The aging process is characterized by the presence of high interindividual variation between individuals of the same chronical age prompting a search for biomarkers that capture this heterogeneity. Epigenetic clocks measure changes in DNA methylation levels at specific CpG sites that are highly correlated with calendar age. The discrepancy resulting from the regression of DNA methylation age on calendar age is hypothesised to represent a measure of biological ageing with a positive/negative residual signifying age acceleration /deceleration respectively. The present study examines the associations of four epigenetic clocks - Horvath, Hannum, PhenoAge, GrimAge - with a wide range of clinical phenotypes (walking speed, grip strength, Fried frailty, polypharmacy, Mini-Mental State Exam (MMSE), Montreal Cognitive Assessment (MOCA), Sustained Attention Reaction Time, 2-choice reaction time), and with all-cause mortality at up to 10-year follow-up, in a sample of 490 participants in the Irish Longitudinal Study on Ageing (TILDA). Horvath Age Acceleration (AA) and HannumAA were not predictive of health; PhenoAgeAA was associated with 4/9 outcomes (walking speed, frailty MOCA, MMSE) in minimally adjusted models, but not when adjusted for other social and lifestyle factors. GrimAgeAA by contrast was associated with 8/9 outcomes (all except grip strength) in minimally adjusted models, and remained a significant predictor of polypharmacy, frailty, and mortality in fully adjusted models. Results indicate that the GrimAge clock represents a step-improvement in the predictive utility of the epigenetic clocks for identifying age-related decline in an array of clinical phenotypes promising to advance precision medicine.

GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality / Mccrory, Cathal; Fiorito, Giovanni; Hernandez, Belinda; Polidoro, Silvia; O'Halloran, Aisling M; Hever, Ann; Ni Cheallaigh, Cliona; Lu, Ake T; Horvath, Steve; Vineis, Paolo; Kenny, Rose Anne. - In: JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES. - ISSN 1079-5006. - (2020). [10.1093/gerona/glaa286]

GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality

Fiorito, Giovanni;
2020-01-01

Abstract

The aging process is characterized by the presence of high interindividual variation between individuals of the same chronical age prompting a search for biomarkers that capture this heterogeneity. Epigenetic clocks measure changes in DNA methylation levels at specific CpG sites that are highly correlated with calendar age. The discrepancy resulting from the regression of DNA methylation age on calendar age is hypothesised to represent a measure of biological ageing with a positive/negative residual signifying age acceleration /deceleration respectively. The present study examines the associations of four epigenetic clocks - Horvath, Hannum, PhenoAge, GrimAge - with a wide range of clinical phenotypes (walking speed, grip strength, Fried frailty, polypharmacy, Mini-Mental State Exam (MMSE), Montreal Cognitive Assessment (MOCA), Sustained Attention Reaction Time, 2-choice reaction time), and with all-cause mortality at up to 10-year follow-up, in a sample of 490 participants in the Irish Longitudinal Study on Ageing (TILDA). Horvath Age Acceleration (AA) and HannumAA were not predictive of health; PhenoAgeAA was associated with 4/9 outcomes (walking speed, frailty MOCA, MMSE) in minimally adjusted models, but not when adjusted for other social and lifestyle factors. GrimAgeAA by contrast was associated with 8/9 outcomes (all except grip strength) in minimally adjusted models, and remained a significant predictor of polypharmacy, frailty, and mortality in fully adjusted models. Results indicate that the GrimAge clock represents a step-improvement in the predictive utility of the epigenetic clocks for identifying age-related decline in an array of clinical phenotypes promising to advance precision medicine.
2020
GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality / Mccrory, Cathal; Fiorito, Giovanni; Hernandez, Belinda; Polidoro, Silvia; O'Halloran, Aisling M; Hever, Ann; Ni Cheallaigh, Cliona; Lu, Ake T; Horvath, Steve; Vineis, Paolo; Kenny, Rose Anne. - In: JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES. - ISSN 1079-5006. - (2020). [10.1093/gerona/glaa286]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/245296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact