Non-native tree species (NNT) are used in European forestry for many purposes including their growth performance, valuable timber, and resistance to drought and pest or pathogen damage. Yet, cultivating NNT may pose risks to biodiversity, ecosystem functioning, and the provisioning of ecosystem services, and several NNT have been classified as invasive in Europe. Typically, such classifications are based on risk assessments, which do not adequately consider site-specific variations in impacts of the NNT or the extent of affected areas. Here, we present a new methodological framework that facilitates both mitigating risks associated with NNT and taking advantage of their ecosystem services. The framework is based on a stratified assessment of risks posed by NNT which distinguishes between different sites and considers effectiveness of available management strategies to control negative effects. The method can be applied to NNT that already occur in a given area or those NNT that may establish in future. The framework consists of eight steps and is partly based on existing knowledge. If adequate site-specific knowledge on NNT does not yet exist, new evidence on the risks should be obtained, for example, by collecting and analyzing monitoring data or modeling the potential distribution of NNT. However, limitations remain in the application of this method, and we propose several policy and management recommendations which are required to improve the responsible use of NNT.

Site‐specific risk assessment enables trade‐off analysis of non‐native tree species in European forests / Bindewald, Anja; Brundu, Giuseppe; Schueler, Silvio; Starfinger, Uwe; Bauhus, Jürgen; Lapin, Katharina. - In: ECOLOGY AND EVOLUTION. - ISSN 2045-7758. - (2021). [10.1002/ece3.8407]

Site‐specific risk assessment enables trade‐off analysis of non‐native tree species in European forests

Brundu, Giuseppe
Writing – Original Draft Preparation
;
2021-01-01

Abstract

Non-native tree species (NNT) are used in European forestry for many purposes including their growth performance, valuable timber, and resistance to drought and pest or pathogen damage. Yet, cultivating NNT may pose risks to biodiversity, ecosystem functioning, and the provisioning of ecosystem services, and several NNT have been classified as invasive in Europe. Typically, such classifications are based on risk assessments, which do not adequately consider site-specific variations in impacts of the NNT or the extent of affected areas. Here, we present a new methodological framework that facilitates both mitigating risks associated with NNT and taking advantage of their ecosystem services. The framework is based on a stratified assessment of risks posed by NNT which distinguishes between different sites and considers effectiveness of available management strategies to control negative effects. The method can be applied to NNT that already occur in a given area or those NNT that may establish in future. The framework consists of eight steps and is partly based on existing knowledge. If adequate site-specific knowledge on NNT does not yet exist, new evidence on the risks should be obtained, for example, by collecting and analyzing monitoring data or modeling the potential distribution of NNT. However, limitations remain in the application of this method, and we propose several policy and management recommendations which are required to improve the responsible use of NNT.
2021
Site‐specific risk assessment enables trade‐off analysis of non‐native tree species in European forests / Bindewald, Anja; Brundu, Giuseppe; Schueler, Silvio; Starfinger, Uwe; Bauhus, Jürgen; Lapin, Katharina. - In: ECOLOGY AND EVOLUTION. - ISSN 2045-7758. - (2021). [10.1002/ece3.8407]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/253399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact