT descriptor, and a Fast 

Retinal Descriptor to classify the detected points as grapes or not-grapes through a 

randomized KD-forest. To avoid double-counting of grapes between consecutive 

images, the grape locations were registered. A sequence of calibration measurements 

allows the team to predict yields with remarkable precision. That work was continued by 

Mirbod et al. [45] that used two algorithms (Angular invariant maximal detector and Sum 

of gradient estimator) for berry diameter estimation. Coviello et al. [46] introduced the 

Grape Berry Counting Network (GBCNet). It belongs to the family of Dilated CNNs and 

it is composed by ten pre-trained convolutional layers for feature extraction and by a 

dilated CNN for density map generation. The authors were able to estimate the number 

of berries in the image achieving good performances on two datasets, one with seven 

different varieties and one with only one variety. Finally, a more comprehensive review 

of computer vision, image processing, and ML techniques in viticulture has been 

proposed by Seng et al. [47]. 

Three main limitations characterize many of the works summarized in this section and 

schematized in table 1: the detection process is not fully automated, it is usually based 

on a limited amount of data (dozens or hundreds of images), and it is also based on a 

limited amount of grape variety (in most of the cases no more than two). Therefore, a 
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method applied on images acquired in a vineyard under specific conditions may not work 

as well in another vineyard or may not even work in the same vineyard as some of those 

conditions change. 

Table 1. Proposed grape detection methods comparison. 

Reference Fully Automated 
Detection Process 

Large Data Set 
(More Than a 

Thousand) 
Large Grape Variety  

(More Than Ten) 

[34] 
Yes  

(by camera internal 
flash at night) 

No  
(190 images of white 
grapes, 35 images of 

red grapes) 

No  
(Port) 

[35] 

No  
(using a uniform 

background of black 
color) 

No  
(90 images) 

No  
(Tempranillo, Graciano, and 

Carignan) 

[36] Yes 

Yes 
(thousands of images 

extracted from 
hundreds of videos) 

No  
(Chardonnay and Shiraz) 

[38] Yes No  
(70 images) 

No  
(Tempranillo) 

[39] 
Yes  

(with artificial 
illumination at night) 

No  
(40 images) 

No  
(Flame Seedless) 

[40] 

No  
(capturing 

inflorescences facing 
the Sun and casting a 
shadow on the scene 

to create a 
homogeneous 
illumination) 

No  
(40 images) 

No  
(Airen, Albariño, Tempranillo, and 

Verdejo) 

[41] Yes No  
(139 images) 

No 
(Riesling, Pinot Blanc, Pinot Noir, 

and Dornfelder) 

[42] 

No  
(using a dark 

cardboard behind the 
cluster) 

No 
(152 images) 

Yes  
(Tempranillo, Semillon, Merlot, 

Grenache, Cabernet Sauvignon, 
Chenin Blanc, and Sauvignon 

Blanc) 

[43] Yes No 
(160 images) 

No (Shiraz and Cabernet 
Sauvignon) 

[44] 

Yes  
(with natural 

illumination, flash 
illumination, and 

cross-polarized flash 
illumination) 

Yes  
(more than one 

thousand images) 

No  
(Traminette, Riesling, Chardonnay, 
Petite Syrah, Pinot Noir, and Flame 

Seedless) 

[45] Yes 
Yes 

(more or less 100,000 
images) 

No 
(Petite Syrah and Cabernet 

Sauvignon) 

[47] Yes 

Yes  
(GrapeCS-ML dataset: 

more than 2000 
images) 

Yes  
(Merlot, Cabernet Sauvignon, Saint 
Macaire, Flame Seedless, Viognier, 

Ruby Seedless, Riesling, Muscat 
Hamburg, Purple Cornichon, 
Sultana, Sauvignon Blanc, 

Chardonnay, Shiraz, Pinot Noir) 



52 
 

This work Yes 

Yes  
(GrapeCS-ML dataset: 
more than 2000 images 

+ 
Internal dataset: 451 

images) 

Yes  
(Merlot, Cabernet Sauvignon, Saint 
Macaire, Flame Seedless, Viognier, 

Ruby Seedless, Riesling, Muscat 
Hamburg, Purple Cornichon, 
Sultana, Sauvignon Blanc, 

Chardonnay, Shiraz, Pinot Noir, 
Vermentino, Cannonau (i.e., 
Granache), Cagnulari (i.e., 

Graciano)) 

One of the intentions of this paper was to overcome these problems by developing a 

grape detector to analyze images automatically acquired by a vehicle moving in a generic 

vineyard (located in an unspecified geographical area with an unknown grape variety). 

A detector, based on an R-CNN (Region Convolutional Neural Network), was trained 

and tested on the GrapeCS-ML dataset containing more than 2000 images of much 

different varieties described in the next section. An internal dataset was used to further 

test the framework on different grape varieties and under different environmental 

conditions. 

2. Materials and Methods 

 

Figure 1. Detailed workflow of the proposed methodology. After the labeling, the data set is divided in 

train, validation, and test. A pre-trained Mask R-CNN framework is fine-tuned using the augmented train 

set and the validation set. The experimental results are obtained by applying the detector to both the test 

set and our internal dataset. 
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In this section, is fully described the proposed methodology summarized in Figure 1.  

The GrapeCS-ML dataset was labeled and divided in train, validation, and test subsets. 

Augmentation techniques [48] were applied to the training subset. A pre-trained Mask R-

CNN framework was fine-tuned using the train and validation subsets, and from the 

trained network and the test subset were obtained the experimental results. 

2.1. Dataset 

The main difficulty in applying ML techniques in the agronomic field is the availability of 

useful data for training and testing. In 2018 the Charles Sturt University released the 

freely downloadable zip file GrapeCS-ML dataset [47], containing more than 2000 

images of 15 grape varieties at different stages of development and collected in three 

Australian vineyards. The images are divided into five subsets: 

▪ Set 1: Merlot cv. bunches, taken in seven rounds from the period January to April 

2017. 

▪ Set 2: Designed for research on berry and bunch volume and color as the grapes 

mature, featuring Merlot, Cabernet Sauvignon, Saint Macaire, Flame Seedless, 

Viognier, Ruby Seedless, Riesling, Muscat Hamburg, Purple Cornichon, Sultana, 

Sauvignon Blanc, and Chardonnay cvs. 

▪ Set 3: Subsets for two cultivars (Cabernet Sauvignon and Shiraz) taken at dates 

close to maturity. 

▪ Set 4: Subsets of images for two cultivars (Pinot Noir and Merlot) taken at dates 

close to maturity, focusing on color changes with the onset of ripening. 

▪ Set 5: Sauvignon Blanc cv. bunches taken on three different dates. Each image 

also contains a hand-segmented region defining the boundaries of the grape 

bunch to serve as the ground truth for evaluating computer vision techniques 

such as image segmentation. 

Although several subfolders contain some data such as the grape variety and the date 

of acquisition, a meaningful information is missing: the ground truth, i.e., the position of 

the bunches inside the different images. Therefore, the smallest Bounding Boxes were 

hand-drew around every bunch of grapes for each image uing the “Image Labeler” app 

(Figure 2) available in Matlab. As shown in Figure 2, the app enables the user to define 

a set of class labels (in our case just one class named “grape”) to draw a rectangle that 

is the Region of Interest (RoI) around each selected object and to label that ground truth 

as belonging to one of the previously defined classes. 
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Figure 2. MATLAB Image Labeler used in the labeling process. For each image the smallest bounding box 

was hand drawn around every bunch of grapes. 

A color reference or a volume reference is present in most of the images (a few examples 

are shown in Figure 3), but this information was ignored to obtain a fully automated 

detection process. 

 

Figure 3. Samples images from GrapeCS-ML dataset 2: (a–c) include a color reference; (d–f) contain a 

volume reference. 
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During the last 15 years, thousands of digital images of bunches were collected at the 

Department of Agricultural Sciences, University of Sassari (a few examples are 

presented in Figure 4). 

 

Figure 4. Samples images from our internal dataset: (a) cv. Cannonau; (b) cv. Cagnulari; (c,d) cv. 

Vermentino with different stage of maturation. 

While all the GrapeCS-ML images of different grape varieties were collected in Australian 

vineyards, the ones in our dataset were collected all around in Sardinia Island (Italy), 

literally on the other side of the world. The number of available images were in the 

thousands, and they were acquired all around several Sardinian vineyards. Some 

contained the entire vineyard, others in perspective the space between two rows or an 

entire row imaged from one end. The purpose of our work was to train a detector able to 

analyze images automatically acquired by a vehicle moving between the vine rows. 

Therefore, photos acquired between the rows at about one meter from the leaf wall were 

only selected. A total of 451 images were selected to further test the trained network. It 

is worth emphasizing the importance of testing the system on a dataset that contains 

images like those used for the test. Moreover, it would be even more important to 

ascertain the ability of the system to provide good detection results on images very 

different from those present in the training set. In fact, while in the former case, a well 

performing detector on a specific vineyard could be obtained, in the latter the result would 

be a “universal” detector able to work anywhere. 
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2.2. Mask R-CNN Framework for Grape Detection 

Given its performance on several well-known object detection benchmark datasets 

[22,23], It has been chosen to train our system with the Mask R-CNN method [28]. The 

Python implementation used in this work is freely downloadable from 

https://github.com/matterport/Mask_RCNN (accessed on 3 June 2021) [49]. 

