Polymeric products are largely used for consolidation of stone in the field of cultural heritage. Nevertheless, the main problem of polymeric compounds is related to their macromolecular nature, it being difficult for a polymer to penetrate inside the pores which may have a very small diameter. These considerations are the starting points for in situ polymerization. According to this technique, not the pre-formed polymer, but the monomer is introduced into the stone and it is polymerized in situ in a subsequent step. Frontal polymerization (FP) is a particular technique in which the heat released by the exothermal reaction of monomer to polymer conversion is exploited to promote the formation of a hot traveling front able to propagate and self-sustain the reaction. In the present work, FP is performed inside the pores of the stone and the results lead to the conclusion that the hot front is still active in the presence of an inorganic material which dissipates partially the heat released during the polymerization. In addition some recent applications of FP are discussed in comparison with the traditional polymerization for the in situ consolidation and protection of stones. Copyright (c) 2005 John Wiley I Sons, Ltd.

Polymeric products are largely used for consolidation of stone in the field of cultural heritage. Nevertheless, the main problem of polymeric compounds is related to their macromolecular nature, it being difficult for a polymer to penetrate inside the pores which may have a very small diameter. These considerations are the starting points for in situ polymerization. According to this technique, not the pre-formed polymer, but the monomer is introduced into the stone and it is polymerized in situ in a subsequent step. Frontal polymerization (FP) is a particular technique in which the heat released by the exothermal reaction of monomer to polymer conversion is exploited to promote the formation of a hot traveling front able to propagate and self-sustain the reaction. In the present work, FP is per formed inside the pores of the stone and the results lead to the conclusion that the hot front is still active in the presence of an inorganic material which dissipates partially the heat released during the polymerization. In addition some recent applications of FP are discussed in comparison with the traditional polymerization for the in situ consolidation and protection of stones.

Frontal polymerization of acrylic monomers for the consolidation of stone / Vicini, S; Mariani, Alberto; Princi, E; Bidali, S; Pincin, S; Fiori, S; Pedemonte, E; Brunetti, Antonio. - In: POLYMERS FOR ADVANCED TECHNOLOGIES. - ISSN 1042-7147. - 16:4(2005), pp. 293-298. [10.1002/pat.584]

Frontal polymerization of acrylic monomers for the consolidation of stone

MARIANI, Alberto;BRUNETTI, Antonio
2005-01-01

Abstract

Polymeric products are largely used for consolidation of stone in the field of cultural heritage. Nevertheless, the main problem of polymeric compounds is related to their macromolecular nature, it being difficult for a polymer to penetrate inside the pores which may have a very small diameter. These considerations are the starting points for in situ polymerization. According to this technique, not the pre-formed polymer, but the monomer is introduced into the stone and it is polymerized in situ in a subsequent step. Frontal polymerization (FP) is a particular technique in which the heat released by the exothermal reaction of monomer to polymer conversion is exploited to promote the formation of a hot traveling front able to propagate and self-sustain the reaction. In the present work, FP is per formed inside the pores of the stone and the results lead to the conclusion that the hot front is still active in the presence of an inorganic material which dissipates partially the heat released during the polymerization. In addition some recent applications of FP are discussed in comparison with the traditional polymerization for the in situ consolidation and protection of stones.
2005
Polymeric products are largely used for consolidation of stone in the field of cultural heritage. Nevertheless, the main problem of polymeric compounds is related to their macromolecular nature, it being difficult for a polymer to penetrate inside the pores which may have a very small diameter. These considerations are the starting points for in situ polymerization. According to this technique, not the pre-formed polymer, but the monomer is introduced into the stone and it is polymerized in situ in a subsequent step. Frontal polymerization (FP) is a particular technique in which the heat released by the exothermal reaction of monomer to polymer conversion is exploited to promote the formation of a hot traveling front able to propagate and self-sustain the reaction. In the present work, FP is performed inside the pores of the stone and the results lead to the conclusion that the hot front is still active in the presence of an inorganic material which dissipates partially the heat released during the polymerization. In addition some recent applications of FP are discussed in comparison with the traditional polymerization for the in situ consolidation and protection of stones. Copyright (c) 2005 John Wiley I Sons, Ltd.
Frontal polymerization of acrylic monomers for the consolidation of stone / Vicini, S; Mariani, Alberto; Princi, E; Bidali, S; Pincin, S; Fiori, S; Pedemonte, E; Brunetti, Antonio. - In: POLYMERS FOR ADVANCED TECHNOLOGIES. - ISSN 1042-7147. - 16:4(2005), pp. 293-298. [10.1002/pat.584]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/57750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 54
social impact