The Mask R-CNN framework (Figure 5) segmentation is an extension of Faster R-CNN, 

and it adopts a two-stage procedure. 

 

Figure 5. MaskR-CNN framework (He et al. [28]). In this two-stage procedure, the first stage, called 

Region Proposal Network (RPN), estimates the position of bounding boxes. The second stage performs a 

classification, a bounding box regression, and extracts a binary mask. 

The first stage is called Region Proposal Network (RPN) and is a fully convolutional 

network. The RPN can be trained to predict region proposals at different scales and 

aspect ratios; therefore, it is used to estimate the position of bounding boxes. The second 

stage corrects the RoI misalignments in the RoIAlign layer and then performs in parallel 

a classification, a bounding box regression, and extracts a binary mask to output the 

bounding boxes and the segmentation masks of the selected object [28]. In this work, it 

was trained only the system to extract the bounding boxes values while ignoring the 

segmentation. 

2.3. Training Procedure 

It is well-known that deep learning training process requires a huge number of samples, 

hundreds of thousands, or even millions. In addition, training a model from scratch is 

tremendously expensive in terms of required computational power but also in terms of 

processing time. Luckily, the availability of a pre-trained model allows the execution of 

the so-called “fine-tuning”. In the fine-tuning process, a model trained on some huge 
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(millions of samples) dataset is “specialized” on different data and this further training 

requires much fewer resources. 

In our case, the starting point was a ResNet101 (a convolutional neural network that is 

101 layers deep) pre-trained on the MS COCO (Microsoft Common Objects in Context), 

a dataset containing hundreds of thousands of images belonging to 80 different classes 

[50]. Basically, a network trained to be able to detect objects belonging to the 80 different 

classes of the MS COCO has been retrained to specialize on the grape class. The 

availability of pre-trained weights for MS COCO simplify the first part of the training, since 

those weights can be used as a starting point to train a variation on the network. Google 

Colab was used, a cloud service that provides free access to computing resources 

including GPUs. The experiments were executed by a virtual machine with 12 GB of 

RAM, an Nvidia graphic card (Tesla P100-16GB), and 68 GB of disk space. It was 

performed fine-tuning (Goodfellow et al. [21]) using the GrapeCS-ML dataset images. 

The dataset was divided into a train (set 1, containing more than 1000 images), validation 

(set 2, containing more than 500 images), and test (sets 3, 4, and 5, containing nearly 

500 images); see Table 2 for further details. 

Table 2. Number of images contained in the GrapeCS-ML Dataset and in the internal dataset. 

GrapeCS-ML Dataset 
Train Set 1 1114 images 

Validation Set 2 505 images 

Test 
Set 3 204 images 
Set 4 242 images 
Set 5 49 images 

Internal Dataset  451 images 

The internal dataset collected at the University of Sassari contains 451 images from all 

around Sardinia. The photos collect images of clusters of the main cultivars grown on 

the island. Specifically, of the 451 photos, almost 200 are Cannonau and Vermentino 

cultivars. Every single photo represents a different biotype or clone obtained following 

two important experimental works on mass and clonal selection for cv. Cannonau [51] 

and varietal comparison for cv. Vermentino [52]. 

The other photos were collected mainly in collection vineyards of the University of 

Sassari where all the regional varieties registered in the national register of Italian vine 

varieties are grown [53]. 

Regarding the presence of different varieties, it has been pointed out the main difference 

with respect to similar works. The introduction of several different varieties will probably 

contribute to the generalization, but it is difficult to evaluate this contribution if examples 

of all the varieties are present in train, validation, and test at the same time. In our work 
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something totally different has been done, since there are notable differences, in terms 

of varieties, between train, validation, and test (in the Australian GrapeCS-ML dataset), 

and above all, a second test dataset was created with further different varieties (the 

Italian internal dataset). 

Images dimensions in the first four sets of the GrapeCS-ML dataset are almost always 

480 × 640 or 640 × 480. Conversely, images dimensions in the set 5 of GrapeCS-ML 

dataset and in the internal dataset vary a lot, from 480 × 640 up to 3024 × 4032 or 4608 

× 3456 and many more (see Table 3). Since those sets are both used to test the system, 

consistent results could prove the robustness even towards considerable variations in 

size. To be processed by the Mask R-CNN framework, all the images are automatically 

resized to 1024 × 1024 pixels. The aspect ratio is preserved, so if an image is not square 

it is padded with zeros. 

Table 3. Numerosity (in brackets) per different size of the images contained in the GrapeCS-ML dataset and 

in the internal dataset. 

GrapeCS-ML Dataset 
Set 1 480 × 640 (1102), 640 × 480 (7), 1200 × 1600 (5) 

Set 2 480 × 640 (253), 640 × 480 (198), 1200 × 1600 (28), 1600 × 1200 
(26) 

Set 3 480 × 640 (81), 640 × 480 (81), 1200 × 1600 (21), 1600 × 1200 (21) 
Set 4 480 × 640 (35), 640 × 480 (206) 
Set 5 640 × 480 (1), 3024 × 3024 (12), 3024 × 4032 (36), 3402 × 3752 (1) 

Internal Dataset 

360 × 640 (1), 480 × 640 (29), 640 × 480 (17), 1600 × 2128 (2), 
1904 × 2528 (3), 2048 × 1536 (36), 2112 × 2816 (23), 2304 × 3072 
(1), 2320 × 3088 (120), 2560 × 1536 (3), 2816 × 2112 (139), 3072 × 
2304 (9), 3088 × 2320 (43), 3456 × 4608 (2), 4160 × 2340 (1), 4608 

× 3456 (22) 

To expand the size of the training part of the dataset, it was used a technique called 

“data augmentation” through which many modified versions of the images in the dataset 

are created by horizontally flipping, translating, and adding artificial blur and contrast (a 

few augmentation examples are shown in Figure 6). This technique allows to 

considerably extend the number of samples presented to the network during the training 

phase and, accordingly, to increase its detection and generalization capabilities. 

Moreover, variations in blurring, color, and brightness are a major problem in the field of 

computer vision. While other authors try to limit those variations as much as possible, on 

the contrary, in this work were included as many variations as possible in our training 

using dataset augmentation, so that the system “learns” to detect a grape bunch under 

as many as possible different conditions. It is worth noting that it was used only set 1 to 

train due to the highest numerosity; more than 1000 images which is half of the entire 

GrapeCS-ML Dataset. The training of the network with a single variety, which could 
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quickly lead to overtraining, is balanced using data augmentation and the high number 

of varieties present in the validation set. 

 

Figure 6. Examples of train dataset augmentation: (a) original image; (b) horizontal flipping; (c) image 

blurring. 

3. Results 

3.1. Performance Evaluation 

Intersection over Union (IoU) measure (Equation 1) was used to evaluate the 

effectiveness of the proposed approach for bunches detection, which allows us to 

estimate the precision in the overlap between a bounding box obtained by the classifier 

and that defined as ground truth that is the one hand drawn during the ‘labelling’ process. 

𝐼𝑜𝑈 =
𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ ∩  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ ∪ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (1) 

This measure is given by the ratio between the intersection and the union of the surfaces 

of the two bounding boxes (Figure 7), and it is positively evaluated if it exceeds a given 

threshold value (usually 0.5, but other values can also be considered [22]).  

 

Figure 7. Evaluation of the IoU—Intersection over Union. This value is the ratio between the intersection 

and the union of the surfaces of the blue bounding box obtained by the classifier (Prediction) and the 

green one hand drawn during the ‘labelling’ process (Ground Truth). In (a) a sample image, in (b) a 

description of the calculation process. 
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In Figure 8, two examples of IoU are presented, one higher and the other lower than 0.5. 

 

Figure 8. Two examples of IoU. In the example on the left the ratio between intersection and union of the 

ground truth and prediction bounding boxes is higher than 0.5 (0.52) while in the example on the right the 

ratio is lower (0.23). 

The following values are defined: 

▪ TP (True Positive): bounding boxes correctly detected (IoU > 50%). 

▪ FP (False Positive): bounding boxes wrongly detected (there are no bunches or 

IoU < 50%). 

▪ FN (False Negative): bounding boxes not detected where the bunches are 

present. 

Precision (the ratio between the number of correctly detected bunches and the total 

number of objects detected as bunches in the image) and Recall (the ratio between the 

number of correctly detected bunches and the number of all the bunches present in the 

image) can therefore be calculated for each class as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

Since each bounding box is detected with a certain probability, values of this probability 

higher than a certain threshold represent the more probable grape’s locations. As this 

threshold grows from 0.0 to 1.0, all possible Precision and Recall values are obtained. 
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These values can be used to plot, for each image, a curve with Precision as y value and 

Recall as x value called the Precision–Recall Curve. The most important points are those 

for which there is a value change for Precision or for Recall. The purpose of this 

procedure is the computation of the area below this curve that is called Average 

Precision (AP) and can be used as a measure of the detection performance on the 

image. In Figure 9, an example of the Precision–Recall curve obtained during our 

experiments is presented. The mean of all the obtained values is known as mean 

Average Precision (mAP) and is among the most used metrics in the field of object 

detection. 

 

Figure 9. Example of Precision–Recall curve obtained during our experiments. The Average Precision, 

that is the area below the curve, has a value of 0.833. In this example there are three Precision or Recall 

value changes, but that number of changes could be different for each image. 

3.2. Loss Function 

An important step in the training of a model is the selection of a loss function to evaluate 

the network performances. The sum of losses obtained from the three different outputs 

of the Mask R-CNN framework was chosen among many possible values, as it 

represents the best compromise between the three different losses: 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (4) 

Lcls is the classification loss, Lbox is the bounding-box loss, and Lmask is the mask loss 

as described in [28]. 

It is well known that during the training process, the validation loss is essential in 

choosing when to stop. As a matter of fact, if the training loss (evaluated on the train 

dataset) indicates how well the system is learning to perform the object detection on the 

training set (that is the already known data), the validation loss (evaluated on the 
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validation dataset) explains how much the system can generalize the detection capability 

on never seen data. Figure 10 shows the training and validation loss values obtained by 

our system. The number of epochs, which is the number of times the learning algorithm 

update the model by analyzing the entire training dataset, is used as a temporal scale. 

 

Figure 10. Training and validation loss profile over the number of epochs, which is the number of times the 

learning algorithm update the model by analyzing the entire training dataset. The two curves show the 

performance improvement on training and validation data. 

3.3. Detection Results 

The result obtained by applying the detector on the test samples was a mAP value of 

92.78%. It means that a large majority of the bounding boxes have been correctly 

detected. In their works, Reis et al. [34] correctly identified 91% of white grapes and 97% 

of red grapes, Diago et al. [35] obtained a global Recall of 74.3% and a global Precision 

of 92.9% for flower detection in grapevine inflorescence, Liu and Whitty [43] detected 

bunches with an average accuracy of 88.0% and a recall of 91.6%, Aquino et al. [40] 

detected flowers with an average Precision of 0.8338 and a Recall of 0.8501, and Liu et 

al.’s [36] average detection performance was an Accuracy of 0.8683 and an F1 Score of 

0.9004. Unfortunately, it is difficult to make a direct comparison among all those results 

and ours. Indeed, the evaluated metrics are not always the same and, most importantly, 

the experimental set-up used to retrieve the images is different (usage of different 

cameras and acquisition with different light conditions) as well as the vines varieties are 

different. Despite this, it can be observed that the obtained values are competitive with 

most of the works presented since, despite the different metrics, the recognition rate 

almost never exceeds 92%. The only case where the recognition rate seems higher is 
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when images are captured at night using the camera’s internal flash with very little 

light/brightness variation [34]. A more reliable comparison can be made with the results 

obtained by Seng et al. [47] on the GrapeCS-ML Dataset although it is not clear which 

images were used for training, for validation, and for testing. By applying six different 

algorithms on four different color spaces, the highest classification rate they were able 

to achieve was 84.4% for white cultivars and 89.1% for red cultivars. In our work, there 

is no distinction between white and red cultivars, but with a mAP value of 92.78%, it can 

be claimed that our results are competitive with what is currently the state of the art. 

The detailed results are shown in the second column of Table 4 (train complete, with 

augmentation). The validation and test values are very similar, proving the generalization 

capability of the system. Since the test dataset is composed of three subsets of the 

GrapeCS-ML Dataset, the mAP of each of them is presented. The considerable variation 

in the results is because the images in the three sets have very different characteristics. 

As shown in Figure 11, while in set 3 the bunches images are usually well defined and 

easy to detect, in set 4 and, even more, in set 5 there is a greater overlap between 

different bunches.  

 

Figure 11. Images from the three GrapeCS-ML subsets included in the test: (a–c) set 3; (d–f) set 4; (g–i) 

set 5. 
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Furthermore, the prevalence of red grapes in set 3 makes the detection much easier 

compared to the detection of white grapes, more similar in color to the surrounding 

vegetation. 

Table 4. Experimental results on both GrapeCS-ML and our internal dataset. The detector has been trained 

in three different ways: using the entire set 1 as train, with dataset augmentation; using only 10% of set 1 as 

a train, with and without dataset augmentation. 

 mAP 

Dataset Name 
Train Complete, 

with  
Augmentation 

Train 10%,  
with Augmentation 

Train 10%, without 
Augmentation 

Validation (Set 2) 93.97% 90.95% 85.24% 
Test (Set 3 + Set 4 + Set 5) 92.78% 90.98% 87.65% 

Set 3 98.77% 98.69% 97.30% 
Set 4 89.18% 86.70% 83.40% 
Set 5 85.64% 80.07% 68.44% 

Internal Dataset 89.90% 86.41% 70.75% 

The system on our internal dataset was also tested to assess the generalization 

capability of the proposed framework. Since, concerning the GrapeCS-ML dataset, our 

images contain different grape varieties, different vegetation, and different colors, it 

would be important to replicate on our dataset results like those obtained with the original 

test. As shown in Table 4, it was obtained an 89.90% mAP that it is only slightly smaller 

than the other values. 

Two more training were performed to determine the importance of the size of the dataset 

used for train and to determine the importance of the augmentation techniques. The 

described workflow was followed using only a reduced set of the original train (10% of 

the training images randomly selected) in one case with and in the other without the 

dataset augmentation. As it could have been expected, in the third and fourth column of 

Table 4 the mAP values decrease especially in the experiments performed without 

augmentation. The obtained results prove the importance of a high number of images in 

the train but also of the use of augmentation techniques. Most of the results show a 

decrease between 3% and 5%, passing from the value obtained with the complete train, 

to those with the reduced train, to those with the reduced train and without augmentation. 

Exceptions are the always very high values obtained for set 3 for which the decrease is 

limited to values around 1% and those on set 5 and the internal dataset which are much 

lower than the others. It is particularly important to highlight the different values obtained 

for the internal dataset: if the considerable reduction in the number of train images 

causes a limited reduction in performance (around 4%), the absence of augmentation 

leads to a drop in performance (more than 15%). 
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Since the overlap between bunches and the presence of smaller bunches is probably 

the factor that reduced the detection capability, the different sets were divided into 

subsets based on the number of ground truth objects in each image. The results 

presented in Table 5 as expected prove that the detection capability usually decreases 

as the number of objects in the image increases. It is worth noting that by analyzing the 

results from this different perspective, those that seemed evident differences between 

the various datasets are considerably reduced. Whatever the dataset, when there is just 

a single bunch in the image, the detection rate is always high. 

Table 5. Experimental results on both GrapeCS-ML and our internal dataset based on the number of 

bunches present in the images. After each mAP value, in brackets, the number of examined images is 

shown. 

Dataset Name mAP (Total Number of Images) 
 1 bunch 2 bunches 3 bunches 4 bunches 5 bunches 6 bunches 

Validation (Set 2) 98.85% (369) 82.61% (126) 57.22% (10)    
Test (Set 3, 4, 5) 99.75% (395) 65.41% (73) 72.59% (15) 51.72% (8) 60.00% (2) 64.63% (2) 

Set 3 100.00% (195) 72.22% (9)     
Set 4 99.45% (181) 57.70% (53) 65.28% (8)    
Set 5 100.00% (19) 96.97% (11) 80.95% (7) 51.72% (8) 60.00% (2) 64.63% (2) 

Internal Dataset 96.79% (218) 85.39% (166) 76.11% (46) 80.89% (17) 99.17% (4)  

4. Discussion 

As stated before, the system is not error-free, since some bounding boxes are not 

detected at all, and others are not correctly detected, meaning that their IoU, with the 

ground truth, is lower than 0.5. In Figure 12, an example of correct detection on a test 

image is shown (the green boxes represent the ground truth, while the blue ones are the 

detection results) since the IoU is clearly greater than 0.5. Other examples (Figure 13), 

show some of the typical problems of object detection. In Figure 13a, only one out of two 

bounding boxes is correctly detected. In Figure 13b and 13c, the two bunches are 

detected but as a single element. This is one of the cases in which the error can be 

considered as “less severe”, since the area containing the bunches has been correctly 

detected. Unfortunately, when many bunches stay so close together inside the same 

image, they are difficult to distinguish. In Figure 13d, the picture is out of focus and only 

the larger of the two bunches has been correctly detected. These examples confirm the 

results presented in Table 5 since a single bunch is almost always correctly detected. 

Most of the errors are due to the presence of bunches that are too small and out of focus 

or to the inability to distinguish partially overlapping bunches. 
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Figure 12. Example of correct detection on a test image from the GrapeCS-ML dataset. The green box 

represents the ground truth while the blue one is the detection results. The IoU of the two boxes is greater 

than 0.5. 

 

Figure 13. Examples of errors in the GrapeCS-ML dataset. The green boxes represent the ground truth 

while the blues ones are the detection results. In (a) only one out of two bounding boxes is correctly 

detected, in (b,c) the two bunches are detected but as a single element, in (d) only the larger of the two 

bunches is correctly detected. 

Results obtained with the internal dataset can be considered excellent due to the 

considerable difference between the grape varieties images in this dataset, and those 

used to train the system. In Section 2, it was stated that our aim was the development of 

a grape detector able to analyze images automatically acquired in a generic vineyard. It 

could be claimed that those are the most important results presented in this work. 
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As in the previous cases, most of the errors are due to the incorrect detection of 

overlapping bunches (Figure 14a), others are caused by the inability to correctly detect 

shaded parts (upper-left box in Figure 14b). Another error is the incorrect detection of 

some leaves as bunches (Figure 14c) and it is probably due to the difference between 

the Sardinian grape varieties and those in the training dataset. In this case, the difference 

between the leaves in the image and all of those previously shown, belonging to the 

GrapeCS-ML dataset, is evident.  

 

Figure 14. Examples of errors in the internal dataset. The green boxes represent the ground truth while 

the blues ones are the detection results. In (a) the incorrect detection of overlapping bunches, in (b) 

undetected shaded parts, and in (c) leaves incorrectly detected as bunches. 

This type of error can be significantly reduced by training and testing the system with 

images collected in the same geographic area or, even better, in the same vineyard, but 

the focus of this work was, on the contrary, the analysis of a generalized capability of the 

framework. This capability is shown, for example, in the two images of the internal 

dataset in Figure 15, where the same bunches are depicted. 

 

Figure 15. Example of same bunches correctly detected in two similar images. The image (a) is 

significantly overexposed compared to the image (b). The green boxes represent the ground truth while 

the blues ones are the detection results. 
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It is worth noting that, despite the image in Figure 15a is considerably overexposed, all 

the clusters have been correctly recognized as in Figure 15b. The ability to correctly 

detect grape bunches of varieties never seen before under uncontrolled lighting 

conditions is the main novelty of this work. Once again, it is worth emphasizing that, even 

in the most difficult cases, single bunches are almost always correctly detected as shown 

in Table 5. 

Details of yield estimations involving traditional methods such as the lag phase method 

and others can be found in [54,55]. The quality assessment by visual inspection scales 

poorly to large vineyards and appears inaccurate due to the subjectivity of the human 

evaluator [56]. Moreover, these methods are expensive, inaccurate (if the yield is 

unevenly distributed across the vineyard), laborious, and time-consuming since they 

require a manual measurement of specific cluster features [57]. The precise knowledge 

of the number of bunches and their position in the vineyard would automate such 

activities. 

5. Conclusions 

In this paper, a detector of grape bunches based on the Mask R-CNN framework was 

presented. The GrapeCS-ML dataset was used to train the system and to evaluate its 

performances. The detector was tested on an internal dataset collected in several 

Sardinian vineyards during the last decade since the main goal was the training of a 

system capable of detecting bunches regardless of both the grape variety and its 

geographical location. The presented results are promising since most of the bunches 

were correctly detected and many of the errors were only due to the incorrect detection 

of two adjacent bunches as one. In fact, single bunches were usually correctly detected 

even in the most difficult cases, despite problems as shadowing and over exposition. It 

is worth noting that the importance of the presented methodology is that good results are 

obtained not only on the GrapeCS-ML database, which has been used to train the 

system but also on our internal dataset, confirming the portability to different scenarios. 

This is something novel at the state of the art, where methodologies are normally 

customized over a precise context of application and not proved to be portable. This 

approach is suitable to be employed, after appropriate training, in multiple scenarios of 

fruit detection and tracking from autonomous systems, reducing the subjectivity of the 

human evaluator during the visual quality assessment and optimizing monitoring 

operating times. Indeed, the achieved results represent valuable first results within the 

activities of the Comp4Drones (C4D) project. Starting from images’ collection, it would 

be possible to more precisely monitor the development of the grapes, detect the 

diseases, estimate the yield in terms of quantity and quality, and predict the appropriate 

time for harvesting. In C4D the idea is to allow running those types of analysis both off-
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line and on-line. In this regard, as future work, it is planned a new set of training with 

different frameworks, starting from the YOLO detector, which is known to be less precise 

but much faster in order of images analyzed per second with respect to the Mask R-

CNN. Such a characteristic makes YOLO particularly suitable for the usage on 

embedded platforms, such as co-processing units acting as companion computers 

[58,59], which will allow advanced on-line processing on-boards of Unmanned 

Autonomous Ground Vehicles. Additionally, the teamwork plans also to collect a new set 

of images in the vineyards where field trials will be carried out in the coming years. 
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Abstract 

Input optimization is a distinguishing characteristic of Precision Agriculture approaches, 

helping reduce the environmental impact and costs and increase vegetable production 

quality. Thanks to the high automation evolution of Unmanned Aerial Systems (UAS), a 

new approach derived from their combination with Deep Learning techniques is leading 

to significant improvements in agricultural management practices. The study aims at 

artichoke plants detection and georeferencing as a first step for an on-the-fly, real time, 

UAS spraying system, and use the gathered information to monitor crop development 

through a multi-temporal approach. A commercial UAS, equipped with an RGB sensor, 

acquired images of the artichoke field located in Sardinia (Italy) during the 2021-2022 

season in different crop growth stages. The Feature Pyramid Network (FPN), trained and 

compared with the YOLOv5 (You Only Look Once) network, showed a high detection 

level with an average F1 score of around 90%, and satisfactory off-line performances on 

the Nvidia Jetson Nano board. The multi-temporal approach influenced detection 

performances, with an inverse response of precision and recall metrics. The growing 

index trend showed a distinct value in October, peaking at the beginning of December 

as expected. The proposed approach contributes to designing future automatic and 

reliable site-specific UAS agrochemicals application and the classification of 

management zones. 

Keywords. Single shot detector; Multi-temporal tracking; Plant detection; Site-specific 

management; Precision agriculture. 

1. Introduction 

Food sustainability and consumer protection are relevant issues today, as demonstrated 

by growing consumer interest in vegetable production and distribution on the market [1]. 

Because of the increasing food demands and the high impact of plant diseases on the 

global annual yield losses, chemical input in agriculture is still mandatory to protect crops 

against insects, pests, and fungi [2]. Agrochemical distribution is a dangerous operation 

with a high impact on consumers' safety and the environment. Often misapplied with 

considerable risks for consumers, agrochemical residues can be found in food, feed, 

water bodies, and non-target organisms [3]. 

Conventional spraying mechanization, deployed by ground machinery, is essential to 

reduce human and environmental harm and labor intensity. However, more effective and 

efficient application techniques are required to reduce the environmental impact of 

agrochemicals [4]. Agricultural aerial spraying by airplanes and helicopters, often 

considered an economical and rapid method for agrochemical application, is known for 
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covering large fields without any physical impact on crops or soil structure and causing 

high product overdose and losses due to poor distribution accuracy [5]. Unmanned aerial 

systems (UAS), as well as allowing the acquisition of images and data from a different 

perspective, have recently gained attention for pesticide spraying operations [6]. They 

can follow complex patterns, fly at low altitudes, adapt to different terrains, perform 

vertical take-offs and landings, and perform low-volume and site-specific agrochemical 

applications with low risks for operators' health [7]. Despite regulations and restrictions 

on aerial agrochemicals spraying, as is in Europe [8],  multi-rotor UASs are under study 

for spraying applications worldwide, and they are the best candidates to replace 

conventional aerial vehicles. 

The globe artichoke Cynara cardunculus L. var. scolymus Fiori, also known as Spinoso 

Sardo, is a Mediterranean native crop diffused in Sardinian Island (Italy) that strongly 

contributes to the agricultural economy of the region [9,10]. Artichoke plants are attacked 

by several insects and pests like aphids, thrips, leaf miners, etc., which require 

agrochemicals application, easily deployable through UASs [11]. UAS spraying 

operations planning, performed by defining target area borders, flight height Above 

Ground Level (AGL), speed, spray width, flow rate, etc., is easily applicable to cover 

crops like rice, corn, and wheat, but not to horticultural crops like artichoke. Site-specific 

spraying distribution, essential to reduce the amount of chemical product released on 

the soil surface, requires the coordinate references of each plant, obtainable by using an 

RTK GNSS station or indirectly by UAS images [12]. A fast and real-time approach is 

crucial to optimize UAS spraying operations, reduce the overall operation time, and 

execute accurate distributions over target plants.  

In this scenario, the Deep Learning approach represents a valid and effective solution 

for real-time recognition and the consequent execution of a task [13]. Previous works 

have been carried out on the combination of UAS spraying technique and deep learning 

object detection in agricultural scenarios for an accurate real-time recognition system for 

spraying areas [14] or to determine pests' position in real-time on the orchard and plan 

the optimal pesticide spraying route for the agricultural UAS [15]. 

The Feature Pyramid Network (FPN) is a particular type of Single Shot Detector (SSD) 

[16]. These types of algorithms work in a single forward pass of the network, locating 

and classifying objects at the same time. The basic concepts of these networks imply 

the use of a grid that divides the image into cells responsible for detecting objects in that 

region of the image and the use of priors and predefined boxes responsible for detecting 

objects of specific sizes and shapes within a grid cell. In the FPN, it is possible to recall 

that the main structure of the architecture is composed of a bottom-up pathway for 

feature extraction and a top-down path for position detection on the image. The 
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combination of these two phases allows the network to detect objects of different scales 

with a good level of location precision in rapid training times. 

In this work, the FPN performance was compared to a well know network, the YOLOv5. 

YOLO (You Only Look Once) is an algorithm for object detection developed in 2016 [17] 

based on regression: instead of selecting the part of the interest of an image, it predicts 

classes and bounding boxes in one run of the algorithm (for this, Once), so it belongs to 

the SSDs class as the custom FPN explained before. YOLOv5 is about 88% smaller than 

YOLOv4 (27 MB vs. 244 MB), 180% faster than YOLOv4 (140 fps vs. 50 fps), and it is 

roughly as accurate as YOLOv4 on the same task (0.895 mAP vs. 0.892 mAP). The main 

problem is that there is no official document for the YOLOv5 version, except the concept 

paper of YOLOv4 [18] and references therein.  

Deep learning based networks are generally applied in agricultural scenarios for counting 

and detecting plants and plantation rows, crucial for plant health monitoring or plantation 

gaps identification after the seedling process [19].  Multi-temporal UAS imagery 

incorporation could significantly boost the accuracy and compensate for the low spectral 

resolution of RGB imagery [20]. Such approach could be applied to different crops for 

plant counting, crop health monitoring, yield estimation, and to plan optimized fertilizer, 

pesticide, and other input distribution within farm management [21]. 

The work aims at developing a machine learning approach for artichoke plant detection 

intended for real-time UAS spraying applications and an automatic multi-temporal 

tracking procedure for crop monitoring and UAS path planning development. In addition, 

to obtain a reliable model that can adapt to real-world applications and agricultural needs, 

the custom network was compared to the state-of-the-art YOLOv5 model. 

2. Materials and Methods 

2.1 Study site and survey date 

Experiments took place in an Artichoke cultivation. (cv. Spinoso sardo) on a 3000 m2 

surface in Uri, North-west Sardinia, Italy (Long. 8.472029, Lat. 40.623619; WGS84, 

EPSG 4326) at 125 m above sea level. Figure 1 shows an overall view of the artichoke 

field object of the study.  

The surveys were performed following the phenological development of the culture with 

2 weeks frequency in the first part of the growth and 1 month in the last phases, for a 

total of 7 days.  
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Figure 1. The artichoke field object of the study. 

2.2 UAS platform and implemented sensors 

Remote image acquisitions were performed by a DJI Phantom 4 Pro UAS equipped with 

RGB CMOS 1” sensor of 21 megapixels resolution, Field of View (FOV) 84°, 8.8 mm/24 

mm (35 mm format equivalent), f/2.8-f/11 autofocus 1 m to ∞.  

A RTK GNSS Reach RS+ (Emlid) connected to a NTRIP correction system was used to 

record the geographic coordinates of 12 Ground Control Points (GCPs), to obtain high 

accuracy orthomosaics and perform the temporal tracking process described in the next 

chapters.  

2.3 UAS images acquisition campaign 

During the 2021-2022 season, several images of the artichoke field in different growth 

stages were acquired by the DJI Phantom 4 Pro RGB sensor in nadiral position 

(perpendicular to the ground).  

Automatic flights were performed using the android based DJI pilot app, able to 

guarantee the execution of standardized photos and videos acquisition by following a 

constant path at a specific height above ground level (AGL).  

All flights for the orthomosaics creation were performed at 15m height AGL to obtain high 

quality images (232 photos for each flight). The speed was 1 m/s, the flight duration was 

10 min 21 s, 70% side overlap ratio and 80% frontal overlap ratio. A flight of 80 m was 

performed to test the networks performances on a previous flight of the entire field.  

The weather conditions were generally sunny and with clear sky; different lighting 

conditions in the photo-set were mainly due to the changing inclination of the incident 

radiation during the growing season. 

2.4 Deep learning plant detection 

Nowadays, it is increasingly easy to find predefined neural networks suitable for 

addressing various deep learning tasks, especially in object detection [22]. However, the 
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ability to build, train and test a custom neural network allows to better adapt the algorithm 

to the problem faced, giving more significance to the scientific work. With this aim, this 

section of the paper is devoted to explaining the network structure used in the detection 

phase, namely a custom FPN [23]. In the state of the art, there is a wide range of possible 

detection networks [24], each of which has its own strengths depending on the problem 

to be addressed. In our application scenario, which involves the use of a UAS capable 

of flying at different heights, the choice of the network had to consider its ability to detect 

objects at different scales. This is a peculiarity of FPN and the main reason this network 

was implemented for this work. The organization of the implementation (Figure 2) of the 

object detector was made according to the following scheme: 

▪ Data preprocessing 

▪ Network building 

▪ Network training 

– FPN training 

– YOLOv5 training 

▪ Network testing and performance evaluation 

▪ Offline detection 

where “offline detection” refers to the application of the trained model on a real scenario 

(i.e., on video and images collected by the UAS of the test area) but not in real-time.  

 
 Figure 2: The deep learning plant detection flowchart (left gray color column) and the partial output of 

each step (right blue color column). 
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2.4.1 Data processing 

Common to both networks was the preprocessing phase. Once the UAS acquisition 

phase was carried out, the images collected during the flight were merged to form a 

single orthorectified and high-resolution image called orthomosaic (Figure 3). The 

orthomosaics construction was made using OpenDroneMap, an application and API for 

UASs image processing capable of constructing an orthomosaics from a group of 

individual georeferenced images.  

(a) 

  

(b) 

  

(c) 

  

Figure 3. RGB orthomosaics (left column) and some artichoke plants details (right column) derived by 15 

m flight altitude of three different surveying dates: 7 September 2021 (a), 15 October 2021 (b), and 23 

November 2021 (c). 
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Seven orthomosaics corresponding to UAS flights in the months between September 

and December 2021 were generated, and an image dataset was extracted from each of 

them for the network training. After an initial phase of manual labeling performed using 

the software VGG Image Annotator (VIA) to obtain the ground truth of the data, the 

dataset generation was performed by randomly cropping orthomosaics and applying 

data-augmentation algorithms (rotation, blurring, saturation, etc.) to the obtained images 

to produce representative samples. The resulting dataset was then divided into training 

and test sets and provided as input to the detection network. 

2.4.2 FPN building 

Specifically, regarding the implementation of the network, the input parameters are as 

follow: 

▪ Grid Sizes: (4×4, 8×8, 16×16) px2 

▪ Priors Sizes: (1×1, 16×9, 9×16) px2 

▪ Input Size: (512×512) px2 

▪ Total parameters: 2.8 M. 

Where px refers to 1 pixel size (0.5 cm). Regarding the specifics of Python, 3.10.5 

opencv-python 3.4.11.43, NumPy 1.21.2, SciPy 1.21.2, and matplotlib 3.4.3 were used. 

 2.4.3 FPN training 

Once the network architecture was defined, the detector was trained on the datasets 

constructed in the preprocessing phase, dividing them into training and testing sets with 

a proportion of 70% and 30% respectively. The test set was used to get initial feedback 

on the network detection performance before applying the model for offline detection, as 

further explained in section 2.4.6. Recalling that the Location loss is the mismatch 

between the ground truth box and the predicted boundary box and that the Boxiness loss 

measures how confident the network is of the objectness of the computed bounding box, 

the specific training inputs, common to all the trainings, are as follows: 

▪ Loss Function: Boxiness loss + Location loss. 

▪ IoU: 50% 

▪ Batch Size: 8 

▪ Learning Rate: 1e-4 

▪ Optimizer: Adam 

Where IoU is the usual acronym for the Intersection over Union rate. By varying the 

dataset, the training time and the number of epochs are affected. Each new orthomosaic 

was merged with the training dataset. Therefore, the results obtained on the last dataset 
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are the most complete, the dataset having consisted of all previous orthomosaics. 

Generally, each network was trained for about 72-80 hours to obtain satisfactory results. 

2.4.4 YOLOv5 training 

Regarding our case of study, the smallest version of YOLOv5 (YOLOv5n) was also 

trained. Nano models maintain the YOLOv5 depth multiple of 0.33 but reduce the 

YOLOv5 width multiple from 0.50 to 0.25, resulting in ˜25% fewer parameters, from 7.5M 

to 1.9M, ideal for mobile and CPU solutions. 

The training phase was conducted similarly to the customized FPN. Thus, there was a 

preprocessing phase in which data-images were obtained from the cropped 

orthomosaics of the various UAS flights (from September to December 2021) and then 

provided to the network for training. The training included 2000 epochs and the batch 

was 8. 

2.4.5 Network performance testing and evaluation 

For both networks, before applying the model for offline detection, a test was performed 

for each training phase to evaluate the network performance and to maximize the 

networks’ detection capabilities. 

As pointed out in the training phase of the network, 30% of the datasets were used to 

test the network, extracting the measures of mAP, recall, precision and F1 score that are 

the usual metrics adopted for the evaluation of a machine learning model [25]: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3) 

Where, as usual, TP, FP, and FN indicate the number of true positive (intended as the 

correctly detected artichoke plants), false positive (weeds or other objects incorrectly 

detected as artichokes), and false negative (the undetected artichoke plants) 

respectively. Recall (sometimes called sensitivity) is a measure of the detection 

efficiency of the network to minimize the number of missed objects. Precision is a 

measure of the network accuracy to achieve the minimum number of detection error. F1 

score is the weighted average of Recall and Precision including both false positives and 

false negatives. This first testing phase proved how essential is to achieve the best 
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results in the offline detection phase, allowing the network parameters to be set in the 

most suitable way. After the network achieved the desired performance, it was applied 

to off-line orthomosaic analysis. 

2.4.6 Offline detection 

The step prior to the application of the model in a real-time scenario is the evaluation of 

its offline behavior. Strictly speaking, the quality of detection in the offline phase should 

be almost the same in the real-time application, since what the network processes are 

always videos and images, whether they have been collected and stored beforehand or 

transmitted directly from a camera. In fact, the Nvidia Jetson Nano board was selected, 

a small and powerful computer for embedded and AI IoT applications, to install the 

trained and tested networks for the evaluation phase.  

In the operational phase, i.e., in online detection with the UAS, only YOLOv5 will be 

loaded on the Jetson: this is because YOLOv5 is a lighter network than the custom 

feature pyramid, and to achieve the best results in detection, hardware performance 

(power consumption, storage memory, etc.) must also be considered. All the 

performance of YOLOv5 on Jetson has been reported in the Section 3.3. 

2.4.7 Temporal tracking 

To correctly reconstruct the complete time history of each plant, a temporal tracking 

algorithm has been developed. The first step of this process is a spatial registration of 

the consecutive pairs of orthomosaics [26]. 

 

Figure 4. One of the 12 GCPs used for image referencing. 
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The ground control points (GCP) (e.g., in Figure 4) have been placed on the ground by 

recording their georeferenced position (longitude, latitude, altitude), according to WGS84 

(EPSG 4326) geographic projection model. As such, all the centers of gravity of the DL 

detected boxes can be always remapped in world coordinates with an affine 

transformation, to support optimal UAS-sprayer mission planning before, in real-time 

crop operations.  

The adopted solution for orthomosaics registration at different recording times is an 

automatic registration process, based on the information provided by the box-plants 

detected by the Neural Network process. Such automatic registration is implemented in 

two following steps: 

▪ search for the overall translation (dx, dy) that maximizes the IoU between the 

boxes detected in the two consecutive orthomosaic images. 

▪ selection of the boxes with IoU above a predetermined threshold (> 50%) and 

computation of the relative homographic transform between the centers of mass. 

The mean square deviation of the homographic transformation is varying between 9 and 

12 cm, which roughly corresponds to the actual spread of the center of gravity positions 

of the matched boxes, in two consecutive time frames.  

The automatic registration allows to perform a spatial prediction between the coordinates 

of the orthomosaic at time t0 (past) with those at time t1 (next) and vice versa. It 

represents the basis of the time tracking process [27], which, in turn, is implemented in 

2 phases: 

▪ tracking forward: for each box detected at time t0, the best match is searched (in 

terms of max IoU) among all the boxes detected at time t1; if an acceptable match 

is not found (IoU threshold), a new hypothesis (prediction) is generated and 

added to the list of the boxes available at time t1, thus ensuring the propagation 

and continuity of the current track. 

▪ tracking backward: when the last available orthomosaic data has been reached, 

the process is repeated in reverse, generating backward predictions for all the 

boxes that do not have yet connections with the previous stages of the crop. 

The result of this tracking process is a series of complete traces, from the first 

orthomosaic image recorded, up to the last available, for all the box-plants that have 

been detected by the Neural Network. The total number of traces inevitably includes 

some errors that can be classified as: 

▪ missed-box-plants, mainly due to low image contrast, interference with other 

elements of the scene, etc. 

▪ localization and size errors, with low IoU values, as compared to the truth.  



87 
 

▪ new-phantom-boxes, which appear in areas where there are no plants, often due 

to the presence of weeds, scattered leaves, etc. 

With time tracking it is possible to correct most of these errors and obtain better 

performance levels (recall and precision) as compared to the analysis at each individual 

stage of the crop. 

2.4.8 Artichoke crop field analysis 

The output list of the box-plants from the temporal integration is re-organized by ordering 

them both in vertical and horizontal positions along the plant rows in the field. Figure 5 

shows a subset of the crop field (the full size is 14112 × 9072 px), with the overlap of the 

detected and time-tracked box-plants.  

 

Figure 5. A partial view of the RGB orthomosaic, with the box-plants detected and tracked over time-space 

(blue) and connected along each row of the crop. 

In a real-time application, on-board of the UAS, to drive the direction of the sprayer 

towards the actual position of the plants, the best network configuration should exhibit a 

high recall rate, to minimize the number of missed targets; some additional detection 

errors (lower precision) will be acceptable in this case. Given the potentially real-world 

application, it is worth noting how much the detected boxes differ from the ground truth: 

minimal variations on detection can drastically affect the UAS’s spraying positioning over 

the target plant and the operation planning, so the deviation between the centers of the 

detected boxes and their respective truth boxes to apply appropriate countermeasures 

was estimated. The L2 norm was identified (the Euclidean distance) as the most 

representative measure for estimating the distance between the centers of the boxes, 

since it considers deviations along all directions of the plane. Calling 𝑐𝑖
𝐷 = (𝑐𝑥,𝑖

𝐷 , 𝑐𝑦,𝑖
𝐷 ) and 

with 𝑐𝑖
𝑇 = (𝑐𝑥,𝑖

𝑇 , 𝑐𝑦,𝑖
𝑇 ) the centers of the i-th detected box and ground-truth box, 
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respectively, it was calculated the distance di for all pairs of detected and ground-truth 

boxes as: 

𝑑𝑖 = √(𝑐𝑖
𝐷)2 − (𝑐𝑖

𝑇)2 = √(𝑐𝑥,𝑖
𝐷 − 𝑐𝑥,𝑖

𝑇 )2 + (𝑐𝑦,𝑖
𝐷 − 𝑐𝑦,𝑖

𝑇 )2 (4) 

From this data representation it is possible to achieve an automatic segmentation of each 

plant row with corresponding parameters (number of plants/rows, vegetation-mass index 

and density of the plants) which provide a clear view of the health status of the crop. 

Another output of the multitemporal analysis was the Growing index related to the 

seasonal development of the crop size. It is computed as the ratio between the average 

size (width and height) of the bounding box of the plants detected at the different times 

of the experiment: 

𝐺𝐼𝑖=
1

𝑁
∑

𝑤𝑗
𝑖+ℎ𝑗

𝑖

𝑤𝑗
𝑖−1+ℎ𝑗

𝑖−1 , 𝑖 = 2, … ,7𝑁
𝑖=1  (5) 

Where 𝑤𝑗
𝑖 and ℎ𝑗

𝑖 are, respectively, the width and the height of the j bounding boxes of 

the orthomosaic i , and N is the number of the bounding boxes in the orthomosaic, which, 

thanks to the temporal tracking algorithm, is the same for each orthomosaic (N = 1419 

for FP network and N = 1351 for YOLOv5 network). 

3. Results 

3.1 Deep learning plant detection 

3.1.1 FPN 

The evaluation phase of the FPN was conducted testing the network on the portion of 

the dataset not used for training. Table 1 shows the performances of the network in the 

detection of the artichoke plants. TP is the number of the boxes correctly identified by 

the network, with an overlap measure IoU of more than 50% over the ground truth boxes 

that were selected during the manual annotation process. FP is the number of boxes 

detected by the network which do not correspond to ground truth boxes, or the IoU is 

lower than the 50% threshold. FN is the number of ground truth boxes (in the annotation 

list) that have been missed by the detection network. Refer to Section 2.4.5 for the 

definition of precision, recall and F1 score. Table 1 and Table 2 compare the performance 

measures obtained before and after the Forward-Backward tracking process. 
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Table 1. Performance measure of the FPN Detection at each individual date of the test. 

Date TP FP FN Precision Recall F1score 
09_07 474 11 72 0.977 0.868 0.919 

09_14 533 22 53 0.96 0.91 0.934 

10_01 541 39 66 0.933 0.891 0.912 

10_15 544 18 57 0.968 0.905 0.936 

11_09 460 32 141 0.935 0.765 0.842 

12_03 450 73 125 0.86 0.783 0.82 

12_23 509 71 95 0.878 0.843 0.86 

Table 2. Performance measures of the FPN network after multi-temporal tracking. 

Date TP FP FN Precision Recall F1score 
09_07 487 146 59 0.76 0.89 0.83 

09_14 531 95 55 0.84 0.91 0.88 

10_01 555 102 52 0.85 0.91 0.88 

10_15 550 82 51 0.87 0.92 0.89 

11_09 517 124 84 0.8 0.86 0.83 

12_03 499 121 76 0.81 0.87 0.84 

12_23 519 106 85 0.83 0.86 0.85 

In this case the DL SSD network has been designed to achieve the minimum number of 

detection errors (maximum precision), which adversely affects the detection rate (lower 

value of recall). Anyway, this choice has proved to be optimal for the overall tracking 

process which tends to propagate box predictions in both time directions, based on the 

assumption that detection is reliable and correct. Table 2 shows the results after tracking.  

Table 3 show the metrics extracted from di to evaluate the deviation between the centers 

of the predicted boxes and those of ground truth. Statistics were first calculated per pixel 

and then reported in cm with the equivalence that 1 px = 0.5 cm. 

Table 3. Statistics of the deviation between the centers of the predicted boxes and those of ground truth. 

Date Min (cm) Max (cm) Mean (cm) Mode (cm) Median (cm) Std (cm) 
09_07 0.00 21.82 4.89 1.11 4.30 3.24 

09_14 0.00 30.56 6.17 3.53 4.74 4.99 

10_01 0.50 40.05 8.99 1.80 6.40 7.40 

10_15 0.50 44.77 8.10 2.50 6.51 6.35 

11_09 0.70 47.16 14.11 4.03 12.06 9.73 

12_03 0.70 51.24 12.30 4.03 9.92 9.02 

12_23 0.00 56.64 12.08 1.11 9.48 9.51 
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3.1.2 YOLOv5 

The evaluation phase was conducted as for the custom FPN, and Table 4 shows the 

results of YOLOv5 for each dataset. 

Table 4. Performance measures of the YOLOv5 at each individual date of the test. 

Date TP FP FN Precision Recall F1 score 
09_07 437 1 109 0.99 0.8 0.88 

09_14 469 2 117 0.99 0.8 0.88 

10_01 534 3 73 0.99 0.88 0.93 

10_15 543 7 58 0.98 0.9 0.94 

11_09 522 7 79 0.98 0.86 0.92 

12_03 494 5 81 0.99 0.85 0.92 

12_23 509 3 95 0.99 0.84 0.91 

As with the previous network, a tracking process was carried out for YOLOv5n to improve 

the quality of the prediction. Table 5 shows the prediction results after tracking. 

Table 5. Performance measures of the YOLOv5 network designed to achieve the lower number of 

detection errors. 

Date TP FP FN Precision Recall 
F1 

score 
09_07 475 127 71 0.78 0.87 0.82 

09_14 492 105 94 0.82 0.84 0.83 

10_01 567 56 40 0.91 0.93 0.92 

10_15 554 46 47 0.92 0.92 0.92 

11_09 557 51 44 0.91 0.92 0.92 

12_03 530 61 45 0.89 0.92 0.9 

12_23 550 44 54 0.92 0.91 0.91 

Table 6. Statistics of the deviation between the centers of the predicted boxes and those of ground truth for 

the YOLOv5. 

Date min max mean mode median std 

09_07 0.00 16.86 2.54 1.11 2.61 2.15 

09_14 0.00 13.41 2.83 1.11 2.12 2.19 

10_01 0.00 33.63 3.94 1.11 2.69 3.84 

10_15 0.00 34.05 4.66 1.11 3.35 4.16 

11_09 0.00 59.03 5.70 1.58 3.60 5.88 

12_03 0.00 45.02 7.05 1.58 4.52 7.24 

12_23 0.00 41.50 5.84 2.23 4.03 5.55 
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3.2 FPN and YOLOv5 comparison 

Figure 6 reports the detection of the whole study area with the two different networks: 

both showed to be able to detect a high number of plants (detection of the whole 

orthomosaic is an onerous task for one network) but with a better prevalence of YOLOv5, 

which, as mentioned, tends to minimize false positives (identified by the bigger red 

squares in the top-right and bottom-right parts of Figure 6a). 

 

  
(a) (b) 

Figure 6. Detection of the entire crop area with both nets. It is possible to see in the upper right part of the 

image (a) how the FPN detects several false positives of the artichoke plant. In contrast, the YOLOv5 

network performs approximately perfect detection of the entire field (b). 

As a last metric to compare the two networks, the mAP index for each orthomosaic is 

reported in Figure 7.  

 

Figure 7. The mean Average precision index for the two networks across all datasets. 
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3.3 Offline detection 

As mentioned in subsection 2.4.6, in the operational phase only the YOLOv5 network 

will be mounted on the Nvdia Jetson board.  Table 7 shows some statistics of the Jetson 

board when the YOLOv5 network is running on it in the test phase. The statistics were 

obtained from jetson-stats, a package for monitoring and controlling NVIDIA Jetson [Orin 

series, Xavier series, Nano, TX1, TX2]. The performance statistics were evaluated in two 

different power modes of the board: 5w mode, in which the board operates at low power 

consumption and uses only 2 of the 4 CPUs, and MAXN mode, which uses all available 

power up to a maximum of 15w. 

Table 7. Table of statistics of the Nvdia Jetson Nano board when running the trained YOLOv5 network. 

 5W mode MAXN mode 
 Min Max Mean Std Min Max Men Std 

CPU1 (%) 10.00 100.00 66.08 23.13 2 81 38.14 11.82 

CPU2 (%) 12.00 100.00 66.39 22.77 1 81 36.48 10.89 

CPU3 (%) \ \ \ \ 0 53 35.52 11.33 

CPU4 (%) \ \ \ \ 0 54 35.98 11.58 

GPU (%) 7.00 99.00 56.36 44.65 0 99 79.48 34.82 

RAM 
206790

0 

210135

2 

208790

0 

1375

7 

208476

8 

210459

6 

209900

0 

5937

1 

TempCPU (°) 28.50 33.00 30.87 1.36 32.00 38.5 35.65 1.63 

TempGPU (°) 28 32.5 30.28 1.49 32 37 35.76 1.36 

PowerAvg 

(mW) 
1945 3035 2553 551.1 3435 4722 4237 

383.9

3 

Figure 8 shows the number of fps evaluated by the board in the two different power 

modes.  

 

Figure 8. fps in the different power modes. It is evident that by using the total power of the Nvidia Jetson 

board, the performance in terms of fps increases dramatically. 
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3.4 Multi-temporal analysis 

The graphics in Figure 9 shows the evolution of the Growing Index (GI) for each network. 

The figure shows the range of variations on a differential scale (between consecutive 

maps) as well as the cumulative value during time.  

  
(a) (b) 

Figure 9. Graphic plots of the growing index (GI) evolution for the FPN (a) and the YOLOv5 (b) networks. 

The whisker plot shows the range of variations between two consecutive dates of the experiment. The GI 

is measured as the ratio between the sizes of the bounding box collected at the different times of the 

experiment. The blue line represents the cumulative average index. 

To address the issue of the uniformity or uneven distribution of the growing rate, it is 

possible to display a heat-map (as in Figure 10) where the spatial distribution of the 

growing index value for each tracked plant, is shown (color scale) over the full crop field.  

 

Figure 10. The heat-map of the GI (from 1 October to 15 October of the dataset). The color scale (from 

red to green) is shown with the range values (from a minimum of 0.55 to the maximum of 1.8). 
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Figure 11 shows the temporal evolution of two sample artichoke plants (detected with 

the YOLOv5 network, the behavior with the FPN being the same) in a simple isolated 

case (a) and a quite common situation (b) where the growing of nearby plants is quickly 

reaching a size of mutual interference and partial overlaps.  

 
(a) 

 
(b) 

Figure 11. History-map for each individual artichoke plant, over the full dataset; (a) simple case of an 

isolated plant; (b) more common case of multiple plants and their growing process (yellow boxes 

correspond to prediction results of the tracking process). 

Another result reported in Table 8, highlight the occupancy rate of the plants along the 

rows and its development through the growing season. 

Table 8. Occupancy rate and average size of the box-plants along the rows during the development of the 

crop for each network. 

 FPN YOLOv5 

Date 
Occupancy  

rate (%) 
Avg. plant  
size (cm) 

Occupancy rate (%) Avg. plant size (cm) 

09_07 30.03 53 28.37 57 

09_14 40.38 65 39.31 71 

10_01 52.34 85 52.36 93 

10_15 57.90 95 56.78 97 

11_09 65.59 122 66.52 127 

12_03 66.06 119 66.21 125 

12_23 61.60 107 61.95 115 

4. Discussions 

The results obtained on the various datasets show that the network performs 

satisfactorily on artichoke plants detection, irrespective of the date of the test. It is worth 

reminding that the same trained network was used for the whole experimental season, 

without any optimization for the individual datasets. This time independence is 
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particularly important for an industrial application of this technology in precision 

agriculture because it can be applied to different scenarios in a small amount of time for 

different crop applications.  

In general, the detection rate (recall) is higher in the early period of the crop when the 

plants are smaller and isolated and is lower in the late period of the year. This behavior 

highlights the increasing difficulties to detect and distinguish plants in the last phases 

due to the mutual overlap of the bigger plants within the rows (Figure 10). A similar trend 

is also visible for the measure of precision which is over 90% in the early dates. 

Missing plants tend to decrease during the experimental dates, except on 9 November 

2021. The different illumination condition derived by a different angle of the incident 

radiation, and the presence of Oxalis pes-caprae L., one of the most abundant alien 

species in artichoke fields during the last days of winter, could have given a higher 

contrast helping the detection system to distinguish artichoke plants more easily from 

weed or other elements in the latest surveys dates (Figure 12). 

  
(a) (b) 

Figure 12. Two different date acquisitions of the same field portion. The Oxalis pes-caprae invasive plants 

on 23 December 2021 (b) determined a stronger contrast compared to the 9 November 2021 survey (a). 

As compared to the performance detection analysis carried out individually for each 

stage of the crop, significant improvements can be obtained by using a multi-temporal 

analysis, with the aggregation of information from all stages of the crop. As such a 

complete history of the evolution of the plant starting from the first acquired observation 

could be obtained. For example, it is possible to compensate for a possible lack of 

detection on a certain date, thanks to the availability of new detection data, as well as to 
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manage the partial overlaps of neighboring plants, and correct some evident errors of 

localization and size. 

From the availability of the complete temporal traces of each plant it is possible to obtain 

useful indicators on the evolution of the crop which can be used by the expert agronomist 

to properly plan irrigation and fertilization interventions and improve plant productivity 

and health. In addition to the overall estimates on the evolution of the crop (vegetative 

mass, growth indices), averaged over the entire observed field, some detailed spatial 

maps can also be provided to highlight any anomalies or non-uniformities in the different 

areas of the field. 

The result of tracking all the detected box-plants over time increases the number of 

instances by filling most missing data (with box-prediction), and allows a remarkable 

improvement of recall, at the expense of a reduced level of precision (i.e., more 

candidates for nearby plants).  Moreover, the spatial ordering of all plant- boxes along 

each individual row of the crop field allows additional measures like the occupancy rate 

of the plants as shown in Table 8. The number of plants is progressively increasing, with 

respect to the background (terrain and weed), by reaching a maximum value at the 

beginning of December, in accordance with the growing index. The field consists of 25 

rows of plants with an initial estimated planting of 3000 samples. The number of detected 

plants during the 7 experimental campaigns reveals a strong reduction of plants (more 

than 60%) during the very early stages of development, with a progressive stabilization. 

The multitemporal analysis allowed the obtainment of a more efficient net that, if applied 

to the same crop in the next years will achieve better performance to the first, more 

balanced network. This approach, after the first year of image acquisition and network 

training, can be applied regularly for crop analysis, without the need of repeating the 

training process.  

As stated in the materials and methods section, the detection process involved the 

conversion of the WGS84 georeferenced images in a XY coordinate system to easily 

perform the detection process. The artichoke plants detector has been developed not 

only to later create a real time detection system implemented on board of a spraying 

UAS, but also to hypothesize the future creation of a path planning system useful to 

define the borders of the field and the optimized route the UAS will follow, adapting the 

flight course to maintain the position of the nozzles over the plants. The use of the RTK 

positioning system is a mandatory equipment to perform such operations, but as 

frequently happens, these systems face low accuracy problems, especially in remote 

zones characterized by poor correction signal cover. Any error in the positioning related 

to the frequent low accuracy of GPS systems implemented on board of UASs will be 

solved by using the real-time plant detector system. From tables 2 and 5, it can be said 

that the network predictions do not deviate overly (on average) from the ground truth, 
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confirming the good detection performance reported in tables 1 and 4. So, apparently, 

the evidence does not imply taking countermeasures to align the UAS and properly 

control the detected artichoke, but further analysis will need to be done when the model 

will be tested in real scenarios. Based on the representation reported in Figure 5, it will 

be possible to perform path-planning optimization for spraying operations (by UAS or 

Unmanned Ground Vehicle). 

Moreover, a full history of the vegetation process is obtained, for each individual plant 

(Figure 11), at the different stages of the development process. This detection system’s 

ability will open new scenarios for plant detection, easily allowing the operator to monitor 

the entire field and evaluate the condition of each plant, specifically for those that show 

different conditions respect to the rest of the field. 

Once the net is trained to detect a specific crop, a first explorative flight should be 

performed each year after plants’ emergence to identify the exact field borders (which 

also match the operations limits), create an optimized flying route based on the size and 

positions of nozzles, and have a time zero status of the field. To maintain a low waste of 

agrochemicals products, intermediate monitoring flights should be performed to verify 

the exact number, the size of plants and, in case of missing plants, adapt the flight 

parameters and the required agrochemical amount to distribute. 

YOLOv5’s performance is marked by a low detection error (precision over 98%) but with 

a less accurate detection rate (recall just over 80%), which, however, rises above 90% 

after temporal tracking, and is different from the FPN results, which reported more 

balanced values of precision and recall (see tables 4 and 5). In contrast, the F1 index, 

which is a weighted average of precision and recall, settles at similar values for both 

networks. Compared with the same results from the custom FPN, in Table 1 the 

prediction statistics change drastically, the data being more balanced: precision drops to 

more standard values (from 78% to 92%) and recall increases to more acceptable values 

(from 84% to 93%).  

The results reported in Table 6 are quite similar, but YOLOv5 performs a slightly better 

alignment between the detected boxes and ground truth: this may be related to the fact 

that, as shown in Table 4, YOLOv5 tends to have higher precision in box recognition 

against a lower number of detected boxes. In Figure 7 YOLOv5 is significantly better 

than FPN, which has a decreasing trend in performance as the months of the datasets 

increase. For both configurations (although in MAXN mode the performance is 

significantly better) the fps rate is satisfactory (between 14 and 15 fps in the 5w mode 

and between 20 and 21 fps for the MAXN mode), allowing this board to be used for 

operational and industrial purposes. 

These real-time approaches, even if characterized by a preliminary complex and time-

consuming process of data processing and training, are required to optimize operations 
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like UAS agrochemicals spraying. The entire procedure was a first approach to develop 

a detector system finalized to perform real-time spraying operation over horticultural 

plants (in this case artichoke) but mostly to identify the process workflow, highlight the 

potentialities and, most of all, discover the related limits. The rising application of UASs 

in precision agriculture scenarios relies on the optimization of operations regarding 

spot/site-specific input application, path planning and quick response obtainment. Future 

works will involve the use of possible explainable AI techniques, like safety regions [28] 

and counterfactual explanation [29], to improve plant detection and give more strength 

to the multitemporal analysis framework. 

5. Conclusions 

A machine learning approach for artichoke plant identification for UAS real-time spraying 

applications was developed. The FPN showed satisfactory detection performances in 

testing and offline phases, processing videos and images through the Nvidia Jetson 

Nano board, and showing comparable results with the YOLOv5 network. The proposed 

automatic multitemporal tracking and analysis procedure showed the possibility of 

developing a UAS path planning procedure for flight optimization, needed to execute 

accurate and precise agrochemicals distribution. Such procedure allowed crop 

monitoring over the entire season, showing important results related to the growing 

heterogeneity of the field. The next steps, on the strength of the encouraging obtained 

results, will be to incorporate the Nvidia Jetson Nano board directly on the UAS to 

perform real-time detection and spraying application, giving a potentially strong and 

significant scope to this work. Moreover, multi-temporal analysis allows the exploration 

of crucial information to improve detection reliability and develop an automatic procedure 

for crop development monitoring.  
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Chapter 5 – General conclusions 
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Concluding remarks and future perspectives  

The dissertation aims to explore the potential and efficiency of unmanned aerial systems 

and machine learning approaches for crop management and agrochemical distribution 

optimization in orchard and vegetable cultivation systems. All the reported papers 

highlight how these technologies, even in a preliminary stage, could help solve present 

and future issues of contemporary agriculture. Further research is needed to optimize 

their application and promote wider use, overcoming the required programming and 

scientific skills through software development with a user-friendly configuration. 

Chapter 2 focused on the possible use of alternative UAS remote sensing techniques to 

replace TRV for canopy estimation in a vineyard. The results confirm the appropriateness 

of integrating or replacing field measures with more precise and accurate techniques 

when estimating orchards' structural characteristics for the optimization of chemical 

application and other agronomic practices with an impact on costs and ecological 

sustainability. This knowledge may provide the necessary information for a 

comprehensive understanding of structural characteristics and functional vineyard traits 

with the final objective of enhancing economic performances and environmental 

sustainability of productive farms.  Remote sensing represents a promising tool in 

precision viticulture, further studies should propose new or refined techniques for 

quantifying additional canopy features.  

The objective of the contribution reported in Chapter 3 was to develop a system for grape 

bunch detection regardless of variety and geographic location. Therefore, the Deep 

Learning detector, trained and tested on the GrapeCS-ML dataset, was also tested on 

an in-house dataset collected from several Sardinian vineyards over the past decade. 

The obtained results are promising, as most of the grape bunches were detected 

correctly. Errors arise from the incorrect detection of two bunches as one. In the state-

of-the-art, with customized methodologies for a precise application context, the obtained 

results confirm the portability, flexibility, and novelty of the proposed approach for 

different scenarios. This approach, applicable to fruit detection and tracking operations 

of autonomous systems, will help reduce human subjectivity during the visual status 

assessment, optimize the monitoring time, and reduce the environmental impact of 

derivative operations such as agrochemical distribution and harvesting.  

Chapter 4 reports the results of a Feature Pyramid Network (FPN) machine learning 

algorithm for artichoke plant identification for real-time UAS spraying applications. The 

FPN showed satisfactory detection performance in the test and offline phases, 

processing video and images through the Nvidia Jetson Nano board and showing 

comparable results with the YOLOv5 network. The proposed automatic multitemporal 

tracking and analysis procedure enabled the monitoring of crops throughout the season, 

showing crucial results related to field growth heterogeneity. The next step is to 
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incorporate the Nvidia Jetson Nano on a UAS for real-time tracking and spray 

application. In addition, use multitemporal analysis to improve detection reliability and 

develop an automatic procedure for monitoring crop development. 

The thesis first analyzed both technologies and their current application and later 

explored the results obtained from their combination. The results are encouraging, 

showing high compatibility and potential. UASs represent a promising tool already well-

established in agricultural scenarios. Further improvements regard flight autonomy and 

payload capability increment, lowering costs (especially about the implemented 

sensors), automation, and more permissive flight regulations (particularly limiting, 

especially for aerial agrochemical distribution). Rapid technological evolution should be 

followed by appropriate regulation able to capture society's and companies' needs. Major 

improvements and changes are needed to regulate aerial distribution of agrochemicals 

via UAS in Europe, or at least to accelerate and facilitate trials, which are essential to 

explore the limits and potential of this technology. Machine learning saw considerable 

employment in the last decade thanks to the calculation capability improvement, the 

establishment of new professional profiles experienced in the topic, knowledge and 

methods sharing. The major ethical issues surrounding AI implementation affect its 

diffusion, especially when it is free to make decisions without human supervision and to 

access private information.  This is far from a dystopic future based on machines and 

computers, but to make good use of such technology it is necessary to think about its 

regulation and possible derived risks.  

The presented approaches report some of the multiple tools and technologies smart 

agriculture can use. Further studies and practical applications are required to test and 

evaluate their potential in real scenarios.  In the future decades their development will be 

essential to reach agriculture purposes to feed the world population. Technology 

advance is essential, but the development of accessible technology in terms of costs and 

usability is crucial to enable its spreading worldwide, especially in those country 

characterized by higher population growth rate and urgent need of input optimization. 


